ALSA: virtuoso: Xonar DS: fix polarity of front output
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / rx.c
blob378bd67334ba21116221c81390dd1315f722eef5
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
51 return skb;
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
75 int len;
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
91 return len;
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
121 pos = (unsigned char *)(rthdr+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (!rate || status->flag & RX_FLAG_HT) {
145 * Without rate information don't add it. If we have,
146 * MCS information is a separate field in radiotap,
147 * added below. The byte here is needed as padding
148 * for the channel though, so initialise it to 0.
150 *pos = 0;
151 } else {
152 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
153 *pos = rate->bitrate / 5;
155 pos++;
157 /* IEEE80211_RADIOTAP_CHANNEL */
158 put_unaligned_le16(status->freq, pos);
159 pos += 2;
160 if (status->band == IEEE80211_BAND_5GHZ)
161 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
162 pos);
163 else if (status->flag & RX_FLAG_HT)
164 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
165 pos);
166 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
167 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
168 pos);
169 else if (rate)
170 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
171 pos);
172 else
173 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
174 pos += 2;
176 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
177 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
178 *pos = status->signal;
179 rthdr->it_present |=
180 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
181 pos++;
184 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
186 /* IEEE80211_RADIOTAP_ANTENNA */
187 *pos = status->antenna;
188 pos++;
190 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
192 /* IEEE80211_RADIOTAP_RX_FLAGS */
193 /* ensure 2 byte alignment for the 2 byte field as required */
194 if ((pos - (u8 *)rthdr) & 1)
195 pos++;
196 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
197 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
198 put_unaligned_le16(rx_flags, pos);
199 pos += 2;
201 if (status->flag & RX_FLAG_HT) {
202 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
203 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
204 IEEE80211_RADIOTAP_MCS_HAVE_GI |
205 IEEE80211_RADIOTAP_MCS_HAVE_BW;
206 *pos = 0;
207 if (status->flag & RX_FLAG_SHORT_GI)
208 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
209 if (status->flag & RX_FLAG_40MHZ)
210 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
211 pos++;
212 *pos++ = status->rate_idx;
217 * This function copies a received frame to all monitor interfaces and
218 * returns a cleaned-up SKB that no longer includes the FCS nor the
219 * radiotap header the driver might have added.
221 static struct sk_buff *
222 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
223 struct ieee80211_rate *rate)
225 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
226 struct ieee80211_sub_if_data *sdata;
227 int needed_headroom = 0;
228 struct sk_buff *skb, *skb2;
229 struct net_device *prev_dev = NULL;
230 int present_fcs_len = 0;
233 * First, we may need to make a copy of the skb because
234 * (1) we need to modify it for radiotap (if not present), and
235 * (2) the other RX handlers will modify the skb we got.
237 * We don't need to, of course, if we aren't going to return
238 * the SKB because it has a bad FCS/PLCP checksum.
241 /* room for the radiotap header based on driver features */
242 needed_headroom = ieee80211_rx_radiotap_len(local, status);
244 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
245 present_fcs_len = FCS_LEN;
247 /* make sure hdr->frame_control is on the linear part */
248 if (!pskb_may_pull(origskb, 2)) {
249 dev_kfree_skb(origskb);
250 return NULL;
253 if (!local->monitors) {
254 if (should_drop_frame(origskb, present_fcs_len)) {
255 dev_kfree_skb(origskb);
256 return NULL;
259 return remove_monitor_info(local, origskb);
262 if (should_drop_frame(origskb, present_fcs_len)) {
263 /* only need to expand headroom if necessary */
264 skb = origskb;
265 origskb = NULL;
268 * This shouldn't trigger often because most devices have an
269 * RX header they pull before we get here, and that should
270 * be big enough for our radiotap information. We should
271 * probably export the length to drivers so that we can have
272 * them allocate enough headroom to start with.
274 if (skb_headroom(skb) < needed_headroom &&
275 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
276 dev_kfree_skb(skb);
277 return NULL;
279 } else {
281 * Need to make a copy and possibly remove radiotap header
282 * and FCS from the original.
284 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
286 origskb = remove_monitor_info(local, origskb);
288 if (!skb)
289 return origskb;
292 /* prepend radiotap information */
293 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
295 skb_reset_mac_header(skb);
296 skb->ip_summed = CHECKSUM_UNNECESSARY;
297 skb->pkt_type = PACKET_OTHERHOST;
298 skb->protocol = htons(ETH_P_802_2);
300 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
301 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
302 continue;
304 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
305 continue;
307 if (!ieee80211_sdata_running(sdata))
308 continue;
310 if (prev_dev) {
311 skb2 = skb_clone(skb, GFP_ATOMIC);
312 if (skb2) {
313 skb2->dev = prev_dev;
314 netif_receive_skb(skb2);
318 prev_dev = sdata->dev;
319 sdata->dev->stats.rx_packets++;
320 sdata->dev->stats.rx_bytes += skb->len;
323 if (prev_dev) {
324 skb->dev = prev_dev;
325 netif_receive_skb(skb);
326 } else
327 dev_kfree_skb(skb);
329 return origskb;
333 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
335 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
336 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
337 int tid;
339 /* does the frame have a qos control field? */
340 if (ieee80211_is_data_qos(hdr->frame_control)) {
341 u8 *qc = ieee80211_get_qos_ctl(hdr);
342 /* frame has qos control */
343 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
344 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
345 status->rx_flags |= IEEE80211_RX_AMSDU;
346 } else {
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
356 * We also use that counter for non-QoS STAs.
358 tid = NUM_RX_DATA_QUEUES - 1;
361 rx->queue = tid;
362 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
363 * For now, set skb->priority to 0 for other cases. */
364 rx->skb->priority = (tid > 7) ? 0 : tid;
368 * DOC: Packet alignment
370 * Drivers always need to pass packets that are aligned to two-byte boundaries
371 * to the stack.
373 * Additionally, should, if possible, align the payload data in a way that
374 * guarantees that the contained IP header is aligned to a four-byte
375 * boundary. In the case of regular frames, this simply means aligning the
376 * payload to a four-byte boundary (because either the IP header is directly
377 * contained, or IV/RFC1042 headers that have a length divisible by four are
378 * in front of it). If the payload data is not properly aligned and the
379 * architecture doesn't support efficient unaligned operations, mac80211
380 * will align the data.
382 * With A-MSDU frames, however, the payload data address must yield two modulo
383 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
384 * push the IP header further back to a multiple of four again. Thankfully, the
385 * specs were sane enough this time around to require padding each A-MSDU
386 * subframe to a length that is a multiple of four.
388 * Padding like Atheros hardware adds which is between the 802.11 header and
389 * the payload is not supported, the driver is required to move the 802.11
390 * header to be directly in front of the payload in that case.
392 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
394 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
395 WARN_ONCE((unsigned long)rx->skb->data & 1,
396 "unaligned packet at 0x%p\n", rx->skb->data);
397 #endif
401 /* rx handlers */
403 static ieee80211_rx_result debug_noinline
404 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
406 struct ieee80211_local *local = rx->local;
407 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
408 struct sk_buff *skb = rx->skb;
410 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
411 !local->sched_scanning))
412 return RX_CONTINUE;
414 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
415 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
416 local->sched_scanning)
417 return ieee80211_scan_rx(rx->sdata, skb);
419 /* scanning finished during invoking of handlers */
420 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
421 return RX_DROP_UNUSABLE;
425 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
429 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
430 return 0;
432 return ieee80211_is_robust_mgmt_frame(hdr);
436 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
440 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
441 return 0;
443 return ieee80211_is_robust_mgmt_frame(hdr);
447 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
448 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
450 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
451 struct ieee80211_mmie *mmie;
453 if (skb->len < 24 + sizeof(*mmie) ||
454 !is_multicast_ether_addr(hdr->da))
455 return -1;
457 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
458 return -1; /* not a robust management frame */
460 mmie = (struct ieee80211_mmie *)
461 (skb->data + skb->len - sizeof(*mmie));
462 if (mmie->element_id != WLAN_EID_MMIE ||
463 mmie->length != sizeof(*mmie) - 2)
464 return -1;
466 return le16_to_cpu(mmie->key_id);
470 static ieee80211_rx_result
471 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
473 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
474 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
475 char *dev_addr = rx->sdata->vif.addr;
477 if (ieee80211_is_data(hdr->frame_control)) {
478 if (is_multicast_ether_addr(hdr->addr1)) {
479 if (ieee80211_has_tods(hdr->frame_control) ||
480 !ieee80211_has_fromds(hdr->frame_control))
481 return RX_DROP_MONITOR;
482 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
483 return RX_DROP_MONITOR;
484 } else {
485 if (!ieee80211_has_a4(hdr->frame_control))
486 return RX_DROP_MONITOR;
487 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
488 return RX_DROP_MONITOR;
492 /* If there is not an established peer link and this is not a peer link
493 * establisment frame, beacon or probe, drop the frame.
