ALSA: virtuoso: Xonar DS: fix polarity of front output
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blob43fee1cf50d01efe3e58a578906b16b6ae92ba07
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
41 * SLAB caches for signal bits.
44 static struct kmem_cache *sigqueue_cachep;
46 int print_fatal_signals __read_mostly;
48 static void __user *sig_handler(struct task_struct *t, int sig)
50 return t->sighand->action[sig - 1].sa.sa_handler;
53 static int sig_handler_ignored(void __user *handler, int sig)
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
63 void __user *handler;
65 handler = sig_handler(t, sig);
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
71 return sig_handler_ignored(handler, sig);
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
88 * Tracers may want to know about even ignored signals.
90 return !tracehook_consider_ignored_signal(t, sig);
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 unsigned long ready;
100 long i;
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
120 return ready != 0;
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 static int recalc_sigpending_tsk(struct task_struct *t)
127 if ((t->group_stop & GROUP_STOP_PENDING) ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
138 return 0;
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
145 void recalc_sigpending_and_wake(struct task_struct *t)
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
151 void recalc_sigpending(void)
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
160 /* Given the mask, find the first available signal that should be serviced. */
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE))
166 int next_signal(struct sigpending *pending, sigset_t *mask)
168 unsigned long i, *s, *m, x;
169 int sig = 0;
171 s = pending->signal.sig;
172 m = mask->sig;
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
195 break;
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
204 case 1:
205 /* Nothing to do */
206 break;
209 return sig;
212 static inline void print_dropped_signal(int sig)
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 if (!print_fatal_signals)
217 return;
219 if (!__ratelimit(&ratelimit_state))
220 return;
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
227 * task_clear_group_stop_trapping - clear group stop trapping bit
228 * @task: target task
230 * If GROUP_STOP_TRAPPING is set, a ptracer is waiting for us. Clear it
231 * and wake up the ptracer. Note that we don't need any further locking.
232 * @task->siglock guarantees that @task->parent points to the ptracer.
234 * CONTEXT:
235 * Must be called with @task->sighand->siglock held.
237 static void task_clear_group_stop_trapping(struct task_struct *task)
239 if (unlikely(task->group_stop & GROUP_STOP_TRAPPING)) {
240 task->group_stop &= ~GROUP_STOP_TRAPPING;
241 __wake_up_sync_key(&task->parent->signal->wait_chldexit,
242 TASK_UNINTERRUPTIBLE, 1, task);
247 * task_clear_group_stop_pending - clear pending group stop
248 * @task: target task
250 * Clear group stop states for @task.
252 * CONTEXT:
253 * Must be called with @task->sighand->siglock held.
255 void task_clear_group_stop_pending(struct task_struct *task)
257 task->group_stop &= ~(GROUP_STOP_PENDING | GROUP_STOP_CONSUME |
258 GROUP_STOP_DEQUEUED);
262 * task_participate_group_stop - participate in a group stop
263 * @task: task participating in a group stop
265 * @task has GROUP_STOP_PENDING set and is participating in a group stop.
266 * Group stop states are cleared and the group stop count is consumed if
267 * %GROUP_STOP_CONSUME was set. If the consumption completes the group
268 * stop, the appropriate %SIGNAL_* flags are set.
270 * CONTEXT:
271 * Must be called with @task->sighand->siglock held.
273 * RETURNS:
274 * %true if group stop completion should be notified to the parent, %false
275 * otherwise.
277 static bool task_participate_group_stop(struct task_struct *task)
279 struct signal_struct *sig = task->signal;
280 bool consume = task->group_stop & GROUP_STOP_CONSUME;
282 WARN_ON_ONCE(!(task->group_stop & GROUP_STOP_PENDING));
284 task_clear_group_stop_pending(task);
286 if (!consume)
287 return false;
289 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
290 sig->group_stop_count--;
293 * Tell the caller to notify completion iff we are entering into a
294 * fresh group stop. Read comment in do_signal_stop() for details.
296 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
297 sig->flags = SIGNAL_STOP_STOPPED;
298 return true;
300 return false;
304 * allocate a new signal queue record
305 * - this may be called without locks if and only if t == current, otherwise an
306 * appropriate lock must be held to stop the target task from exiting
308 static struct sigqueue *
309 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
311 struct sigqueue *q = NULL;
312 struct user_struct *user;
315 * Protect access to @t credentials. This can go away when all
316 * callers hold rcu read lock.
318 rcu_read_lock();
319 user = get_uid(__task_cred(t)->user);
320 atomic_inc(&user->sigpending);
321 rcu_read_unlock();
323 if (override_rlimit ||
324 atomic_read(&user->sigpending) <=
325 task_rlimit(t, RLIMIT_SIGPENDING)) {
326 q = kmem_cache_alloc(sigqueue_cachep, flags);
327 } else {
328 print_dropped_signal(sig);
331 if (unlikely(q == NULL)) {
332 atomic_dec(&user->sigpending);
333 free_uid(user);
334 } else {
335 INIT_LIST_HEAD(&q->list);
336 q->flags = 0;
337 q->user = user;
340 return q;
343 static void __sigqueue_free(struct sigqueue *q)
345 if (q->flags & SIGQUEUE_PREALLOC)
346 return;
347 atomic_dec(&q->user->sigpending);
348 free_uid(q->user);
349 kmem_cache_free(sigqueue_cachep, q);
352 void flush_sigqueue(struct sigpending *queue)
354 struct sigqueue *q;
356 sigemptyset(&queue->signal);
357 while (!list_empty(&queue->list)) {
358 q = list_entry(queue->list.next, struct sigqueue , list);
359 list_del_init(&q->list);
360 __sigqueue_free(q);
365 * Flush all pending signals for a task.
367 void __flush_signals(struct task_struct *t)
369 clear_tsk_thread_flag(t, TIF_SIGPENDING);
370 flush_sigqueue(&t->pending);
371 flush_sigqueue(&t->signal->shared_pending);
374 void flush_signals(struct task_struct *t)
376 unsigned long flags;
378 spin_lock_irqsave(&t->sighand->siglock, flags);
379 __flush_signals(t);
380 spin_unlock_irqrestore(&t->sighand->siglock, flags);
383 static void __flush_itimer_signals(struct sigpending *pending)
385 sigset_t signal, retain;
386 struct sigqueue *q, *n;
388 signal = pending->signal;
389 sigemptyset(&retain);
391 list_for_each_entry_safe(q, n, &pending->list, list) {
392 int sig = q->info.si_signo;
394 if (likely(q->info.si_code != SI_TIMER)) {
395 sigaddset(&retain, sig);
396 } else {
397 sigdelset(&signal, sig);
398 list_del_init(&q->list);
399 __sigqueue_free(q);
403 sigorsets(&pending->signal, &signal, &retain);
406 void flush_itimer_signals(void)
408 struct task_struct *tsk = current;
409 unsigned long flags;
411 spin_lock_irqsave(&tsk->sighand->siglock, flags);
412 __flush_itimer_signals(&tsk->pending);
413 __flush_itimer_signals(&tsk->signal->shared_pending);
414 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
417 void ignore_signals(struct task_struct *t)
419 int i;
421 for (i = 0; i < _NSIG; ++i)
422 t->sighand->action[i].sa.sa_handler = SIG_IGN;
424 flush_signals(t);
428 * Flush all handlers for a task.
431 void
432 flush_signal_handlers(struct task_struct *t, int force_default)
434 int i;
435 struct k_sigaction *ka = &t->sighand->action[0];
436 for (i = _NSIG ; i != 0 ; i--) {
437 if (force_default || ka->sa.sa_handler != SIG_IGN)
438 ka->sa.sa_handler = SIG_DFL;
439 ka->sa.sa_flags = 0;
440 sigemptyset(&ka->sa.sa_mask);
441 ka++;
445 int unhandled_signal(struct task_struct *tsk, int sig)
447 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
448 if (is_global_init(tsk))
449 return 1;
450 if (handler != SIG_IGN && handler != SIG_DFL)
451 return 0;
452 return !tracehook_consider_fatal_signal(tsk, sig);
456 * Notify the system that a driver wants to block all signals for this
457 * process, and wants to be notified if any signals at all were to be
458 * sent/acted upon. If the notifier routine returns non-zero, then the
459 * signal will be acted upon after all. If the notifier routine returns 0,
460 * then then signal will be blocked. Only one block per process is
461 * allowed. priv is a pointer to private data that the notifier routine
462 * can use to determine if the signal should be blocked or not.
464 void
465 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
467 unsigned long flags;
469 spin_lock_irqsave(&current->sighand->siglock, flags);
470 current->notifier_mask = mask;
471 current->notifier_data = priv;
472 current->notifier = notifier;
473 spin_unlock_irqrestore(&current->sighand->siglock, flags);
476 /* Notify the system that blocking has ended. */
478 void
479 unblock_all_signals(void)
481 unsigned long flags;
483 spin_lock_irqsave(&current->sighand->siglock, flags);
484 current->notifier = NULL;
485 current->notifier_data = NULL;
486 recalc_sigpending();
487 spin_unlock_irqrestore(&current->sighand->siglock, flags);
490 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
492 struct sigqueue *q, *first = NULL;
495 * Collect the siginfo appropriate to this signal. Check if
496 * there is another siginfo for the same signal.
498 list_for_each_entry(q, &list->list, list) {
499 if (q->info.si_signo == sig) {
500 if (first)
501 goto still_pending;
502 first = q;
506 sigdelset(&list->signal, sig);
508 if (first) {
509 still_pending:
510 list_del_init(&first->list);
511 copy_siginfo(info, &first->info);
512 __sigqueue_free(first);
513 } else {
515 * Ok, it wasn't in the queue. This must be
516 * a fast-pathed signal or we must have been
517 * out of queue space. So zero out the info.
519 info->si_signo = sig;
520 info->si_errno = 0;
521 info->si_code = SI_USER;
522 info->si_pid = 0;
523 info->si_uid = 0;
527 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
528 siginfo_t *info)
530 int sig = next_signal(pending, mask);
532 if (sig) {
533 if (current->notifier) {
534 if (sigismember(current->notifier_mask, sig)) {
535 if (!(current->notifier)(current->notifier_data)) {
536 clear_thread_flag(TIF_SIGPENDING);
537 return 0;
542 collect_signal(sig, pending, info);
545 return sig;
549 * Dequeue a signal and return the element to the caller, which is
550 * expected to free it.
