4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr
;
72 EXPORT_SYMBOL(max_mapnr
);
73 EXPORT_SYMBOL(mem_map
);
76 unsigned long num_physpages
;
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
86 EXPORT_SYMBOL(num_physpages
);
87 EXPORT_SYMBOL(high_memory
);
90 * Randomize the address space (stacks, mmaps, brk, etc.).
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
95 int randomize_va_space __read_mostly
=
96 #ifdef CONFIG_COMPAT_BRK
102 static int __init
disable_randmaps(char *s
)
104 randomize_va_space
= 0;
107 __setup("norandmaps", disable_randmaps
);
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 void pgd_clear_bad(pgd_t
*pgd
)
122 void pud_clear_bad(pud_t
*pud
)
128 void pmd_clear_bad(pmd_t
*pmd
)
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
138 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
141 pgtable_t token
= pmd_pgtable(*pmd
);
143 pte_free_tlb(tlb
, token
, addr
);
147 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
148 unsigned long addr
, unsigned long end
,
149 unsigned long floor
, unsigned long ceiling
)
156 pmd
= pmd_offset(pud
, addr
);
158 next
= pmd_addr_end(addr
, end
);
159 if (pmd_none_or_clear_bad(pmd
))
161 free_pte_range(tlb
, pmd
, addr
);
162 } while (pmd
++, addr
= next
, addr
!= end
);
172 if (end
- 1 > ceiling
- 1)
175 pmd
= pmd_offset(pud
, start
);
177 pmd_free_tlb(tlb
, pmd
, start
);
180 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
181 unsigned long addr
, unsigned long end
,
182 unsigned long floor
, unsigned long ceiling
)
189 pud
= pud_offset(pgd
, addr
);
191 next
= pud_addr_end(addr
, end
);
192 if (pud_none_or_clear_bad(pud
))
194 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
195 } while (pud
++, addr
= next
, addr
!= end
);
201 ceiling
&= PGDIR_MASK
;
205 if (end
- 1 > ceiling
- 1)
208 pud
= pud_offset(pgd
, start
);
210 pud_free_tlb(tlb
, pud
, start
);
214 * This function frees user-level page tables of a process.
216 * Must be called with pagetable lock held.
218 void free_pgd_range(struct mmu_gather
*tlb
,
219 unsigned long addr
, unsigned long end
,
220 unsigned long floor
, unsigned long ceiling
)
227 * The next few lines have given us lots of grief...
229 * Why are we testing PMD* at this top level? Because often
230 * there will be no work to do at all, and we'd prefer not to
231 * go all the way down to the bottom just to discover that.
233 * Why all these "- 1"s? Because 0 represents both the bottom
234 * of the address space and the top of it (using -1 for the
235 * top wouldn't help much: the masks would do the wrong thing).
236 * The rule is that addr 0 and floor 0 refer to the bottom of
237 * the address space, but end 0 and ceiling 0 refer to the top
238 * Comparisons need to use "end - 1" and "ceiling - 1" (though
239 * that end 0 case should be mythical).
241 * Wherever addr is brought up or ceiling brought down, we must
242 * be careful to reject "the opposite 0" before it confuses the
243 * subsequent tests. But what about where end is brought down
244 * by PMD_SIZE below? no, end can't go down to 0 there.
246 * Whereas we round start (addr) and ceiling down, by different
247 * masks at different levels, in order to test whether a table
248 * now has no other vmas using it, so can be freed, we don't
249 * bother to round floor or end up - the tests don't need that.
263 if (end
- 1 > ceiling
- 1)
269 pgd
= pgd_offset(tlb
->mm
, addr
);
271 next
= pgd_addr_end(addr
, end
);
272 if (pgd_none_or_clear_bad(pgd
))
274 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
275 } while (pgd
++, addr
= next
, addr
!= end
);
278 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
279 unsigned long floor
, unsigned long ceiling
)
282 struct vm_area_struct
*next
= vma
->vm_next
;
283 unsigned long addr
= vma
->vm_start
;
286 * Hide vma from rmap and vmtruncate before freeing pgtables
288 anon_vma_unlink(vma
);
289 unlink_file_vma(vma
);
291 if (is_vm_hugetlb_page(vma
)) {
292 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
293 floor
, next
? next
->vm_start
: ceiling
);
296 * Optimization: gather nearby vmas into one call down
298 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
299 && !is_vm_hugetlb_page(next
)) {
302 anon_vma_unlink(vma
);
303 unlink_file_vma(vma
);
305 free_pgd_range(tlb
, addr
, vma
->vm_end
,
306 floor
, next
? next
->vm_start
: ceiling
);
312 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
314 pgtable_t
new = pte_alloc_one(mm
, address
);
319 * Ensure all pte setup (eg. pte page lock and page clearing) are
320 * visible before the pte is made visible to other CPUs by being
321 * put into page tables.
323 * The other side of the story is the pointer chasing in the page
324 * table walking code (when walking the page table without locking;
325 * ie. most of the time). Fortunately, these data accesses consist
326 * of a chain of data-dependent loads, meaning most CPUs (alpha
327 * being the notable exception) will already guarantee loads are
328 * seen in-order. See the alpha page table accessors for the
329 * smp_read_barrier_depends() barriers in page table walking code.
331 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
333 spin_lock(&mm
->page_table_lock
);
334 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
336 pmd_populate(mm
, pmd
, new);
339 spin_unlock(&mm
->page_table_lock
);
345 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
347 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
351 smp_wmb(); /* See comment in __pte_alloc */
353 spin_lock(&init_mm
.page_table_lock
);
354 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
355 pmd_populate_kernel(&init_mm
, pmd
, new);
358 spin_unlock(&init_mm
.page_table_lock
);
360 pte_free_kernel(&init_mm
, new);
364 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
367 add_mm_counter(mm
, file_rss
, file_rss
);
369 add_mm_counter(mm
, anon_rss
, anon_rss
);
373 * This function is called to print an error when a bad pte
374 * is found. For example, we might have a PFN-mapped pte in
375 * a region that doesn't allow it.
377 * The calling function must still handle the error.
379 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
380 pte_t pte
, struct page
*page
)
382 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
383 pud_t
*pud
= pud_offset(pgd
, addr
);
384 pmd_t
*pmd
= pmd_offset(pud
, addr
);
385 struct address_space
*mapping
;
387 static unsigned long resume
;
388 static unsigned long nr_shown
;
389 static unsigned long nr_unshown
;
392 * Allow a burst of 60 reports, then keep quiet for that minute;
393 * or allow a steady drip of one report per second.
395 if (nr_shown
== 60) {
396 if (time_before(jiffies
, resume
)) {
402 "BUG: Bad page map: %lu messages suppressed\n",
409 resume
= jiffies
+ 60 * HZ
;
411 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
412 index
= linear_page_index(vma
, addr
);
415 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
417 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
420 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
421 page
, (void *)page
->flags
, page_count(page
),
422 page_mapcount(page
), page
->mapping
, page
->index
);
425 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
426 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
428 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
431 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
432 (unsigned long)vma
->vm_ops
->fault
);
433 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
434 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
435 (unsigned long)vma
->vm_file
->f_op
->mmap
);
437 add_taint(TAINT_BAD_PAGE
);
440 static inline int is_cow_mapping(unsigned int flags
)
442 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
446 * vm_normal_page -- This function gets the "struct page" associated with a pte.
448 * "Special" mappings do not wish to be associated with a "struct page" (either
449 * it doesn't exist, or it exists but they don't want to touch it). In this
450 * case, NULL is returned here. "Normal" mappings do have a struct page.
452 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
453 * pte bit, in which case this function is trivial. Secondly, an architecture
454 * may not have a spare pte bit, which requires a more complicated scheme,
457 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
458 * special mapping (even if there are underlying and valid "struct pages").
459 * COWed pages of a VM_PFNMAP are always normal.
461 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
462 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
463 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
464 * mapping will always honor the rule
466 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
468 * And for normal mappings this is false.
470 * This restricts such mappings to be a linear translation from virtual address
471 * to pfn. To get around this restriction, we allow arbitrary mappings so long
472 * as the vma is not a COW mapping; in that case, we know that all ptes are
473 * special (because none can have been COWed).
476 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
478 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
479 * page" backing, however the difference is that _all_ pages with a struct
480 * page (that is, those where pfn_valid is true) are refcounted and considered
481 * normal pages by the VM. The disadvantage is that pages are refcounted
482 * (which can be slower and simply not an option for some PFNMAP users). The
483 * advantage is that we don't have to follow the strict linearity rule of
484 * PFNMAP mappings in order to support COWable mappings.
487 #ifdef __HAVE_ARCH_PTE_SPECIAL
488 # define HAVE_PTE_SPECIAL 1
490 # define HAVE_PTE_SPECIAL 0
492 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
495 unsigned long pfn
= pte_pfn(pte
);
497 if (HAVE_PTE_SPECIAL
) {
498 if (likely(!pte_special(pte
)))
500 if (!(vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)))
501 print_bad_pte(vma
, addr
, pte
, NULL
);
505 /* !HAVE_PTE_SPECIAL case follows: */
507 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
508 if (vma
->vm_flags
& VM_MIXEDMAP
) {
514 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
515 if (pfn
== vma
->vm_pgoff
+ off
)
517 if (!is_cow_mapping(vma
->vm_flags
))
523 if (unlikely(pfn
> highest_memmap_pfn
)) {
524 print_bad_pte(vma
, addr
, pte
, NULL
);
529 * NOTE! We still have PageReserved() pages in the page tables.