496 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
497 struct ieee80211_mgmt *mgmt;
499 if (!ieee80211_is_mgmt(hdr->frame_control))
500 return RX_DROP_MONITOR;
502 if (ieee80211_is_action(hdr->frame_control)) {
503 u8 category;
504 mgmt = (struct ieee80211_mgmt *)hdr;
505 category = mgmt->u.action.category;
506 if (category != WLAN_CATEGORY_MESH_ACTION &&
507 category != WLAN_CATEGORY_SELF_PROTECTED)
508 return RX_DROP_MONITOR;
509 return RX_CONTINUE;
512 if (ieee80211_is_probe_req(hdr->frame_control) ||
513 ieee80211_is_probe_resp(hdr->frame_control) ||
514 ieee80211_is_beacon(hdr->frame_control) ||
515 ieee80211_is_auth(hdr->frame_control))
516 return RX_CONTINUE;
518 return RX_DROP_MONITOR;
522 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
524 if (ieee80211_is_data(hdr->frame_control) &&
525 is_multicast_ether_addr(hdr->addr1) &&
526 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
527 return RX_DROP_MONITOR;
528 #undef msh_h_get
530 return RX_CONTINUE;
533 #define SEQ_MODULO 0x1000
534 #define SEQ_MASK 0xfff
536 static inline int seq_less(u16 sq1, u16 sq2)
538 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
541 static inline u16 seq_inc(u16 sq)
543 return (sq + 1) & SEQ_MASK;
546 static inline u16 seq_sub(u16 sq1, u16 sq2)
548 return (sq1 - sq2) & SEQ_MASK;
552 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
553 struct tid_ampdu_rx *tid_agg_rx,
554 int index)
556 struct ieee80211_local *local = hw_to_local(hw);
557 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
558 struct ieee80211_rx_status *status;
560 lockdep_assert_held(&tid_agg_rx->reorder_lock);
562 if (!skb)
563 goto no_frame;
565 /* release the frame from the reorder ring buffer */
566 tid_agg_rx->stored_mpdu_num--;
567 tid_agg_rx->reorder_buf[index] = NULL;
568 status = IEEE80211_SKB_RXCB(skb);
569 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
570 skb_queue_tail(&local->rx_skb_queue, skb);
572 no_frame:
573 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
576 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
577 struct tid_ampdu_rx *tid_agg_rx,
578 u16 head_seq_num)
580 int index;
582 lockdep_assert_held(&tid_agg_rx->reorder_lock);
584 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
585 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
586 tid_agg_rx->buf_size;
587 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
592 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
593 * the skb was added to the buffer longer than this time ago, the earlier
594 * frames that have not yet been received are assumed to be lost and the skb
595 * can be released for processing. This may also release other skb's from the
596 * reorder buffer if there are no additional gaps between the frames.
598 * Callers must hold tid_agg_rx->reorder_lock.
600 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
602 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
603 struct tid_ampdu_rx *tid_agg_rx)
605 int index, j;
607 lockdep_assert_held(&tid_agg_rx->reorder_lock);
609 /* release the buffer until next missing frame */
610 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
611 tid_agg_rx->buf_size;
612 if (!tid_agg_rx->reorder_buf[index] &&
613 tid_agg_rx->stored_mpdu_num > 1) {
615 * No buffers ready to be released, but check whether any
616 * frames in the reorder buffer have timed out.
618 int skipped = 1;
619 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
620 j = (j + 1) % tid_agg_rx->buf_size) {
621 if (!tid_agg_rx->reorder_buf[j]) {
622 skipped++;
623 continue;
625 if (skipped &&
626 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
627 HT_RX_REORDER_BUF_TIMEOUT))
628 goto set_release_timer;
630 #ifdef CONFIG_MAC80211_HT_DEBUG
631 if (net_ratelimit())
632 wiphy_debug(hw->wiphy,
633 "release an RX reorder frame due to timeout on earlier frames\n");
634 #endif
635 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
638 * Increment the head seq# also for the skipped slots.
640 tid_agg_rx->head_seq_num =
641 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
642 skipped = 0;
644 } else while (tid_agg_rx->reorder_buf[index]) {
645 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
646 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
647 tid_agg_rx->buf_size;
650 if (tid_agg_rx->stored_mpdu_num) {
651 j = index = seq_sub(tid_agg_rx->head_seq_num,
652 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
654 for (; j != (index - 1) % tid_agg_rx->buf_size;
655 j = (j + 1) % tid_agg_rx->buf_size) {
656 if (tid_agg_rx->reorder_buf[j])
657 break;
660 set_release_timer:
662 mod_timer(&tid_agg_rx->reorder_timer,
663 tid_agg_rx->reorder_time[j] + 1 +
664 HT_RX_REORDER_BUF_TIMEOUT);
665 } else {
666 del_timer(&tid_agg_rx->reorder_timer);
671 * As this function belongs to the RX path it must be under
672 * rcu_read_lock protection. It returns false if the frame
673 * can be processed immediately, true if it was consumed.
675 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
676 struct tid_ampdu_rx *tid_agg_rx,
677 struct sk_buff *skb)
679 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
680 u16 sc = le16_to_cpu(hdr->seq_ctrl);
681 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
682 u16 head_seq_num, buf_size;
683 int index;
684 bool ret = true;
686 spin_lock(&tid_agg_rx->reorder_lock);
688 buf_size = tid_agg_rx->buf_size;
689 head_seq_num = tid_agg_rx->head_seq_num;
691 /* frame with out of date sequence number */
692 if (seq_less(mpdu_seq_num, head_seq_num)) {
693 dev_kfree_skb(skb);
694 goto out;
698 * If frame the sequence number exceeds our buffering window
699 * size release some previous frames to make room for this one.
701 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
702 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
703 /* release stored frames up to new head to stack */
704 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
707 /* Now the new frame is always in the range of the reordering buffer */
709 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
711 /* check if we already stored this frame */
712 if (tid_agg_rx->reorder_buf[index]) {
713 dev_kfree_skb(skb);
714 goto out;
718 * If the current MPDU is in the right order and nothing else
719 * is stored we can process it directly, no need to buffer it.
720 * If it is first but there's something stored, we may be able
721 * to release frames after this one.
723 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
724 tid_agg_rx->stored_mpdu_num == 0) {
725 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
726 ret = false;
727 goto out;
730 /* put the frame in the reordering buffer */
731 tid_agg_rx->reorder_buf[index] = skb;
732 tid_agg_rx->reorder_time[index] = jiffies;
733 tid_agg_rx->stored_mpdu_num++;
734 ieee80211_sta_reorder_release(hw, tid_agg_rx);
736 out:
737 spin_unlock(&tid_agg_rx->reorder_lock);
738 return ret;
742 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
743 * true if the MPDU was buffered, false if it should be processed.
745 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
747 struct sk_buff *skb = rx->skb;
748 struct ieee80211_local *local = rx->local;
749 struct ieee80211_hw *hw = &local->hw;
750 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
751 struct sta_info *sta = rx->sta;
752 struct tid_ampdu_rx *tid_agg_rx;
753 u16 sc;
754 int tid;
756 if (!ieee80211_is_data_qos(hdr->frame_control))
757 goto dont_reorder;
760 * filter the QoS data rx stream according to
761 * STA/TID and check if this STA/TID is on aggregation
764 if (!sta)
765 goto dont_reorder;
767 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
769 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
770 if (!tid_agg_rx)
771 goto dont_reorder;
773 /* qos null data frames are excluded */
774 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
775 goto dont_reorder;
777 /* new, potentially un-ordered, ampdu frame - process it */
779 /* reset session timer */
780 if (tid_agg_rx->timeout)
781 mod_timer(&tid_agg_rx->session_timer,
782 TU_TO_EXP_TIME(tid_agg_rx->timeout));
784 /* if this mpdu is fragmented - terminate rx aggregation session */
785 sc = le16_to_cpu(hdr->seq_ctrl);
786 if (sc & IEEE80211_SCTL_FRAG) {
787 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
788 skb_queue_tail(&rx->sdata->skb_queue, skb);
789 ieee80211_queue_work(&local->hw, &rx->sdata->work);
790 return;
794 * No locking needed -- we will only ever process one
795 * RX packet at a time, and thus own tid_agg_rx. All
796 * other code manipulating it needs to (and does) make
797 * sure that we cannot get to it any more before doing
798 * anything with it.
800 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
801 return;
803 dont_reorder:
804 skb_queue_tail(&local->rx_skb_queue, skb);
807 static ieee80211_rx_result debug_noinline
808 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
810 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
811 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
813 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
814 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
815 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
816 rx->sta->last_seq_ctrl[rx->queue] ==
817 hdr->seq_ctrl)) {
818 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
819 rx->local->dot11FrameDuplicateCount++;
820 rx->sta->num_duplicates++;
822 return RX_DROP_UNUSABLE;
823 } else
824 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
827 if (unlikely(rx->skb->len < 16)) {
828 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
829 return RX_DROP_MONITOR;
832 /* Drop disallowed frame classes based on STA auth/assoc state;
833 * IEEE 802.11, Chap 5.5.
835 * mac80211 filters only based on association state, i.e. it drops
836 * Class 3 frames from not associated stations. hostapd sends
837 * deauth/disassoc frames when needed. In addition, hostapd is
838 * responsible for filtering on both auth and assoc states.
841 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
842 return ieee80211_rx_mesh_check(rx);
844 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
845 ieee80211_is_pspoll(hdr->frame_control)) &&
846 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
847 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
848 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
849 return RX_DROP_MONITOR;
851 return RX_CONTINUE;
855 static ieee80211_rx_result debug_noinline
856 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
858 struct sk_buff *skb = rx->skb;
859 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
860 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
861 int keyidx;
862 int hdrlen;
863 ieee80211_rx_result result = RX_DROP_UNUSABLE;
864 struct ieee80211_key *sta_ptk = NULL;
865 int mmie_keyidx = -1;
866 __le16 fc;
869 * Key selection 101
871 * There are four types of keys:
872 * - GTK (group keys)
873 * - IGTK (group keys for management frames)
874 * - PTK (pairwise keys)
875 * - STK (station-to-station pairwise keys)
877 * When selecting a key, we have to distinguish between multicast
878 * (including broadcast) and unicast frames, the latter can only
879 * use PTKs and STKs while the former always use GTKs and IGTKs.