552 * All callers have to hold the siglock.
554 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
556 int signr;
558 /* We only dequeue private signals from ourselves, we don't let
559 * signalfd steal them
561 signr = __dequeue_signal(&tsk->pending, mask, info);
562 if (!signr) {
563 signr = __dequeue_signal(&tsk->signal->shared_pending,
564 mask, info);
566 * itimer signal ?
568 * itimers are process shared and we restart periodic
569 * itimers in the signal delivery path to prevent DoS
570 * attacks in the high resolution timer case. This is
571 * compliant with the old way of self-restarting
572 * itimers, as the SIGALRM is a legacy signal and only
573 * queued once. Changing the restart behaviour to
574 * restart the timer in the signal dequeue path is
575 * reducing the timer noise on heavy loaded !highres
576 * systems too.
578 if (unlikely(signr == SIGALRM)) {
579 struct hrtimer *tmr = &tsk->signal->real_timer;
581 if (!hrtimer_is_queued(tmr) &&
582 tsk->signal->it_real_incr.tv64 != 0) {
583 hrtimer_forward(tmr, tmr->base->get_time(),
584 tsk->signal->it_real_incr);
585 hrtimer_restart(tmr);
590 recalc_sigpending();
591 if (!signr)
592 return 0;
594 if (unlikely(sig_kernel_stop(signr))) {
596 * Set a marker that we have dequeued a stop signal. Our
597 * caller might release the siglock and then the pending
598 * stop signal it is about to process is no longer in the
599 * pending bitmasks, but must still be cleared by a SIGCONT
600 * (and overruled by a SIGKILL). So those cases clear this
601 * shared flag after we've set it. Note that this flag may
602 * remain set after the signal we return is ignored or
603 * handled. That doesn't matter because its only purpose
604 * is to alert stop-signal processing code when another
605 * processor has come along and cleared the flag.
607 current->group_stop |= GROUP_STOP_DEQUEUED;
609 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
611 * Release the siglock to ensure proper locking order
612 * of timer locks outside of siglocks. Note, we leave
613 * irqs disabled here, since the posix-timers code is
614 * about to disable them again anyway.
616 spin_unlock(&tsk->sighand->siglock);
617 do_schedule_next_timer(info);
618 spin_lock(&tsk->sighand->siglock);
620 return signr;
624 * Tell a process that it has a new active signal..
626 * NOTE! we rely on the previous spin_lock to
627 * lock interrupts for us! We can only be called with
628 * "siglock" held, and the local interrupt must
629 * have been disabled when that got acquired!
631 * No need to set need_resched since signal event passing
632 * goes through ->blocked
634 void signal_wake_up(struct task_struct *t, int resume)
636 unsigned int mask;
638 set_tsk_thread_flag(t, TIF_SIGPENDING);
641 * For SIGKILL, we want to wake it up in the stopped/traced/killable
642 * case. We don't check t->state here because there is a race with it
643 * executing another processor and just now entering stopped state.
644 * By using wake_up_state, we ensure the process will wake up and
645 * handle its death signal.
647 mask = TASK_INTERRUPTIBLE;
648 if (resume)
649 mask |= TASK_WAKEKILL;
650 if (!wake_up_state(t, mask))
651 kick_process(t);
655 * Remove signals in mask from the pending set and queue.
656 * Returns 1 if any signals were found.
658 * All callers must be holding the siglock.
660 * This version takes a sigset mask and looks at all signals,
661 * not just those in the first mask word.
663 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
665 struct sigqueue *q, *n;
666 sigset_t m;
668 sigandsets(&m, mask, &s->signal);
669 if (sigisemptyset(&m))
670 return 0;
672 sigandnsets(&s->signal, &s->signal, mask);
673 list_for_each_entry_safe(q, n, &s->list, list) {
674 if (sigismember(mask, q->info.si_signo)) {
675 list_del_init(&q->list);
676 __sigqueue_free(q);
679 return 1;
682 * Remove signals in mask from the pending set and queue.
683 * Returns 1 if any signals were found.
685 * All callers must be holding the siglock.
687 static int rm_from_queue(unsigned long mask, struct sigpending *s)
689 struct sigqueue *q, *n;
691 if (!sigtestsetmask(&s->signal, mask))
692 return 0;
694 sigdelsetmask(&s->signal, mask);
695 list_for_each_entry_safe(q, n, &s->list, list) {
696 if (q->info.si_signo < SIGRTMIN &&
697 (mask & sigmask(q->info.si_signo))) {
698 list_del_init(&q->list);
699 __sigqueue_free(q);
702 return 1;
705 static inline int is_si_special(const struct siginfo *info)
707 return info <= SEND_SIG_FORCED;
710 static inline bool si_fromuser(const struct siginfo *info)
712 return info == SEND_SIG_NOINFO ||
713 (!is_si_special(info) && SI_FROMUSER(info));
717 * called with RCU read lock from check_kill_permission()
719 static int kill_ok_by_cred(struct task_struct *t)
721 const struct cred *cred = current_cred();
722 const struct cred *tcred = __task_cred(t);
724 if (cred->user->user_ns == tcred->user->user_ns &&
725 (cred->euid == tcred->suid ||
726 cred->euid == tcred->uid ||
727 cred->uid == tcred->suid ||
728 cred->uid == tcred->uid))
729 return 1;
731 if (ns_capable(tcred->user->user_ns, CAP_KILL))
732 return 1;
734 return 0;
738 * Bad permissions for sending the signal
739 * - the caller must hold the RCU read lock
741 static int check_kill_permission(int sig, struct siginfo *info,
742 struct task_struct *t)
744 struct pid *sid;
745 int error;
747 if (!valid_signal(sig))
748 return -EINVAL;
750 if (!si_fromuser(info))
751 return 0;
753 error = audit_signal_info(sig, t); /* Let audit system see the signal */
754 if (error)
755 return error;
757 if (!same_thread_group(current, t) &&
758 !kill_ok_by_cred(t)) {
759 switch (sig) {
760 case SIGCONT:
761 sid = task_session(t);
763 * We don't return the error if sid == NULL. The
764 * task was unhashed, the caller must notice this.
766 if (!sid || sid == task_session(current))
767 break;
768 default:
769 return -EPERM;
773 return security_task_kill(t, info, sig, 0);
777 * Handle magic process-wide effects of stop/continue signals. Unlike
778 * the signal actions, these happen immediately at signal-generation
779 * time regardless of blocking, ignoring, or handling. This does the
780 * actual continuing for SIGCONT, but not the actual stopping for stop
781 * signals. The process stop is done as a signal action for SIG_DFL.
783 * Returns true if the signal should be actually delivered, otherwise
784 * it should be dropped.
786 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
788 struct signal_struct *signal = p->signal;
789 struct task_struct *t;
791 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
793 * The process is in the middle of dying, nothing to do.
795 } else if (sig_kernel_stop(sig)) {
797 * This is a stop signal. Remove SIGCONT from all queues.
799 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
800 t = p;
801 do {
802 rm_from_queue(sigmask(SIGCONT), &t->pending);
803 } while_each_thread(p, t);
804 } else if (sig == SIGCONT) {
805 unsigned int why;
807 * Remove all stop signals from all queues, wake all threads.
809 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
810 t = p;
811 do {
812 task_clear_group_stop_pending(t);
813 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
814 wake_up_state(t, __TASK_STOPPED);
815 } while_each_thread(p, t);
818 * Notify the parent with CLD_CONTINUED if we were stopped.
820 * If we were in the middle of a group stop, we pretend it
821 * was already finished, and then continued. Since SIGCHLD
822 * doesn't queue we report only CLD_STOPPED, as if the next
823 * CLD_CONTINUED was dropped.
825 why = 0;
826 if (signal->flags & SIGNAL_STOP_STOPPED)
827 why |= SIGNAL_CLD_CONTINUED;
828 else if (signal->group_stop_count)
829 why |= SIGNAL_CLD_STOPPED;
831 if (why) {
833 * The first thread which returns from do_signal_stop()
834 * will take ->siglock, notice SIGNAL_CLD_MASK, and
835 * notify its parent. See get_signal_to_deliver().
837 signal->flags = why | SIGNAL_STOP_CONTINUED;
838 signal->group_stop_count = 0;
839 signal->group_exit_code = 0;
843 return !sig_ignored(p, sig, from_ancestor_ns);
847 * Test if P wants to take SIG. After we've checked all threads with this,
848 * it's equivalent to finding no threads not blocking SIG. Any threads not
849 * blocking SIG were ruled out because they are not running and already
850 * have pending signals. Such threads will dequeue from the shared queue
851 * as soon as they're available, so putting the signal on the shared queue
852 * will be equivalent to sending it to one such thread.
854 static inline int wants_signal(int sig, struct task_struct *p)
856 if (sigismember(&p->blocked, sig))
857 return 0;
858 if (p->flags & PF_EXITING)
859 return 0;
860 if (sig == SIGKILL)
861 return 1;
862 if (task_is_stopped_or_traced(p))
863 return 0;
864 return task_curr(p) || !signal_pending(p);
867 static void complete_signal(int sig, struct task_struct *p, int group)
869 struct signal_struct *signal = p->signal;
870 struct task_struct *t;
873 * Now find a thread we can wake up to take the signal off the queue.
875 * If the main thread wants the signal, it gets first crack.
876 * Probably the least surprising to the average bear.
878 if (wants_signal(sig, p))
879 t = p;
880 else if (!group || thread_group_empty(p))
882 * There is just one thread and it does not need to be woken.
883 * It will dequeue unblocked signals before it runs again.
885 return;
886 else {
888 * Otherwise try to find a suitable thread.
890 t = signal->curr_target;
891 while (!wants_signal(sig, t)) {
892 t = next_thread(t);
893 if (t == signal->curr_target)
895 * No thread needs to be woken.
896 * Any eligible threads will see
897 * the signal in the queue soon.
899 return;
901 signal->curr_target = t;
905 * Found a killable thread. If the signal will be fatal,
906 * then start taking the whole group down immediately.
