net: ipmr: add support for dumping routing tables over netlink
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / pktcdvd.c
blobddf19425245dd4004832cd6c7c4343f8ba8764ec
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <linux/slab.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_ioctl.h>
63 #include <scsi/scsi.h>
64 #include <linux/debugfs.h>
65 #include <linux/device.h>
67 #include <asm/uaccess.h>
69 #define DRIVER_NAME "pktcdvd"
71 #if PACKET_DEBUG
72 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #else
74 #define DPRINTK(fmt, args...)
75 #endif
77 #if PACKET_DEBUG > 1
78 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
79 #else
80 #define VPRINTK(fmt, args...)
81 #endif
83 #define MAX_SPEED 0xffff
85 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
88 static struct proc_dir_entry *pkt_proc;
89 static int pktdev_major;
90 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
91 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
92 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
93 static mempool_t *psd_pool;
95 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
96 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
98 /* forward declaration */
99 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
100 static int pkt_remove_dev(dev_t pkt_dev);
101 static int pkt_seq_show(struct seq_file *m, void *p);
106 * create and register a pktcdvd kernel object.
108 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
109 const char* name,
110 struct kobject* parent,
111 struct kobj_type* ktype)
113 struct pktcdvd_kobj *p;
114 int error;
116 p = kzalloc(sizeof(*p), GFP_KERNEL);
117 if (!p)
118 return NULL;
119 p->pd = pd;
120 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
121 if (error) {
122 kobject_put(&p->kobj);
123 return NULL;
125 kobject_uevent(&p->kobj, KOBJ_ADD);
126 return p;
129 * remove a pktcdvd kernel object.
131 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
133 if (p)
134 kobject_put(&p->kobj);
137 * default release function for pktcdvd kernel objects.
139 static void pkt_kobj_release(struct kobject *kobj)
141 kfree(to_pktcdvdkobj(kobj));
145 /**********************************************************
147 * sysfs interface for pktcdvd
148 * by (C) 2006 Thomas Maier <balagi@justmail.de>
150 **********************************************************/
152 #define DEF_ATTR(_obj,_name,_mode) \
153 static struct attribute _obj = { .name = _name, .mode = _mode }
155 /**********************************************************
156 /sys/class/pktcdvd/pktcdvd[0-7]/
157 stat/reset
158 stat/packets_started
159 stat/packets_finished
160 stat/kb_written
161 stat/kb_read
162 stat/kb_read_gather
163 write_queue/size
164 write_queue/congestion_off
165 write_queue/congestion_on
166 **********************************************************/
168 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
169 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
170 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
171 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
172 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
173 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
175 static struct attribute *kobj_pkt_attrs_stat[] = {
176 &kobj_pkt_attr_st1,
177 &kobj_pkt_attr_st2,
178 &kobj_pkt_attr_st3,
179 &kobj_pkt_attr_st4,
180 &kobj_pkt_attr_st5,
181 &kobj_pkt_attr_st6,
182 NULL
185 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
186 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
187 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
189 static struct attribute *kobj_pkt_attrs_wqueue[] = {
190 &kobj_pkt_attr_wq1,
191 &kobj_pkt_attr_wq2,
192 &kobj_pkt_attr_wq3,
193 NULL
196 static ssize_t kobj_pkt_show(struct kobject *kobj,
197 struct attribute *attr, char *data)
199 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
200 int n = 0;
201 int v;
202 if (strcmp(attr->name, "packets_started") == 0) {
203 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
205 } else if (strcmp(attr->name, "packets_finished") == 0) {
206 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
208 } else if (strcmp(attr->name, "kb_written") == 0) {
209 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
211 } else if (strcmp(attr->name, "kb_read") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
214 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
217 } else if (strcmp(attr->name, "size") == 0) {
218 spin_lock(&pd->lock);
219 v = pd->bio_queue_size;
220 spin_unlock(&pd->lock);
221 n = sprintf(data, "%d\n", v);
223 } else if (strcmp(attr->name, "congestion_off") == 0) {
