4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
41 #include <linux/compat.h>
42 #include <linux/syscalls.h>
43 #include <linux/kprobes.h>
44 #include <linux/user_namespace.h>
46 #include <linux/kmsg_dump.h>
48 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
52 #ifndef SET_UNALIGN_CTL
53 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
55 #ifndef GET_UNALIGN_CTL
56 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
59 # define SET_FPEMU_CTL(a,b) (-EINVAL)
62 # define GET_FPEMU_CTL(a,b) (-EINVAL)
65 # define SET_FPEXC_CTL(a,b) (-EINVAL)
68 # define GET_FPEXC_CTL(a,b) (-EINVAL)
71 # define GET_ENDIAN(a,b) (-EINVAL)
74 # define SET_ENDIAN(a,b) (-EINVAL)
77 # define GET_TSC_CTL(a) (-EINVAL)
80 # define SET_TSC_CTL(a) (-EINVAL)
84 * this is where the system-wide overflow UID and GID are defined, for
85 * architectures that now have 32-bit UID/GID but didn't in the past
88 int overflowuid
= DEFAULT_OVERFLOWUID
;
89 int overflowgid
= DEFAULT_OVERFLOWGID
;
92 EXPORT_SYMBOL(overflowuid
);
93 EXPORT_SYMBOL(overflowgid
);
97 * the same as above, but for filesystems which can only store a 16-bit
98 * UID and GID. as such, this is needed on all architectures
101 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
102 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
104 EXPORT_SYMBOL(fs_overflowuid
);
105 EXPORT_SYMBOL(fs_overflowgid
);
108 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
113 EXPORT_SYMBOL(cad_pid
);
116 * If set, this is used for preparing the system to power off.
119 void (*pm_power_off_prepare
)(void);
122 * set the priority of a task
123 * - the caller must hold the RCU read lock
125 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
127 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
130 if (pcred
->uid
!= cred
->euid
&&
131 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
135 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
139 no_nice
= security_task_setnice(p
, niceval
);
146 set_user_nice(p
, niceval
);
151 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
153 struct task_struct
*g
, *p
;
154 struct user_struct
*user
;
155 const struct cred
*cred
= current_cred();
159 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
162 /* normalize: avoid signed division (rounding problems) */
170 read_lock(&tasklist_lock
);
174 p
= find_task_by_vpid(who
);
178 error
= set_one_prio(p
, niceval
, error
);
182 pgrp
= find_vpid(who
);
184 pgrp
= task_pgrp(current
);
185 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
186 error
= set_one_prio(p
, niceval
, error
);
187 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
190 user
= (struct user_struct
*) cred
->user
;
193 else if ((who
!= cred
->uid
) &&
194 !(user
= find_user(who
)))
195 goto out_unlock
; /* No processes for this user */
197 do_each_thread(g
, p
) {
198 if (__task_cred(p
)->uid
== who
)
199 error
= set_one_prio(p
, niceval
, error
);
200 } while_each_thread(g
, p
);
201 if (who
!= cred
->uid
)
202 free_uid(user
); /* For find_user() */
206 read_unlock(&tasklist_lock
);
213 * Ugh. To avoid negative return values, "getpriority()" will
214 * not return the normal nice-value, but a negated value that
215 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
216 * to stay compatible.
218 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
220 struct task_struct
*g
, *p
;
221 struct user_struct
*user
;
222 const struct cred
*cred
= current_cred();
223 long niceval
, retval
= -ESRCH
;
226 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
230 read_lock(&tasklist_lock
);
234 p
= find_task_by_vpid(who
);
238 niceval
= 20 - task_nice(p
);
239 if (niceval
> retval
)
245 pgrp
= find_vpid(who
);
247 pgrp
= task_pgrp(current
);
248 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
249 niceval
= 20 - task_nice(p
);
250 if (niceval
> retval
)
252 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
255 user
= (struct user_struct
*) cred
->user
;
258 else if ((who
!= cred
->uid
) &&
259 !(user
= find_user(who
)))
260 goto out_unlock
; /* No processes for this user */
262 do_each_thread(g
, p
) {
263 if (__task_cred(p
)->uid
== who
) {
264 niceval
= 20 - task_nice(p
);
265 if (niceval
> retval
)
268 } while_each_thread(g
, p
);
269 if (who
!= cred
->uid
)
270 free_uid(user
); /* for find_user() */
274 read_unlock(&tasklist_lock
);
281 * emergency_restart - reboot the system
283 * Without shutting down any hardware or taking any locks
284 * reboot the system. This is called when we know we are in
285 * trouble so this is our best effort to reboot. This is
286 * safe to call in interrupt context.