908 if (sig_fatal(p, sig) &&
909 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
910 !sigismember(&t->real_blocked, sig) &&
911 (sig == SIGKILL ||
912 !tracehook_consider_fatal_signal(t, sig))) {
914 * This signal will be fatal to the whole group.
916 if (!sig_kernel_coredump(sig)) {
918 * Start a group exit and wake everybody up.
919 * This way we don't have other threads
920 * running and doing things after a slower
921 * thread has the fatal signal pending.
923 signal->flags = SIGNAL_GROUP_EXIT;
924 signal->group_exit_code = sig;
925 signal->group_stop_count = 0;
926 t = p;
927 do {
928 task_clear_group_stop_pending(t);
929 sigaddset(&t->pending.signal, SIGKILL);
930 signal_wake_up(t, 1);
931 } while_each_thread(p, t);
932 return;
937 * The signal is already in the shared-pending queue.
938 * Tell the chosen thread to wake up and dequeue it.
940 signal_wake_up(t, sig == SIGKILL);
941 return;
944 static inline int legacy_queue(struct sigpending *signals, int sig)
946 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
949 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
950 int group, int from_ancestor_ns)
952 struct sigpending *pending;
953 struct sigqueue *q;
954 int override_rlimit;
956 trace_signal_generate(sig, info, t);
958 assert_spin_locked(&t->sighand->siglock);
960 if (!prepare_signal(sig, t, from_ancestor_ns))
961 return 0;
963 pending = group ? &t->signal->shared_pending : &t->pending;
965 * Short-circuit ignored signals and support queuing
966 * exactly one non-rt signal, so that we can get more
967 * detailed information about the cause of the signal.
969 if (legacy_queue(pending, sig))
970 return 0;
972 * fast-pathed signals for kernel-internal things like SIGSTOP
973 * or SIGKILL.
975 if (info == SEND_SIG_FORCED)
976 goto out_set;
979 * Real-time signals must be queued if sent by sigqueue, or
980 * some other real-time mechanism. It is implementation
981 * defined whether kill() does so. We attempt to do so, on
982 * the principle of least surprise, but since kill is not
983 * allowed to fail with EAGAIN when low on memory we just
984 * make sure at least one signal gets delivered and don't
985 * pass on the info struct.
987 if (sig < SIGRTMIN)
988 override_rlimit = (is_si_special(info) || info->si_code >= 0);
989 else
990 override_rlimit = 0;
992 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
993 override_rlimit);
994 if (q) {
995 list_add_tail(&q->list, &pending->list);
996 switch ((unsigned long) info) {
997 case (unsigned long) SEND_SIG_NOINFO:
998 q->info.si_signo = sig;
999 q->info.si_errno = 0;
1000 q->info.si_code = SI_USER;
1001 q->info.si_pid = task_tgid_nr_ns(current,
1002 task_active_pid_ns(t));
1003 q->info.si_uid = current_uid();
1004 break;
1005 case (unsigned long) SEND_SIG_PRIV:
1006 q->info.si_signo = sig;
1007 q->info.si_errno = 0;
1008 q->info.si_code = SI_KERNEL;
1009 q->info.si_pid = 0;
1010 q->info.si_uid = 0;
1011 break;
1012 default:
1013 copy_siginfo(&q->info, info);
1014 if (from_ancestor_ns)
1015 q->info.si_pid = 0;
1016 break;
1018 } else if (!is_si_special(info)) {
1019 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1021 * Queue overflow, abort. We may abort if the
1022 * signal was rt and sent by user using something
1023 * other than kill().
1025 trace_signal_overflow_fail(sig, group, info);
1026 return -EAGAIN;
1027 } else {
1029 * This is a silent loss of information. We still
1030 * send the signal, but the *info bits are lost.
1032 trace_signal_lose_info(sig, group, info);
1036 out_set:
1037 signalfd_notify(t, sig);
1038 sigaddset(&pending->signal, sig);
1039 complete_signal(sig, t, group);
1040 return 0;
1043 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1044 int group)
1046 int from_ancestor_ns = 0;
1048 #ifdef CONFIG_PID_NS
1049 from_ancestor_ns = si_fromuser(info) &&
1050 !task_pid_nr_ns(current, task_active_pid_ns(t));
1051 #endif
1053 return __send_signal(sig, info, t, group, from_ancestor_ns);
1056 static void print_fatal_signal(struct pt_regs *regs, int signr)
1058 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1059 current->comm, task_pid_nr(current), signr);
1061 #if defined(__i386__) && !defined(__arch_um__)
1062 printk("code at %08lx: ", regs->ip);
1064 int i;
1065 for (i = 0; i < 16; i++) {
1066 unsigned char insn;
1068 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1069 break;
1070 printk("%02x ", insn);
1073 #endif
1074 printk("\n");
1075 preempt_disable();
1076 show_regs(regs);
1077 preempt_enable();
1080 static int __init setup_print_fatal_signals(char *str)
1082 get_option (&str, &print_fatal_signals);
1084 return 1;
1087 __setup("print-fatal-signals=", setup_print_fatal_signals);
1090 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1092 return send_signal(sig, info, p, 1);
1095 static int
1096 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1098 return send_signal(sig, info, t, 0);
1101 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1102 bool group)
1104 unsigned long flags;
1105 int ret = -ESRCH;
1107 if (lock_task_sighand(p, &flags)) {
1108 ret = send_signal(sig, info, p, group);
1109 unlock_task_sighand(p, &flags);
1112 return ret;
1116 * Force a signal that the process can't ignore: if necessary
1117 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1119 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1120 * since we do not want to have a signal handler that was blocked
1121 * be invoked when user space had explicitly blocked it.
1123 * We don't want to have recursive SIGSEGV's etc, for example,
1124 * that is why we also clear SIGNAL_UNKILLABLE.
1127 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1129 unsigned long int flags;
1130 int ret, blocked, ignored;
1131 struct k_sigaction *action;
1133 spin_lock_irqsave(&t->sighand->siglock, flags);
1134 action = &t->sighand->action[sig-1];
1135 ignored = action->sa.sa_handler == SIG_IGN;
1136 blocked = sigismember(&t->blocked, sig);
1137 if (blocked || ignored) {
1138 action->sa.sa_handler = SIG_DFL;
1139 if (blocked) {
1140 sigdelset(&t->blocked, sig);
1141 recalc_sigpending_and_wake(t);
1144 if (action->sa.sa_handler == SIG_DFL)
1145 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1146 ret = specific_send_sig_info(sig, info, t);
1147 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1149 return ret;
1153 * Nuke all other threads in the group.
1155 int zap_other_threads(struct task_struct *p)
1157 struct task_struct *t = p;
1158 int count = 0;
1160 p->signal->group_stop_count = 0;
1162 while_each_thread(p, t) {
1163 task_clear_group_stop_pending(t);
1164 count++;
1166 /* Don't bother with already dead threads */
1167 if (t->exit_state)
1168 continue;
1169 sigaddset(&t->pending.signal, SIGKILL);
1170 signal_wake_up(t, 1);
1173 return count;
1176 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1177 unsigned long *flags)
1179 struct sighand_struct *sighand;
1181 for (;;) {
1182 local_irq_save(*flags);
1183 rcu_read_lock();
1184 sighand = rcu_dereference(tsk->sighand);
1185 if (unlikely(sighand == NULL)) {
1186 rcu_read_unlock();
1187 local_irq_restore(*flags);
1188 break;
1191 spin_lock(&sighand->siglock);
1192 if (likely(sighand == tsk->sighand)) {
1193 rcu_read_unlock();
1194 break;
1196 spin_unlock(&sighand->siglock);
1197 rcu_read_unlock();
1198 local_irq_restore(*flags);
1201 return sighand;
1205 * send signal info to all the members of a group
1207 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1209 int ret;
1211 rcu_read_lock();
1212 ret = check_kill_permission(sig, info, p);
1213 rcu_read_unlock();
1215 if (!ret && sig)
1216 ret = do_send_sig_info(sig, info, p, true);
1218 return ret;
1222 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1223 * control characters do (^C, ^Z etc)
1224 * - the caller must hold at least a readlock on tasklist_lock
1226 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1228 struct task_struct *p = NULL;
1229 int retval, success;
1231 success = 0;
1232 retval = -ESRCH;
1233 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1234 int err = group_send_sig_info(sig, info, p);
1235 success |= !err;
1236 retval = err;
1237 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1238 return success ? 0 : retval;
1241 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1243 int error = -ESRCH;
1244 struct task_struct *p;
1246 rcu_read_lock();
1247 retry:
1248 p = pid_task(pid, PIDTYPE_PID);
1249 if (p) {
1250 error = group_send_sig_info(sig, info, p);
1251 if (unlikely(error == -ESRCH))
1253 * The task was unhashed in between, try again.
1254 * If it is dead, pid_task() will return NULL,
1255 * if we race with de_thread() it will find the
1256 * new leader.
1258 goto retry;
1260 rcu_read_unlock();
1262 return error;
1265 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1267 int error;
1268 rcu_read_lock();
1269 error = kill_pid_info(sig, info, find_vpid(pid));
1270 rcu_read_unlock();
1271 return error;
1274 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1275 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1276 uid_t uid, uid_t euid, u32 secid)
1278 int ret = -EINVAL;
1279 struct task_struct *p;
1280 const struct cred *pcred;
1281 unsigned long flags;
1283 if (!valid_signal(sig))
1284 return ret;
1286 rcu_read_lock();
1287 p = pid_task(pid, PIDTYPE_PID);
1288 if (!p) {
1289 ret = -ESRCH;
1290 goto out_unlock;
1292 pcred = __task_cred(p);
1293 if (si_fromuser(info) &&
1294 euid != pcred->suid && euid != pcred->uid &&
1295 uid != pcred->suid && uid != pcred->uid) {
1296 ret = -EPERM;
1297 goto out_unlock;
1299 ret = security_task_kill(p, info, sig, secid);
1300 if (ret)
1301 goto out_unlock;
1303 if (sig) {
1304 if (lock_task_sighand(p, &flags)) {
1305 ret = __send_signal(sig, info, p, 1, 0);
1306 unlock_task_sighand(p, &flags);
1307 } else
1308 ret = -ESRCH;
1310 out_unlock:
1311 rcu_read_unlock();
1312 return ret;
1314 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1317 * kill_something_info() interprets pid in interesting ways just like kill(2).