224 spin_lock(&pd->lock);
225 v = pd->write_congestion_off;
226 spin_unlock(&pd->lock);
227 n = sprintf(data, "%d\n", v);
229 } else if (strcmp(attr->name, "congestion_on") == 0) {
230 spin_lock(&pd->lock);
231 v = pd->write_congestion_on;
232 spin_unlock(&pd->lock);
233 n = sprintf(data, "%d\n", v);
235 return n;
238 static void init_write_congestion_marks(int* lo, int* hi)
240 if (*hi > 0) {
241 *hi = max(*hi, 500);
242 *hi = min(*hi, 1000000);
243 if (*lo <= 0)
244 *lo = *hi - 100;
245 else {
246 *lo = min(*lo, *hi - 100);
247 *lo = max(*lo, 100);
249 } else {
250 *hi = -1;
251 *lo = -1;
255 static ssize_t kobj_pkt_store(struct kobject *kobj,
256 struct attribute *attr,
257 const char *data, size_t len)
259 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
260 int val;
262 if (strcmp(attr->name, "reset") == 0 && len > 0) {
263 pd->stats.pkt_started = 0;
264 pd->stats.pkt_ended = 0;
265 pd->stats.secs_w = 0;
266 pd->stats.secs_rg = 0;
267 pd->stats.secs_r = 0;
269 } else if (strcmp(attr->name, "congestion_off") == 0
270 && sscanf(data, "%d", &val) == 1) {
271 spin_lock(&pd->lock);
272 pd->write_congestion_off = val;
273 init_write_congestion_marks(&pd->write_congestion_off,
274 &pd->write_congestion_on);
275 spin_unlock(&pd->lock);
277 } else if (strcmp(attr->name, "congestion_on") == 0
278 && sscanf(data, "%d", &val) == 1) {
279 spin_lock(&pd->lock);
280 pd->write_congestion_on = val;
281 init_write_congestion_marks(&pd->write_congestion_off,
282 &pd->write_congestion_on);
283 spin_unlock(&pd->lock);
285 return len;
288 static const struct sysfs_ops kobj_pkt_ops = {
289 .show = kobj_pkt_show,
290 .store = kobj_pkt_store
292 static struct kobj_type kobj_pkt_type_stat = {
293 .release = pkt_kobj_release,
294 .sysfs_ops = &kobj_pkt_ops,
295 .default_attrs = kobj_pkt_attrs_stat
297 static struct kobj_type kobj_pkt_type_wqueue = {
298 .release = pkt_kobj_release,
299 .sysfs_ops = &kobj_pkt_ops,
300 .default_attrs = kobj_pkt_attrs_wqueue
303 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
305 if (class_pktcdvd) {
306 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
307 "%s", pd->name);
308 if (IS_ERR(pd->dev))
309 pd->dev = NULL;
311 if (pd->dev) {
312 pd->kobj_stat = pkt_kobj_create(pd, "stat",
313 &pd->dev->kobj,
314 &kobj_pkt_type_stat);
315 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
316 &pd->dev->kobj,
317 &kobj_pkt_type_wqueue);
321 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
323 pkt_kobj_remove(pd->kobj_stat);
324 pkt_kobj_remove(pd->kobj_wqueue);
325 if (class_pktcdvd)
326 device_unregister(pd->dev);
330 /********************************************************************
331 /sys/class/pktcdvd/
332 add map block device
333 remove unmap packet dev
334 device_map show mappings
335 *******************************************************************/
337 static void class_pktcdvd_release(struct class *cls)
339 kfree(cls);
341 static ssize_t class_pktcdvd_show_map(struct class *c,
342 struct class_attribute *attr,
343 char *data)
345 int n = 0;
346 int idx;
347 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
348 for (idx = 0; idx < MAX_WRITERS; idx++) {
349 struct pktcdvd_device *pd = pkt_devs[idx];
350 if (!pd)
351 continue;
352 n += sprintf(data+n, "%s %u:%u %u:%u\n",
353 pd->name,
354 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
355 MAJOR(pd->bdev->bd_dev),
356 MINOR(pd->bdev->bd_dev));
358 mutex_unlock(&ctl_mutex);
359 return n;
362 static ssize_t class_pktcdvd_store_add(struct class *c,
363 struct class_attribute *attr,
364 const char *buf,
365 size_t count)
367 unsigned int major, minor;
369 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
370 /* pkt_setup_dev() expects caller to hold reference to self */
371 if (!try_module_get(THIS_MODULE))
372 return -ENODEV;
374 pkt_setup_dev(MKDEV(major, minor), NULL);
376 module_put(THIS_MODULE);
378 return count;
381 return -EINVAL;
384 static ssize_t class_pktcdvd_store_remove(struct class *c,
385 struct class_attribute *attr,
386 const char *buf,
387 size_t count)
389 unsigned int major, minor;
390 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
391 pkt_remove_dev(MKDEV(major, minor));
392 return count;
394 return -EINVAL;
397 static struct class_attribute class_pktcdvd_attrs[] = {
398 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
399 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
400 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
401 __ATTR_NULL
405 static int pkt_sysfs_init(void)
407 int ret = 0;
410 * create control files in sysfs
411 * /sys/class/pktcdvd/...