880 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
881 * unicast frames can also use key indices like GTKs. Hence, if we
882 * don't have a PTK/STK we check the key index for a WEP key.
884 * Note that in a regular BSS, multicast frames are sent by the
885 * AP only, associated stations unicast the frame to the AP first
886 * which then multicasts it on their behalf.
888 * There is also a slight problem in IBSS mode: GTKs are negotiated
889 * with each station, that is something we don't currently handle.
890 * The spec seems to expect that one negotiates the same key with
891 * every station but there's no such requirement; VLANs could be
892 * possible.
896 * No point in finding a key and decrypting if the frame is neither
897 * addressed to us nor a multicast frame.
899 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
900 return RX_CONTINUE;
902 /* start without a key */
903 rx->key = NULL;
905 if (rx->sta)
906 sta_ptk = rcu_dereference(rx->sta->ptk);
908 fc = hdr->frame_control;
910 if (!ieee80211_has_protected(fc))
911 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
913 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
914 rx->key = sta_ptk;
915 if ((status->flag & RX_FLAG_DECRYPTED) &&
916 (status->flag & RX_FLAG_IV_STRIPPED))
917 return RX_CONTINUE;
918 /* Skip decryption if the frame is not protected. */
919 if (!ieee80211_has_protected(fc))
920 return RX_CONTINUE;
921 } else if (mmie_keyidx >= 0) {
922 /* Broadcast/multicast robust management frame / BIP */
923 if ((status->flag & RX_FLAG_DECRYPTED) &&
924 (status->flag & RX_FLAG_IV_STRIPPED))
925 return RX_CONTINUE;
927 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
928 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
929 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
930 if (rx->sta)
931 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
932 if (!rx->key)
933 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
934 } else if (!ieee80211_has_protected(fc)) {
936 * The frame was not protected, so skip decryption. However, we
937 * need to set rx->key if there is a key that could have been
938 * used so that the frame may be dropped if encryption would
939 * have been expected.
941 struct ieee80211_key *key = NULL;
942 struct ieee80211_sub_if_data *sdata = rx->sdata;
943 int i;
945 if (ieee80211_is_mgmt(fc) &&
946 is_multicast_ether_addr(hdr->addr1) &&
947 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
948 rx->key = key;
949 else {
950 if (rx->sta) {
951 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
952 key = rcu_dereference(rx->sta->gtk[i]);
953 if (key)
954 break;
957 if (!key) {
958 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
959 key = rcu_dereference(sdata->keys[i]);
960 if (key)
961 break;
964 if (key)
965 rx->key = key;
967 return RX_CONTINUE;
968 } else {
969 u8 keyid;
971 * The device doesn't give us the IV so we won't be
972 * able to look up the key. That's ok though, we
973 * don't need to decrypt the frame, we just won't
974 * be able to keep statistics accurate.
975 * Except for key threshold notifications, should
976 * we somehow allow the driver to tell us which key
977 * the hardware used if this flag is set?
979 if ((status->flag & RX_FLAG_DECRYPTED) &&
980 (status->flag & RX_FLAG_IV_STRIPPED))
981 return RX_CONTINUE;
983 hdrlen = ieee80211_hdrlen(fc);
985 if (rx->skb->len < 8 + hdrlen)
986 return RX_DROP_UNUSABLE; /* TODO: count this? */
989 * no need to call ieee80211_wep_get_keyidx,
990 * it verifies a bunch of things we've done already
992 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
993 keyidx = keyid >> 6;
995 /* check per-station GTK first, if multicast packet */
996 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
997 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
999 /* if not found, try default key */
1000 if (!rx->key) {
1001 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1004 * RSNA-protected unicast frames should always be
1005 * sent with pairwise or station-to-station keys,
1006 * but for WEP we allow using a key index as well.
1008 if (rx->key &&
1009 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1010 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1011 !is_multicast_ether_addr(hdr->addr1))
1012 rx->key = NULL;
1016 if (rx->key) {
1017 rx->key->tx_rx_count++;
1018 /* TODO: add threshold stuff again */
1019 } else {
1020 return RX_DROP_MONITOR;
1023 if (skb_linearize(rx->skb))
1024 return RX_DROP_UNUSABLE;
1025 /* the hdr variable is invalid now! */
1027 switch (rx->key->conf.cipher) {
1028 case WLAN_CIPHER_SUITE_WEP40:
1029 case WLAN_CIPHER_SUITE_WEP104:
1030 /* Check for weak IVs if possible */
1031 if (rx->sta && ieee80211_is_data(fc) &&
1032 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1033 !(status->flag & RX_FLAG_DECRYPTED)) &&
1034 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1035 rx->sta->wep_weak_iv_count++;
1037 result = ieee80211_crypto_wep_decrypt(rx);
1038 break;
1039 case WLAN_CIPHER_SUITE_TKIP:
1040 result = ieee80211_crypto_tkip_decrypt(rx);
1041 break;
1042 case WLAN_CIPHER_SUITE_CCMP:
1043 result = ieee80211_crypto_ccmp_decrypt(rx);
1044 break;
1045 case WLAN_CIPHER_SUITE_AES_CMAC:
1046 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1047 break;
1048 default:
1050 * We can reach here only with HW-only algorithms
1051 * but why didn't it decrypt the frame?!
1053 return RX_DROP_UNUSABLE;
1056 /* either the frame has been decrypted or will be dropped */
1057 status->flag |= RX_FLAG_DECRYPTED;
1059 return result;
1062 static ieee80211_rx_result debug_noinline
1063 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1065 struct ieee80211_local *local;
1066 struct ieee80211_hdr *hdr;
1067 struct sk_buff *skb;
1069 local = rx->local;
1070 skb = rx->skb;
1071 hdr = (struct ieee80211_hdr *) skb->data;
1073 if (!local->pspolling)
1074 return RX_CONTINUE;
1076 if (!ieee80211_has_fromds(hdr->frame_control))
1077 /* this is not from AP */
1078 return RX_CONTINUE;
1080 if (!ieee80211_is_data(hdr->frame_control))
1081 return RX_CONTINUE;
1083 if (!ieee80211_has_moredata(hdr->frame_control)) {
1084 /* AP has no more frames buffered for us */
1085 local->pspolling = false;
1086 return RX_CONTINUE;
1089 /* more data bit is set, let's request a new frame from the AP */
1090 ieee80211_send_pspoll(local, rx->sdata);
1092 return RX_CONTINUE;
1095 static void ap_sta_ps_start(struct sta_info *sta)
1097 struct ieee80211_sub_if_data *sdata = sta->sdata;
1098 struct ieee80211_local *local = sdata->local;
1100 atomic_inc(&sdata->bss->num_sta_ps);
1101 set_sta_flags(sta, WLAN_STA_PS_STA);
1102 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1103 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1104 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1105 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1106 sdata->name, sta->sta.addr, sta->sta.aid);
1107 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1110 static void ap_sta_ps_end(struct sta_info *sta)
1112 struct ieee80211_sub_if_data *sdata = sta->sdata;
1114 atomic_dec(&sdata->bss->num_sta_ps);
1116 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1117 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1118 sdata->name, sta->sta.addr, sta->sta.aid);
1119 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1121 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1122 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1123 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1124 sdata->name, sta->sta.addr, sta->sta.aid);
1125 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1126 return;
1129 ieee80211_sta_ps_deliver_wakeup(sta);
1132 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1134 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1135 bool in_ps;
1137 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1139 /* Don't let the same PS state be set twice */
1140 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1141 if ((start && in_ps) || (!start && !in_ps))
1142 return -EINVAL;
1144 if (start)
1145 ap_sta_ps_start(sta_inf);
1146 else
1147 ap_sta_ps_end(sta_inf);
1149 return 0;
1151 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1153 static ieee80211_rx_result debug_noinline
1154 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1156 struct sta_info *sta = rx->sta;
1157 struct sk_buff *skb = rx->skb;
1158 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1159 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1161 if (!sta)
1162 return RX_CONTINUE;
1165 * Update last_rx only for IBSS packets which are for the current
1166 * BSSID to avoid keeping the current IBSS network alive in cases
1167 * where other STAs start using different BSSID.
1169 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1170 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1171 NL80211_IFTYPE_ADHOC);
1172 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1173 sta->last_rx = jiffies;
1174 if (ieee80211_is_data(hdr->frame_control)) {
1175 sta->last_rx_rate_idx = status->rate_idx;
1176 sta->last_rx_rate_flag = status->flag;
1179 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1181 * Mesh beacons will update last_rx when if they are found to
1182 * match the current local configuration when processed.
1184 sta->last_rx = jiffies;
1185 if (ieee80211_is_data(hdr->frame_control)) {
1186 sta->last_rx_rate_idx = status->rate_idx;
1187 sta->last_rx_rate_flag = status->flag;
1191 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1192 return RX_CONTINUE;
1194 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1195 ieee80211_sta_rx_notify(rx->sdata, hdr);
1197 sta->rx_fragments++;
1198 sta->rx_bytes += rx->skb->len;
1199 sta->last_signal = status->signal;
1200 ewma_add(&sta->avg_signal, -status->signal);
1203 * Change STA power saving mode only at the end of a frame
1204 * exchange sequence.