1319 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1320 * is probably wrong. Should make it like BSD or SYSV.
1323 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1325 int ret;
1327 if (pid > 0) {
1328 rcu_read_lock();
1329 ret = kill_pid_info(sig, info, find_vpid(pid));
1330 rcu_read_unlock();
1331 return ret;
1334 read_lock(&tasklist_lock);
1335 if (pid != -1) {
1336 ret = __kill_pgrp_info(sig, info,
1337 pid ? find_vpid(-pid) : task_pgrp(current));
1338 } else {
1339 int retval = 0, count = 0;
1340 struct task_struct * p;
1342 for_each_process(p) {
1343 if (task_pid_vnr(p) > 1 &&
1344 !same_thread_group(p, current)) {
1345 int err = group_send_sig_info(sig, info, p);
1346 ++count;
1347 if (err != -EPERM)
1348 retval = err;
1351 ret = count ? retval : -ESRCH;
1353 read_unlock(&tasklist_lock);
1355 return ret;
1359 * These are for backward compatibility with the rest of the kernel source.
1362 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1365 * Make sure legacy kernel users don't send in bad values
1366 * (normal paths check this in check_kill_permission).
1368 if (!valid_signal(sig))
1369 return -EINVAL;
1371 return do_send_sig_info(sig, info, p, false);
1374 #define __si_special(priv) \
1375 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1378 send_sig(int sig, struct task_struct *p, int priv)
1380 return send_sig_info(sig, __si_special(priv), p);
1383 void
1384 force_sig(int sig, struct task_struct *p)
1386 force_sig_info(sig, SEND_SIG_PRIV, p);
1390 * When things go south during signal handling, we
1391 * will force a SIGSEGV. And if the signal that caused
1392 * the problem was already a SIGSEGV, we'll want to
1393 * make sure we don't even try to deliver the signal..
1396 force_sigsegv(int sig, struct task_struct *p)
1398 if (sig == SIGSEGV) {
1399 unsigned long flags;
1400 spin_lock_irqsave(&p->sighand->siglock, flags);
1401 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1402 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1404 force_sig(SIGSEGV, p);
1405 return 0;
1408 int kill_pgrp(struct pid *pid, int sig, int priv)
1410 int ret;
1412 read_lock(&tasklist_lock);
1413 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1414 read_unlock(&tasklist_lock);
1416 return ret;
1418 EXPORT_SYMBOL(kill_pgrp);
1420 int kill_pid(struct pid *pid, int sig, int priv)
1422 return kill_pid_info(sig, __si_special(priv), pid);
1424 EXPORT_SYMBOL(kill_pid);
1427 * These functions support sending signals using preallocated sigqueue
1428 * structures. This is needed "because realtime applications cannot
1429 * afford to lose notifications of asynchronous events, like timer
1430 * expirations or I/O completions". In the case of POSIX Timers
1431 * we allocate the sigqueue structure from the timer_create. If this
1432 * allocation fails we are able to report the failure to the application
1433 * with an EAGAIN error.
1435 struct sigqueue *sigqueue_alloc(void)
1437 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1439 if (q)
1440 q->flags |= SIGQUEUE_PREALLOC;
1442 return q;
1445 void sigqueue_free(struct sigqueue *q)
1447 unsigned long flags;
1448 spinlock_t *lock = &current->sighand->siglock;
1450 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1452 * We must hold ->siglock while testing q->list
1453 * to serialize with collect_signal() or with
1454 * __exit_signal()->flush_sigqueue().
1456 spin_lock_irqsave(lock, flags);
1457 q->flags &= ~SIGQUEUE_PREALLOC;
1459 * If it is queued it will be freed when dequeued,
1460 * like the "regular" sigqueue.
1462 if (!list_empty(&q->list))
1463 q = NULL;
1464 spin_unlock_irqrestore(lock, flags);
1466 if (q)
1467 __sigqueue_free(q);
1470 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1472 int sig = q->info.si_signo;
1473 struct sigpending *pending;
1474 unsigned long flags;
1475 int ret;
1477 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1479 ret = -1;
1480 if (!likely(lock_task_sighand(t, &flags)))
1481 goto ret;
1483 ret = 1; /* the signal is ignored */
1484 if (!prepare_signal(sig, t, 0))
1485 goto out;
1487 ret = 0;
1488 if (unlikely(!list_empty(&q->list))) {
1490 * If an SI_TIMER entry is already queue just increment
1491 * the overrun count.
1493 BUG_ON(q->info.si_code != SI_TIMER);
1494 q->info.si_overrun++;
1495 goto out;
1497 q->info.si_overrun = 0;
1499 signalfd_notify(t, sig);
1500 pending = group ? &t->signal->shared_pending : &t->pending;
1501 list_add_tail(&q->list, &pending->list);
1502 sigaddset(&pending->signal, sig);
1503 complete_signal(sig, t, group);
1504 out:
1505 unlock_task_sighand(t, &flags);
1506 ret:
1507 return ret;
1511 * Let a parent know about the death of a child.
1512 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1514 * Returns -1 if our parent ignored us and so we've switched to
1515 * self-reaping, or else @sig.
1517 int do_notify_parent(struct task_struct *tsk, int sig)
1519 struct siginfo info;
1520 unsigned long flags;
1521 struct sighand_struct *psig;
1522 int ret = sig;
1524 BUG_ON(sig == -1);
1526 /* do_notify_parent_cldstop should have been called instead. */
1527 BUG_ON(task_is_stopped_or_traced(tsk));
1529 BUG_ON(!task_ptrace(tsk) &&
1530 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1532 info.si_signo = sig;
1533 info.si_errno = 0;
1535 * we are under tasklist_lock here so our parent is tied to
1536 * us and cannot exit and release its namespace.
1538 * the only it can is to switch its nsproxy with sys_unshare,
1539 * bu uncharing pid namespaces is not allowed, so we'll always
1540 * see relevant namespace
1542 * write_lock() currently calls preempt_disable() which is the
1543 * same as rcu_read_lock(), but according to Oleg, this is not
1544 * correct to rely on this
1546 rcu_read_lock();
1547 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1548 info.si_uid = __task_cred(tsk)->uid;
1549 rcu_read_unlock();
1551 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1552 tsk->signal->utime));
1553 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1554 tsk->signal->stime));
1556 info.si_status = tsk->exit_code & 0x7f;
1557 if (tsk->exit_code & 0x80)
1558 info.si_code = CLD_DUMPED;
1559 else if (tsk->exit_code & 0x7f)
1560 info.si_code = CLD_KILLED;
1561 else {
1562 info.si_code = CLD_EXITED;
1563 info.si_status = tsk->exit_code >> 8;
1566 psig = tsk->parent->sighand;
1567 spin_lock_irqsave(&psig->siglock, flags);
1568 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1569 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1570 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1572 * We are exiting and our parent doesn't care. POSIX.1
1573 * defines special semantics for setting SIGCHLD to SIG_IGN
1574 * or setting the SA_NOCLDWAIT flag: we should be reaped
1575 * automatically and not left for our parent's wait4 call.
1576 * Rather than having the parent do it as a magic kind of
1577 * signal handler, we just set this to tell do_exit that we
1578 * can be cleaned up without becoming a zombie. Note that
1579 * we still call __wake_up_parent in this case, because a
1580 * blocked sys_wait4 might now return -ECHILD.
1582 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1583 * is implementation-defined: we do (if you don't want
1584 * it, just use SIG_IGN instead).
1586 ret = tsk->exit_signal = -1;
1587 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1588 sig = -1;
1590 if (valid_signal(sig) && sig > 0)
1591 __group_send_sig_info(sig, &info, tsk->parent);
1592 __wake_up_parent(tsk, tsk->parent);
1593 spin_unlock_irqrestore(&psig->siglock, flags);
1595 return ret;
1599 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1600 * @tsk: task reporting the state change
1601 * @for_ptracer: the notification is for ptracer
1602 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1604 * Notify @tsk's parent that the stopped/continued state has changed. If
1605 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1606 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1608 * CONTEXT:
1609 * Must be called with tasklist_lock at least read locked.
1611 static void do_notify_parent_cldstop(struct task_struct *tsk,
1612 bool for_ptracer, int why)
1614 struct siginfo info;
1615 unsigned long flags;
1616 struct task_struct *parent;
1617 struct sighand_struct *sighand;
1619 if (for_ptracer) {
1620 parent = tsk->parent;
1621 } else {
1622 tsk = tsk->group_leader;
1623 parent = tsk->real_parent;
1626 info.si_signo = SIGCHLD;
1627 info.si_errno = 0;
1629 * see comment in do_notify_parent() about the following 4 lines
1631 rcu_read_lock();
1632 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1633 info.si_uid = __task_cred(tsk)->uid;
1634 rcu_read_unlock();
1636 info.si_utime = cputime_to_clock_t(tsk->utime);
1637 info.si_stime = cputime_to_clock_t(tsk->stime);
1639 info.si_code = why;
1640 switch (why) {
1641 case CLD_CONTINUED:
1642 info.si_status = SIGCONT;
1643 break;
1644 case CLD_STOPPED:
1645 info.si_status = tsk->signal->group_exit_code & 0x7f;
1646 break;
1647 case CLD_TRAPPED:
1648 info.si_status = tsk->exit_code & 0x7f;
1649 break;
1650 default:
1651 BUG();
1654 sighand = parent->sighand;
1655 spin_lock_irqsave(&sighand->siglock, flags);
1656 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1657 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1658 __group_send_sig_info(SIGCHLD, &info, parent);
1660 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1662 __wake_up_parent(tsk, parent);
1663 spin_unlock_irqrestore(&sighand->siglock, flags);
1666 static inline int may_ptrace_stop(void)
1668 if (!likely(task_ptrace(current)))
1669 return 0;
1671 * Are we in the middle of do_coredump?
1672 * If so and our tracer is also part of the coredump stopping
1673 * is a deadlock situation, and pointless because our tracer
1674 * is dead so don't allow us to stop.
1675 * If SIGKILL was already sent before the caller unlocked
1676 * ->siglock we must see ->core_state != NULL. Otherwise it
1677 * is safe to enter schedule().