413 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
414 if (!class_pktcdvd)
415 return -ENOMEM;
416 class_pktcdvd->name = DRIVER_NAME;
417 class_pktcdvd->owner = THIS_MODULE;
418 class_pktcdvd->class_release = class_pktcdvd_release;
419 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
420 ret = class_register(class_pktcdvd);
421 if (ret) {
422 kfree(class_pktcdvd);
423 class_pktcdvd = NULL;
424 printk(DRIVER_NAME": failed to create class pktcdvd\n");
425 return ret;
427 return 0;
430 static void pkt_sysfs_cleanup(void)
432 if (class_pktcdvd)
433 class_destroy(class_pktcdvd);
434 class_pktcdvd = NULL;
437 /********************************************************************
438 entries in debugfs
440 /sys/kernel/debug/pktcdvd[0-7]/
441 info
443 *******************************************************************/
445 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
447 return pkt_seq_show(m, p);
450 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
452 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455 static const struct file_operations debug_fops = {
456 .open = pkt_debugfs_fops_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
460 .owner = THIS_MODULE,
463 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
465 if (!pkt_debugfs_root)
466 return;
467 pd->dfs_f_info = NULL;
468 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
469 if (IS_ERR(pd->dfs_d_root)) {
470 pd->dfs_d_root = NULL;
471 return;
473 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
474 pd->dfs_d_root, pd, &debug_fops);
475 if (IS_ERR(pd->dfs_f_info)) {
476 pd->dfs_f_info = NULL;
477 return;
481 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
483 if (!pkt_debugfs_root)
484 return;
485 if (pd->dfs_f_info)
486 debugfs_remove(pd->dfs_f_info);
487 pd->dfs_f_info = NULL;
488 if (pd->dfs_d_root)
489 debugfs_remove(pd->dfs_d_root);
490 pd->dfs_d_root = NULL;
493 static void pkt_debugfs_init(void)
495 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
496 if (IS_ERR(pkt_debugfs_root)) {
497 pkt_debugfs_root = NULL;
498 return;
502 static void pkt_debugfs_cleanup(void)
504 if (!pkt_debugfs_root)
505 return;
506 debugfs_remove(pkt_debugfs_root);
507 pkt_debugfs_root = NULL;
510 /* ----------------------------------------------------------*/
513 static void pkt_bio_finished(struct pktcdvd_device *pd)
515 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
516 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
517 VPRINTK(DRIVER_NAME": queue empty\n");
518 atomic_set(&pd->iosched.attention, 1);
519 wake_up(&pd->wqueue);
523 static void pkt_bio_destructor(struct bio *bio)
525 kfree(bio->bi_io_vec);
526 kfree(bio);
529 static struct bio *pkt_bio_alloc(int nr_iovecs)
531 struct bio_vec *bvl = NULL;
532 struct bio *bio;
534 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
535 if (!bio)
536 goto no_bio;
537 bio_init(bio);
539 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
540 if (!bvl)
541 goto no_bvl;
543 bio->bi_max_vecs = nr_iovecs;
544 bio->bi_io_vec = bvl;
545 bio->bi_destructor = pkt_bio_destructor;
547 return bio;
549 no_bvl:
550 kfree(bio);
551 no_bio:
552 return NULL;
556 * Allocate a packet_data struct
558 static struct packet_data *pkt_alloc_packet_data(int frames)
560 int i;
561 struct packet_data *pkt;
563 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
564 if (!pkt)
565 goto no_pkt;
567 pkt->frames = frames;
568 pkt->w_bio = pkt_bio_alloc(frames);
569 if (!pkt->w_bio)
570 goto no_bio;
572 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
573 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
574 if (!pkt->pages[i])
575 goto no_page;
578 spin_lock_init(&pkt->lock);
579 bio_list_init(&pkt->orig_bios);
581 for (i = 0; i < frames; i++) {
582 struct bio *bio = pkt_bio_alloc(1);
583 if (!bio)
584 goto no_rd_bio;
585 pkt->r_bios[i] = bio;
588 return pkt;
590 no_rd_bio:
591 for (i = 0; i < frames; i++) {
592 struct bio *bio = pkt->r_bios[i];
593 if (bio)
594 bio_put(bio);
597 no_page:
598 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
599 if (pkt->pages[i])
600 __free_page(pkt->pages[i]);
601 bio_put(pkt->w_bio);
602 no_bio:
603 kfree(pkt);
604 no_pkt:
605 return NULL;
609 * Free a packet_data struct
611 static void pkt_free_packet_data(struct packet_data *pkt)
613 int i;
615 for (i = 0; i < pkt->frames; i++) {
616 struct bio *bio = pkt->r_bios[i];
617 if (bio)
618 bio_put(bio);
620 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
621 __free_page(pkt->pages[i]);
622 bio_put(pkt->w_bio);
623 kfree(pkt);
626 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
628 struct packet_data *pkt, *next;
630 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
632 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
633 pkt_free_packet_data(pkt);
635 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
640 struct packet_data *pkt;
642 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
644 while (nr_packets > 0) {
645 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
646 if (!pkt) {
647 pkt_shrink_pktlist(pd);
648 return 0;
650 pkt->id = nr_packets;
651 pkt->pd = pd;
652 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
653 nr_packets--;
655 return 1;
658 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
660 struct rb_node *n = rb_next(&node->rb_node);
661 if (!n)
662 return NULL;
663 return rb_entry(n, struct pkt_rb_node, rb_node);
666 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
668 rb_erase(&node->rb_node, &pd->bio_queue);
669 mempool_free(node, pd->rb_pool);
670 pd->bio_queue_size--;
671 BUG_ON(pd->bio_queue_size < 0);
675 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
677 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
679 struct rb_node *n = pd->bio_queue.rb_node;
680 struct rb_node *next;
681 struct pkt_rb_node *tmp;
683 if (!n) {
684 BUG_ON(pd->bio_queue_size > 0);
685 return NULL;
688 for (;;) {
689 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
690 if (s <= tmp->bio->bi_sector)
691 next = n->rb_left;
692 else
693 next = n->rb_right;
694 if (!next)
695 break;
696 n = next;
699 if (s > tmp->bio->bi_sector) {
700 tmp = pkt_rbtree_next(tmp);
701 if (!tmp)
702 return NULL;
704 BUG_ON(s > tmp->bio->bi_sector);
705 return tmp;
709 * Insert a node into the pd->bio_queue rb tree.
711 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
713 struct rb_node **p = &pd->bio_queue.rb_node;
714 struct rb_node *parent = NULL;
715 sector_t s = node->bio->bi_sector;
716 struct pkt_rb_node *tmp;
718 while (*p) {
719 parent = *p;
720 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
721 if (s < tmp->bio->bi_sector)
722 p = &(*p)->rb_left;
723 else
724 p = &(*p)->rb_right;
726 rb_link_node(&node->rb_node, parent, p);
727 rb_insert_color(&node->rb_node, &pd->bio_queue);
728 pd->bio_queue_size++;
732 * Send a packet_command to the underlying block device and
733 * wait for completion.
735 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
737 struct request_queue *q = bdev_get_queue(pd->bdev);
738 struct request *rq;
739 int ret = 0;
741 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
742 WRITE : READ, __GFP_WAIT);
744 if (cgc->buflen) {
745 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
746 goto out;
749 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
750 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
752 rq->timeout = 60*HZ;
753 rq->cmd_type = REQ_TYPE_BLOCK_PC;
754 rq->cmd_flags |= REQ_HARDBARRIER;
755 if (cgc->quiet)
756 rq->cmd_flags |= REQ_QUIET;
758 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
759 if (rq->errors)
760 ret = -EIO;
761 out:
762 blk_put_request(rq);
763 return ret;
767 * A generic sense dump / resolve mechanism should be implemented across
768 * all ATAPI + SCSI devices.