1206 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1207 !ieee80211_has_morefrags(hdr->frame_control) &&
1208 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1209 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1210 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1211 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1213 * Ignore doze->wake transitions that are
1214 * indicated by non-data frames, the standard
1215 * is unclear here, but for example going to
1216 * PS mode and then scanning would cause a
1217 * doze->wake transition for the probe request,
1218 * and that is clearly undesirable.
1220 if (ieee80211_is_data(hdr->frame_control) &&
1221 !ieee80211_has_pm(hdr->frame_control))
1222 ap_sta_ps_end(sta);
1223 } else {
1224 if (ieee80211_has_pm(hdr->frame_control))
1225 ap_sta_ps_start(sta);
1230 * Drop (qos-)data::nullfunc frames silently, since they
1231 * are used only to control station power saving mode.
1233 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1234 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1235 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1238 * If we receive a 4-addr nullfunc frame from a STA
1239 * that was not moved to a 4-addr STA vlan yet, drop
1240 * the frame to the monitor interface, to make sure
1241 * that hostapd sees it
1243 if (ieee80211_has_a4(hdr->frame_control) &&
1244 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1245 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1246 !rx->sdata->u.vlan.sta)))
1247 return RX_DROP_MONITOR;
1249 * Update counter and free packet here to avoid
1250 * counting this as a dropped packed.
1252 sta->rx_packets++;
1253 dev_kfree_skb(rx->skb);
1254 return RX_QUEUED;
1257 return RX_CONTINUE;
1258 } /* ieee80211_rx_h_sta_process */
1260 static inline struct ieee80211_fragment_entry *
1261 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1262 unsigned int frag, unsigned int seq, int rx_queue,
1263 struct sk_buff **skb)
1265 struct ieee80211_fragment_entry *entry;
1266 int idx;
1268 idx = sdata->fragment_next;
1269 entry = &sdata->fragments[sdata->fragment_next++];
1270 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1271 sdata->fragment_next = 0;
1273 if (!skb_queue_empty(&entry->skb_list)) {
1274 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1275 struct ieee80211_hdr *hdr =
1276 (struct ieee80211_hdr *) entry->skb_list.next->data;
1277 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1278 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1279 "addr1=%pM addr2=%pM\n",
1280 sdata->name, idx,
1281 jiffies - entry->first_frag_time, entry->seq,
1282 entry->last_frag, hdr->addr1, hdr->addr2);
1283 #endif
1284 __skb_queue_purge(&entry->skb_list);
1287 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1288 *skb = NULL;
1289 entry->first_frag_time = jiffies;
1290 entry->seq = seq;
1291 entry->rx_queue = rx_queue;
1292 entry->last_frag = frag;
1293 entry->ccmp = 0;
1294 entry->extra_len = 0;
1296 return entry;
1299 static inline struct ieee80211_fragment_entry *
1300 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1301 unsigned int frag, unsigned int seq,
1302 int rx_queue, struct ieee80211_hdr *hdr)
1304 struct ieee80211_fragment_entry *entry;
1305 int i, idx;
1307 idx = sdata->fragment_next;
1308 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1309 struct ieee80211_hdr *f_hdr;
1311 idx--;
1312 if (idx < 0)
1313 idx = IEEE80211_FRAGMENT_MAX - 1;
1315 entry = &sdata->fragments[idx];
1316 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1317 entry->rx_queue != rx_queue ||
1318 entry->last_frag + 1 != frag)
1319 continue;
1321 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1324 * Check ftype and addresses are equal, else check next fragment
1326 if (((hdr->frame_control ^ f_hdr->frame_control) &
1327 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1328 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1329 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1330 continue;
1332 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1333 __skb_queue_purge(&entry->skb_list);
1334 continue;
1336 return entry;
1339 return NULL;
1342 static ieee80211_rx_result debug_noinline
1343 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1345 struct ieee80211_hdr *hdr;
1346 u16 sc;
1347 __le16 fc;
1348 unsigned int frag, seq;
1349 struct ieee80211_fragment_entry *entry;
1350 struct sk_buff *skb;
1351 struct ieee80211_rx_status *status;
1353 hdr = (struct ieee80211_hdr *)rx->skb->data;
1354 fc = hdr->frame_control;
1355 sc = le16_to_cpu(hdr->seq_ctrl);
1356 frag = sc & IEEE80211_SCTL_FRAG;
1358 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1359 (rx->skb)->len < 24 ||
1360 is_multicast_ether_addr(hdr->addr1))) {
1361 /* not fragmented */
1362 goto out;
1364 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1366 if (skb_linearize(rx->skb))
1367 return RX_DROP_UNUSABLE;
1370 * skb_linearize() might change the skb->data and
1371 * previously cached variables (in this case, hdr) need to
1372 * be refreshed with the new data.
1374 hdr = (struct ieee80211_hdr *)rx->skb->data;
1375 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1377 if (frag == 0) {
1378 /* This is the first fragment of a new frame. */
1379 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1380 rx->queue, &(rx->skb));
1381 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1382 ieee80211_has_protected(fc)) {
1383 int queue = ieee80211_is_mgmt(fc) ?
1384 NUM_RX_DATA_QUEUES : rx->queue;
1385 /* Store CCMP PN so that we can verify that the next
1386 * fragment has a sequential PN value. */
1387 entry->ccmp = 1;
1388 memcpy(entry->last_pn,
1389 rx->key->u.ccmp.rx_pn[queue],
1390 CCMP_PN_LEN);
1392 return RX_QUEUED;
1395 /* This is a fragment for a frame that should already be pending in
1396 * fragment cache. Add this fragment to the end of the pending entry.
1398 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1399 if (!entry) {
1400 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1401 return RX_DROP_MONITOR;
1404 /* Verify that MPDUs within one MSDU have sequential PN values.
1405 * (IEEE 802.11i, 8.3.3.4.5) */
1406 if (entry->ccmp) {
1407 int i;
1408 u8 pn[CCMP_PN_LEN], *rpn;
1409 int queue;
1410 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1411 return RX_DROP_UNUSABLE;
1412 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1413 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1414 pn[i]++;
1415 if (pn[i])
1416 break;
1418 queue = ieee80211_is_mgmt(fc) ?
1419 NUM_RX_DATA_QUEUES : rx->queue;
1420 rpn = rx->key->u.ccmp.rx_pn[queue];
1421 if (memcmp(pn, rpn, CCMP_PN_LEN))
1422 return RX_DROP_UNUSABLE;
1423 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1426 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1427 __skb_queue_tail(&entry->skb_list, rx->skb);
1428 entry->last_frag = frag;
1429 entry->extra_len += rx->skb->len;
1430 if (ieee80211_has_morefrags(fc)) {
1431 rx->skb = NULL;
1432 return RX_QUEUED;
1435 rx->skb = __skb_dequeue(&entry->skb_list);
1436 if (skb_tailroom(rx->skb) < entry->extra_len) {
1437 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1438 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1439 GFP_ATOMIC))) {
1440 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1441 __skb_queue_purge(&entry->skb_list);
1442 return RX_DROP_UNUSABLE;
1445 while ((skb = __skb_dequeue(&entry->skb_list))) {
1446 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1447 dev_kfree_skb(skb);
1450 /* Complete frame has been reassembled - process it now */
1451 status = IEEE80211_SKB_RXCB(rx->skb);
1452 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1454 out:
1455 if (rx->sta)
1456 rx->sta->rx_packets++;
1457 if (is_multicast_ether_addr(hdr->addr1))
1458 rx->local->dot11MulticastReceivedFrameCount++;
1459 else
1460 ieee80211_led_rx(rx->local);
1461 return RX_CONTINUE;
1464 static ieee80211_rx_result debug_noinline
1465 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1467 struct ieee80211_sub_if_data *sdata = rx->sdata;
1468 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1469 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1471 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1472 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1473 return RX_CONTINUE;
1475 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1476 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1477 return RX_DROP_UNUSABLE;
1479 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1480 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1481 else
1482 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1484 /* Free PS Poll skb here instead of returning RX_DROP that would
1485 * count as an dropped frame. */
1486 dev_kfree_skb(rx->skb);
1488 return RX_QUEUED;
1491 static ieee80211_rx_result debug_noinline
1492 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1494 u8 *data = rx->skb->data;
1495 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1497 if (!ieee80211_is_data_qos(hdr->frame_control))
1498 return RX_CONTINUE;
1500 /* remove the qos control field, update frame type and meta-data */
1501 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1502 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1503 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1504 /* change frame type to non QOS */
1505 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1507 return RX_CONTINUE;
1510 static int
1511 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1513 if (unlikely(!rx->sta ||
1514 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1515 return -EACCES;
1517 return 0;
1520 static int
1521 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1523 struct sk_buff *skb = rx->skb;
1524 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1527 * Pass through unencrypted frames if the hardware has
1528 * decrypted them already.
1530 if (status->flag & RX_FLAG_DECRYPTED)
1531 return 0;
1533 /* Drop unencrypted frames if key is set. */
1534 if (unlikely(!ieee80211_has_protected(fc) &&
1535 !ieee80211_is_nullfunc(fc) &&
1536 ieee80211_is_data(fc) &&
1537 (rx->key || rx->sdata->drop_unencrypted)))
1538 return -EACCES;
1540 return 0;
1543 static int
1544 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1546 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1547 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1548 __le16 fc = hdr->frame_control;
1551 * Pass through unencrypted frames if the hardware has
1552 * decrypted them already.