1679 if (unlikely(current->mm->core_state) &&
1680 unlikely(current->mm == current->parent->mm))
1681 return 0;
1683 return 1;
1687 * Return non-zero if there is a SIGKILL that should be waking us up.
1688 * Called with the siglock held.
1690 static int sigkill_pending(struct task_struct *tsk)
1692 return sigismember(&tsk->pending.signal, SIGKILL) ||
1693 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1697 * Test whether the target task of the usual cldstop notification - the
1698 * real_parent of @child - is in the same group as the ptracer.
1700 static bool real_parent_is_ptracer(struct task_struct *child)
1702 return same_thread_group(child->parent, child->real_parent);
1706 * This must be called with current->sighand->siglock held.
1708 * This should be the path for all ptrace stops.
1709 * We always set current->last_siginfo while stopped here.
1710 * That makes it a way to test a stopped process for
1711 * being ptrace-stopped vs being job-control-stopped.
1713 * If we actually decide not to stop at all because the tracer
1714 * is gone, we keep current->exit_code unless clear_code.
1716 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1717 __releases(&current->sighand->siglock)
1718 __acquires(&current->sighand->siglock)
1720 bool gstop_done = false;
1722 if (arch_ptrace_stop_needed(exit_code, info)) {
1724 * The arch code has something special to do before a
1725 * ptrace stop. This is allowed to block, e.g. for faults
1726 * on user stack pages. We can't keep the siglock while
1727 * calling arch_ptrace_stop, so we must release it now.
1728 * To preserve proper semantics, we must do this before
1729 * any signal bookkeeping like checking group_stop_count.
1730 * Meanwhile, a SIGKILL could come in before we retake the
1731 * siglock. That must prevent us from sleeping in TASK_TRACED.
1732 * So after regaining the lock, we must check for SIGKILL.
1734 spin_unlock_irq(&current->sighand->siglock);
1735 arch_ptrace_stop(exit_code, info);
1736 spin_lock_irq(&current->sighand->siglock);
1737 if (sigkill_pending(current))
1738 return;
1742 * If @why is CLD_STOPPED, we're trapping to participate in a group
1743 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1744 * while siglock was released for the arch hook, PENDING could be
1745 * clear now. We act as if SIGCONT is received after TASK_TRACED
1746 * is entered - ignore it.
1748 if (why == CLD_STOPPED && (current->group_stop & GROUP_STOP_PENDING))
1749 gstop_done = task_participate_group_stop(current);
1751 current->last_siginfo = info;
1752 current->exit_code = exit_code;
1755 * TRACED should be visible before TRAPPING is cleared; otherwise,
1756 * the tracer might fail do_wait().
1758 set_current_state(TASK_TRACED);
1761 * We're committing to trapping. Clearing GROUP_STOP_TRAPPING and
1762 * transition to TASK_TRACED should be atomic with respect to
1763 * siglock. This hsould be done after the arch hook as siglock is
1764 * released and regrabbed across it.
1766 task_clear_group_stop_trapping(current);
1768 spin_unlock_irq(&current->sighand->siglock);
1769 read_lock(&tasklist_lock);
1770 if (may_ptrace_stop()) {
1772 * Notify parents of the stop.
1774 * While ptraced, there are two parents - the ptracer and
1775 * the real_parent of the group_leader. The ptracer should
1776 * know about every stop while the real parent is only
1777 * interested in the completion of group stop. The states
1778 * for the two don't interact with each other. Notify
1779 * separately unless they're gonna be duplicates.
1781 do_notify_parent_cldstop(current, true, why);
1782 if (gstop_done && !real_parent_is_ptracer(current))
1783 do_notify_parent_cldstop(current, false, why);
1786 * Don't want to allow preemption here, because
1787 * sys_ptrace() needs this task to be inactive.
1789 * XXX: implement read_unlock_no_resched().
1791 preempt_disable();
1792 read_unlock(&tasklist_lock);
1793 preempt_enable_no_resched();
1794 schedule();
1795 } else {
1797 * By the time we got the lock, our tracer went away.
1798 * Don't drop the lock yet, another tracer may come.
1800 * If @gstop_done, the ptracer went away between group stop
1801 * completion and here. During detach, it would have set
1802 * GROUP_STOP_PENDING on us and we'll re-enter TASK_STOPPED
1803 * in do_signal_stop() on return, so notifying the real
1804 * parent of the group stop completion is enough.
1806 if (gstop_done)
1807 do_notify_parent_cldstop(current, false, why);
1809 __set_current_state(TASK_RUNNING);
1810 if (clear_code)
1811 current->exit_code = 0;
1812 read_unlock(&tasklist_lock);
1816 * While in TASK_TRACED, we were considered "frozen enough".
1817 * Now that we woke up, it's crucial if we're supposed to be
1818 * frozen that we freeze now before running anything substantial.
1820 try_to_freeze();
1823 * We are back. Now reacquire the siglock before touching
1824 * last_siginfo, so that we are sure to have synchronized with
1825 * any signal-sending on another CPU that wants to examine it.
1827 spin_lock_irq(&current->sighand->siglock);
1828 current->last_siginfo = NULL;
1831 * Queued signals ignored us while we were stopped for tracing.
1832 * So check for any that we should take before resuming user mode.
1833 * This sets TIF_SIGPENDING, but never clears it.
1835 recalc_sigpending_tsk(current);
1838 void ptrace_notify(int exit_code)
1840 siginfo_t info;
1842 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1844 memset(&info, 0, sizeof info);
1845 info.si_signo = SIGTRAP;
1846 info.si_code = exit_code;
1847 info.si_pid = task_pid_vnr(current);
1848 info.si_uid = current_uid();
1850 /* Let the debugger run. */
1851 spin_lock_irq(&current->sighand->siglock);
1852 ptrace_stop(exit_code, CLD_TRAPPED, 1, &info);
1853 spin_unlock_irq(&current->sighand->siglock);
1857 * This performs the stopping for SIGSTOP and other stop signals.
1858 * We have to stop all threads in the thread group.
1859 * Returns non-zero if we've actually stopped and released the siglock.
1860 * Returns zero if we didn't stop and still hold the siglock.
1862 static int do_signal_stop(int signr)
1864 struct signal_struct *sig = current->signal;
1866 if (!(current->group_stop & GROUP_STOP_PENDING)) {
1867 unsigned int gstop = GROUP_STOP_PENDING | GROUP_STOP_CONSUME;
1868 struct task_struct *t;
1870 /* signr will be recorded in task->group_stop for retries */
1871 WARN_ON_ONCE(signr & ~GROUP_STOP_SIGMASK);
1873 if (!likely(current->group_stop & GROUP_STOP_DEQUEUED) ||
1874 unlikely(signal_group_exit(sig)))
1875 return 0;
1877 * There is no group stop already in progress. We must
1878 * initiate one now.
1880 * While ptraced, a task may be resumed while group stop is
1881 * still in effect and then receive a stop signal and
1882 * initiate another group stop. This deviates from the
1883 * usual behavior as two consecutive stop signals can't
1884 * cause two group stops when !ptraced. That is why we
1885 * also check !task_is_stopped(t) below.
1887 * The condition can be distinguished by testing whether
1888 * SIGNAL_STOP_STOPPED is already set. Don't generate
1889 * group_exit_code in such case.
1891 * This is not necessary for SIGNAL_STOP_CONTINUED because
1892 * an intervening stop signal is required to cause two
1893 * continued events regardless of ptrace.
1895 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1896 sig->group_exit_code = signr;
1898 current->group_stop &= ~GROUP_STOP_SIGMASK;
1899 current->group_stop |= signr | gstop;
1900 sig->group_stop_count = 1;
1901 for (t = next_thread(current); t != current;
1902 t = next_thread(t)) {
1904 * Setting state to TASK_STOPPED for a group
1905 * stop is always done with the siglock held,
1906 * so this check has no races.
1908 if (!(t->flags & PF_EXITING) && !task_is_stopped(t)) {
1909 t->group_stop &= ~GROUP_STOP_SIGMASK;
1910 t->group_stop |= signr | gstop;
1911 sig->group_stop_count++;
1912 signal_wake_up(t, 0);
1916 retry:
1917 if (likely(!task_ptrace(current))) {
1918 int notify = 0;
1921 * If there are no other threads in the group, or if there
1922 * is a group stop in progress and we are the last to stop,
1923 * report to the parent.
1925 if (task_participate_group_stop(current))
1926 notify = CLD_STOPPED;
1928 __set_current_state(TASK_STOPPED);
1929 spin_unlock_irq(&current->sighand->siglock);
1932 * Notify the parent of the group stop completion. Because
1933 * we're not holding either the siglock or tasklist_lock
1934 * here, ptracer may attach inbetween; however, this is for
1935 * group stop and should always be delivered to the real
1936 * parent of the group leader. The new ptracer will get
1937 * its notification when this task transitions into
1938 * TASK_TRACED.
1940 if (notify) {
1941 read_lock(&tasklist_lock);
1942 do_notify_parent_cldstop(current, false, notify);
1943 read_unlock(&tasklist_lock);
1946 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1947 schedule();
1949 spin_lock_irq(&current->sighand->siglock);
1950 } else {
1951 ptrace_stop(current->group_stop & GROUP_STOP_SIGMASK,
1952 CLD_STOPPED, 0, NULL);
1953 current->exit_code = 0;
1957 * GROUP_STOP_PENDING could be set if another group stop has
1958 * started since being woken up or ptrace wants us to transit
1959 * between TASK_STOPPED and TRACED. Retry group stop.
1961 if (current->group_stop & GROUP_STOP_PENDING) {
1962 WARN_ON_ONCE(!(current->group_stop & GROUP_STOP_SIGMASK));
1963 goto retry;
1966 /* PTRACE_ATTACH might have raced with task killing, clear trapping */
1967 task_clear_group_stop_trapping(current);
1969 spin_unlock_irq(&current->sighand->siglock);
1971 tracehook_finish_jctl();
1973 return 1;
1976 static int ptrace_signal(int signr, siginfo_t *info,
1977 struct pt_regs *regs, void *cookie)
1979 if (!task_ptrace(current))
1980 return signr;
1982 ptrace_signal_deliver(regs, cookie);
1984 /* Let the debugger run. */
1985 ptrace_stop(signr, CLD_TRAPPED, 0, info);
1987 /* We're back. Did the debugger cancel the sig? */
1988 signr = current->exit_code;
1989 if (signr == 0)
1990 return signr;
1992 current->exit_code = 0;
1995 * Update the siginfo structure if the signal has
1996 * changed. If the debugger wanted something
1997 * specific in the siginfo structure then it should
1998 * have updated *info via PTRACE_SETSIGINFO.