770 static void pkt_dump_sense(struct packet_command *cgc)
772 static char *info[9] = { "No sense", "Recovered error", "Not ready",
773 "Medium error", "Hardware error", "Illegal request",
774 "Unit attention", "Data protect", "Blank check" };
775 int i;
776 struct request_sense *sense = cgc->sense;
778 printk(DRIVER_NAME":");
779 for (i = 0; i < CDROM_PACKET_SIZE; i++)
780 printk(" %02x", cgc->cmd[i]);
781 printk(" - ");
783 if (sense == NULL) {
784 printk("no sense\n");
785 return;
788 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790 if (sense->sense_key > 8) {
791 printk(" (INVALID)\n");
792 return;
795 printk(" (%s)\n", info[sense->sense_key]);
799 * flush the drive cache to media
801 static int pkt_flush_cache(struct pktcdvd_device *pd)
803 struct packet_command cgc;
805 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
806 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
807 cgc.quiet = 1;
810 * the IMMED bit -- we default to not setting it, although that
811 * would allow a much faster close, this is safer
813 #if 0
814 cgc.cmd[1] = 1 << 1;
815 #endif
816 return pkt_generic_packet(pd, &cgc);
820 * speed is given as the normal factor, e.g. 4 for 4x
822 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
823 unsigned write_speed, unsigned read_speed)
825 struct packet_command cgc;
826 struct request_sense sense;
827 int ret;
829 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
830 cgc.sense = &sense;
831 cgc.cmd[0] = GPCMD_SET_SPEED;
832 cgc.cmd[2] = (read_speed >> 8) & 0xff;
833 cgc.cmd[3] = read_speed & 0xff;
834 cgc.cmd[4] = (write_speed >> 8) & 0xff;
835 cgc.cmd[5] = write_speed & 0xff;
837 if ((ret = pkt_generic_packet(pd, &cgc)))
838 pkt_dump_sense(&cgc);
840 return ret;
844 * Queue a bio for processing by the low-level CD device. Must be called
845 * from process context.
847 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849 spin_lock(&pd->iosched.lock);
850 if (bio_data_dir(bio) == READ)
851 bio_list_add(&pd->iosched.read_queue, bio);
852 else
853 bio_list_add(&pd->iosched.write_queue, bio);
854 spin_unlock(&pd->iosched.lock);
856 atomic_set(&pd->iosched.attention, 1);
857 wake_up(&pd->wqueue);
861 * Process the queued read/write requests. This function handles special
862 * requirements for CDRW drives:
863 * - A cache flush command must be inserted before a read request if the
864 * previous request was a write.
865 * - Switching between reading and writing is slow, so don't do it more often
866 * than necessary.
867 * - Optimize for throughput at the expense of latency. This means that streaming
868 * writes will never be interrupted by a read, but if the drive has to seek
869 * before the next write, switch to reading instead if there are any pending
870 * read requests.
871 * - Set the read speed according to current usage pattern. When only reading
872 * from the device, it's best to use the highest possible read speed, but
873 * when switching often between reading and writing, it's better to have the
874 * same read and write speeds.
876 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
879 if (atomic_read(&pd->iosched.attention) == 0)
880 return;
881 atomic_set(&pd->iosched.attention, 0);
883 for (;;) {
884 struct bio *bio;
885 int reads_queued, writes_queued;
887 spin_lock(&pd->iosched.lock);
888 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
889 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
890 spin_unlock(&pd->iosched.lock);
892 if (!reads_queued && !writes_queued)
893 break;
895 if (pd->iosched.writing) {
896 int need_write_seek = 1;
897 spin_lock(&pd->iosched.lock);
898 bio = bio_list_peek(&pd->iosched.write_queue);
899 spin_unlock(&pd->iosched.lock);
900 if (bio && (bio->bi_sector == pd->iosched.last_write))
901 need_write_seek = 0;
902 if (need_write_seek && reads_queued) {
903 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
904 VPRINTK(DRIVER_NAME": write, waiting\n");
905 break;
907 pkt_flush_cache(pd);
908 pd->iosched.writing = 0;
910 } else {
911 if (!reads_queued && writes_queued) {
912 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
913 VPRINTK(DRIVER_NAME": read, waiting\n");
914 break;
916 pd->iosched.writing = 1;
920 spin_lock(&pd->iosched.lock);
921 if (pd->iosched.writing)
922 bio = bio_list_pop(&pd->iosched.write_queue);
923 else
924 bio = bio_list_pop(&pd->iosched.read_queue);
925 spin_unlock(&pd->iosched.lock);
927 if (!bio)
928 continue;
930 if (bio_data_dir(bio) == READ)
931 pd->iosched.successive_reads += bio->bi_size >> 10;
932 else {
933 pd->iosched.successive_reads = 0;
934 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
937 if (pd->read_speed == pd->write_speed) {
938 pd->read_speed = MAX_SPEED;
939 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941 } else {
942 if (pd->read_speed != pd->write_speed) {
943 pd->read_speed = pd->write_speed;
944 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
948 atomic_inc(&pd->cdrw.pending_bios);
949 generic_make_request(bio);
954 * Special care is needed if the underlying block device has a small
955 * max_phys_segments value.