288 void emergency_restart(void)
290 kmsg_dump(KMSG_DUMP_EMERG
);
291 machine_emergency_restart();
293 EXPORT_SYMBOL_GPL(emergency_restart
);
295 void kernel_restart_prepare(char *cmd
)
297 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
298 system_state
= SYSTEM_RESTART
;
304 * kernel_restart - reboot the system
305 * @cmd: pointer to buffer containing command to execute for restart
308 * Shutdown everything and perform a clean reboot.
309 * This is not safe to call in interrupt context.
311 void kernel_restart(char *cmd
)
313 kernel_restart_prepare(cmd
);
315 printk(KERN_EMERG
"Restarting system.\n");
317 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
318 kmsg_dump(KMSG_DUMP_RESTART
);
319 machine_restart(cmd
);
321 EXPORT_SYMBOL_GPL(kernel_restart
);
323 static void kernel_shutdown_prepare(enum system_states state
)
325 blocking_notifier_call_chain(&reboot_notifier_list
,
326 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
327 system_state
= state
;
331 * kernel_halt - halt the system
333 * Shutdown everything and perform a clean system halt.
335 void kernel_halt(void)
337 kernel_shutdown_prepare(SYSTEM_HALT
);
339 printk(KERN_EMERG
"System halted.\n");
340 kmsg_dump(KMSG_DUMP_HALT
);
344 EXPORT_SYMBOL_GPL(kernel_halt
);
347 * kernel_power_off - power_off the system
349 * Shutdown everything and perform a clean system power_off.
351 void kernel_power_off(void)
353 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
354 if (pm_power_off_prepare
)
355 pm_power_off_prepare();
356 disable_nonboot_cpus();
358 printk(KERN_EMERG
"Power down.\n");
359 kmsg_dump(KMSG_DUMP_POWEROFF
);
362 EXPORT_SYMBOL_GPL(kernel_power_off
);
364 static DEFINE_MUTEX(reboot_mutex
);
367 * Reboot system call: for obvious reasons only root may call it,
368 * and even root needs to set up some magic numbers in the registers
369 * so that some mistake won't make this reboot the whole machine.
370 * You can also set the meaning of the ctrl-alt-del-key here.
372 * reboot doesn't sync: do that yourself before calling this.
374 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
380 /* We only trust the superuser with rebooting the system. */
381 if (!capable(CAP_SYS_BOOT
))
384 /* For safety, we require "magic" arguments. */
385 if (magic1
!= LINUX_REBOOT_MAGIC1
||
386 (magic2
!= LINUX_REBOOT_MAGIC2
&&
387 magic2
!= LINUX_REBOOT_MAGIC2A
&&
388 magic2
!= LINUX_REBOOT_MAGIC2B
&&
389 magic2
!= LINUX_REBOOT_MAGIC2C
))
392 /* Instead of trying to make the power_off code look like
393 * halt when pm_power_off is not set do it the easy way.
395 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
396 cmd
= LINUX_REBOOT_CMD_HALT
;
398 mutex_lock(&reboot_mutex
);
400 case LINUX_REBOOT_CMD_RESTART
:
401 kernel_restart(NULL
);
404 case LINUX_REBOOT_CMD_CAD_ON
:
408 case LINUX_REBOOT_CMD_CAD_OFF
:
412 case LINUX_REBOOT_CMD_HALT
:
415 panic("cannot halt");
417 case LINUX_REBOOT_CMD_POWER_OFF
:
422 case LINUX_REBOOT_CMD_RESTART2
:
423 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
427 buffer
[sizeof(buffer
) - 1] = '\0';
429 kernel_restart(buffer
);
433 case LINUX_REBOOT_CMD_KEXEC
:
434 ret
= kernel_kexec();
438 #ifdef CONFIG_HIBERNATION
439 case LINUX_REBOOT_CMD_SW_SUSPEND
:
448 mutex_unlock(&reboot_mutex
);
452 static void deferred_cad(struct work_struct
*dummy
)
454 kernel_restart(NULL
);
458 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
459 * As it's called within an interrupt, it may NOT sync: the only choice
460 * is whether to reboot at once, or just ignore the ctrl-alt-del.