530 * eg. VDSO mappings can cause them to exist.
533 return pfn_to_page(pfn
);
537 * copy one vm_area from one task to the other. Assumes the page tables
538 * already present in the new task to be cleared in the whole range
539 * covered by this vma.
543 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
544 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
545 unsigned long addr
, int *rss
)
547 unsigned long vm_flags
= vma
->vm_flags
;
548 pte_t pte
= *src_pte
;
551 /* pte contains position in swap or file, so copy. */
552 if (unlikely(!pte_present(pte
))) {
553 if (!pte_file(pte
)) {
554 swp_entry_t entry
= pte_to_swp_entry(pte
);
556 swap_duplicate(entry
);
557 /* make sure dst_mm is on swapoff's mmlist. */
558 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
559 spin_lock(&mmlist_lock
);
560 if (list_empty(&dst_mm
->mmlist
))
561 list_add(&dst_mm
->mmlist
,
563 spin_unlock(&mmlist_lock
);
565 if (is_write_migration_entry(entry
) &&
566 is_cow_mapping(vm_flags
)) {
568 * COW mappings require pages in both parent
569 * and child to be set to read.
571 make_migration_entry_read(&entry
);
572 pte
= swp_entry_to_pte(entry
);
573 set_pte_at(src_mm
, addr
, src_pte
, pte
);
580 * If it's a COW mapping, write protect it both
581 * in the parent and the child
583 if (is_cow_mapping(vm_flags
)) {
584 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
585 pte
= pte_wrprotect(pte
);
589 * If it's a shared mapping, mark it clean in
592 if (vm_flags
& VM_SHARED
)
593 pte
= pte_mkclean(pte
);
594 pte
= pte_mkold(pte
);
596 page
= vm_normal_page(vma
, addr
, pte
);
599 page_dup_rmap(page
, vma
, addr
);
600 rss
[!!PageAnon(page
)]++;
604 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
607 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
608 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
609 unsigned long addr
, unsigned long end
)
611 pte_t
*src_pte
, *dst_pte
;
612 spinlock_t
*src_ptl
, *dst_ptl
;
618 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
621 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
622 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
623 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
624 arch_enter_lazy_mmu_mode();
628 * We are holding two locks at this point - either of them
629 * could generate latencies in another task on another CPU.
631 if (progress
>= 32) {
633 if (need_resched() ||
634 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
637 if (pte_none(*src_pte
)) {
641 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
643 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
645 arch_leave_lazy_mmu_mode();
646 spin_unlock(src_ptl
);
647 pte_unmap_nested(src_pte
- 1);
648 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
649 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
656 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
657 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
658 unsigned long addr
, unsigned long end
)
660 pmd_t
*src_pmd
, *dst_pmd
;
663 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
666 src_pmd
= pmd_offset(src_pud
, addr
);
668 next
= pmd_addr_end(addr
, end
);
669 if (pmd_none_or_clear_bad(src_pmd
))
671 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
674 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
678 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
679 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
680 unsigned long addr
, unsigned long end
)
682 pud_t
*src_pud
, *dst_pud
;
685 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
688 src_pud
= pud_offset(src_pgd
, addr
);
690 next
= pud_addr_end(addr
, end
);
691 if (pud_none_or_clear_bad(src_pud
))
693 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
696 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
700 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
701 struct vm_area_struct
*vma
)
703 pgd_t
*src_pgd
, *dst_pgd
;
705 unsigned long addr
= vma
->vm_start
;
706 unsigned long end
= vma
->vm_end
;
710 * Don't copy ptes where a page fault will fill them correctly.
711 * Fork becomes much lighter when there are big shared or private
712 * readonly mappings. The tradeoff is that copy_page_range is more
713 * efficient than faulting.
715 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
720 if (is_vm_hugetlb_page(vma
))
721 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
723 if (unlikely(is_pfn_mapping(vma
))) {
725 * We do not free on error cases below as remove_vma
726 * gets called on error from higher level routine
728 ret
= track_pfn_vma_copy(vma
);
734 * We need to invalidate the secondary MMU mappings only when
735 * there could be a permission downgrade on the ptes of the
736 * parent mm. And a permission downgrade will only happen if
737 * is_cow_mapping() returns true.
739 if (is_cow_mapping(vma
->vm_flags
))
740 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
743 dst_pgd
= pgd_offset(dst_mm
, addr
);
744 src_pgd
= pgd_offset(src_mm
, addr
);
746 next
= pgd_addr_end(addr
, end
);
747 if (pgd_none_or_clear_bad(src_pgd
))
749 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
754 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
756 if (is_cow_mapping(vma
->vm_flags
))
757 mmu_notifier_invalidate_range_end(src_mm
,
762 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
763 struct vm_area_struct
*vma
, pmd_t
*pmd
,
764 unsigned long addr
, unsigned long end
,
765 long *zap_work
, struct zap_details
*details
)
767 struct mm_struct
*mm
= tlb
->mm
;
773 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
774 arch_enter_lazy_mmu_mode();
777 if (pte_none(ptent
)) {
782 (*zap_work
) -= PAGE_SIZE
;
784 if (pte_present(ptent
)) {
787 page
= vm_normal_page(vma
, addr
, ptent
);
788 if (unlikely(details
) && page
) {
790 * unmap_shared_mapping_pages() wants to
791 * invalidate cache without truncating:
792 * unmap shared but keep private pages.
794 if (details
->check_mapping
&&
795 details
->check_mapping
!= page
->mapping
)
798 * Each page->index must be checked when
799 * invalidating or truncating nonlinear.
801 if (details
->nonlinear_vma
&&
802 (page
->index
< details
->first_index
||
803 page
->index
> details
->last_index
))
806 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
808 tlb_remove_tlb_entry(tlb
, pte
, addr
);
811 if (unlikely(details
) && details
->nonlinear_vma
812 && linear_page_index(details
->nonlinear_vma
,
813 addr
) != page
->index
)
814 set_pte_at(mm
, addr
, pte
,
815 pgoff_to_pte(page
->index
));
819 if (pte_dirty(ptent
))
820 set_page_dirty(page
);
821 if (pte_young(ptent
) &&
822 likely(!VM_SequentialReadHint(vma
)))
823 mark_page_accessed(page
);
826 page_remove_rmap(page
);
827 if (unlikely(page_mapcount(page
) < 0))
828 print_bad_pte(vma
, addr
, ptent
, page
);
829 tlb_remove_page(tlb
, page
);
833 * If details->check_mapping, we leave swap entries;
834 * if details->nonlinear_vma, we leave file entries.
836 if (unlikely(details
))
838 if (pte_file(ptent
)) {
839 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
840 print_bad_pte(vma
, addr
, ptent
, NULL
);
842 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
843 print_bad_pte(vma
, addr
, ptent
, NULL
);
844 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
845 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
847 add_mm_rss(mm
, file_rss
, anon_rss
);
848 arch_leave_lazy_mmu_mode();
849 pte_unmap_unlock(pte
- 1, ptl
);
854 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
855 struct vm_area_struct
*vma
, pud_t
*pud
,
856 unsigned long addr
, unsigned long end
,
857 long *zap_work
, struct zap_details
*details
)
862 pmd
= pmd_offset(pud
, addr
);
864 next
= pmd_addr_end(addr
, end
);
865 if (pmd_none_or_clear_bad(pmd
)) {
869 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
871 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
876 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
877 struct vm_area_struct
*vma
, pgd_t
*pgd
,
878 unsigned long addr
, unsigned long end
,
879 long *zap_work
, struct zap_details
*details
)
884 pud
= pud_offset(pgd
, addr
);
886 next
= pud_addr_end(addr
, end
);
887 if (pud_none_or_clear_bad(pud
)) {
891 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
893 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
898 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
899 struct vm_area_struct
*vma
,
900 unsigned long addr
, unsigned long end
,
901 long *zap_work
, struct zap_details
*details
)
906 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
910 tlb_start_vma(tlb
, vma
);
911 pgd
= pgd_offset(vma
->vm_mm
, addr
);
913 next
= pgd_addr_end(addr
, end
);
914 if (pgd_none_or_clear_bad(pgd
)) {
918 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
920 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
921 tlb_end_vma(tlb
, vma
);
926 #ifdef CONFIG_PREEMPT
927 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
929 /* No preempt: go for improved straight-line efficiency */
930 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
934 * unmap_vmas - unmap a range of memory covered by a list of vma's
935 * @tlbp: address of the caller's struct mmu_gather
936 * @vma: the starting vma
937 * @start_addr: virtual address at which to start unmapping
938 * @end_addr: virtual address at which to end unmapping
939 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
940 * @details: details of nonlinear truncation or shared cache invalidation
942 * Returns the end address of the unmapping (restart addr if interrupted).
944 * Unmap all pages in the vma list.
946 * We aim to not hold locks for too long (for scheduling latency reasons).
947 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
948 * return the ending mmu_gather to the caller.
950 * Only addresses between `start' and `end' will be unmapped.
952 * The VMA list must be sorted in ascending virtual address order.
954 * unmap_vmas() assumes that the caller will flush the whole unmapped address
955 * range after unmap_vmas() returns. So the only responsibility here is to
956 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
957 * drops the lock and schedules.