957 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959 if ((pd->settings.size << 9) / CD_FRAMESIZE
960 <= queue_max_segments(q)) {
962 * The cdrom device can handle one segment/frame
964 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
965 return 0;
966 } else if ((pd->settings.size << 9) / PAGE_SIZE
967 <= queue_max_segments(q)) {
969 * We can handle this case at the expense of some extra memory
970 * copies during write operations
972 set_bit(PACKET_MERGE_SEGS, &pd->flags);
973 return 0;
974 } else {
975 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
976 return -EIO;
981 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
983 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985 unsigned int copy_size = CD_FRAMESIZE;
987 while (copy_size > 0) {
988 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
989 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
990 src_bvl->bv_offset + offs;
991 void *vto = page_address(dst_page) + dst_offs;
992 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994 BUG_ON(len < 0);
995 memcpy(vto, vfrom, len);
996 kunmap_atomic(vfrom, KM_USER0);
998 seg++;
999 offs = 0;
1000 dst_offs += len;
1001 copy_size -= len;
1006 * Copy all data for this packet to pkt->pages[], so that
1007 * a) The number of required segments for the write bio is minimized, which
1008 * is necessary for some scsi controllers.
1009 * b) The data can be used as cache to avoid read requests if we receive a
1010 * new write request for the same zone.
1012 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014 int f, p, offs;
1016 /* Copy all data to pkt->pages[] */
1017 p = 0;
1018 offs = 0;
1019 for (f = 0; f < pkt->frames; f++) {
1020 if (bvec[f].bv_page != pkt->pages[p]) {
1021 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1022 void *vto = page_address(pkt->pages[p]) + offs;
1023 memcpy(vto, vfrom, CD_FRAMESIZE);
1024 kunmap_atomic(vfrom, KM_USER0);
1025 bvec[f].bv_page = pkt->pages[p];
1026 bvec[f].bv_offset = offs;
1027 } else {
1028 BUG_ON(bvec[f].bv_offset != offs);
1030 offs += CD_FRAMESIZE;
1031 if (offs >= PAGE_SIZE) {
1032 offs = 0;
1033 p++;
1038 static void pkt_end_io_read(struct bio *bio, int err)
1040 struct packet_data *pkt = bio->bi_private;
1041 struct pktcdvd_device *pd = pkt->pd;
1042 BUG_ON(!pd);
1044 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1045 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047 if (err)
1048 atomic_inc(&pkt->io_errors);
1049 if (atomic_dec_and_test(&pkt->io_wait)) {
1050 atomic_inc(&pkt->run_sm);
1051 wake_up(&pd->wqueue);
1053 pkt_bio_finished(pd);
1056 static void pkt_end_io_packet_write(struct bio *bio, int err)
1058 struct packet_data *pkt = bio->bi_private;
1059 struct pktcdvd_device *pd = pkt->pd;
1060 BUG_ON(!pd);
1062 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064 pd->stats.pkt_ended++;
1066 pkt_bio_finished(pd);
1067 atomic_dec(&pkt->io_wait);
1068 atomic_inc(&pkt->run_sm);
1069 wake_up(&pd->wqueue);
1073 * Schedule reads for the holes in a packet
1075 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077 int frames_read = 0;
1078 struct bio *bio;
1079 int f;
1080 char written[PACKET_MAX_SIZE];
1082 BUG_ON(bio_list_empty(&pkt->orig_bios));
1084 atomic_set(&pkt->io_wait, 0);
1085 atomic_set(&pkt->io_errors, 0);
1088 * Figure out which frames we need to read before we can write.
1090 memset(written, 0, sizeof(written));
1091 spin_lock(&pkt->lock);
1092 bio_list_for_each(bio, &pkt->orig_bios) {
1093 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1094 int num_frames = bio->bi_size / CD_FRAMESIZE;
1095 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1096 BUG_ON(first_frame < 0);
1097 BUG_ON(first_frame + num_frames > pkt->frames);
1098 for (f = first_frame; f < first_frame + num_frames; f++)
1099 written[f] = 1;
1101 spin_unlock(&pkt->lock);
1103 if (pkt->cache_valid) {
1104 VPRINTK("pkt_gather_data: zone %llx cached\n",
1105 (unsigned long long)pkt->sector);
1106 goto out_account;
1110 * Schedule reads for missing parts of the packet.