462 void ctrl_alt_del(void)
464 static DECLARE_WORK(cad_work
, deferred_cad
);
467 schedule_work(&cad_work
);
469 kill_cad_pid(SIGINT
, 1);
473 * Unprivileged users may change the real gid to the effective gid
474 * or vice versa. (BSD-style)
476 * If you set the real gid at all, or set the effective gid to a value not
477 * equal to the real gid, then the saved gid is set to the new effective gid.
479 * This makes it possible for a setgid program to completely drop its
480 * privileges, which is often a useful assertion to make when you are doing
481 * a security audit over a program.
483 * The general idea is that a program which uses just setregid() will be
484 * 100% compatible with BSD. A program which uses just setgid() will be
485 * 100% compatible with POSIX with saved IDs.
487 * SMP: There are not races, the GIDs are checked only by filesystem
488 * operations (as far as semantic preservation is concerned).
490 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
492 const struct cred
*old
;
496 new = prepare_creds();
499 old
= current_cred();
502 if (rgid
!= (gid_t
) -1) {
503 if (old
->gid
== rgid
||
510 if (egid
!= (gid_t
) -1) {
511 if (old
->gid
== egid
||
520 if (rgid
!= (gid_t
) -1 ||
521 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
522 new->sgid
= new->egid
;
523 new->fsgid
= new->egid
;
525 return commit_creds(new);
533 * setgid() is implemented like SysV w/ SAVED_IDS
535 * SMP: Same implicit races as above.
537 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
539 const struct cred
*old
;
543 new = prepare_creds();
546 old
= current_cred();
549 if (capable(CAP_SETGID
))
550 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
551 else if (gid
== old
->gid
|| gid
== old
->sgid
)
552 new->egid
= new->fsgid
= gid
;
556 return commit_creds(new);
564 * change the user struct in a credentials set to match the new UID
566 static int set_user(struct cred
*new)
568 struct user_struct
*new_user
;
570 new_user
= alloc_uid(current_user_ns(), new->uid
);
574 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
575 new_user
!= INIT_USER
) {
581 new->user
= new_user
;
586 * Unprivileged users may change the real uid to the effective uid
587 * or vice versa. (BSD-style)
589 * If you set the real uid at all, or set the effective uid to a value not
590 * equal to the real uid, then the saved uid is set to the new effective uid.
592 * This makes it possible for a setuid program to completely drop its
593 * privileges, which is often a useful assertion to make when you are doing
594 * a security audit over a program.
596 * The general idea is that a program which uses just setreuid() will be
597 * 100% compatible with BSD. A program which uses just setuid() will be
598 * 100% compatible with POSIX with saved IDs.
600 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
602 const struct cred
*old
;
606 new = prepare_creds();
609 old
= current_cred();
612 if (ruid
!= (uid_t
) -1) {
614 if (old
->uid
!= ruid
&&
616 !capable(CAP_SETUID
))
620 if (euid
!= (uid_t
) -1) {
622 if (old
->uid
!= euid
&&
625 !capable(CAP_SETUID
))
629 if (new->uid
!= old
->uid
) {
630 retval
= set_user(new);
634 if (ruid
!= (uid_t
) -1 ||
635 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
636 new->suid
= new->euid
;
637 new->fsuid
= new->euid
;
639 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
643 return commit_creds(new);
651 * setuid() is implemented like SysV with SAVED_IDS
653 * Note that SAVED_ID's is deficient in that a setuid root program
654 * like sendmail, for example, cannot set its uid to be a normal
655 * user and then switch back, because if you're root, setuid() sets
656 * the saved uid too. If you don't like this, blame the bright people
657 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
658 * will allow a root program to temporarily drop privileges and be able to
659 * regain them by swapping the real and effective uid.
661 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
663 const struct cred
*old
;
667 new = prepare_creds();
670 old
= current_cred();
673 if (capable(CAP_SETUID
)) {
674 new->suid
= new->uid
= uid
;
675 if (uid
!= old
->uid
) {
676 retval
= set_user(new);
680 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
684 new->fsuid
= new->euid
= uid
;
686 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
690 return commit_creds(new);
699 * This function implements a generic ability to update ruid, euid,
700 * and suid. This allows you to implement the 4.4 compatible seteuid().