959 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
960 struct vm_area_struct
*vma
, unsigned long start_addr
,
961 unsigned long end_addr
, unsigned long *nr_accounted
,
962 struct zap_details
*details
)
964 long zap_work
= ZAP_BLOCK_SIZE
;
965 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
966 int tlb_start_valid
= 0;
967 unsigned long start
= start_addr
;
968 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
969 int fullmm
= (*tlbp
)->fullmm
;
970 struct mm_struct
*mm
= vma
->vm_mm
;
972 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
973 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
976 start
= max(vma
->vm_start
, start_addr
);
977 if (start
>= vma
->vm_end
)
979 end
= min(vma
->vm_end
, end_addr
);
980 if (end
<= vma
->vm_start
)
983 if (vma
->vm_flags
& VM_ACCOUNT
)
984 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
986 if (unlikely(is_pfn_mapping(vma
)))
987 untrack_pfn_vma(vma
, 0, 0);
989 while (start
!= end
) {
990 if (!tlb_start_valid
) {
995 if (unlikely(is_vm_hugetlb_page(vma
))) {
997 * It is undesirable to test vma->vm_file as it
998 * should be non-null for valid hugetlb area.
999 * However, vm_file will be NULL in the error
1000 * cleanup path of do_mmap_pgoff. When
1001 * hugetlbfs ->mmap method fails,
1002 * do_mmap_pgoff() nullifies vma->vm_file
1003 * before calling this function to clean up.
1004 * Since no pte has actually been setup, it is
1005 * safe to do nothing in this case.
1008 unmap_hugepage_range(vma
, start
, end
, NULL
);
1009 zap_work
-= (end
- start
) /
1010 pages_per_huge_page(hstate_vma(vma
));
1015 start
= unmap_page_range(*tlbp
, vma
,
1016 start
, end
, &zap_work
, details
);
1019 BUG_ON(start
!= end
);
1023 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1025 if (need_resched() ||
1026 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1034 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1035 tlb_start_valid
= 0;
1036 zap_work
= ZAP_BLOCK_SIZE
;
1040 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1041 return start
; /* which is now the end (or restart) address */
1045 * zap_page_range - remove user pages in a given range
1046 * @vma: vm_area_struct holding the applicable pages
1047 * @address: starting address of pages to zap
1048 * @size: number of bytes to zap
1049 * @details: details of nonlinear truncation or shared cache invalidation
1051 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1052 unsigned long size
, struct zap_details
*details
)
1054 struct mm_struct
*mm
= vma
->vm_mm
;
1055 struct mmu_gather
*tlb
;
1056 unsigned long end
= address
+ size
;
1057 unsigned long nr_accounted
= 0;
1060 tlb
= tlb_gather_mmu(mm
, 0);
1061 update_hiwater_rss(mm
);
1062 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1064 tlb_finish_mmu(tlb
, address
, end
);
1069 * zap_vma_ptes - remove ptes mapping the vma
1070 * @vma: vm_area_struct holding ptes to be zapped
1071 * @address: starting address of pages to zap
1072 * @size: number of bytes to zap
1074 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1076 * The entire address range must be fully contained within the vma.
1078 * Returns 0 if successful.
1080 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1083 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1084 !(vma
->vm_flags
& VM_PFNMAP
))
1086 zap_page_range(vma
, address
, size
, NULL
);
1089 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1092 * Do a quick page-table lookup for a single page.
1094 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1103 struct mm_struct
*mm
= vma
->vm_mm
;
1105 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1106 if (!IS_ERR(page
)) {
1107 BUG_ON(flags
& FOLL_GET
);
1112 pgd
= pgd_offset(mm
, address
);
1113 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1116 pud
= pud_offset(pgd
, address
);
1119 if (pud_huge(*pud
)) {
1120 BUG_ON(flags
& FOLL_GET
);
1121 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1124 if (unlikely(pud_bad(*pud
)))
1127 pmd
= pmd_offset(pud
, address
);
1130 if (pmd_huge(*pmd
)) {
1131 BUG_ON(flags
& FOLL_GET
);
1132 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1135 if (unlikely(pmd_bad(*pmd
)))
1138 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1141 if (!pte_present(pte
))
1143 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1145 page
= vm_normal_page(vma
, address
, pte
);
1146 if (unlikely(!page
))
1149 if (flags
& FOLL_GET
)
1151 if (flags
& FOLL_TOUCH
) {
1152 if ((flags
& FOLL_WRITE
) &&
1153 !pte_dirty(pte
) && !PageDirty(page
))
1154 set_page_dirty(page
);
1156 * pte_mkyoung() would be more correct here, but atomic care
1157 * is needed to avoid losing the dirty bit: it is easier to use
1158 * mark_page_accessed().
1160 mark_page_accessed(page
);
1163 pte_unmap_unlock(ptep
, ptl
);
1168 pte_unmap_unlock(ptep
, ptl
);
1169 return ERR_PTR(-EFAULT
);
1172 pte_unmap_unlock(ptep
, ptl
);
1175 /* Fall through to ZERO_PAGE handling */
1178 * When core dumping an enormous anonymous area that nobody
1179 * has touched so far, we don't want to allocate page tables.
1181 if (flags
& FOLL_ANON
) {
1182 page
= ZERO_PAGE(0);
1183 if (flags
& FOLL_GET
)
1185 BUG_ON(flags
& FOLL_WRITE
);
1190 /* Can we do the FOLL_ANON optimization? */
1191 static inline int use_zero_page(struct vm_area_struct
*vma
)
1194 * We don't want to optimize FOLL_ANON for make_pages_present()
1195 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1196 * we want to get the page from the page tables to make sure
1197 * that we serialize and update with any other user of that
1200 if (vma
->vm_flags
& (VM_LOCKED
| VM_SHARED
))
1203 * And if we have a fault routine, it's not an anonymous region.
1205 return !vma
->vm_ops
|| !vma
->vm_ops
->fault
;
1210 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1211 unsigned long start
, int nr_pages
, int flags
,
1212 struct page
**pages
, struct vm_area_struct
**vmas
)
1215 unsigned int vm_flags
= 0;
1216 int write
= !!(flags
& GUP_FLAGS_WRITE
);
1217 int force
= !!(flags
& GUP_FLAGS_FORCE
);
1218 int ignore
= !!(flags
& GUP_FLAGS_IGNORE_VMA_PERMISSIONS
);
1219 int ignore_sigkill
= !!(flags
& GUP_FLAGS_IGNORE_SIGKILL
);
1224 * Require read or write permissions.
1225 * If 'force' is set, we only require the "MAY" flags.
1227 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1228 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1232 struct vm_area_struct
*vma
;
1233 unsigned int foll_flags
;
1235 vma
= find_extend_vma(mm
, start
);
1236 if (!vma
&& in_gate_area(tsk
, start
)) {
1237 unsigned long pg
= start
& PAGE_MASK
;
1238 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1244 /* user gate pages are read-only */
1245 if (!ignore
&& write
)
1246 return i
? : -EFAULT
;
1248 pgd
= pgd_offset_k(pg
);
1250 pgd
= pgd_offset_gate(mm
, pg
);
1251 BUG_ON(pgd_none(*pgd
));
1252 pud
= pud_offset(pgd
, pg
);
1253 BUG_ON(pud_none(*pud
));
1254 pmd
= pmd_offset(pud
, pg
);
1256 return i
? : -EFAULT
;
1257 pte
= pte_offset_map(pmd
, pg
);
1258 if (pte_none(*pte
)) {
1260 return i
? : -EFAULT
;
1263 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1278 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1279 (!ignore
&& !(vm_flags
& vma
->vm_flags
)))
1280 return i
? : -EFAULT
;
1282 if (is_vm_hugetlb_page(vma
)) {
1283 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1284 &start
, &nr_pages
, i
, write
);
1288 foll_flags
= FOLL_TOUCH
;
1290 foll_flags
|= FOLL_GET
;
1291 if (!write
&& use_zero_page(vma
))
1292 foll_flags
|= FOLL_ANON
;
1298 * If we have a pending SIGKILL, don't keep faulting
1299 * pages and potentially allocating memory, unless
1300 * current is handling munlock--e.g., on exit. In
1301 * that case, we are not allocating memory. Rather,
1302 * we're only unlocking already resident/mapped pages.
1304 if (unlikely(!ignore_sigkill
&&
1305 fatal_signal_pending(current
)))
1306 return i
? i
: -ERESTARTSYS
;
1309 foll_flags
|= FOLL_WRITE
;
1312 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1315 ret
= handle_mm_fault(mm
, vma
, start
,
1316 (foll_flags
& FOLL_WRITE
) ?
1317 FAULT_FLAG_WRITE
: 0);
1319 if (ret
& VM_FAULT_ERROR
) {
1320 if (ret
& VM_FAULT_OOM
)
1321 return i
? i
: -ENOMEM
;
1322 else if (ret
& VM_FAULT_SIGBUS
)
1323 return i
? i
: -EFAULT
;
1326 if (ret
& VM_FAULT_MAJOR
)
1332 * The VM_FAULT_WRITE bit tells us that
1333 * do_wp_page has broken COW when necessary,
1334 * even if maybe_mkwrite decided not to set
1335 * pte_write. We can thus safely do subsequent
1336 * page lookups as if they were reads. But only
1337 * do so when looping for pte_write is futile:
1338 * in some cases userspace may also be wanting
1339 * to write to the gotten user page, which a
1340 * read fault here might prevent (a readonly
1341 * page might get reCOWed by userspace write).