1554 if (status->flag & RX_FLAG_DECRYPTED)
1555 return 0;
1557 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1558 if (unlikely(!ieee80211_has_protected(fc) &&
1559 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1560 rx->key)) {
1561 if (ieee80211_is_deauth(fc))
1562 cfg80211_send_unprot_deauth(rx->sdata->dev,
1563 rx->skb->data,
1564 rx->skb->len);
1565 else if (ieee80211_is_disassoc(fc))
1566 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1567 rx->skb->data,
1568 rx->skb->len);
1569 return -EACCES;
1571 /* BIP does not use Protected field, so need to check MMIE */
1572 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1573 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1574 if (ieee80211_is_deauth(fc))
1575 cfg80211_send_unprot_deauth(rx->sdata->dev,
1576 rx->skb->data,
1577 rx->skb->len);
1578 else if (ieee80211_is_disassoc(fc))
1579 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1580 rx->skb->data,
1581 rx->skb->len);
1582 return -EACCES;
1585 * When using MFP, Action frames are not allowed prior to
1586 * having configured keys.
1588 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1589 ieee80211_is_robust_mgmt_frame(
1590 (struct ieee80211_hdr *) rx->skb->data)))
1591 return -EACCES;
1594 return 0;
1597 static int
1598 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1600 struct ieee80211_sub_if_data *sdata = rx->sdata;
1601 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1602 bool check_port_control = false;
1603 struct ethhdr *ehdr;
1604 int ret;
1606 *port_control = false;
1607 if (ieee80211_has_a4(hdr->frame_control) &&
1608 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1609 return -1;
1611 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1612 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1614 if (!sdata->u.mgd.use_4addr)
1615 return -1;
1616 else
1617 check_port_control = true;
1620 if (is_multicast_ether_addr(hdr->addr1) &&
1621 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1622 return -1;
1624 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1625 if (ret < 0)
1626 return ret;
1628 ehdr = (struct ethhdr *) rx->skb->data;
1629 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1630 *port_control = true;
1631 else if (check_port_control)
1632 return -1;
1634 return 0;
1638 * requires that rx->skb is a frame with ethernet header
1640 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1642 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1643 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1644 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1647 * Allow EAPOL frames to us/the PAE group address regardless
1648 * of whether the frame was encrypted or not.
1650 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1651 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1652 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1653 return true;
1655 if (ieee80211_802_1x_port_control(rx) ||
1656 ieee80211_drop_unencrypted(rx, fc))
1657 return false;
1659 return true;
1663 * requires that rx->skb is a frame with ethernet header
1665 static void
1666 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1668 struct ieee80211_sub_if_data *sdata = rx->sdata;
1669 struct net_device *dev = sdata->dev;
1670 struct sk_buff *skb, *xmit_skb;
1671 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1672 struct sta_info *dsta;
1673 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1675 skb = rx->skb;
1676 xmit_skb = NULL;
1678 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1679 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1680 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1681 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1682 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1683 if (is_multicast_ether_addr(ehdr->h_dest)) {
1685 * send multicast frames both to higher layers in
1686 * local net stack and back to the wireless medium
1688 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1689 if (!xmit_skb && net_ratelimit())
1690 printk(KERN_DEBUG "%s: failed to clone "
1691 "multicast frame\n", dev->name);
1692 } else {
1693 dsta = sta_info_get(sdata, skb->data);
1694 if (dsta) {
1696 * The destination station is associated to
1697 * this AP (in this VLAN), so send the frame
1698 * directly to it and do not pass it to local
1699 * net stack.
1701 xmit_skb = skb;
1702 skb = NULL;
1707 if (skb) {
1708 int align __maybe_unused;
1710 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1712 * 'align' will only take the values 0 or 2 here
1713 * since all frames are required to be aligned
1714 * to 2-byte boundaries when being passed to
1715 * mac80211. That also explains the __skb_push()
1716 * below.
1718 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1719 if (align) {
1720 if (WARN_ON(skb_headroom(skb) < 3)) {
1721 dev_kfree_skb(skb);
1722 skb = NULL;
1723 } else {
1724 u8 *data = skb->data;
1725 size_t len = skb_headlen(skb);
1726 skb->data -= align;
1727 memmove(skb->data, data, len);
1728 skb_set_tail_pointer(skb, len);
1731 #endif
1733 if (skb) {
1734 /* deliver to local stack */
1735 skb->protocol = eth_type_trans(skb, dev);
1736 memset(skb->cb, 0, sizeof(skb->cb));
1737 netif_receive_skb(skb);
1741 if (xmit_skb) {
1742 /* send to wireless media */
1743 xmit_skb->protocol = htons(ETH_P_802_3);
1744 skb_reset_network_header(xmit_skb);
1745 skb_reset_mac_header(xmit_skb);
1746 dev_queue_xmit(xmit_skb);
1750 static ieee80211_rx_result debug_noinline
1751 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1753 struct net_device *dev = rx->sdata->dev;
1754 struct sk_buff *skb = rx->skb;
1755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1756 __le16 fc = hdr->frame_control;
1757 struct sk_buff_head frame_list;
1758 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1760 if (unlikely(!ieee80211_is_data(fc)))
1761 return RX_CONTINUE;
1763 if (unlikely(!ieee80211_is_data_present(fc)))
1764 return RX_DROP_MONITOR;
1766 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1767 return RX_CONTINUE;
1769 if (ieee80211_has_a4(hdr->frame_control) &&
1770 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1771 !rx->sdata->u.vlan.sta)
1772 return RX_DROP_UNUSABLE;
1774 if (is_multicast_ether_addr(hdr->addr1) &&
1775 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1776 rx->sdata->u.vlan.sta) ||
1777 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1778 rx->sdata->u.mgd.use_4addr)))
1779 return RX_DROP_UNUSABLE;
1781 skb->dev = dev;
1782 __skb_queue_head_init(&frame_list);
1784 if (skb_linearize(skb))
1785 return RX_DROP_UNUSABLE;
1787 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1788 rx->sdata->vif.type,
1789 rx->local->hw.extra_tx_headroom, true);
1791 while (!skb_queue_empty(&frame_list)) {
1792 rx->skb = __skb_dequeue(&frame_list);
1794 if (!ieee80211_frame_allowed(rx, fc)) {
1795 dev_kfree_skb(rx->skb);
1796 continue;
1798 dev->stats.rx_packets++;
1799 dev->stats.rx_bytes += rx->skb->len;
1801 ieee80211_deliver_skb(rx);
1804 return RX_QUEUED;
1807 #ifdef CONFIG_MAC80211_MESH
1808 static ieee80211_rx_result
1809 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1811 struct ieee80211_hdr *hdr;
1812 struct ieee80211s_hdr *mesh_hdr;
1813 unsigned int hdrlen;
1814 struct sk_buff *skb = rx->skb, *fwd_skb;
1815 struct ieee80211_local *local = rx->local;
1816 struct ieee80211_sub_if_data *sdata = rx->sdata;
1817 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1819 hdr = (struct ieee80211_hdr *) skb->data;
1820 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1821 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1823 if (!ieee80211_is_data(hdr->frame_control))
1824 return RX_CONTINUE;
1826 if (!mesh_hdr->ttl)
1827 /* illegal frame */
1828 return RX_DROP_MONITOR;
1830 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1831 struct mesh_path *mppath;
1832 char *proxied_addr;
1833 char *mpp_addr;
1835 if (is_multicast_ether_addr(hdr->addr1)) {
1836 mpp_addr = hdr->addr3;
1837 proxied_addr = mesh_hdr->eaddr1;
1838 } else {
1839 mpp_addr = hdr->addr4;
1840 proxied_addr = mesh_hdr->eaddr2;
1843 rcu_read_lock();
1844 mppath = mpp_path_lookup(proxied_addr, sdata);
1845 if (!mppath) {
1846 mpp_path_add(proxied_addr, mpp_addr, sdata);
1847 } else {
1848 spin_lock_bh(&mppath->state_lock);
1849 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1850 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1851 spin_unlock_bh(&mppath->state_lock);
1853 rcu_read_unlock();
1856 /* Frame has reached destination. Don't forward */
1857 if (!is_multicast_ether_addr(hdr->addr1) &&
1858 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1859 return RX_CONTINUE;
1861 mesh_hdr->ttl--;
1863 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1864 if (!mesh_hdr->ttl)
1865 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1866 dropped_frames_ttl);
1867 else {
1868 struct ieee80211_hdr *fwd_hdr;
1869 struct ieee80211_tx_info *info;
1871 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1873 if (!fwd_skb && net_ratelimit())
1874 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1875 sdata->name);
1876 if (!fwd_skb)
1877 goto out;
1879 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1880 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1881 info = IEEE80211_SKB_CB(fwd_skb);
1882 memset(info, 0, sizeof(*info));
1883 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1884 info->control.vif = &rx->sdata->vif;
1885 skb_set_queue_mapping(skb,
1886 ieee80211_select_queue(rx->sdata, fwd_skb));
1887 ieee80211_set_qos_hdr(local, skb);
1888 if (is_multicast_ether_addr(fwd_hdr->addr1))
1889 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1890 fwded_mcast);
1891 else {
1892 int err;
1894 * Save TA to addr1 to send TA a path error if a
1895 * suitable next hop is not found
1897 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1898 ETH_ALEN);
1899 err = mesh_nexthop_lookup(fwd_skb, sdata);
1900 /* Failed to immediately resolve next hop:
1901 * fwded frame was dropped or will be added
1902 * later to the pending skb queue. */
1903 if (err)