702 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
704 const struct cred
*old
;
708 new = prepare_creds();
712 old
= current_cred();
715 if (!capable(CAP_SETUID
)) {
716 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
717 ruid
!= old
->euid
&& ruid
!= old
->suid
)
719 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
720 euid
!= old
->euid
&& euid
!= old
->suid
)
722 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
723 suid
!= old
->euid
&& suid
!= old
->suid
)
727 if (ruid
!= (uid_t
) -1) {
729 if (ruid
!= old
->uid
) {
730 retval
= set_user(new);
735 if (euid
!= (uid_t
) -1)
737 if (suid
!= (uid_t
) -1)
739 new->fsuid
= new->euid
;
741 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
745 return commit_creds(new);
752 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
754 const struct cred
*cred
= current_cred();
757 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
758 !(retval
= put_user(cred
->euid
, euid
)))
759 retval
= put_user(cred
->suid
, suid
);
765 * Same as above, but for rgid, egid, sgid.
767 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
769 const struct cred
*old
;
773 new = prepare_creds();
776 old
= current_cred();
779 if (!capable(CAP_SETGID
)) {
780 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
781 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
783 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
784 egid
!= old
->egid
&& egid
!= old
->sgid
)
786 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
787 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
791 if (rgid
!= (gid_t
) -1)
793 if (egid
!= (gid_t
) -1)
795 if (sgid
!= (gid_t
) -1)
797 new->fsgid
= new->egid
;
799 return commit_creds(new);
806 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
808 const struct cred
*cred
= current_cred();
811 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
812 !(retval
= put_user(cred
->egid
, egid
)))
813 retval
= put_user(cred
->sgid
, sgid
);
820 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
821 * is used for "access()" and for the NFS daemon (letting nfsd stay at
822 * whatever uid it wants to). It normally shadows "euid", except when
823 * explicitly set by setfsuid() or for access..
825 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
827 const struct cred
*old
;
831 new = prepare_creds();
833 return current_fsuid();
834 old
= current_cred();
835 old_fsuid
= old
->fsuid
;
837 if (uid
== old
->uid
|| uid
== old
->euid
||
838 uid
== old
->suid
|| uid
== old
->fsuid
||
839 capable(CAP_SETUID
)) {
840 if (uid
!= old_fsuid
) {
842 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
856 * Samma på svenska..
858 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
860 const struct cred
*old
;
864 new = prepare_creds();
866 return current_fsgid();
867 old
= current_cred();
868 old_fsgid
= old
->fsgid
;
870 if (gid
== old
->gid
|| gid
== old
->egid
||
871 gid
== old
->sgid
|| gid
== old
->fsgid
||
872 capable(CAP_SETGID
)) {
873 if (gid
!= old_fsgid
) {
887 void do_sys_times(struct tms
*tms
)
889 cputime_t tgutime
, tgstime
, cutime
, cstime
;
891 spin_lock_irq(¤t
->sighand
->siglock
);
892 thread_group_times(current
, &tgutime
, &tgstime
);
893 cutime
= current
->signal
->cutime
;
894 cstime
= current
->signal
->cstime
;
895 spin_unlock_irq(¤t
->sighand
->siglock
);
896 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
897 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
898 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
899 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
902 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
908 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
911 force_successful_syscall_return();
912 return (long) jiffies_64_to_clock_t(get_jiffies_64());
916 * This needs some heavy checking ...
917 * I just haven't the stomach for it. I also don't fully
918 * understand sessions/pgrp etc. Let somebody who does explain it.