1343 if ((ret
& VM_FAULT_WRITE
) &&
1344 !(vma
->vm_flags
& VM_WRITE
))
1345 foll_flags
&= ~FOLL_WRITE
;
1350 return i
? i
: PTR_ERR(page
);
1354 flush_anon_page(vma
, page
, start
);
1355 flush_dcache_page(page
);
1362 } while (nr_pages
&& start
< vma
->vm_end
);
1368 * get_user_pages() - pin user pages in memory
1369 * @tsk: task_struct of target task
1370 * @mm: mm_struct of target mm
1371 * @start: starting user address
1372 * @nr_pages: number of pages from start to pin
1373 * @write: whether pages will be written to by the caller
1374 * @force: whether to force write access even if user mapping is
1375 * readonly. This will result in the page being COWed even
1376 * in MAP_SHARED mappings. You do not want this.
1377 * @pages: array that receives pointers to the pages pinned.
1378 * Should be at least nr_pages long. Or NULL, if caller
1379 * only intends to ensure the pages are faulted in.
1380 * @vmas: array of pointers to vmas corresponding to each page.
1381 * Or NULL if the caller does not require them.
1383 * Returns number of pages pinned. This may be fewer than the number
1384 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1385 * were pinned, returns -errno. Each page returned must be released
1386 * with a put_page() call when it is finished with. vmas will only
1387 * remain valid while mmap_sem is held.
1389 * Must be called with mmap_sem held for read or write.
1391 * get_user_pages walks a process's page tables and takes a reference to
1392 * each struct page that each user address corresponds to at a given
1393 * instant. That is, it takes the page that would be accessed if a user
1394 * thread accesses the given user virtual address at that instant.
1396 * This does not guarantee that the page exists in the user mappings when
1397 * get_user_pages returns, and there may even be a completely different
1398 * page there in some cases (eg. if mmapped pagecache has been invalidated
1399 * and subsequently re faulted). However it does guarantee that the page
1400 * won't be freed completely. And mostly callers simply care that the page
1401 * contains data that was valid *at some point in time*. Typically, an IO
1402 * or similar operation cannot guarantee anything stronger anyway because
1403 * locks can't be held over the syscall boundary.
1405 * If write=0, the page must not be written to. If the page is written to,
1406 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1407 * after the page is finished with, and before put_page is called.
1409 * get_user_pages is typically used for fewer-copy IO operations, to get a
1410 * handle on the memory by some means other than accesses via the user virtual
1411 * addresses. The pages may be submitted for DMA to devices or accessed via
1412 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1413 * use the correct cache flushing APIs.
1415 * See also get_user_pages_fast, for performance critical applications.
1417 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1418 unsigned long start
, int nr_pages
, int write
, int force
,
1419 struct page
**pages
, struct vm_area_struct
**vmas
)
1424 flags
|= GUP_FLAGS_WRITE
;
1426 flags
|= GUP_FLAGS_FORCE
;
1428 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
);
1431 EXPORT_SYMBOL(get_user_pages
);
1433 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1436 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1437 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1439 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1441 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1447 * This is the old fallback for page remapping.
1449 * For historical reasons, it only allows reserved pages. Only
1450 * old drivers should use this, and they needed to mark their
1451 * pages reserved for the old functions anyway.
1453 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1454 struct page
*page
, pgprot_t prot
)
1456 struct mm_struct
*mm
= vma
->vm_mm
;
1465 flush_dcache_page(page
);
1466 pte
= get_locked_pte(mm
, addr
, &ptl
);
1470 if (!pte_none(*pte
))
1473 /* Ok, finally just insert the thing.. */
1475 inc_mm_counter(mm
, file_rss
);
1476 page_add_file_rmap(page
);
1477 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1480 pte_unmap_unlock(pte
, ptl
);
1483 pte_unmap_unlock(pte
, ptl
);
1489 * vm_insert_page - insert single page into user vma
1490 * @vma: user vma to map to
1491 * @addr: target user address of this page
1492 * @page: source kernel page
1494 * This allows drivers to insert individual pages they've allocated
1497 * The page has to be a nice clean _individual_ kernel allocation.
1498 * If you allocate a compound page, you need to have marked it as
1499 * such (__GFP_COMP), or manually just split the page up yourself
1500 * (see split_page()).
1502 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1503 * took an arbitrary page protection parameter. This doesn't allow
1504 * that. Your vma protection will have to be set up correctly, which
1505 * means that if you want a shared writable mapping, you'd better
1506 * ask for a shared writable mapping!
1508 * The page does not need to be reserved.
1510 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1513 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1515 if (!page_count(page
))
1517 vma
->vm_flags
|= VM_INSERTPAGE
;
1518 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1520 EXPORT_SYMBOL(vm_insert_page
);
1522 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1523 unsigned long pfn
, pgprot_t prot
)
1525 struct mm_struct
*mm
= vma
->vm_mm
;
1531 pte
= get_locked_pte(mm
, addr
, &ptl
);
1535 if (!pte_none(*pte
))
1538 /* Ok, finally just insert the thing.. */
1539 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1540 set_pte_at(mm
, addr
, pte
, entry
);
1541 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1545 pte_unmap_unlock(pte
, ptl
);
1551 * vm_insert_pfn - insert single pfn into user vma
1552 * @vma: user vma to map to
1553 * @addr: target user address of this page
1554 * @pfn: source kernel pfn
1556 * Similar to vm_inert_page, this allows drivers to insert individual pages
1557 * they've allocated into a user vma. Same comments apply.
1559 * This function should only be called from a vm_ops->fault handler, and
1560 * in that case the handler should return NULL.
1562 * vma cannot be a COW mapping.
1564 * As this is called only for pages that do not currently exist, we
1565 * do not need to flush old virtual caches or the TLB.
1567 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1571 pgprot_t pgprot
= vma
->vm_page_prot
;
1573 * Technically, architectures with pte_special can avoid all these
1574 * restrictions (same for remap_pfn_range). However we would like
1575 * consistency in testing and feature parity among all, so we should
1576 * try to keep these invariants in place for everybody.
1578 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1579 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1580 (VM_PFNMAP
|VM_MIXEDMAP
));
1581 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1582 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1584 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1586 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
1589 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1592 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1596 EXPORT_SYMBOL(vm_insert_pfn
);
1598 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1601 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1603 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1607 * If we don't have pte special, then we have to use the pfn_valid()
1608 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1609 * refcount the page if pfn_valid is true (hence insert_page rather
1612 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1615 page
= pfn_to_page(pfn
);
1616 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1618 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1620 EXPORT_SYMBOL(vm_insert_mixed
);
1623 * maps a range of physical memory into the requested pages. the old
1624 * mappings are removed. any references to nonexistent pages results
1625 * in null mappings (currently treated as "copy-on-access")
1627 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1628 unsigned long addr
, unsigned long end
,
1629 unsigned long pfn
, pgprot_t prot
)
1634 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1637 arch_enter_lazy_mmu_mode();
1639 BUG_ON(!pte_none(*pte
));
1640 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1642 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1643 arch_leave_lazy_mmu_mode();
1644 pte_unmap_unlock(pte
- 1, ptl
);
1648 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1649 unsigned long addr
, unsigned long end
,
1650 unsigned long pfn
, pgprot_t prot
)
1655 pfn
-= addr
>> PAGE_SHIFT
;
1656 pmd
= pmd_alloc(mm
, pud
, addr
);
1660 next
= pmd_addr_end(addr
, end
);
1661 if (remap_pte_range(mm
, pmd
, addr
, next
,
1662 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1664 } while (pmd
++, addr
= next
, addr
!= end
);
1668 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1669 unsigned long addr
, unsigned long end
,
1670 unsigned long pfn
, pgprot_t prot
)
1675 pfn
-= addr
>> PAGE_SHIFT
;
1676 pud
= pud_alloc(mm
, pgd
, addr
);
1680 next
= pud_addr_end(addr
, end
);
1681 if (remap_pmd_range(mm
, pud
, addr
, next
,
1682 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1684 } while (pud
++, addr
= next
, addr
!= end
);
1689 * remap_pfn_range - remap kernel memory to userspace
1690 * @vma: user vma to map to
1691 * @addr: target user address to start at
1692 * @pfn: physical address of kernel memory
1693 * @size: size of map area
1694 * @prot: page protection flags for this mapping
1696 * Note: this is only safe if the mm semaphore is held when called.
1698 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1699 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1703 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1704 struct mm_struct
*mm
= vma
->vm_mm
;
1708 * Physically remapped pages are special. Tell the
1709 * rest of the world about it:
1710 * VM_IO tells people not to look at these pages
1711 * (accesses can have side effects).
1712 * VM_RESERVED is specified all over the place, because
1713 * in 2.4 it kept swapout's vma scan off this vma; but
1714 * in 2.6 the LRU scan won't even find its pages, so this
1715 * flag means no more than count its pages in reserved_vm,
1716 * and omit it from core dump, even when VM_IO turned off.
1717 * VM_PFNMAP tells the core MM that the base pages are just
1718 * raw PFN mappings, and do not have a "struct page" associated
1721 * There's a horrible special case to handle copy-on-write
1722 * behaviour that some programs depend on. We mark the "original"
1723 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1725 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
1726 vma
->vm_pgoff
= pfn
;
1727 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
1728 } else if (is_cow_mapping(vma
->vm_flags
))
1731 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1733 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
1736 * To indicate that track_pfn related cleanup is not
1737 * needed from higher level routine calling unmap_vmas
1739 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
1740 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
1744 BUG_ON(addr
>= end
);
1745 pfn
-= addr
>> PAGE_SHIFT
;
1746 pgd
= pgd_offset(mm
, addr
);
1747 flush_cache_range(vma
, addr
, end
);
1749 next
= pgd_addr_end(addr
, end
);
1750 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1751 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1754 } while (pgd
++, addr
= next
, addr
!= end
);
1757 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1761 EXPORT_SYMBOL(remap_pfn_range
);
1763 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1764 unsigned long addr
, unsigned long end
,
1765 pte_fn_t fn
, void *data
)
1770 spinlock_t
*uninitialized_var(ptl
);
1772 pte
= (mm
== &init_mm
) ?