1112 for (f = 0; f < pkt->frames; f++) {
1113 struct bio_vec *vec;
1115 int p, offset;
1116 if (written[f])
1117 continue;
1118 bio = pkt->r_bios[f];
1119 vec = bio->bi_io_vec;
1120 bio_init(bio);
1121 bio->bi_max_vecs = 1;
1122 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1123 bio->bi_bdev = pd->bdev;
1124 bio->bi_end_io = pkt_end_io_read;
1125 bio->bi_private = pkt;
1126 bio->bi_io_vec = vec;
1127 bio->bi_destructor = pkt_bio_destructor;
1129 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1130 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1131 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1132 f, pkt->pages[p], offset);
1133 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1134 BUG();
1136 atomic_inc(&pkt->io_wait);
1137 bio->bi_rw = READ;
1138 pkt_queue_bio(pd, bio);
1139 frames_read++;
1142 out_account:
1143 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1144 frames_read, (unsigned long long)pkt->sector);
1145 pd->stats.pkt_started++;
1146 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1150 * Find a packet matching zone, or the least recently used packet if
1151 * there is no match.
1153 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155 struct packet_data *pkt;
1157 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1158 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1159 list_del_init(&pkt->list);
1160 if (pkt->sector != zone)
1161 pkt->cache_valid = 0;
1162 return pkt;
1165 BUG();
1166 return NULL;
1169 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171 if (pkt->cache_valid) {
1172 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1173 } else {
1174 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1179 * recover a failed write, query for relocation if possible
1181 * returns 1 if recovery is possible, or 0 if not
1184 static int pkt_start_recovery(struct packet_data *pkt)
1187 * FIXME. We need help from the file system to implement
1188 * recovery handling.
1190 return 0;
1191 #if 0
1192 struct request *rq = pkt->rq;
1193 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1194 struct block_device *pkt_bdev;
1195 struct super_block *sb = NULL;
1196 unsigned long old_block, new_block;
1197 sector_t new_sector;
1199 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1200 if (pkt_bdev) {
1201 sb = get_super(pkt_bdev);
1202 bdput(pkt_bdev);
1205 if (!sb)
1206 return 0;
1208 if (!sb->s_op || !sb->s_op->relocate_blocks)
1209 goto out;
1211 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1212 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1213 goto out;
1215 new_sector = new_block * (CD_FRAMESIZE >> 9);
1216 pkt->sector = new_sector;
1218 pkt->bio->bi_sector = new_sector;
1219 pkt->bio->bi_next = NULL;
1220 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1221 pkt->bio->bi_idx = 0;
1223 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1224 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1225 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1226 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1227 BUG_ON(pkt->bio->bi_private != pkt);
1229 drop_super(sb);
1230 return 1;
1232 out:
1233 drop_super(sb);
1234 return 0;
1235 #endif
1238 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240 #if PACKET_DEBUG > 1
1241 static const char *state_name[] = {
1242 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244 enum packet_data_state old_state = pkt->state;
1245 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1246 state_name[old_state], state_name[state]);
1247 #endif
1248 pkt->state = state;
1252 * Scan the work queue to see if we can start a new packet.
1253 * returns non-zero if any work was done.
1255 static int pkt_handle_queue(struct pktcdvd_device *pd)
1257 struct packet_data *pkt, *p;
1258 struct bio *bio = NULL;
1259 sector_t zone = 0; /* Suppress gcc warning */
1260 struct pkt_rb_node *node, *first_node;
1261 struct rb_node *n;
1262 int wakeup;
1264 VPRINTK("handle_queue\n");
1266 atomic_set(&pd->scan_queue, 0);
1268 if (list_empty(&pd->cdrw.pkt_free_list)) {
1269 VPRINTK("handle_queue: no pkt\n");
1270 return 0;
1274 * Try to find a zone we are not already working on.
1276 spin_lock(&pd->lock);
1277 first_node = pkt_rbtree_find(pd, pd->current_sector);
1278 if (!first_node) {
1279 n = rb_first(&pd->bio_queue);
1280 if (n)
1281 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283 node = first_node;
1284 while (node) {
1285 bio = node->bio;
1286 zone = ZONE(bio->bi_sector, pd);
1287 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1288 if (p->sector == zone) {
1289 bio = NULL;
1290 goto try_next_bio;
1293 break;
1294 try_next_bio:
1295 node = pkt_rbtree_next(node);
1296 if (!node) {
1297 n = rb_first(&pd->bio_queue);
1298 if (n)
1299 node = rb_entry(n, struct pkt_rb_node, rb_node);
1301 if (node == first_node)
1302 node = NULL;
1304 spin_unlock(&pd->lock);
1305 if (!bio) {
1306 VPRINTK("handle_queue: no bio\n");
1307 return 0;
1310 pkt = pkt_get_packet_data(pd, zone);
1312 pd->current_sector = zone + pd->settings.size;
1313 pkt->sector = zone;
1314 BUG_ON(pkt->frames != pd->settings.size >> 2);
1315 pkt->write_size = 0;
1318 * Scan work queue for bios in the same zone and link them
1319 * to this packet.