920 * OK, I think I have the protection semantics right.... this is really
921 * only important on a multi-user system anyway, to make sure one user
922 * can't send a signal to a process owned by another. -TYT, 12/12/91
924 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
927 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
929 struct task_struct
*p
;
930 struct task_struct
*group_leader
= current
->group_leader
;
935 pid
= task_pid_vnr(group_leader
);
942 /* From this point forward we keep holding onto the tasklist lock
943 * so that our parent does not change from under us. -DaveM
945 write_lock_irq(&tasklist_lock
);
948 p
= find_task_by_vpid(pid
);
953 if (!thread_group_leader(p
))
956 if (same_thread_group(p
->real_parent
, group_leader
)) {
958 if (task_session(p
) != task_session(group_leader
))
965 if (p
!= group_leader
)
970 if (p
->signal
->leader
)
975 struct task_struct
*g
;
977 pgrp
= find_vpid(pgid
);
978 g
= pid_task(pgrp
, PIDTYPE_PGID
);
979 if (!g
|| task_session(g
) != task_session(group_leader
))
983 err
= security_task_setpgid(p
, pgid
);
987 if (task_pgrp(p
) != pgrp
)
988 change_pid(p
, PIDTYPE_PGID
, pgrp
);
992 /* All paths lead to here, thus we are safe. -DaveM */
993 write_unlock_irq(&tasklist_lock
);
998 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1000 struct task_struct
*p
;
1006 grp
= task_pgrp(current
);
1009 p
= find_task_by_vpid(pid
);
1016 retval
= security_task_getpgid(p
);
1020 retval
= pid_vnr(grp
);
1026 #ifdef __ARCH_WANT_SYS_GETPGRP
1028 SYSCALL_DEFINE0(getpgrp
)
1030 return sys_getpgid(0);
1035 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1037 struct task_struct
*p
;
1043 sid
= task_session(current
);
1046 p
= find_task_by_vpid(pid
);
1049 sid
= task_session(p
);
1053 retval
= security_task_getsid(p
);
1057 retval
= pid_vnr(sid
);
1063 SYSCALL_DEFINE0(setsid
)
1065 struct task_struct
*group_leader
= current
->group_leader
;
1066 struct pid
*sid
= task_pid(group_leader
);
1067 pid_t session
= pid_vnr(sid
);
1070 write_lock_irq(&tasklist_lock
);
1071 /* Fail if I am already a session leader */
1072 if (group_leader
->signal
->leader
)
1075 /* Fail if a process group id already exists that equals the
1076 * proposed session id.
1078 if (pid_task(sid
, PIDTYPE_PGID
))
1081 group_leader
->signal
->leader
= 1;
1082 __set_special_pids(sid
);
1084 proc_clear_tty(group_leader
);
1088 write_unlock_irq(&tasklist_lock
);
1090 proc_sid_connector(group_leader
);
1091 sched_autogroup_create_attach(group_leader
);
1096 DECLARE_RWSEM(uts_sem
);
1098 #ifdef COMPAT_UTS_MACHINE
1099 #define override_architecture(name) \
1100 (personality(current->personality) == PER_LINUX32 && \
1101 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1102 sizeof(COMPAT_UTS_MACHINE)))
1104 #define override_architecture(name) 0
1107 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1111 down_read(&uts_sem
);
1112 if (copy_to_user(name
, utsname(), sizeof *name
))
1116 if (!errno
&& override_architecture(name
))
1121 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1125 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1132 down_read(&uts_sem
);
1133 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1137 if (!error
&& override_architecture(name
))
1142 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1148 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1151 down_read(&uts_sem
);
1152 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1154 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1155 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1157 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1158 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1160 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1161 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1163 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1164 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1166 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1169 if (!error
&& override_architecture(name
))
1171 return error
? -EFAULT
: 0;
1175 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1178 char tmp
[__NEW_UTS_LEN
];
1180 if (!capable(CAP_SYS_ADMIN
))
1182 if (len
< 0 || len
> __NEW_UTS_LEN
)
1184 down_write(&uts_sem
);
1186 if (!copy_from_user(tmp
, name
, len
)) {
1187 struct new_utsname
*u
= utsname();
1189 memcpy(u
->nodename
, tmp
, len
);
1190 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1197 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1199 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1202 struct new_utsname
*u
;
1206 down_read(&uts_sem
);
1208 i
= 1 + strlen(u
->nodename
);
1212 if (copy_to_user(name
, u
->nodename
, i
))
1221 * Only setdomainname; getdomainname can be implemented by calling
1224 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1227 char tmp
[__NEW_UTS_LEN
];
1229 if (!capable(CAP_SYS_ADMIN
))
1231 if (len
< 0 || len
> __NEW_UTS_LEN
)
1234 down_write(&uts_sem
);
1236 if (!copy_from_user(tmp
, name
, len
)) {
1237 struct new_utsname
*u
= utsname();
1239 memcpy(u
->domainname
, tmp
, len
);
1240 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1247 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1249 struct rlimit value
;
1252 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1254 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1259 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1262 * Back compatibility for getrlimit. Needed for some apps.