1773 pte_alloc_kernel(pmd
, addr
) :
1774 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1778 BUG_ON(pmd_huge(*pmd
));
1780 arch_enter_lazy_mmu_mode();
1782 token
= pmd_pgtable(*pmd
);
1785 err
= fn(pte
, token
, addr
, data
);
1788 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1790 arch_leave_lazy_mmu_mode();
1793 pte_unmap_unlock(pte
-1, ptl
);
1797 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1798 unsigned long addr
, unsigned long end
,
1799 pte_fn_t fn
, void *data
)
1805 BUG_ON(pud_huge(*pud
));
1807 pmd
= pmd_alloc(mm
, pud
, addr
);
1811 next
= pmd_addr_end(addr
, end
);
1812 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1815 } while (pmd
++, addr
= next
, addr
!= end
);
1819 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1820 unsigned long addr
, unsigned long end
,
1821 pte_fn_t fn
, void *data
)
1827 pud
= pud_alloc(mm
, pgd
, addr
);
1831 next
= pud_addr_end(addr
, end
);
1832 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1835 } while (pud
++, addr
= next
, addr
!= end
);
1840 * Scan a region of virtual memory, filling in page tables as necessary
1841 * and calling a provided function on each leaf page table.
1843 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1844 unsigned long size
, pte_fn_t fn
, void *data
)
1848 unsigned long start
= addr
, end
= addr
+ size
;
1851 BUG_ON(addr
>= end
);
1852 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1853 pgd
= pgd_offset(mm
, addr
);
1855 next
= pgd_addr_end(addr
, end
);
1856 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1859 } while (pgd
++, addr
= next
, addr
!= end
);
1860 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1863 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1866 * handle_pte_fault chooses page fault handler according to an entry
1867 * which was read non-atomically. Before making any commitment, on
1868 * those architectures or configurations (e.g. i386 with PAE) which
1869 * might give a mix of unmatched parts, do_swap_page and do_file_page
1870 * must check under lock before unmapping the pte and proceeding
1871 * (but do_wp_page is only called after already making such a check;
1872 * and do_anonymous_page and do_no_page can safely check later on).
1874 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1875 pte_t
*page_table
, pte_t orig_pte
)
1878 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1879 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1880 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1882 same
= pte_same(*page_table
, orig_pte
);
1886 pte_unmap(page_table
);
1891 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1892 * servicing faults for write access. In the normal case, do always want
1893 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1894 * that do not have writing enabled, when used by access_process_vm.
1896 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1898 if (likely(vma
->vm_flags
& VM_WRITE
))
1899 pte
= pte_mkwrite(pte
);
1903 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1906 * If the source page was a PFN mapping, we don't have
1907 * a "struct page" for it. We do a best-effort copy by
1908 * just copying from the original user address. If that
1909 * fails, we just zero-fill it. Live with it.
1911 if (unlikely(!src
)) {
1912 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1913 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1916 * This really shouldn't fail, because the page is there
1917 * in the page tables. But it might just be unreadable,
1918 * in which case we just give up and fill the result with
1921 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1922 memset(kaddr
, 0, PAGE_SIZE
);
1923 kunmap_atomic(kaddr
, KM_USER0
);
1924 flush_dcache_page(dst
);
1926 copy_user_highpage(dst
, src
, va
, vma
);
1930 * This routine handles present pages, when users try to write
1931 * to a shared page. It is done by copying the page to a new address
1932 * and decrementing the shared-page counter for the old page.
1934 * Note that this routine assumes that the protection checks have been
1935 * done by the caller (the low-level page fault routine in most cases).
1936 * Thus we can safely just mark it writable once we've done any necessary
1939 * We also mark the page dirty at this point even though the page will
1940 * change only once the write actually happens. This avoids a few races,
1941 * and potentially makes it more efficient.
1943 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1944 * but allow concurrent faults), with pte both mapped and locked.
1945 * We return with mmap_sem still held, but pte unmapped and unlocked.
1947 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1948 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1949 spinlock_t
*ptl
, pte_t orig_pte
)
1951 struct page
*old_page
, *new_page
;
1953 int reuse
= 0, ret
= 0;
1954 int page_mkwrite
= 0;
1955 struct page
*dirty_page
= NULL
;
1957 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1960 * VM_MIXEDMAP !pfn_valid() case
1962 * We should not cow pages in a shared writeable mapping.
1963 * Just mark the pages writable as we can't do any dirty
1964 * accounting on raw pfn maps.
1966 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1967 (VM_WRITE
|VM_SHARED
))
1973 * Take out anonymous pages first, anonymous shared vmas are
1974 * not dirty accountable.
1976 if (PageAnon(old_page
)) {
1977 if (!trylock_page(old_page
)) {
1978 page_cache_get(old_page
);
1979 pte_unmap_unlock(page_table
, ptl
);
1980 lock_page(old_page
);
1981 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1983 if (!pte_same(*page_table
, orig_pte
)) {
1984 unlock_page(old_page
);
1985 page_cache_release(old_page
);
1988 page_cache_release(old_page
);
1990 reuse
= reuse_swap_page(old_page
);
1991 unlock_page(old_page
);
1992 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1993 (VM_WRITE
|VM_SHARED
))) {
1995 * Only catch write-faults on shared writable pages,
1996 * read-only shared pages can get COWed by
1997 * get_user_pages(.write=1, .force=1).
1999 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2000 struct vm_fault vmf
;
2003 vmf
.virtual_address
= (void __user
*)(address
&
2005 vmf
.pgoff
= old_page
->index
;
2006 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2007 vmf
.page
= old_page
;
2010 * Notify the address space that the page is about to
2011 * become writable so that it can prohibit this or wait
2012 * for the page to get into an appropriate state.
2014 * We do this without the lock held, so that it can
2015 * sleep if it needs to.
2017 page_cache_get(old_page
);
2018 pte_unmap_unlock(page_table
, ptl
);
2020 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2022 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2024 goto unwritable_page
;
2026 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2027 lock_page(old_page
);
2028 if (!old_page
->mapping
) {
2029 ret
= 0; /* retry the fault */
2030 unlock_page(old_page
);
2031 goto unwritable_page
;
2034 VM_BUG_ON(!PageLocked(old_page
));
2037 * Since we dropped the lock we need to revalidate
2038 * the PTE as someone else may have changed it. If
2039 * they did, we just return, as we can count on the
2040 * MMU to tell us if they didn't also make it writable.
2042 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2044 if (!pte_same(*page_table
, orig_pte
)) {
2045 unlock_page(old_page
);
2046 page_cache_release(old_page
);
2052 dirty_page
= old_page
;
2053 get_page(dirty_page
);
2059 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2060 entry
= pte_mkyoung(orig_pte
);
2061 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2062 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2063 update_mmu_cache(vma
, address
, entry
);
2064 ret
|= VM_FAULT_WRITE
;
2069 * Ok, we need to copy. Oh, well..
2071 page_cache_get(old_page
);
2073 pte_unmap_unlock(page_table
, ptl
);
2075 if (unlikely(anon_vma_prepare(vma
)))
2077 VM_BUG_ON(old_page
== ZERO_PAGE(0));
2078 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2082 * Don't let another task, with possibly unlocked vma,
2083 * keep the mlocked page.
2085 if ((vma
->vm_flags
& VM_LOCKED
) && old_page
) {
2086 lock_page(old_page
); /* for LRU manipulation */
2087 clear_page_mlock(old_page
);
2088 unlock_page(old_page
);
2090 cow_user_page(new_page
, old_page
, address
, vma
);
2091 __SetPageUptodate(new_page
);
2093 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2097 * Re-check the pte - we dropped the lock
2099 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2100 if (likely(pte_same(*page_table
, orig_pte
))) {
2102 if (!PageAnon(old_page
)) {
2103 dec_mm_counter(mm
, file_rss
);
2104 inc_mm_counter(mm
, anon_rss
);
2107 inc_mm_counter(mm
, anon_rss
);
2108 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2109 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2110 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2112 * Clear the pte entry and flush it first, before updating the
2113 * pte with the new entry. This will avoid a race condition
2114 * seen in the presence of one thread doing SMC and another
2117 ptep_clear_flush_notify(vma
, address
, page_table
);
2118 page_add_new_anon_rmap(new_page
, vma
, address
);
2119 set_pte_at(mm
, address
, page_table
, entry
);
2120 update_mmu_cache(vma
, address
, entry
);
2123 * Only after switching the pte to the new page may
2124 * we remove the mapcount here. Otherwise another
2125 * process may come and find the rmap count decremented
2126 * before the pte is switched to the new page, and
2127 * "reuse" the old page writing into it while our pte
2128 * here still points into it and can be read by other
2131 * The critical issue is to order this
2132 * page_remove_rmap with the ptp_clear_flush above.
2133 * Those stores are ordered by (if nothing else,)
2134 * the barrier present in the atomic_add_negative
2135 * in page_remove_rmap.
2137 * Then the TLB flush in ptep_clear_flush ensures that
2138 * no process can access the old page before the
2139 * decremented mapcount is visible. And the old page
2140 * cannot be reused until after the decremented
2141 * mapcount is visible. So transitively, TLBs to
2142 * old page will be flushed before it can be reused.