1904 return RX_DROP_MONITOR;
1906 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1907 fwded_unicast);
1909 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1910 fwded_frames);
1911 ieee80211_add_pending_skb(local, fwd_skb);
1915 out:
1916 if (is_multicast_ether_addr(hdr->addr1) ||
1917 sdata->dev->flags & IFF_PROMISC)
1918 return RX_CONTINUE;
1919 else
1920 return RX_DROP_MONITOR;
1922 #endif
1924 static ieee80211_rx_result debug_noinline
1925 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1927 struct ieee80211_sub_if_data *sdata = rx->sdata;
1928 struct ieee80211_local *local = rx->local;
1929 struct net_device *dev = sdata->dev;
1930 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1931 __le16 fc = hdr->frame_control;
1932 bool port_control;
1933 int err;
1935 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1936 return RX_CONTINUE;
1938 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1939 return RX_DROP_MONITOR;
1942 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1943 * that a 4-addr station can be detected and moved into a separate VLAN
1945 if (ieee80211_has_a4(hdr->frame_control) &&
1946 sdata->vif.type == NL80211_IFTYPE_AP)
1947 return RX_DROP_MONITOR;
1949 err = __ieee80211_data_to_8023(rx, &port_control);
1950 if (unlikely(err))
1951 return RX_DROP_UNUSABLE;
1953 if (!ieee80211_frame_allowed(rx, fc))
1954 return RX_DROP_MONITOR;
1956 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1957 unlikely(port_control) && sdata->bss) {
1958 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1959 u.ap);
1960 dev = sdata->dev;
1961 rx->sdata = sdata;
1964 rx->skb->dev = dev;
1966 dev->stats.rx_packets++;
1967 dev->stats.rx_bytes += rx->skb->len;
1969 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1970 !is_multicast_ether_addr(
1971 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1972 (!local->scanning &&
1973 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1974 mod_timer(&local->dynamic_ps_timer, jiffies +
1975 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1978 ieee80211_deliver_skb(rx);
1980 return RX_QUEUED;
1983 static ieee80211_rx_result debug_noinline
1984 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1986 struct ieee80211_local *local = rx->local;
1987 struct ieee80211_hw *hw = &local->hw;
1988 struct sk_buff *skb = rx->skb;
1989 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1990 struct tid_ampdu_rx *tid_agg_rx;
1991 u16 start_seq_num;
1992 u16 tid;
1994 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1995 return RX_CONTINUE;
1997 if (ieee80211_is_back_req(bar->frame_control)) {
1998 struct {
1999 __le16 control, start_seq_num;
2000 } __packed bar_data;
2002 if (!rx->sta)
2003 return RX_DROP_MONITOR;
2005 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2006 &bar_data, sizeof(bar_data)))
2007 return RX_DROP_MONITOR;
2009 tid = le16_to_cpu(bar_data.control) >> 12;
2011 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2012 if (!tid_agg_rx)
2013 return RX_DROP_MONITOR;
2015 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2017 /* reset session timer */
2018 if (tid_agg_rx->timeout)
2019 mod_timer(&tid_agg_rx->session_timer,
2020 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2022 spin_lock(&tid_agg_rx->reorder_lock);
2023 /* release stored frames up to start of BAR */
2024 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2025 spin_unlock(&tid_agg_rx->reorder_lock);
2027 kfree_skb(skb);
2028 return RX_QUEUED;
2032 * After this point, we only want management frames,
2033 * so we can drop all remaining control frames to
2034 * cooked monitor interfaces.
2036 return RX_DROP_MONITOR;
2039 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2040 struct ieee80211_mgmt *mgmt,
2041 size_t len)
2043 struct ieee80211_local *local = sdata->local;
2044 struct sk_buff *skb;
2045 struct ieee80211_mgmt *resp;
2047 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2048 /* Not to own unicast address */
2049 return;
2052 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2053 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2054 /* Not from the current AP or not associated yet. */
2055 return;
2058 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2059 /* Too short SA Query request frame */
2060 return;
2063 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2064 if (skb == NULL)
2065 return;
2067 skb_reserve(skb, local->hw.extra_tx_headroom);
2068 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2069 memset(resp, 0, 24);
2070 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2071 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2072 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2073 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2074 IEEE80211_STYPE_ACTION);
2075 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2076 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2077 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2078 memcpy(resp->u.action.u.sa_query.trans_id,
2079 mgmt->u.action.u.sa_query.trans_id,
2080 WLAN_SA_QUERY_TR_ID_LEN);
2082 ieee80211_tx_skb(sdata, skb);
2085 static ieee80211_rx_result debug_noinline
2086 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2088 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2089 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2092 * From here on, look only at management frames.
2093 * Data and control frames are already handled,
2094 * and unknown (reserved) frames are useless.
2096 if (rx->skb->len < 24)
2097 return RX_DROP_MONITOR;
2099 if (!ieee80211_is_mgmt(mgmt->frame_control))
2100 return RX_DROP_MONITOR;
2102 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2103 return RX_DROP_MONITOR;
2105 if (ieee80211_drop_unencrypted_mgmt(rx))
2106 return RX_DROP_UNUSABLE;
2108 return RX_CONTINUE;
2111 static ieee80211_rx_result debug_noinline
2112 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2114 struct ieee80211_local *local = rx->local;
2115 struct ieee80211_sub_if_data *sdata = rx->sdata;
2116 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2117 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2118 int len = rx->skb->len;
2120 if (!ieee80211_is_action(mgmt->frame_control))
2121 return RX_CONTINUE;
2123 /* drop too small frames */
2124 if (len < IEEE80211_MIN_ACTION_SIZE)
2125 return RX_DROP_UNUSABLE;
2127 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2128 return RX_DROP_UNUSABLE;
2130 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2131 return RX_DROP_UNUSABLE;
2133 switch (mgmt->u.action.category) {
2134 case WLAN_CATEGORY_BACK:
2136 * The aggregation code is not prepared to handle
2137 * anything but STA/AP due to the BSSID handling;
2138 * IBSS could work in the code but isn't supported
2139 * by drivers or the standard.
2141 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2142 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2143 sdata->vif.type != NL80211_IFTYPE_AP)
2144 break;
2146 /* verify action_code is present */
2147 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2148 break;
2150 switch (mgmt->u.action.u.addba_req.action_code) {
2151 case WLAN_ACTION_ADDBA_REQ:
2152 if (len < (IEEE80211_MIN_ACTION_SIZE +
2153 sizeof(mgmt->u.action.u.addba_req)))
2154 goto invalid;
2155 break;
2156 case WLAN_ACTION_ADDBA_RESP:
2157 if (len < (IEEE80211_MIN_ACTION_SIZE +
2158 sizeof(mgmt->u.action.u.addba_resp)))
2159 goto invalid;
2160 break;
2161 case WLAN_ACTION_DELBA:
2162 if (len < (IEEE80211_MIN_ACTION_SIZE +
2163 sizeof(mgmt->u.action.u.delba)))
2164 goto invalid;
2165 break;
2166 default:
2167 goto invalid;
2170 goto queue;
2171 case WLAN_CATEGORY_SPECTRUM_MGMT:
2172 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2173 break;
2175 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2176 break;
2178 /* verify action_code is present */
2179 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2180 break;
2182 switch (mgmt->u.action.u.measurement.action_code) {
2183 case WLAN_ACTION_SPCT_MSR_REQ:
2184 if (len < (IEEE80211_MIN_ACTION_SIZE +
2185 sizeof(mgmt->u.action.u.measurement)))
2186 break;
2187 ieee80211_process_measurement_req(sdata, mgmt, len);
2188 goto handled;
2189 case WLAN_ACTION_SPCT_CHL_SWITCH:
2190 if (len < (IEEE80211_MIN_ACTION_SIZE +
2191 sizeof(mgmt->u.action.u.chan_switch)))
2192 break;
2194 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2195 break;
2197 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2198 break;
2200 goto queue;
2202 break;
2203 case WLAN_CATEGORY_SA_QUERY:
2204 if (len < (IEEE80211_MIN_ACTION_SIZE +
2205 sizeof(mgmt->u.action.u.sa_query)))
2206 break;
2208 switch (mgmt->u.action.u.sa_query.action) {
2209 case WLAN_ACTION_SA_QUERY_REQUEST:
2210 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2211 break;
2212 ieee80211_process_sa_query_req(sdata, mgmt, len);
2213 goto handled;
2215 break;
2216 case WLAN_CATEGORY_MESH_ACTION:
2217 if (!ieee80211_vif_is_mesh(&sdata->vif))
2218 break;
2219 goto queue;
2220 case WLAN_CATEGORY_MESH_PATH_SEL:
2221 if (!mesh_path_sel_is_hwmp(sdata))
2222 break;
2223 goto queue;
2226 return RX_CONTINUE;
2228 invalid:
2229 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2230 /* will return in the next handlers */
2231 return RX_CONTINUE;
2233 handled:
2234 if (rx->sta)
2235 rx->sta->rx_packets++;
2236 dev_kfree_skb(rx->skb);
2237 return RX_QUEUED;
2239 queue:
2240 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2241 skb_queue_tail(&sdata->skb_queue, rx->skb);
2242 ieee80211_queue_work(&local->hw, &sdata->work);
2243 if (rx->sta)
2244 rx->sta->rx_packets++;
2245 return RX_QUEUED;
2248 static ieee80211_rx_result debug_noinline
2249 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2253 /* skip known-bad action frames and return them in the next handler */
2254 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2255 return RX_CONTINUE;
2258 * Getting here means the kernel doesn't know how to handle
2259 * it, but maybe userspace does ... include returned frames
2260 * so userspace can register for those to know whether ones
2261 * it transmitted were processed or returned.