2000 if (signr != info->si_signo) {
2001 info->si_signo = signr;
2002 info->si_errno = 0;
2003 info->si_code = SI_USER;
2004 info->si_pid = task_pid_vnr(current->parent);
2005 info->si_uid = task_uid(current->parent);
2008 /* If the (new) signal is now blocked, requeue it. */
2009 if (sigismember(&current->blocked, signr)) {
2010 specific_send_sig_info(signr, info, current);
2011 signr = 0;
2014 return signr;
2017 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2018 struct pt_regs *regs, void *cookie)
2020 struct sighand_struct *sighand = current->sighand;
2021 struct signal_struct *signal = current->signal;
2022 int signr;
2024 relock:
2026 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2027 * While in TASK_STOPPED, we were considered "frozen enough".
2028 * Now that we woke up, it's crucial if we're supposed to be
2029 * frozen that we freeze now before running anything substantial.
2031 try_to_freeze();
2033 spin_lock_irq(&sighand->siglock);
2035 * Every stopped thread goes here after wakeup. Check to see if
2036 * we should notify the parent, prepare_signal(SIGCONT) encodes
2037 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2039 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2040 struct task_struct *leader;
2041 int why;
2043 if (signal->flags & SIGNAL_CLD_CONTINUED)
2044 why = CLD_CONTINUED;
2045 else
2046 why = CLD_STOPPED;
2048 signal->flags &= ~SIGNAL_CLD_MASK;
2050 spin_unlock_irq(&sighand->siglock);
2053 * Notify the parent that we're continuing. This event is
2054 * always per-process and doesn't make whole lot of sense
2055 * for ptracers, who shouldn't consume the state via
2056 * wait(2) either, but, for backward compatibility, notify
2057 * the ptracer of the group leader too unless it's gonna be
2058 * a duplicate.
2060 read_lock(&tasklist_lock);
2062 do_notify_parent_cldstop(current, false, why);
2064 leader = current->group_leader;
2065 if (task_ptrace(leader) && !real_parent_is_ptracer(leader))
2066 do_notify_parent_cldstop(leader, true, why);
2068 read_unlock(&tasklist_lock);
2070 goto relock;
2073 for (;;) {
2074 struct k_sigaction *ka;
2076 * Tracing can induce an artificial signal and choose sigaction.
2077 * The return value in @signr determines the default action,
2078 * but @info->si_signo is the signal number we will report.
2080 signr = tracehook_get_signal(current, regs, info, return_ka);
2081 if (unlikely(signr < 0))
2082 goto relock;
2083 if (unlikely(signr != 0))
2084 ka = return_ka;
2085 else {
2086 if (unlikely(current->group_stop &
2087 GROUP_STOP_PENDING) && do_signal_stop(0))
2088 goto relock;
2090 signr = dequeue_signal(current, &current->blocked,
2091 info);
2093 if (!signr)
2094 break; /* will return 0 */
2096 if (signr != SIGKILL) {
2097 signr = ptrace_signal(signr, info,
2098 regs, cookie);
2099 if (!signr)
2100 continue;
2103 ka = &sighand->action[signr-1];
2106 /* Trace actually delivered signals. */
2107 trace_signal_deliver(signr, info, ka);
2109 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2110 continue;
2111 if (ka->sa.sa_handler != SIG_DFL) {
2112 /* Run the handler. */
2113 *return_ka = *ka;
2115 if (ka->sa.sa_flags & SA_ONESHOT)
2116 ka->sa.sa_handler = SIG_DFL;
2118 break; /* will return non-zero "signr" value */
2122 * Now we are doing the default action for this signal.
2124 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2125 continue;
2128 * Global init gets no signals it doesn't want.
2129 * Container-init gets no signals it doesn't want from same
2130 * container.
2132 * Note that if global/container-init sees a sig_kernel_only()
2133 * signal here, the signal must have been generated internally
2134 * or must have come from an ancestor namespace. In either
2135 * case, the signal cannot be dropped.
2137 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2138 !sig_kernel_only(signr))
2139 continue;
2141 if (sig_kernel_stop(signr)) {
2143 * The default action is to stop all threads in
2144 * the thread group. The job control signals
2145 * do nothing in an orphaned pgrp, but SIGSTOP
2146 * always works. Note that siglock needs to be
2147 * dropped during the call to is_orphaned_pgrp()
2148 * because of lock ordering with tasklist_lock.
2149 * This allows an intervening SIGCONT to be posted.
2150 * We need to check for that and bail out if necessary.
2152 if (signr != SIGSTOP) {
2153 spin_unlock_irq(&sighand->siglock);
2155 /* signals can be posted during this window */
2157 if (is_current_pgrp_orphaned())
2158 goto relock;
2160 spin_lock_irq(&sighand->siglock);
2163 if (likely(do_signal_stop(info->si_signo))) {
2164 /* It released the siglock. */
2165 goto relock;
2169 * We didn't actually stop, due to a race
2170 * with SIGCONT or something like that.
2172 continue;
2175 spin_unlock_irq(&sighand->siglock);
2178 * Anything else is fatal, maybe with a core dump.
2180 current->flags |= PF_SIGNALED;
2182 if (sig_kernel_coredump(signr)) {
2183 if (print_fatal_signals)
2184 print_fatal_signal(regs, info->si_signo);
2186 * If it was able to dump core, this kills all
2187 * other threads in the group and synchronizes with
2188 * their demise. If we lost the race with another
2189 * thread getting here, it set group_exit_code
2190 * first and our do_group_exit call below will use
2191 * that value and ignore the one we pass it.
2193 do_coredump(info->si_signo, info->si_signo, regs);
2197 * Death signals, no core dump.
2199 do_group_exit(info->si_signo);
2200 /* NOTREACHED */
2202 spin_unlock_irq(&sighand->siglock);
2203 return signr;
2207 * It could be that complete_signal() picked us to notify about the
2208 * group-wide signal. Other threads should be notified now to take
2209 * the shared signals in @which since we will not.
2211 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2213 sigset_t retarget;
2214 struct task_struct *t;
2216 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2217 if (sigisemptyset(&retarget))
2218 return;
2220 t = tsk;
2221 while_each_thread(tsk, t) {
2222 if (t->flags & PF_EXITING)
2223 continue;
2225 if (!has_pending_signals(&retarget, &t->blocked))
2226 continue;
2227 /* Remove the signals this thread can handle. */
2228 sigandsets(&retarget, &retarget, &t->blocked);
2230 if (!signal_pending(t))
2231 signal_wake_up(t, 0);
2233 if (sigisemptyset(&retarget))
2234 break;
2238 void exit_signals(struct task_struct *tsk)
2240 int group_stop = 0;
2241 sigset_t unblocked;
2243 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2244 tsk->flags |= PF_EXITING;
2245 return;
2248 spin_lock_irq(&tsk->sighand->siglock);
2250 * From now this task is not visible for group-wide signals,
2251 * see wants_signal(), do_signal_stop().
2253 tsk->flags |= PF_EXITING;
2254 if (!signal_pending(tsk))
2255 goto out;
2257 unblocked = tsk->blocked;
2258 signotset(&unblocked);
2259 retarget_shared_pending(tsk, &unblocked);
2261 if (unlikely(tsk->group_stop & GROUP_STOP_PENDING) &&
2262 task_participate_group_stop(tsk))
2263 group_stop = CLD_STOPPED;
2264 out:
2265 spin_unlock_irq(&tsk->sighand->siglock);
2268 * If group stop has completed, deliver the notification. This
2269 * should always go to the real parent of the group leader.
2271 if (unlikely(group_stop)) {
2272 read_lock(&tasklist_lock);
2273 do_notify_parent_cldstop(tsk, false, group_stop);
2274 read_unlock(&tasklist_lock);
2278 EXPORT_SYMBOL(recalc_sigpending);
2279 EXPORT_SYMBOL_GPL(dequeue_signal);
2280 EXPORT_SYMBOL(flush_signals);
2281 EXPORT_SYMBOL(force_sig);
2282 EXPORT_SYMBOL(send_sig);
2283 EXPORT_SYMBOL(send_sig_info);
2284 EXPORT_SYMBOL(sigprocmask);
2285 EXPORT_SYMBOL(block_all_signals);
2286 EXPORT_SYMBOL(unblock_all_signals);
2290 * System call entry points.
2294 * sys_restart_syscall - restart a system call
2296 SYSCALL_DEFINE0(restart_syscall)
2298 struct restart_block *restart = &current_thread_info()->restart_block;
2299 return restart->fn(restart);
2302 long do_no_restart_syscall(struct restart_block *param)
2304 return -EINTR;
2307 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2309 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2310 sigset_t newblocked;
2311 /* A set of now blocked but previously unblocked signals. */
2312 sigandnsets(&newblocked, newset, &current->blocked);
2313 retarget_shared_pending(tsk, &newblocked);
2315 tsk->blocked = *newset;
2316 recalc_sigpending();
2320 * set_current_blocked - change current->blocked mask
2321 * @newset: new mask
2323 * It is wrong to change ->blocked directly, this helper should be used
2324 * to ensure the process can't miss a shared signal we are going to block.
2326 void set_current_blocked(const sigset_t *newset)
2328 struct task_struct *tsk = current;
2330 spin_lock_irq(&tsk->sighand->siglock);
2331 __set_task_blocked(tsk, newset);
2332 spin_unlock_irq(&tsk->sighand->siglock);
2336 * This is also useful for kernel threads that want to temporarily
2337 * (or permanently) block certain signals.
2339 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2340 * interface happily blocks "unblockable" signals like SIGKILL
2341 * and friends.