2144 page_remove_rmap(old_page
);
2147 /* Free the old page.. */
2148 new_page
= old_page
;
2149 ret
|= VM_FAULT_WRITE
;
2151 mem_cgroup_uncharge_page(new_page
);
2154 page_cache_release(new_page
);
2156 page_cache_release(old_page
);
2158 pte_unmap_unlock(page_table
, ptl
);
2161 * Yes, Virginia, this is actually required to prevent a race
2162 * with clear_page_dirty_for_io() from clearing the page dirty
2163 * bit after it clear all dirty ptes, but before a racing
2164 * do_wp_page installs a dirty pte.
2166 * do_no_page is protected similarly.
2168 if (!page_mkwrite
) {
2169 wait_on_page_locked(dirty_page
);
2170 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2172 put_page(dirty_page
);
2174 struct address_space
*mapping
= dirty_page
->mapping
;
2176 set_page_dirty(dirty_page
);
2177 unlock_page(dirty_page
);
2178 page_cache_release(dirty_page
);
2181 * Some device drivers do not set page.mapping
2182 * but still dirty their pages
2184 balance_dirty_pages_ratelimited(mapping
);
2188 /* file_update_time outside page_lock */
2190 file_update_time(vma
->vm_file
);
2194 page_cache_release(new_page
);
2198 unlock_page(old_page
);
2199 page_cache_release(old_page
);
2201 page_cache_release(old_page
);
2203 return VM_FAULT_OOM
;
2206 page_cache_release(old_page
);
2211 * Helper functions for unmap_mapping_range().
2213 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2215 * We have to restart searching the prio_tree whenever we drop the lock,
2216 * since the iterator is only valid while the lock is held, and anyway
2217 * a later vma might be split and reinserted earlier while lock dropped.
2219 * The list of nonlinear vmas could be handled more efficiently, using
2220 * a placeholder, but handle it in the same way until a need is shown.
2221 * It is important to search the prio_tree before nonlinear list: a vma
2222 * may become nonlinear and be shifted from prio_tree to nonlinear list
2223 * while the lock is dropped; but never shifted from list to prio_tree.
2225 * In order to make forward progress despite restarting the search,
2226 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2227 * quickly skip it next time around. Since the prio_tree search only
2228 * shows us those vmas affected by unmapping the range in question, we
2229 * can't efficiently keep all vmas in step with mapping->truncate_count:
2230 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2231 * mapping->truncate_count and vma->vm_truncate_count are protected by
2234 * In order to make forward progress despite repeatedly restarting some
2235 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2236 * and restart from that address when we reach that vma again. It might
2237 * have been split or merged, shrunk or extended, but never shifted: so
2238 * restart_addr remains valid so long as it remains in the vma's range.
2239 * unmap_mapping_range forces truncate_count to leap over page-aligned
2240 * values so we can save vma's restart_addr in its truncate_count field.
2242 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2244 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2246 struct vm_area_struct
*vma
;
2247 struct prio_tree_iter iter
;
2249 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2250 vma
->vm_truncate_count
= 0;
2251 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2252 vma
->vm_truncate_count
= 0;
2255 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2256 unsigned long start_addr
, unsigned long end_addr
,
2257 struct zap_details
*details
)
2259 unsigned long restart_addr
;
2263 * files that support invalidating or truncating portions of the
2264 * file from under mmaped areas must have their ->fault function
2265 * return a locked page (and set VM_FAULT_LOCKED in the return).
2266 * This provides synchronisation against concurrent unmapping here.
2270 restart_addr
= vma
->vm_truncate_count
;
2271 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2272 start_addr
= restart_addr
;
2273 if (start_addr
>= end_addr
) {
2274 /* Top of vma has been split off since last time */
2275 vma
->vm_truncate_count
= details
->truncate_count
;
2280 restart_addr
= zap_page_range(vma
, start_addr
,
2281 end_addr
- start_addr
, details
);
2282 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2284 if (restart_addr
>= end_addr
) {
2285 /* We have now completed this vma: mark it so */
2286 vma
->vm_truncate_count
= details
->truncate_count
;
2290 /* Note restart_addr in vma's truncate_count field */
2291 vma
->vm_truncate_count
= restart_addr
;
2296 spin_unlock(details
->i_mmap_lock
);
2298 spin_lock(details
->i_mmap_lock
);
2302 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2303 struct zap_details
*details
)
2305 struct vm_area_struct
*vma
;
2306 struct prio_tree_iter iter
;
2307 pgoff_t vba
, vea
, zba
, zea
;
2310 vma_prio_tree_foreach(vma
, &iter
, root
,
2311 details
->first_index
, details
->last_index
) {
2312 /* Skip quickly over those we have already dealt with */
2313 if (vma
->vm_truncate_count
== details
->truncate_count
)
2316 vba
= vma
->vm_pgoff
;
2317 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2318 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2319 zba
= details
->first_index
;
2322 zea
= details
->last_index
;
2326 if (unmap_mapping_range_vma(vma
,
2327 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2328 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2334 static inline void unmap_mapping_range_list(struct list_head
*head
,
2335 struct zap_details
*details
)
2337 struct vm_area_struct
*vma
;
2340 * In nonlinear VMAs there is no correspondence between virtual address
2341 * offset and file offset. So we must perform an exhaustive search
2342 * across *all* the pages in each nonlinear VMA, not just the pages
2343 * whose virtual address lies outside the file truncation point.
2346 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2347 /* Skip quickly over those we have already dealt with */
2348 if (vma
->vm_truncate_count
== details
->truncate_count
)
2350 details
->nonlinear_vma
= vma
;
2351 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2352 vma
->vm_end
, details
) < 0)
2358 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2359 * @mapping: the address space containing mmaps to be unmapped.
2360 * @holebegin: byte in first page to unmap, relative to the start of
2361 * the underlying file. This will be rounded down to a PAGE_SIZE
2362 * boundary. Note that this is different from vmtruncate(), which
2363 * must keep the partial page. In contrast, we must get rid of
2365 * @holelen: size of prospective hole in bytes. This will be rounded
2366 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2368 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2369 * but 0 when invalidating pagecache, don't throw away private data.
2371 void unmap_mapping_range(struct address_space
*mapping
,
2372 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2374 struct zap_details details
;
2375 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2376 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2378 /* Check for overflow. */
2379 if (sizeof(holelen
) > sizeof(hlen
)) {
2381 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2382 if (holeend
& ~(long long)ULONG_MAX
)
2383 hlen
= ULONG_MAX
- hba
+ 1;
2386 details
.check_mapping
= even_cows
? NULL
: mapping
;
2387 details
.nonlinear_vma
= NULL
;
2388 details
.first_index
= hba
;
2389 details
.last_index
= hba
+ hlen
- 1;
2390 if (details
.last_index
< details
.first_index
)
2391 details
.last_index
= ULONG_MAX
;
2392 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2394 spin_lock(&mapping
->i_mmap_lock
);
2396 /* Protect against endless unmapping loops */
2397 mapping
->truncate_count
++;
2398 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2399 if (mapping
->truncate_count
== 0)
2400 reset_vma_truncate_counts(mapping
);
2401 mapping
->truncate_count
++;
2403 details
.truncate_count
= mapping
->truncate_count
;
2405 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2406 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2407 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2408 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2409 spin_unlock(&mapping
->i_mmap_lock
);
2411 EXPORT_SYMBOL(unmap_mapping_range
);
2414 * vmtruncate - unmap mappings "freed" by truncate() syscall
2415 * @inode: inode of the file used
2416 * @offset: file offset to start truncating
2418 * NOTE! We have to be ready to update the memory sharing
2419 * between the file and the memory map for a potential last
2420 * incomplete page. Ugly, but necessary.
2422 int vmtruncate(struct inode
* inode
, loff_t offset
)
2424 if (inode
->i_size
< offset
) {
2425 unsigned long limit
;
2427 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2428 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2430 if (offset
> inode
->i_sb
->s_maxbytes
)
2432 i_size_write(inode
, offset
);
2434 struct address_space
*mapping
= inode
->i_mapping
;
2437 * truncation of in-use swapfiles is disallowed - it would
2438 * cause subsequent swapout to scribble on the now-freed
2441 if (IS_SWAPFILE(inode
))
2443 i_size_write(inode
, offset
);
2446 * unmap_mapping_range is called twice, first simply for
2447 * efficiency so that truncate_inode_pages does fewer
2448 * single-page unmaps. However after this first call, and
2449 * before truncate_inode_pages finishes, it is possible for
2450 * private pages to be COWed, which remain after
2451 * truncate_inode_pages finishes, hence the second
2452 * unmap_mapping_range call must be made for correctness.
2454 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2455 truncate_inode_pages(mapping
, offset
);
2456 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2459 if (inode
->i_op
->truncate
)
2460 inode
->i_op
->truncate(inode
);
2464 send_sig(SIGXFSZ
, current
, 0);
2468 EXPORT_SYMBOL(vmtruncate
);
2470 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2472 struct address_space
*mapping
= inode
->i_mapping
;
2475 * If the underlying filesystem is not going to provide
2476 * a way to truncate a range of blocks (punch a hole) -
2477 * we should return failure right now.
2479 if (!inode
->i_op
->truncate_range
)
2482 mutex_lock(&inode
->i_mutex
);
2483 down_write(&inode
->i_alloc_sem
);
2484 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2485 truncate_inode_pages_range(mapping
, offset
, end
);
2486 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2487 inode
->i_op
->truncate_range(inode
, offset
, end
);
2488 up_write(&inode
->i_alloc_sem
);
2489 mutex_unlock(&inode
->i_mutex
);
2495 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2496 * but allow concurrent faults), and pte mapped but not yet locked.