2264 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2265 rx->skb->data, rx->skb->len,
2266 GFP_ATOMIC)) {
2267 if (rx->sta)
2268 rx->sta->rx_packets++;
2269 dev_kfree_skb(rx->skb);
2270 return RX_QUEUED;
2274 return RX_CONTINUE;
2277 static ieee80211_rx_result debug_noinline
2278 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2280 struct ieee80211_local *local = rx->local;
2281 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2282 struct sk_buff *nskb;
2283 struct ieee80211_sub_if_data *sdata = rx->sdata;
2284 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2286 if (!ieee80211_is_action(mgmt->frame_control))
2287 return RX_CONTINUE;
2290 * For AP mode, hostapd is responsible for handling any action
2291 * frames that we didn't handle, including returning unknown
2292 * ones. For all other modes we will return them to the sender,
2293 * setting the 0x80 bit in the action category, as required by
2294 * 802.11-2007 7.3.1.11.
2295 * Newer versions of hostapd shall also use the management frame
2296 * registration mechanisms, but older ones still use cooked
2297 * monitor interfaces so push all frames there.
2299 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2300 (sdata->vif.type == NL80211_IFTYPE_AP ||
2301 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2302 return RX_DROP_MONITOR;
2304 /* do not return rejected action frames */
2305 if (mgmt->u.action.category & 0x80)
2306 return RX_DROP_UNUSABLE;
2308 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2309 GFP_ATOMIC);
2310 if (nskb) {
2311 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2313 nmgmt->u.action.category |= 0x80;
2314 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2315 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2317 memset(nskb->cb, 0, sizeof(nskb->cb));
2319 ieee80211_tx_skb(rx->sdata, nskb);
2321 dev_kfree_skb(rx->skb);
2322 return RX_QUEUED;
2325 static ieee80211_rx_result debug_noinline
2326 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2328 struct ieee80211_sub_if_data *sdata = rx->sdata;
2329 ieee80211_rx_result rxs;
2330 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2331 __le16 stype;
2333 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2334 if (rxs != RX_CONTINUE)
2335 return rxs;
2337 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2339 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2340 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2341 sdata->vif.type != NL80211_IFTYPE_STATION)
2342 return RX_DROP_MONITOR;
2344 switch (stype) {
2345 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2346 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2347 /* process for all: mesh, mlme, ibss */
2348 break;
2349 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2350 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2351 if (is_multicast_ether_addr(mgmt->da) &&
2352 !is_broadcast_ether_addr(mgmt->da))
2353 return RX_DROP_MONITOR;
2355 /* process only for station */
2356 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2357 return RX_DROP_MONITOR;
2358 break;
2359 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2360 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2361 /* process only for ibss */
2362 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2363 return RX_DROP_MONITOR;
2364 break;
2365 default:
2366 return RX_DROP_MONITOR;
2369 /* queue up frame and kick off work to process it */
2370 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2371 skb_queue_tail(&sdata->skb_queue, rx->skb);
2372 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2373 if (rx->sta)
2374 rx->sta->rx_packets++;
2376 return RX_QUEUED;
2379 /* TODO: use IEEE80211_RX_FRAGMENTED */
2380 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2381 struct ieee80211_rate *rate)
2383 struct ieee80211_sub_if_data *sdata;
2384 struct ieee80211_local *local = rx->local;
2385 struct ieee80211_rtap_hdr {
2386 struct ieee80211_radiotap_header hdr;
2387 u8 flags;
2388 u8 rate_or_pad;
2389 __le16 chan_freq;
2390 __le16 chan_flags;
2391 } __packed *rthdr;
2392 struct sk_buff *skb = rx->skb, *skb2;
2393 struct net_device *prev_dev = NULL;
2394 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2397 * If cooked monitor has been processed already, then
2398 * don't do it again. If not, set the flag.
2400 if (rx->flags & IEEE80211_RX_CMNTR)
2401 goto out_free_skb;
2402 rx->flags |= IEEE80211_RX_CMNTR;
2404 if (skb_headroom(skb) < sizeof(*rthdr) &&
2405 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2406 goto out_free_skb;
2408 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2409 memset(rthdr, 0, sizeof(*rthdr));
2410 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2411 rthdr->hdr.it_present =
2412 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2413 (1 << IEEE80211_RADIOTAP_CHANNEL));
2415 if (rate) {
2416 rthdr->rate_or_pad = rate->bitrate / 5;
2417 rthdr->hdr.it_present |=
2418 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2420 rthdr->chan_freq = cpu_to_le16(status->freq);
2422 if (status->band == IEEE80211_BAND_5GHZ)
2423 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2424 IEEE80211_CHAN_5GHZ);
2425 else
2426 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2427 IEEE80211_CHAN_2GHZ);
2429 skb_set_mac_header(skb, 0);
2430 skb->ip_summed = CHECKSUM_UNNECESSARY;
2431 skb->pkt_type = PACKET_OTHERHOST;
2432 skb->protocol = htons(ETH_P_802_2);
2434 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2435 if (!ieee80211_sdata_running(sdata))
2436 continue;
2438 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2439 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2440 continue;
2442 if (prev_dev) {
2443 skb2 = skb_clone(skb, GFP_ATOMIC);
2444 if (skb2) {
2445 skb2->dev = prev_dev;
2446 netif_receive_skb(skb2);
2450 prev_dev = sdata->dev;
2451 sdata->dev->stats.rx_packets++;
2452 sdata->dev->stats.rx_bytes += skb->len;
2455 if (prev_dev) {
2456 skb->dev = prev_dev;
2457 netif_receive_skb(skb);
2458 return;
2461 out_free_skb:
2462 dev_kfree_skb(skb);
2465 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2466 ieee80211_rx_result res)
2468 switch (res) {
2469 case RX_DROP_MONITOR:
2470 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2471 if (rx->sta)
2472 rx->sta->rx_dropped++;
2473 /* fall through */
2474 case RX_CONTINUE: {
2475 struct ieee80211_rate *rate = NULL;
2476 struct ieee80211_supported_band *sband;
2477 struct ieee80211_rx_status *status;
2479 status = IEEE80211_SKB_RXCB((rx->skb));
2481 sband = rx->local->hw.wiphy->bands[status->band];
2482 if (!(status->flag & RX_FLAG_HT))
2483 rate = &sband->bitrates[status->rate_idx];
2485 ieee80211_rx_cooked_monitor(rx, rate);
2486 break;
2488 case RX_DROP_UNUSABLE:
2489 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2490 if (rx->sta)
2491 rx->sta->rx_dropped++;
2492 dev_kfree_skb(rx->skb);
2493 break;
2494 case RX_QUEUED:
2495 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2496 break;
2500 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2502 ieee80211_rx_result res = RX_DROP_MONITOR;
2503 struct sk_buff *skb;
2505 #define CALL_RXH(rxh) \
2506 do { \
2507 res = rxh(rx); \
2508 if (res != RX_CONTINUE) \
2509 goto rxh_next; \
2510 } while (0);
2512 spin_lock(&rx->local->rx_skb_queue.lock);
2513 if (rx->local->running_rx_handler)
2514 goto unlock;
2516 rx->local->running_rx_handler = true;
2518 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2519 spin_unlock(&rx->local->rx_skb_queue.lock);
2522 * all the other fields are valid across frames
2523 * that belong to an aMPDU since they are on the
2524 * same TID from the same station
2526 rx->skb = skb;
2528 CALL_RXH(ieee80211_rx_h_decrypt)
2529 CALL_RXH(ieee80211_rx_h_check_more_data)
2530 CALL_RXH(ieee80211_rx_h_sta_process)
2531 CALL_RXH(ieee80211_rx_h_defragment)
2532 CALL_RXH(ieee80211_rx_h_ps_poll)
2533 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2534 /* must be after MMIC verify so header is counted in MPDU mic */
2535 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2536 CALL_RXH(ieee80211_rx_h_amsdu)
2537 #ifdef CONFIG_MAC80211_MESH
2538 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2539 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2540 #endif
2541 CALL_RXH(ieee80211_rx_h_data)
2542 CALL_RXH(ieee80211_rx_h_ctrl);
2543 CALL_RXH(ieee80211_rx_h_mgmt_check)
2544 CALL_RXH(ieee80211_rx_h_action)
2545 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2546 CALL_RXH(ieee80211_rx_h_action_return)
2547 CALL_RXH(ieee80211_rx_h_mgmt)
2549 rxh_next:
2550 ieee80211_rx_handlers_result(rx, res);
2551 spin_lock(&rx->local->rx_skb_queue.lock);
2552 #undef CALL_RXH
2555 rx->local->running_rx_handler = false;
2557 unlock:
2558 spin_unlock(&rx->local->rx_skb_queue.lock);
2561 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2563 ieee80211_rx_result res = RX_DROP_MONITOR;
2565 #define CALL_RXH(rxh) \
2566 do { \
2567 res = rxh(rx); \
2568 if (res != RX_CONTINUE) \
2569 goto rxh_next; \
2570 } while (0);
2572 CALL_RXH(ieee80211_rx_h_passive_scan)
2573 CALL_RXH(ieee80211_rx_h_check)
2575 ieee80211_rx_reorder_ampdu(rx);
2577 ieee80211_rx_handlers(rx);
2578 return;
2580 rxh_next:
2581 ieee80211_rx_handlers_result(rx, res);
2583 #undef CALL_RXH
2587 * This function makes calls into the RX path, therefore
2588 * it has to be invoked under RCU read lock.