2343 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2345 struct task_struct *tsk = current;
2346 sigset_t newset;
2348 /* Lockless, only current can change ->blocked, never from irq */
2349 if (oldset)
2350 *oldset = tsk->blocked;
2352 switch (how) {
2353 case SIG_BLOCK:
2354 sigorsets(&newset, &tsk->blocked, set);
2355 break;
2356 case SIG_UNBLOCK:
2357 sigandnsets(&newset, &tsk->blocked, set);
2358 break;
2359 case SIG_SETMASK:
2360 newset = *set;
2361 break;
2362 default:
2363 return -EINVAL;
2366 set_current_blocked(&newset);
2367 return 0;
2371 * sys_rt_sigprocmask - change the list of currently blocked signals
2372 * @how: whether to add, remove, or set signals
2373 * @nset: stores pending signals
2374 * @oset: previous value of signal mask if non-null
2375 * @sigsetsize: size of sigset_t type
2377 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2378 sigset_t __user *, oset, size_t, sigsetsize)
2380 sigset_t old_set, new_set;
2381 int error;
2383 /* XXX: Don't preclude handling different sized sigset_t's. */
2384 if (sigsetsize != sizeof(sigset_t))
2385 return -EINVAL;
2387 old_set = current->blocked;
2389 if (nset) {
2390 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2391 return -EFAULT;
2392 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2394 error = sigprocmask(how, &new_set, NULL);
2395 if (error)
2396 return error;
2399 if (oset) {
2400 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2401 return -EFAULT;
2404 return 0;
2407 long do_sigpending(void __user *set, unsigned long sigsetsize)
2409 long error = -EINVAL;
2410 sigset_t pending;
2412 if (sigsetsize > sizeof(sigset_t))
2413 goto out;
2415 spin_lock_irq(&current->sighand->siglock);
2416 sigorsets(&pending, &current->pending.signal,
2417 &current->signal->shared_pending.signal);
2418 spin_unlock_irq(&current->sighand->siglock);
2420 /* Outside the lock because only this thread touches it. */
2421 sigandsets(&pending, &current->blocked, &pending);
2423 error = -EFAULT;
2424 if (!copy_to_user(set, &pending, sigsetsize))
2425 error = 0;
2427 out:
2428 return error;
2432 * sys_rt_sigpending - examine a pending signal that has been raised
2433 * while blocked
2434 * @set: stores pending signals
2435 * @sigsetsize: size of sigset_t type or larger
2437 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2439 return do_sigpending(set, sigsetsize);
2442 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2444 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2446 int err;
2448 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2449 return -EFAULT;
2450 if (from->si_code < 0)
2451 return __copy_to_user(to, from, sizeof(siginfo_t))
2452 ? -EFAULT : 0;
2454 * If you change siginfo_t structure, please be sure
2455 * this code is fixed accordingly.
2456 * Please remember to update the signalfd_copyinfo() function
2457 * inside fs/signalfd.c too, in case siginfo_t changes.
2458 * It should never copy any pad contained in the structure
2459 * to avoid security leaks, but must copy the generic
2460 * 3 ints plus the relevant union member.
2462 err = __put_user(from->si_signo, &to->si_signo);
2463 err |= __put_user(from->si_errno, &to->si_errno);
2464 err |= __put_user((short)from->si_code, &to->si_code);
2465 switch (from->si_code & __SI_MASK) {
2466 case __SI_KILL:
2467 err |= __put_user(from->si_pid, &to->si_pid);
2468 err |= __put_user(from->si_uid, &to->si_uid);
2469 break;
2470 case __SI_TIMER:
2471 err |= __put_user(from->si_tid, &to->si_tid);
2472 err |= __put_user(from->si_overrun, &to->si_overrun);
2473 err |= __put_user(from->si_ptr, &to->si_ptr);
2474 break;
2475 case __SI_POLL:
2476 err |= __put_user(from->si_band, &to->si_band);
2477 err |= __put_user(from->si_fd, &to->si_fd);
2478 break;
2479 case __SI_FAULT:
2480 err |= __put_user(from->si_addr, &to->si_addr);
2481 #ifdef __ARCH_SI_TRAPNO
2482 err |= __put_user(from->si_trapno, &to->si_trapno);
2483 #endif
2484 #ifdef BUS_MCEERR_AO
2486 * Other callers might not initialize the si_lsb field,
2487 * so check explicitly for the right codes here.
2489 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2490 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2491 #endif
2492 break;
2493 case __SI_CHLD:
2494 err |= __put_user(from->si_pid, &to->si_pid);
2495 err |= __put_user(from->si_uid, &to->si_uid);
2496 err |= __put_user(from->si_status, &to->si_status);
2497 err |= __put_user(from->si_utime, &to->si_utime);
2498 err |= __put_user(from->si_stime, &to->si_stime);
2499 break;
2500 case __SI_RT: /* This is not generated by the kernel as of now. */
2501 case __SI_MESGQ: /* But this is */
2502 err |= __put_user(from->si_pid, &to->si_pid);
2503 err |= __put_user(from->si_uid, &to->si_uid);
2504 err |= __put_user(from->si_ptr, &to->si_ptr);
2505 break;
2506 default: /* this is just in case for now ... */
2507 err |= __put_user(from->si_pid, &to->si_pid);
2508 err |= __put_user(from->si_uid, &to->si_uid);
2509 break;
2511 return err;
2514 #endif
2517 * do_sigtimedwait - wait for queued signals specified in @which
2518 * @which: queued signals to wait for
2519 * @info: if non-null, the signal's siginfo is returned here
2520 * @ts: upper bound on process time suspension
2522 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2523 const struct timespec *ts)
2525 struct task_struct *tsk = current;
2526 long timeout = MAX_SCHEDULE_TIMEOUT;
2527 sigset_t mask = *which;
2528 int sig;
2530 if (ts) {
2531 if (!timespec_valid(ts))
2532 return -EINVAL;
2533 timeout = timespec_to_jiffies(ts);
2535 * We can be close to the next tick, add another one
2536 * to ensure we will wait at least the time asked for.
2538 if (ts->tv_sec || ts->tv_nsec)
2539 timeout++;
2543 * Invert the set of allowed signals to get those we want to block.
2545 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2546 signotset(&mask);
2548 spin_lock_irq(&tsk->sighand->siglock);
2549 sig = dequeue_signal(tsk, &mask, info);
2550 if (!sig && timeout) {
2552 * None ready, temporarily unblock those we're interested
2553 * while we are sleeping in so that we'll be awakened when
2554 * they arrive. Unblocking is always fine, we can avoid
2555 * set_current_blocked().
2557 tsk->real_blocked = tsk->blocked;
2558 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2559 recalc_sigpending();
2560 spin_unlock_irq(&tsk->sighand->siglock);
2562 timeout = schedule_timeout_interruptible(timeout);
2564 spin_lock_irq(&tsk->sighand->siglock);
2565 __set_task_blocked(tsk, &tsk->real_blocked);
2566 siginitset(&tsk->real_blocked, 0);
2567 sig = dequeue_signal(tsk, &mask, info);
2569 spin_unlock_irq(&tsk->sighand->siglock);
2571 if (sig)
2572 return sig;
2573 return timeout ? -EINTR : -EAGAIN;
2577 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2578 * in @uthese
2579 * @uthese: queued signals to wait for
2580 * @uinfo: if non-null, the signal's siginfo is returned here
2581 * @uts: upper bound on process time suspension
2582 * @sigsetsize: size of sigset_t type
2584 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2585 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2586 size_t, sigsetsize)
2588 sigset_t these;
2589 struct timespec ts;
2590 siginfo_t info;
2591 int ret;
2593 /* XXX: Don't preclude handling different sized sigset_t's. */
2594 if (sigsetsize != sizeof(sigset_t))
2595 return -EINVAL;
2597 if (copy_from_user(&these, uthese, sizeof(these)))
2598 return -EFAULT;
2600 if (uts) {
2601 if (copy_from_user(&ts, uts, sizeof(ts)))
2602 return -EFAULT;
2605 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2607 if (ret > 0 && uinfo) {
2608 if (copy_siginfo_to_user(uinfo, &info))
2609 ret = -EFAULT;
2612 return ret;
2616 * sys_kill - send a signal to a process
2617 * @pid: the PID of the process
2618 * @sig: signal to be sent
2620 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2622 struct siginfo info;
2624 info.si_signo = sig;
2625 info.si_errno = 0;
2626 info.si_code = SI_USER;
2627 info.si_pid = task_tgid_vnr(current);
2628 info.si_uid = current_uid();
2630 return kill_something_info(sig, &info, pid);
2633 static int
2634 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2636 struct task_struct *p;
2637 int error = -ESRCH;
2639 rcu_read_lock();
2640 p = find_task_by_vpid(pid);
2641 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2642 error = check_kill_permission(sig, info, p);
2644 * The null signal is a permissions and process existence
2645 * probe. No signal is actually delivered.
2647 if (!error && sig) {
2648 error = do_send_sig_info(sig, info, p, false);
2650 * If lock_task_sighand() failed we pretend the task
2651 * dies after receiving the signal. The window is tiny,
2652 * and the signal is private anyway.
2654 if (unlikely(error == -ESRCH))
2655 error = 0;
2658 rcu_read_unlock();
2660 return error;
2663 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2665 struct siginfo info;
2667 info.si_signo = sig;
2668 info.si_errno = 0;
2669 info.si_code = SI_TKILL;
2670 info.si_pid = task_tgid_vnr(current);
2671 info.si_uid = current_uid();
2673 return do_send_specific(tgid, pid, sig, &info);
2677 * sys_tgkill - send signal to one specific thread
2678 * @tgid: the thread group ID of the thread
2679 * @pid: the PID of the thread
2680 * @sig: signal to be sent
2682 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2683 * exists but it's not belonging to the target process anymore. This
2684 * method solves the problem of threads exiting and PIDs getting reused.
2686 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2688 /* This is only valid for single tasks */
2689 if (pid <= 0 || tgid <= 0)
2690 return -EINVAL;
2692 return do_tkill(tgid, pid, sig);
2696 * sys_tkill - send signal to one specific task
2697 * @pid: the PID of the task
2698 * @sig: signal to be sent
2700 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2702 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2704 /* This is only valid for single tasks */
2705 if (pid <= 0)
2706 return -EINVAL;
2708 return do_tkill(0, pid, sig);
2712 * sys_rt_sigqueueinfo - send signal information to a signal
2713 * @pid: the PID of the thread
2714 * @sig: signal to be sent
2715 * @uinfo: signal info to be sent
2717 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2718 siginfo_t __user *, uinfo)
2720 siginfo_t info;
2722 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2723 return -EFAULT;
2725 /* Not even root can pretend to send signals from the kernel.