1265 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1266 struct rlimit __user
*, rlim
)
1269 if (resource
>= RLIM_NLIMITS
)
1272 task_lock(current
->group_leader
);
1273 x
= current
->signal
->rlim
[resource
];
1274 task_unlock(current
->group_leader
);
1275 if (x
.rlim_cur
> 0x7FFFFFFF)
1276 x
.rlim_cur
= 0x7FFFFFFF;
1277 if (x
.rlim_max
> 0x7FFFFFFF)
1278 x
.rlim_max
= 0x7FFFFFFF;
1279 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1284 static inline bool rlim64_is_infinity(__u64 rlim64
)
1286 #if BITS_PER_LONG < 64
1287 return rlim64
>= ULONG_MAX
;
1289 return rlim64
== RLIM64_INFINITY
;
1293 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1295 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1296 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1298 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1299 if (rlim
->rlim_max
== RLIM_INFINITY
)
1300 rlim64
->rlim_max
= RLIM64_INFINITY
;
1302 rlim64
->rlim_max
= rlim
->rlim_max
;
1305 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1307 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1308 rlim
->rlim_cur
= RLIM_INFINITY
;
1310 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1311 if (rlim64_is_infinity(rlim64
->rlim_max
))
1312 rlim
->rlim_max
= RLIM_INFINITY
;
1314 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1317 /* make sure you are allowed to change @tsk limits before calling this */
1318 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1319 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1321 struct rlimit
*rlim
;
1324 if (resource
>= RLIM_NLIMITS
)
1327 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1329 if (resource
== RLIMIT_NOFILE
&&
1330 new_rlim
->rlim_max
> sysctl_nr_open
)
1334 /* protect tsk->signal and tsk->sighand from disappearing */
1335 read_lock(&tasklist_lock
);
1336 if (!tsk
->sighand
) {
1341 rlim
= tsk
->signal
->rlim
+ resource
;
1342 task_lock(tsk
->group_leader
);
1344 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1345 !capable(CAP_SYS_RESOURCE
))
1348 retval
= security_task_setrlimit(tsk
->group_leader
,
1349 resource
, new_rlim
);
1350 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1352 * The caller is asking for an immediate RLIMIT_CPU
1353 * expiry. But we use the zero value to mean "it was
1354 * never set". So let's cheat and make it one second
1357 new_rlim
->rlim_cur
= 1;
1366 task_unlock(tsk
->group_leader
);
1369 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1370 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1371 * very long-standing error, and fixing it now risks breakage of
1372 * applications, so we live with it
1374 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1375 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1376 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1378 read_unlock(&tasklist_lock
);
1382 /* rcu lock must be held */
1383 static int check_prlimit_permission(struct task_struct
*task
)
1385 const struct cred
*cred
= current_cred(), *tcred
;
1387 tcred
= __task_cred(task
);
1388 if (current
!= task
&&
1389 (cred
->uid
!= tcred
->euid
||
1390 cred
->uid
!= tcred
->suid
||
1391 cred
->uid
!= tcred
->uid
||
1392 cred
->gid
!= tcred
->egid
||
1393 cred
->gid
!= tcred
->sgid
||
1394 cred
->gid
!= tcred
->gid
) &&
1395 !capable(CAP_SYS_RESOURCE
)) {
1402 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1403 const struct rlimit64 __user
*, new_rlim
,
1404 struct rlimit64 __user
*, old_rlim
)
1406 struct rlimit64 old64
, new64
;
1407 struct rlimit old
, new;
1408 struct task_struct
*tsk
;
1412 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1414 rlim64_to_rlim(&new64
, &new);
1418 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1423 ret
= check_prlimit_permission(tsk
);
1428 get_task_struct(tsk
);
1431 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1432 old_rlim
? &old
: NULL
);
1434 if (!ret
&& old_rlim
) {
1435 rlim_to_rlim64(&old
, &old64
);
1436 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1440 put_task_struct(tsk
);
1444 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1446 struct rlimit new_rlim
;
1448 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1450 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1454 * It would make sense to put struct rusage in the task_struct,
1455 * except that would make the task_struct be *really big*. After
1456 * task_struct gets moved into malloc'ed memory, it would
1457 * make sense to do this. It will make moving the rest of the information
1458 * a lot simpler! (Which we're not doing right now because we're not
1459 * measuring them yet).