2497 * We return with mmap_sem still held, but pte unmapped and unlocked.
2499 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2500 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2501 unsigned int flags
, pte_t orig_pte
)
2507 struct mem_cgroup
*ptr
= NULL
;
2510 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2513 entry
= pte_to_swp_entry(orig_pte
);
2514 if (is_migration_entry(entry
)) {
2515 migration_entry_wait(mm
, pmd
, address
);
2518 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2519 page
= lookup_swap_cache(entry
);
2521 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2522 page
= swapin_readahead(entry
,
2523 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2526 * Back out if somebody else faulted in this pte
2527 * while we released the pte lock.
2529 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2530 if (likely(pte_same(*page_table
, orig_pte
)))
2532 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2536 /* Had to read the page from swap area: Major fault */
2537 ret
= VM_FAULT_MAJOR
;
2538 count_vm_event(PGMAJFAULT
);
2542 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2544 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2550 * Back out if somebody else already faulted in this pte.
2552 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2553 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2556 if (unlikely(!PageUptodate(page
))) {
2557 ret
= VM_FAULT_SIGBUS
;
2562 * The page isn't present yet, go ahead with the fault.
2564 * Be careful about the sequence of operations here.
2565 * To get its accounting right, reuse_swap_page() must be called
2566 * while the page is counted on swap but not yet in mapcount i.e.
2567 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2568 * must be called after the swap_free(), or it will never succeed.
2569 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2570 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2571 * in page->private. In this case, a record in swap_cgroup is silently
2572 * discarded at swap_free().
2575 inc_mm_counter(mm
, anon_rss
);
2576 pte
= mk_pte(page
, vma
->vm_page_prot
);
2577 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2578 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2579 flags
&= ~FAULT_FLAG_WRITE
;
2581 flush_icache_page(vma
, page
);
2582 set_pte_at(mm
, address
, page_table
, pte
);
2583 page_add_anon_rmap(page
, vma
, address
);
2584 /* It's better to call commit-charge after rmap is established */
2585 mem_cgroup_commit_charge_swapin(page
, ptr
);
2588 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2589 try_to_free_swap(page
);
2592 if (flags
& FAULT_FLAG_WRITE
) {
2593 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2594 if (ret
& VM_FAULT_ERROR
)
2595 ret
&= VM_FAULT_ERROR
;
2599 /* No need to invalidate - it was non-present before */
2600 update_mmu_cache(vma
, address
, pte
);
2602 pte_unmap_unlock(page_table
, ptl
);
2606 mem_cgroup_cancel_charge_swapin(ptr
);
2607 pte_unmap_unlock(page_table
, ptl
);
2610 page_cache_release(page
);
2615 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2616 * but allow concurrent faults), and pte mapped but not yet locked.
2617 * We return with mmap_sem still held, but pte unmapped and unlocked.
2619 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2620 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2627 /* Allocate our own private page. */
2628 pte_unmap(page_table
);
2630 if (unlikely(anon_vma_prepare(vma
)))
2632 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2635 __SetPageUptodate(page
);
2637 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
2640 entry
= mk_pte(page
, vma
->vm_page_prot
);
2641 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2643 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2644 if (!pte_none(*page_table
))
2646 inc_mm_counter(mm
, anon_rss
);
2647 page_add_new_anon_rmap(page
, vma
, address
);
2648 set_pte_at(mm
, address
, page_table
, entry
);
2650 /* No need to invalidate - it was non-present before */
2651 update_mmu_cache(vma
, address
, entry
);
2653 pte_unmap_unlock(page_table
, ptl
);
2656 mem_cgroup_uncharge_page(page
);
2657 page_cache_release(page
);
2660 page_cache_release(page
);
2662 return VM_FAULT_OOM
;
2666 * __do_fault() tries to create a new page mapping. It aggressively
2667 * tries to share with existing pages, but makes a separate copy if
2668 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2669 * the next page fault.
2671 * As this is called only for pages that do not currently exist, we
2672 * do not need to flush old virtual caches or the TLB.
2674 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2675 * but allow concurrent faults), and pte neither mapped nor locked.
2676 * We return with mmap_sem still held, but pte unmapped and unlocked.
2678 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2679 unsigned long address
, pmd_t
*pmd
,
2680 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2688 struct page
*dirty_page
= NULL
;
2689 struct vm_fault vmf
;
2691 int page_mkwrite
= 0;
2693 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2698 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2699 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2703 * For consistency in subsequent calls, make the faulted page always
2706 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2707 lock_page(vmf
.page
);
2709 VM_BUG_ON(!PageLocked(vmf
.page
));
2712 * Should we do an early C-O-W break?
2715 if (flags
& FAULT_FLAG_WRITE
) {
2716 if (!(vma
->vm_flags
& VM_SHARED
)) {
2718 if (unlikely(anon_vma_prepare(vma
))) {
2722 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2728 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
)) {
2730 page_cache_release(page
);
2735 * Don't let another task, with possibly unlocked vma,
2736 * keep the mlocked page.
2738 if (vma
->vm_flags
& VM_LOCKED
)
2739 clear_page_mlock(vmf
.page
);
2740 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2741 __SetPageUptodate(page
);
2744 * If the page will be shareable, see if the backing
2745 * address space wants to know that the page is about
2746 * to become writable
2748 if (vma
->vm_ops
->page_mkwrite
) {
2752 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2753 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2755 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2757 goto unwritable_page
;
2759 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2761 if (!page
->mapping
) {
2762 ret
= 0; /* retry the fault */
2764 goto unwritable_page
;
2767 VM_BUG_ON(!PageLocked(page
));
2774 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2777 * This silly early PAGE_DIRTY setting removes a race
2778 * due to the bad i386 page protection. But it's valid
2779 * for other architectures too.
2781 * Note that if FAULT_FLAG_WRITE is set, we either now have
2782 * an exclusive copy of the page, or this is a shared mapping,
2783 * so we can make it writable and dirty to avoid having to
2784 * handle that later.
2786 /* Only go through if we didn't race with anybody else... */
2787 if (likely(pte_same(*page_table
, orig_pte
))) {
2788 flush_icache_page(vma
, page
);
2789 entry
= mk_pte(page
, vma
->vm_page_prot
);
2790 if (flags
& FAULT_FLAG_WRITE
)
2791 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2793 inc_mm_counter(mm
, anon_rss
);
2794 page_add_new_anon_rmap(page
, vma
, address
);
2796 inc_mm_counter(mm
, file_rss
);
2797 page_add_file_rmap(page
);
2798 if (flags
& FAULT_FLAG_WRITE
) {
2800 get_page(dirty_page
);
2803 set_pte_at(mm
, address
, page_table
, entry
);
2805 /* no need to invalidate: a not-present page won't be cached */
2806 update_mmu_cache(vma
, address
, entry
);
2809 mem_cgroup_uncharge_page(page
);
2811 page_cache_release(page
);
2813 anon
= 1; /* no anon but release faulted_page */
2816 pte_unmap_unlock(page_table
, ptl
);
2820 struct address_space
*mapping
= page
->mapping
;
2822 if (set_page_dirty(dirty_page
))
2824 unlock_page(dirty_page
);
2825 put_page(dirty_page
);
2826 if (page_mkwrite
&& mapping
) {
2828 * Some device drivers do not set page.mapping but still
2831 balance_dirty_pages_ratelimited(mapping
);
2834 /* file_update_time outside page_lock */
2836 file_update_time(vma
->vm_file
);
2838 unlock_page(vmf
.page
);
2840 page_cache_release(vmf
.page
);
2846 page_cache_release(page
);
2850 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2851 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2852 unsigned int flags
, pte_t orig_pte
)
2854 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2855 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2857 pte_unmap(page_table
);
2858 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2862 * Fault of a previously existing named mapping. Repopulate the pte
2863 * from the encoded file_pte if possible. This enables swappable
2866 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2867 * but allow concurrent faults), and pte mapped but not yet locked.
2868 * We return with mmap_sem still held, but pte unmapped and unlocked.
2870 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2871 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2872 unsigned int flags
, pte_t orig_pte
)
2876 flags
|= FAULT_FLAG_NONLINEAR
;
2878 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2881 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2883 * Page table corrupted: show pte and kill process.
2885 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2886 return VM_FAULT_OOM
;
2889 pgoff
= pte_to_pgoff(orig_pte
);
2890 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2894 * These routines also need to handle stuff like marking pages dirty
2895 * and/or accessed for architectures that don't do it in hardware (most
2896 * RISC architectures). The early dirtying is also good on the i386.
2898 * There is also a hook called "update_mmu_cache()" that architectures
2899 * with external mmu caches can use to update those (ie the Sparc or
2900 * PowerPC hashed page tables that act as extended TLBs).
2902 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2903 * but allow concurrent faults), and pte mapped but not yet locked.
2904 * We return with mmap_sem still held, but pte unmapped and unlocked.