2726 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2728 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2729 /* We used to allow any < 0 si_code */
2730 WARN_ON_ONCE(info.si_code < 0);
2731 return -EPERM;
2733 info.si_signo = sig;
2735 /* POSIX.1b doesn't mention process groups. */
2736 return kill_proc_info(sig, &info, pid);
2739 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2741 /* This is only valid for single tasks */
2742 if (pid <= 0 || tgid <= 0)
2743 return -EINVAL;
2745 /* Not even root can pretend to send signals from the kernel.
2746 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2748 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2749 /* We used to allow any < 0 si_code */
2750 WARN_ON_ONCE(info->si_code < 0);
2751 return -EPERM;
2753 info->si_signo = sig;
2755 return do_send_specific(tgid, pid, sig, info);
2758 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2759 siginfo_t __user *, uinfo)
2761 siginfo_t info;
2763 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2764 return -EFAULT;
2766 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2769 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2771 struct task_struct *t = current;
2772 struct k_sigaction *k;
2773 sigset_t mask;
2775 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2776 return -EINVAL;
2778 k = &t->sighand->action[sig-1];
2780 spin_lock_irq(&current->sighand->siglock);
2781 if (oact)
2782 *oact = *k;
2784 if (act) {
2785 sigdelsetmask(&act->sa.sa_mask,
2786 sigmask(SIGKILL) | sigmask(SIGSTOP));
2787 *k = *act;
2789 * POSIX 3.3.1.3:
2790 * "Setting a signal action to SIG_IGN for a signal that is
2791 * pending shall cause the pending signal to be discarded,
2792 * whether or not it is blocked."
2794 * "Setting a signal action to SIG_DFL for a signal that is
2795 * pending and whose default action is to ignore the signal
2796 * (for example, SIGCHLD), shall cause the pending signal to
2797 * be discarded, whether or not it is blocked"
2799 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2800 sigemptyset(&mask);
2801 sigaddset(&mask, sig);
2802 rm_from_queue_full(&mask, &t->signal->shared_pending);
2803 do {
2804 rm_from_queue_full(&mask, &t->pending);
2805 t = next_thread(t);
2806 } while (t != current);
2810 spin_unlock_irq(&current->sighand->siglock);
2811 return 0;
2814 int
2815 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2817 stack_t oss;
2818 int error;
2820 oss.ss_sp = (void __user *) current->sas_ss_sp;
2821 oss.ss_size = current->sas_ss_size;
2822 oss.ss_flags = sas_ss_flags(sp);
2824 if (uss) {
2825 void __user *ss_sp;
2826 size_t ss_size;
2827 int ss_flags;
2829 error = -EFAULT;
2830 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2831 goto out;
2832 error = __get_user(ss_sp, &uss->ss_sp) |
2833 __get_user(ss_flags, &uss->ss_flags) |
2834 __get_user(ss_size, &uss->ss_size);
2835 if (error)
2836 goto out;
2838 error = -EPERM;
2839 if (on_sig_stack(sp))
2840 goto out;
2842 error = -EINVAL;
2844 * Note - this code used to test ss_flags incorrectly:
2845 * old code may have been written using ss_flags==0
2846 * to mean ss_flags==SS_ONSTACK (as this was the only
2847 * way that worked) - this fix preserves that older
2848 * mechanism.
2850 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2851 goto out;
2853 if (ss_flags == SS_DISABLE) {
2854 ss_size = 0;
2855 ss_sp = NULL;
2856 } else {
2857 error = -ENOMEM;
2858 if (ss_size < MINSIGSTKSZ)
2859 goto out;
2862 current->sas_ss_sp = (unsigned long) ss_sp;
2863 current->sas_ss_size = ss_size;
2866 error = 0;
2867 if (uoss) {
2868 error = -EFAULT;
2869 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2870 goto out;
2871 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2872 __put_user(oss.ss_size, &uoss->ss_size) |
2873 __put_user(oss.ss_flags, &uoss->ss_flags);
2876 out:
2877 return error;
2880 #ifdef __ARCH_WANT_SYS_SIGPENDING
2883 * sys_sigpending - examine pending signals
2884 * @set: where mask of pending signal is returned
2886 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2888 return do_sigpending(set, sizeof(*set));
2891 #endif
2893 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2895 * sys_sigprocmask - examine and change blocked signals
2896 * @how: whether to add, remove, or set signals
2897 * @nset: signals to add or remove (if non-null)
2898 * @oset: previous value of signal mask if non-null
2900 * Some platforms have their own version with special arguments;
2901 * others support only sys_rt_sigprocmask.
2904 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
2905 old_sigset_t __user *, oset)
2907 old_sigset_t old_set, new_set;
2908 sigset_t new_blocked;
2910 old_set = current->blocked.sig[0];
2912 if (nset) {
2913 if (copy_from_user(&new_set, nset, sizeof(*nset)))
2914 return -EFAULT;
2915 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2917 new_blocked = current->blocked;
2919 switch (how) {
2920 case SIG_BLOCK:
2921 sigaddsetmask(&new_blocked, new_set);
2922 break;
2923 case SIG_UNBLOCK:
2924 sigdelsetmask(&new_blocked, new_set);
2925 break;
2926 case SIG_SETMASK:
2927 new_blocked.sig[0] = new_set;
2928 break;
2929 default:
2930 return -EINVAL;
2933 set_current_blocked(&new_blocked);
2936 if (oset) {
2937 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2938 return -EFAULT;
2941 return 0;
2943 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2945 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2947 * sys_rt_sigaction - alter an action taken by a process
2948 * @sig: signal to be sent
2949 * @act: new sigaction
2950 * @oact: used to save the previous sigaction
2951 * @sigsetsize: size of sigset_t type
2953 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2954 const struct sigaction __user *, act,
2955 struct sigaction __user *, oact,
2956 size_t, sigsetsize)
2958 struct k_sigaction new_sa, old_sa;
2959 int ret = -EINVAL;
2961 /* XXX: Don't preclude handling different sized sigset_t's. */
2962 if (sigsetsize != sizeof(sigset_t))
2963 goto out;
2965 if (act) {
2966 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2967 return -EFAULT;
2970 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2972 if (!ret && oact) {
2973 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2974 return -EFAULT;
2976 out:
2977 return ret;
2979 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2981 #ifdef __ARCH_WANT_SYS_SGETMASK
2984 * For backwards compatibility. Functionality superseded by sigprocmask.
2986 SYSCALL_DEFINE0(sgetmask)
2988 /* SMP safe */
2989 return current->blocked.sig[0];
2992 SYSCALL_DEFINE1(ssetmask, int, newmask)
2994 int old;
2996 spin_lock_irq(&current->sighand->siglock);
2997 old = current->blocked.sig[0];
2999 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
3000 sigmask(SIGSTOP)));
3001 recalc_sigpending();
3002 spin_unlock_irq(&current->sighand->siglock);
3004 return old;
3006 #endif /* __ARCH_WANT_SGETMASK */
3008 #ifdef __ARCH_WANT_SYS_SIGNAL
3010 * For backwards compatibility. Functionality superseded by sigaction.
3012 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3014 struct k_sigaction new_sa, old_sa;
3015 int ret;
3017 new_sa.sa.sa_handler = handler;
3018 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3019 sigemptyset(&new_sa.sa.sa_mask);
3021 ret = do_sigaction(sig, &new_sa, &old_sa);
3023 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3025 #endif /* __ARCH_WANT_SYS_SIGNAL */
3027 #ifdef __ARCH_WANT_SYS_PAUSE
3029 SYSCALL_DEFINE0(pause)
3031 while (!signal_pending(current)) {
3032 current->state = TASK_INTERRUPTIBLE;
3033 schedule();
3035 return -ERESTARTNOHAND;
3038 #endif
3040 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3042 * sys_rt_sigsuspend - replace the signal mask for a value with the
3043 * @unewset value until a signal is received
3044 * @unewset: new signal mask value
3045 * @sigsetsize: size of sigset_t type
3047 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3049 sigset_t newset;
3051 /* XXX: Don't preclude handling different sized sigset_t's. */
3052 if (sigsetsize != sizeof(sigset_t))
3053 return -EINVAL;
3055 if (copy_from_user(&newset, unewset, sizeof(newset)))
3056 return -EFAULT;
3057 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3059 spin_lock_irq(&current->sighand->siglock);
3060 current->saved_sigmask = current->blocked;
3061 current->blocked = newset;
3062 recalc_sigpending();
3063 spin_unlock_irq(&current->sighand->siglock);
3065 current->state = TASK_INTERRUPTIBLE;
3066 schedule();
3067 set_restore_sigmask();
3068 return -ERESTARTNOHAND;
3070 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3072 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3074 return NULL;
3077 void __init signals_init(void)
3079 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3082 #ifdef CONFIG_KGDB_KDB
3083 #include <linux/kdb.h>
3085 * kdb_send_sig_info - Allows kdb to send signals without exposing
3086 * signal internals. This function checks if the required locks are
3087 * available before calling the main signal code, to avoid kdb
3088 * deadlocks.
3090 void
3091 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3093 static struct task_struct *kdb_prev_t;
3094 int sig, new_t;
3095 if (!spin_trylock(&t->sighand->siglock)) {
3096 kdb_printf("Can't do kill command now.\n"
3097 "The sigmask lock is held somewhere else in "
3098 "kernel, try again later\n");
3099 return;
3101 spin_unlock(&t->sighand->siglock);
3102 new_t = kdb_prev_t != t;
3103 kdb_prev_t = t;
3104 if (t->state != TASK_RUNNING && new_t) {
3105 kdb_printf("Process is not RUNNING, sending a signal from "
3106 "kdb risks deadlock\n"
3107 "on the run queue locks. "
3108 "The signal has _not_ been sent.\n"
3109 "Reissue the kill command if you want to risk "
3110 "the deadlock.\n");
3111 return;
3113 sig = info->si_signo;
3114 if (send_sig_info(sig, info, t))
3115 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3116 sig, t->pid);
3117 else
3118 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3120 #endif /* CONFIG_KGDB_KDB */