1461 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1462 * races with threads incrementing their own counters. But since word
1463 * reads are atomic, we either get new values or old values and we don't
1464 * care which for the sums. We always take the siglock to protect reading
1465 * the c* fields from p->signal from races with exit.c updating those
1466 * fields when reaping, so a sample either gets all the additions of a
1467 * given child after it's reaped, or none so this sample is before reaping.
1470 * We need to take the siglock for CHILDEREN, SELF and BOTH
1471 * for the cases current multithreaded, non-current single threaded
1472 * non-current multithreaded. Thread traversal is now safe with
1474 * Strictly speaking, we donot need to take the siglock if we are current and
1475 * single threaded, as no one else can take our signal_struct away, no one
1476 * else can reap the children to update signal->c* counters, and no one else
1477 * can race with the signal-> fields. If we do not take any lock, the
1478 * signal-> fields could be read out of order while another thread was just
1479 * exiting. So we should place a read memory barrier when we avoid the lock.
1480 * On the writer side, write memory barrier is implied in __exit_signal
1481 * as __exit_signal releases the siglock spinlock after updating the signal->
1482 * fields. But we don't do this yet to keep things simple.
1486 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1488 r
->ru_nvcsw
+= t
->nvcsw
;
1489 r
->ru_nivcsw
+= t
->nivcsw
;
1490 r
->ru_minflt
+= t
->min_flt
;
1491 r
->ru_majflt
+= t
->maj_flt
;
1492 r
->ru_inblock
+= task_io_get_inblock(t
);
1493 r
->ru_oublock
+= task_io_get_oublock(t
);
1496 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1498 struct task_struct
*t
;
1499 unsigned long flags
;
1500 cputime_t tgutime
, tgstime
, utime
, stime
;
1501 unsigned long maxrss
= 0;
1503 memset((char *) r
, 0, sizeof *r
);
1504 utime
= stime
= cputime_zero
;
1506 if (who
== RUSAGE_THREAD
) {
1507 task_times(current
, &utime
, &stime
);
1508 accumulate_thread_rusage(p
, r
);
1509 maxrss
= p
->signal
->maxrss
;
1513 if (!lock_task_sighand(p
, &flags
))
1518 case RUSAGE_CHILDREN
:
1519 utime
= p
->signal
->cutime
;
1520 stime
= p
->signal
->cstime
;
1521 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1522 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1523 r
->ru_minflt
= p
->signal
->cmin_flt
;
1524 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1525 r
->ru_inblock
= p
->signal
->cinblock
;
1526 r
->ru_oublock
= p
->signal
->coublock
;
1527 maxrss
= p
->signal
->cmaxrss
;
1529 if (who
== RUSAGE_CHILDREN
)
1533 thread_group_times(p
, &tgutime
, &tgstime
);
1534 utime
= cputime_add(utime
, tgutime
);
1535 stime
= cputime_add(stime
, tgstime
);
1536 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1537 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1538 r
->ru_minflt
+= p
->signal
->min_flt
;
1539 r
->ru_majflt
+= p
->signal
->maj_flt
;
1540 r
->ru_inblock
+= p
->signal
->inblock
;
1541 r
->ru_oublock
+= p
->signal
->oublock
;
1542 if (maxrss
< p
->signal
->maxrss
)
1543 maxrss
= p
->signal
->maxrss
;
1546 accumulate_thread_rusage(t
, r
);
1554 unlock_task_sighand(p
, &flags
);
1557 cputime_to_timeval(utime
, &r
->ru_utime
);
1558 cputime_to_timeval(stime
, &r
->ru_stime
);
1560 if (who
!= RUSAGE_CHILDREN
) {
1561 struct mm_struct
*mm
= get_task_mm(p
);
1563 setmax_mm_hiwater_rss(&maxrss
, mm
);
1567 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1570 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1573 k_getrusage(p
, who
, &r
);
1574 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1577 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1579 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1580 who
!= RUSAGE_THREAD
)
1582 return getrusage(current
, who
, ru
);
1585 SYSCALL_DEFINE1(umask
, int, mask
)