2590 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2592 struct ieee80211_rx_data rx = {
2593 .sta = sta,
2594 .sdata = sta->sdata,
2595 .local = sta->local,
2596 .queue = tid,
2597 .flags = 0,
2599 struct tid_ampdu_rx *tid_agg_rx;
2601 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2602 if (!tid_agg_rx)
2603 return;
2605 spin_lock(&tid_agg_rx->reorder_lock);
2606 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2607 spin_unlock(&tid_agg_rx->reorder_lock);
2609 ieee80211_rx_handlers(&rx);
2612 /* main receive path */
2614 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2615 struct ieee80211_hdr *hdr)
2617 struct ieee80211_sub_if_data *sdata = rx->sdata;
2618 struct sk_buff *skb = rx->skb;
2619 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2620 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2621 int multicast = is_multicast_ether_addr(hdr->addr1);
2623 switch (sdata->vif.type) {
2624 case NL80211_IFTYPE_STATION:
2625 if (!bssid && !sdata->u.mgd.use_4addr)
2626 return 0;
2627 if (!multicast &&
2628 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2629 if (!(sdata->dev->flags & IFF_PROMISC) ||
2630 sdata->u.mgd.use_4addr)
2631 return 0;
2632 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2634 break;
2635 case NL80211_IFTYPE_ADHOC:
2636 if (!bssid)
2637 return 0;
2638 if (ieee80211_is_beacon(hdr->frame_control)) {
2639 return 1;
2641 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2642 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2643 return 0;
2644 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2645 } else if (!multicast &&
2646 compare_ether_addr(sdata->vif.addr,
2647 hdr->addr1) != 0) {
2648 if (!(sdata->dev->flags & IFF_PROMISC))
2649 return 0;
2650 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2651 } else if (!rx->sta) {
2652 int rate_idx;
2653 if (status->flag & RX_FLAG_HT)
2654 rate_idx = 0; /* TODO: HT rates */
2655 else
2656 rate_idx = status->rate_idx;
2657 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2658 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2660 break;
2661 case NL80211_IFTYPE_MESH_POINT:
2662 if (!multicast &&
2663 compare_ether_addr(sdata->vif.addr,
2664 hdr->addr1) != 0) {
2665 if (!(sdata->dev->flags & IFF_PROMISC))
2666 return 0;
2668 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2670 break;
2671 case NL80211_IFTYPE_AP_VLAN:
2672 case NL80211_IFTYPE_AP:
2673 if (!bssid) {
2674 if (compare_ether_addr(sdata->vif.addr,
2675 hdr->addr1))
2676 return 0;
2677 } else if (!ieee80211_bssid_match(bssid,
2678 sdata->vif.addr)) {
2679 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2680 !ieee80211_is_beacon(hdr->frame_control))
2681 return 0;
2682 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2684 break;
2685 case NL80211_IFTYPE_WDS:
2686 if (bssid || !ieee80211_is_data(hdr->frame_control))
2687 return 0;
2688 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2689 return 0;
2690 break;
2691 default:
2692 /* should never get here */
2693 WARN_ON(1);
2694 break;
2697 return 1;
2701 * This function returns whether or not the SKB
2702 * was destined for RX processing or not, which,
2703 * if consume is true, is equivalent to whether
2704 * or not the skb was consumed.
2706 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2707 struct sk_buff *skb, bool consume)
2709 struct ieee80211_local *local = rx->local;
2710 struct ieee80211_sub_if_data *sdata = rx->sdata;
2711 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2712 struct ieee80211_hdr *hdr = (void *)skb->data;
2713 int prepares;
2715 rx->skb = skb;
2716 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2717 prepares = prepare_for_handlers(rx, hdr);
2719 if (!prepares)
2720 return false;
2722 if (!consume) {
2723 skb = skb_copy(skb, GFP_ATOMIC);
2724 if (!skb) {
2725 if (net_ratelimit())
2726 wiphy_debug(local->hw.wiphy,
2727 "failed to copy skb for %s\n",
2728 sdata->name);
2729 return true;
2732 rx->skb = skb;
2735 ieee80211_invoke_rx_handlers(rx);
2736 return true;
2740 * This is the actual Rx frames handler. as it blongs to Rx path it must
2741 * be called with rcu_read_lock protection.
2743 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2744 struct sk_buff *skb)
2746 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2747 struct ieee80211_local *local = hw_to_local(hw);
2748 struct ieee80211_sub_if_data *sdata;
2749 struct ieee80211_hdr *hdr;
2750 __le16 fc;
2751 struct ieee80211_rx_data rx;
2752 struct ieee80211_sub_if_data *prev;
2753 struct sta_info *sta, *tmp, *prev_sta;
2754 int err = 0;
2756 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2757 memset(&rx, 0, sizeof(rx));
2758 rx.skb = skb;
2759 rx.local = local;
2761 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2762 local->dot11ReceivedFragmentCount++;
2764 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2765 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2766 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2768 if (ieee80211_is_mgmt(fc))
2769 err = skb_linearize(skb);
2770 else
2771 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2773 if (err) {
2774 dev_kfree_skb(skb);
2775 return;
2778 hdr = (struct ieee80211_hdr *)skb->data;
2779 ieee80211_parse_qos(&rx);
2780 ieee80211_verify_alignment(&rx);
2782 if (ieee80211_is_data(fc)) {
2783 prev_sta = NULL;
2785 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2786 if (!prev_sta) {
2787 prev_sta = sta;
2788 continue;
2791 rx.sta = prev_sta;
2792 rx.sdata = prev_sta->sdata;
2793 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2795 prev_sta = sta;
2798 if (prev_sta) {
2799 rx.sta = prev_sta;
2800 rx.sdata = prev_sta->sdata;
2802 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2803 return;
2804 goto out;
2808 prev = NULL;
2810 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2811 if (!ieee80211_sdata_running(sdata))
2812 continue;
2814 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2815 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2816 continue;
2819 * frame is destined for this interface, but if it's
2820 * not also for the previous one we handle that after
2821 * the loop to avoid copying the SKB once too much
2824 if (!prev) {
2825 prev = sdata;
2826 continue;
2829 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2830 rx.sdata = prev;
2831 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2833 prev = sdata;
2836 if (prev) {
2837 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2838 rx.sdata = prev;
2840 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2841 return;
2844 out:
2845 dev_kfree_skb(skb);
2849 * This is the receive path handler. It is called by a low level driver when an
2850 * 802.11 MPDU is received from the hardware.
2852 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2854 struct ieee80211_local *local = hw_to_local(hw);
2855 struct ieee80211_rate *rate = NULL;
2856 struct ieee80211_supported_band *sband;
2857 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2859 WARN_ON_ONCE(softirq_count() == 0);
2861 if (WARN_ON(status->band < 0 ||
2862 status->band >= IEEE80211_NUM_BANDS))
2863 goto drop;
2865 sband = local->hw.wiphy->bands[status->band];
2866 if (WARN_ON(!sband))
2867 goto drop;
2870 * If we're suspending, it is possible although not too likely
2871 * that we'd be receiving frames after having already partially
2872 * quiesced the stack. We can't process such frames then since
2873 * that might, for example, cause stations to be added or other
2874 * driver callbacks be invoked.
2876 if (unlikely(local->quiescing || local->suspended))
2877 goto drop;
2880 * The same happens when we're not even started,
2881 * but that's worth a warning.
2883 if (WARN_ON(!local->started))
2884 goto drop;
2886 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2888 * Validate the rate, unless a PLCP error means that
2889 * we probably can't have a valid rate here anyway.
2892 if (status->flag & RX_FLAG_HT) {
2894 * rate_idx is MCS index, which can be [0-76]
2895 * as documented on:
2897 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2899 * Anything else would be some sort of driver or
2900 * hardware error. The driver should catch hardware
2901 * errors.
2903 if (WARN((status->rate_idx < 0 ||
2904 status->rate_idx > 76),
2905 "Rate marked as an HT rate but passed "
2906 "status->rate_idx is not "
2907 "an MCS index [0-76]: %d (0x%02x)\n",
2908 status->rate_idx,
2909 status->rate_idx))
2910 goto drop;
2911 } else {
2912 if (WARN_ON(status->rate_idx < 0 ||
2913 status->rate_idx >= sband->n_bitrates))
2914 goto drop;
2915 rate = &sband->bitrates[status->rate_idx];
2919 status->rx_flags = 0;
2922 * key references and virtual interfaces are protected using RCU
2923 * and this requires that we are in a read-side RCU section during
2924 * receive processing
2926 rcu_read_lock();
2929 * Frames with failed FCS/PLCP checksum are not returned,
2930 * all other frames are returned without radiotap header
2931 * if it was previously present.
2932 * Also, frames with less than 16 bytes are dropped.
2934 skb = ieee80211_rx_monitor(local, skb, rate);
2935 if (!skb) {
2936 rcu_read_unlock();
2937 return;
2940 ieee80211_tpt_led_trig_rx(local,
2941 ((struct ieee80211_hdr *)skb->data)->frame_control,
2942 skb->len);
2943 __ieee80211_rx_handle_packet(hw, skb);
2945 rcu_read_unlock();
2947 return;
2948 drop:
2949 kfree_skb(skb);
2951 EXPORT_SYMBOL(ieee80211_rx);
2953 /* This is a version of the rx handler that can be called from hard irq
2954 * context. Post the skb on the queue and schedule the tasklet */
2955 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2957 struct ieee80211_local *local = hw_to_local(hw);
2959 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2961 skb->pkt_type = IEEE80211_RX_MSG;
2962 skb_queue_tail(&local->skb_queue, skb);
2963 tasklet_schedule(&local->tasklet);
2965 EXPORT_SYMBOL(ieee80211_rx_irqsafe);