2906 static inline int handle_pte_fault(struct mm_struct
*mm
,
2907 struct vm_area_struct
*vma
, unsigned long address
,
2908 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
2914 if (!pte_present(entry
)) {
2915 if (pte_none(entry
)) {
2917 if (likely(vma
->vm_ops
->fault
))
2918 return do_linear_fault(mm
, vma
, address
,
2919 pte
, pmd
, flags
, entry
);
2921 return do_anonymous_page(mm
, vma
, address
,
2924 if (pte_file(entry
))
2925 return do_nonlinear_fault(mm
, vma
, address
,
2926 pte
, pmd
, flags
, entry
);
2927 return do_swap_page(mm
, vma
, address
,
2928 pte
, pmd
, flags
, entry
);
2931 ptl
= pte_lockptr(mm
, pmd
);
2933 if (unlikely(!pte_same(*pte
, entry
)))
2935 if (flags
& FAULT_FLAG_WRITE
) {
2936 if (!pte_write(entry
))
2937 return do_wp_page(mm
, vma
, address
,
2938 pte
, pmd
, ptl
, entry
);
2939 entry
= pte_mkdirty(entry
);
2941 entry
= pte_mkyoung(entry
);
2942 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
2943 update_mmu_cache(vma
, address
, entry
);
2946 * This is needed only for protection faults but the arch code
2947 * is not yet telling us if this is a protection fault or not.
2948 * This still avoids useless tlb flushes for .text page faults
2951 if (flags
& FAULT_FLAG_WRITE
)
2952 flush_tlb_page(vma
, address
);
2955 pte_unmap_unlock(pte
, ptl
);
2960 * By the time we get here, we already hold the mm semaphore
2962 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2963 unsigned long address
, unsigned int flags
)
2970 __set_current_state(TASK_RUNNING
);
2972 count_vm_event(PGFAULT
);
2974 if (unlikely(is_vm_hugetlb_page(vma
)))
2975 return hugetlb_fault(mm
, vma
, address
, flags
);
2977 pgd
= pgd_offset(mm
, address
);
2978 pud
= pud_alloc(mm
, pgd
, address
);
2980 return VM_FAULT_OOM
;
2981 pmd
= pmd_alloc(mm
, pud
, address
);
2983 return VM_FAULT_OOM
;
2984 pte
= pte_alloc_map(mm
, pmd
, address
);
2986 return VM_FAULT_OOM
;
2988 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
2991 #ifndef __PAGETABLE_PUD_FOLDED
2993 * Allocate page upper directory.
2994 * We've already handled the fast-path in-line.
2996 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2998 pud_t
*new = pud_alloc_one(mm
, address
);
3002 smp_wmb(); /* See comment in __pte_alloc */
3004 spin_lock(&mm
->page_table_lock
);
3005 if (pgd_present(*pgd
)) /* Another has populated it */
3008 pgd_populate(mm
, pgd
, new);
3009 spin_unlock(&mm
->page_table_lock
);
3012 #endif /* __PAGETABLE_PUD_FOLDED */
3014 #ifndef __PAGETABLE_PMD_FOLDED
3016 * Allocate page middle directory.
3017 * We've already handled the fast-path in-line.
3019 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3021 pmd_t
*new = pmd_alloc_one(mm
, address
);
3025 smp_wmb(); /* See comment in __pte_alloc */
3027 spin_lock(&mm
->page_table_lock
);
3028 #ifndef __ARCH_HAS_4LEVEL_HACK
3029 if (pud_present(*pud
)) /* Another has populated it */
3032 pud_populate(mm
, pud
, new);
3034 if (pgd_present(*pud
)) /* Another has populated it */
3037 pgd_populate(mm
, pud
, new);
3038 #endif /* __ARCH_HAS_4LEVEL_HACK */
3039 spin_unlock(&mm
->page_table_lock
);
3042 #endif /* __PAGETABLE_PMD_FOLDED */
3044 int make_pages_present(unsigned long addr
, unsigned long end
)
3046 int ret
, len
, write
;
3047 struct vm_area_struct
* vma
;
3049 vma
= find_vma(current
->mm
, addr
);
3052 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
3053 BUG_ON(addr
>= end
);
3054 BUG_ON(end
> vma
->vm_end
);
3055 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3056 ret
= get_user_pages(current
, current
->mm
, addr
,
3057 len
, write
, 0, NULL
, NULL
);
3060 return ret
== len
? 0 : -EFAULT
;
3063 #if !defined(__HAVE_ARCH_GATE_AREA)
3065 #if defined(AT_SYSINFO_EHDR)
3066 static struct vm_area_struct gate_vma
;
3068 static int __init
gate_vma_init(void)
3070 gate_vma
.vm_mm
= NULL
;
3071 gate_vma
.vm_start
= FIXADDR_USER_START
;
3072 gate_vma
.vm_end
= FIXADDR_USER_END
;
3073 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3074 gate_vma
.vm_page_prot
= __P101
;
3076 * Make sure the vDSO gets into every core dump.
3077 * Dumping its contents makes post-mortem fully interpretable later
3078 * without matching up the same kernel and hardware config to see
3079 * what PC values meant.
3081 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3084 __initcall(gate_vma_init
);
3087 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
3089 #ifdef AT_SYSINFO_EHDR
3096 int in_gate_area_no_task(unsigned long addr
)
3098 #ifdef AT_SYSINFO_EHDR
3099 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3105 #endif /* __HAVE_ARCH_GATE_AREA */
3107 static int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3108 pte_t
**ptepp
, spinlock_t
**ptlp
)
3115 pgd
= pgd_offset(mm
, address
);
3116 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3119 pud
= pud_offset(pgd
, address
);
3120 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3123 pmd
= pmd_offset(pud
, address
);
3124 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3127 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3131 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3134 if (!pte_present(*ptep
))
3139 pte_unmap_unlock(ptep
, *ptlp
);
3145 * follow_pfn - look up PFN at a user virtual address
3146 * @vma: memory mapping
3147 * @address: user virtual address
3148 * @pfn: location to store found PFN
3150 * Only IO mappings and raw PFN mappings are allowed.
3152 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3154 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3161 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3164 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3167 *pfn
= pte_pfn(*ptep
);
3168 pte_unmap_unlock(ptep
, ptl
);
3171 EXPORT_SYMBOL(follow_pfn
);
3173 #ifdef CONFIG_HAVE_IOREMAP_PROT
3174 int follow_phys(struct vm_area_struct
*vma
,
3175 unsigned long address
, unsigned int flags
,
3176 unsigned long *prot
, resource_size_t
*phys
)
3182 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3185 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3189 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3192 *prot
= pgprot_val(pte_pgprot(pte
));
3193 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3197 pte_unmap_unlock(ptep
, ptl
);
3202 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3203 void *buf
, int len
, int write
)
3205 resource_size_t phys_addr
;
3206 unsigned long prot
= 0;
3207 void __iomem
*maddr
;
3208 int offset
= addr
& (PAGE_SIZE
-1);
3210 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3213 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3215 memcpy_toio(maddr
+ offset
, buf
, len
);
3217 memcpy_fromio(buf
, maddr
+ offset
, len
);
3225 * Access another process' address space.
3226 * Source/target buffer must be kernel space,
3227 * Do not walk the page table directly, use get_user_pages
3229 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3231 struct mm_struct
*mm
;
3232 struct vm_area_struct
*vma
;
3233 void *old_buf
= buf
;
3235 mm
= get_task_mm(tsk
);
3239 down_read(&mm
->mmap_sem
);
3240 /* ignore errors, just check how much was successfully transferred */
3242 int bytes
, ret
, offset
;
3244 struct page
*page
= NULL
;
3246 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3247 write
, 1, &page
, &vma
);
3250 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3251 * we can access using slightly different code.
3253 #ifdef CONFIG_HAVE_IOREMAP_PROT
3254 vma
= find_vma(mm
, addr
);
3257 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3258 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3266 offset
= addr
& (PAGE_SIZE
-1);
3267 if (bytes
> PAGE_SIZE
-offset
)
3268 bytes
= PAGE_SIZE
-offset
;
3272 copy_to_user_page(vma
, page
, addr
,
3273 maddr
+ offset
, buf
, bytes
);
3274 set_page_dirty_lock(page
);
3276 copy_from_user_page(vma
, page
, addr
,
3277 buf
, maddr
+ offset
, bytes
);
3280 page_cache_release(page
);
3286 up_read(&mm
->mmap_sem
);
3289 return buf
- old_buf
;
3293 * Print the name of a VMA.
3295 void print_vma_addr(char *prefix
, unsigned long ip
)
3297 struct mm_struct
*mm
= current
->mm
;
3298 struct vm_area_struct
*vma
;
3301 * Do not print if we are in atomic
3302 * contexts (in exception stacks, etc.):
3304 if (preempt_count())
3307 down_read(&mm
->mmap_sem
);
3308 vma
= find_vma(mm
, ip
);
3309 if (vma
&& vma
->vm_file
) {
3310 struct file
*f
= vma
->vm_file
;
3311 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3315 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3318 s
= strrchr(p
, '/');
3321 printk("%s%s[%lx+%lx]", prefix
, p
,
3323 vma
->vm_end
- vma
->vm_start
);
3324 free_page((unsigned long)buf
);
3327 up_read(¤t
->mm
->mmap_sem
);
3330 #ifdef CONFIG_PROVE_LOCKING
3331 void might_fault(void)
3334 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3335 * holding the mmap_sem, this is safe because kernel memory doesn't
3336 * get paged out, therefore we'll never actually fault, and the
3337 * below annotations will generate false positives.
3339 if (segment_eq(get_fs(), KERNEL_DS
))
3344 * it would be nicer only to annotate paths which are not under
3345 * pagefault_disable, however that requires a larger audit and
3346 * providing helpers like get_user_atomic.
3348 if (!in_atomic() && current
->mm
)
3349 might_lock_read(¤t
->mm
->mmap_sem
);
3351 EXPORT_SYMBOL(might_fault
);