1587 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1591 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1592 unsigned long, arg4
, unsigned long, arg5
)
1594 struct task_struct
*me
= current
;
1595 unsigned char comm
[sizeof(me
->comm
)];
1598 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1599 if (error
!= -ENOSYS
)
1604 case PR_SET_PDEATHSIG
:
1605 if (!valid_signal(arg2
)) {
1609 me
->pdeath_signal
= arg2
;
1612 case PR_GET_PDEATHSIG
:
1613 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1615 case PR_GET_DUMPABLE
:
1616 error
= get_dumpable(me
->mm
);
1618 case PR_SET_DUMPABLE
:
1619 if (arg2
< 0 || arg2
> 1) {
1623 set_dumpable(me
->mm
, arg2
);
1627 case PR_SET_UNALIGN
:
1628 error
= SET_UNALIGN_CTL(me
, arg2
);
1630 case PR_GET_UNALIGN
:
1631 error
= GET_UNALIGN_CTL(me
, arg2
);
1634 error
= SET_FPEMU_CTL(me
, arg2
);
1637 error
= GET_FPEMU_CTL(me
, arg2
);
1640 error
= SET_FPEXC_CTL(me
, arg2
);
1643 error
= GET_FPEXC_CTL(me
, arg2
);
1646 error
= PR_TIMING_STATISTICAL
;
1649 if (arg2
!= PR_TIMING_STATISTICAL
)
1656 comm
[sizeof(me
->comm
)-1] = 0;
1657 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1658 sizeof(me
->comm
) - 1) < 0)
1660 set_task_comm(me
, comm
);
1663 get_task_comm(comm
, me
);
1664 if (copy_to_user((char __user
*)arg2
, comm
,
1669 error
= GET_ENDIAN(me
, arg2
);
1672 error
= SET_ENDIAN(me
, arg2
);
1675 case PR_GET_SECCOMP
:
1676 error
= prctl_get_seccomp();
1678 case PR_SET_SECCOMP
:
1679 error
= prctl_set_seccomp(arg2
);
1682 error
= GET_TSC_CTL(arg2
);
1685 error
= SET_TSC_CTL(arg2
);
1687 case PR_TASK_PERF_EVENTS_DISABLE
:
1688 error
= perf_event_task_disable();
1690 case PR_TASK_PERF_EVENTS_ENABLE
:
1691 error
= perf_event_task_enable();
1693 case PR_GET_TIMERSLACK
:
1694 error
= current
->timer_slack_ns
;
1696 case PR_SET_TIMERSLACK
:
1698 current
->timer_slack_ns
=
1699 current
->default_timer_slack_ns
;
1701 current
->timer_slack_ns
= arg2
;
1708 case PR_MCE_KILL_CLEAR
:
1711 current
->flags
&= ~PF_MCE_PROCESS
;
1713 case PR_MCE_KILL_SET
:
1714 current
->flags
|= PF_MCE_PROCESS
;
1715 if (arg3
== PR_MCE_KILL_EARLY
)
1716 current
->flags
|= PF_MCE_EARLY
;
1717 else if (arg3
== PR_MCE_KILL_LATE
)
1718 current
->flags
&= ~PF_MCE_EARLY
;
1719 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1721 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1730 case PR_MCE_KILL_GET
:
1731 if (arg2
| arg3
| arg4
| arg5
)
1733 if (current
->flags
& PF_MCE_PROCESS
)
1734 error
= (current
->flags
& PF_MCE_EARLY
) ?
1735 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1737 error
= PR_MCE_KILL_DEFAULT
;
1746 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1747 struct getcpu_cache __user
*, unused
)
1750 int cpu
= raw_smp_processor_id();
1752 err
|= put_user(cpu
, cpup
);
1754 err
|= put_user(cpu_to_node(cpu
), nodep
);
1755 return err
? -EFAULT
: 0;
1758 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1760 static void argv_cleanup(struct subprocess_info
*info
)
1762 argv_free(info
->argv
);
1766 * orderly_poweroff - Trigger an orderly system poweroff
1767 * @force: force poweroff if command execution fails
1769 * This may be called from any context to trigger a system shutdown.
1770 * If the orderly shutdown fails, it will force an immediate shutdown.
1772 int orderly_poweroff(bool force
)
1775 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1776 static char *envp
[] = {
1778 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1782 struct subprocess_info
*info
;
1785 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1786 __func__
, poweroff_cmd
);
1790 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1796 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1798 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1802 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1803 "forcing the issue\n");
1805 /* I guess this should try to kick off some daemon to
1806 sync and poweroff asap. Or not even bother syncing
1807 if we're doing an emergency shutdown? */
1814 EXPORT_SYMBOL_GPL(orderly_poweroff
);