1321 spin_lock(&pd->lock);
1322 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1323 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1324 bio = node->bio;
1325 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1326 (unsigned long long)ZONE(bio->bi_sector, pd));
1327 if (ZONE(bio->bi_sector, pd) != zone)
1328 break;
1329 pkt_rbtree_erase(pd, node);
1330 spin_lock(&pkt->lock);
1331 bio_list_add(&pkt->orig_bios, bio);
1332 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1333 spin_unlock(&pkt->lock);
1335 /* check write congestion marks, and if bio_queue_size is
1336 below, wake up any waiters */
1337 wakeup = (pd->write_congestion_on > 0
1338 && pd->bio_queue_size <= pd->write_congestion_off);
1339 spin_unlock(&pd->lock);
1340 if (wakeup) {
1341 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1342 BLK_RW_ASYNC);
1345 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1346 pkt_set_state(pkt, PACKET_WAITING_STATE);
1347 atomic_set(&pkt->run_sm, 1);
1349 spin_lock(&pd->cdrw.active_list_lock);
1350 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1351 spin_unlock(&pd->cdrw.active_list_lock);
1353 return 1;
1357 * Assemble a bio to write one packet and queue the bio for processing
1358 * by the underlying block device.
1360 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362 struct bio *bio;
1363 int f;
1364 int frames_write;
1365 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367 for (f = 0; f < pkt->frames; f++) {
1368 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1369 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1373 * Fill-in bvec with data from orig_bios.
1375 frames_write = 0;
1376 spin_lock(&pkt->lock);
1377 bio_list_for_each(bio, &pkt->orig_bios) {
1378 int segment = bio->bi_idx;
1379 int src_offs = 0;
1380 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1381 int num_frames = bio->bi_size / CD_FRAMESIZE;
1382 BUG_ON(first_frame < 0);
1383 BUG_ON(first_frame + num_frames > pkt->frames);
1384 for (f = first_frame; f < first_frame + num_frames; f++) {
1385 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387 while (src_offs >= src_bvl->bv_len) {
1388 src_offs -= src_bvl->bv_len;
1389 segment++;
1390 BUG_ON(segment >= bio->bi_vcnt);
1391 src_bvl = bio_iovec_idx(bio, segment);
1394 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1395 bvec[f].bv_page = src_bvl->bv_page;
1396 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1397 } else {
1398 pkt_copy_bio_data(bio, segment, src_offs,
1399 bvec[f].bv_page, bvec[f].bv_offset);
1401 src_offs += CD_FRAMESIZE;
1402 frames_write++;
1405 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1406 spin_unlock(&pkt->lock);
1408 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1409 frames_write, (unsigned long long)pkt->sector);
1410 BUG_ON(frames_write != pkt->write_size);
1412 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1413 pkt_make_local_copy(pkt, bvec);
1414 pkt->cache_valid = 1;
1415 } else {
1416 pkt->cache_valid = 0;
1419 /* Start the write request */
1420 bio_init(pkt->w_bio);
1421 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1422 pkt->w_bio->bi_sector = pkt->sector;
1423 pkt->w_bio->bi_bdev = pd->bdev;
1424 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1425 pkt->w_bio->bi_private = pkt;
1426 pkt->w_bio->bi_io_vec = bvec;
1427 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1428 for (f = 0; f < pkt->frames; f++)
1429 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1430 BUG();
1431 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433 atomic_set(&pkt->io_wait, 1);
1434 pkt->w_bio->bi_rw = WRITE;
1435 pkt_queue_bio(pd, pkt->w_bio);
1438 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440 struct bio *bio;
1442 if (!uptodate)
1443 pkt->cache_valid = 0;
1445 /* Finish all bios corresponding to this packet */
1446 while ((bio = bio_list_pop(&pkt->orig_bios)))
1447 bio_endio(bio, uptodate ? 0 : -EIO);
1450 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452 int uptodate;
1454 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456 for (;;) {
1457 switch (pkt->state) {
1458 case PACKET_WAITING_STATE:
1459 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1460 return;
1462 pkt->sleep_time = 0;
1463 pkt_gather_data(pd, pkt);
1464 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1465 break;
1467 case PACKET_READ_WAIT_STATE:
1468 if (atomic_read(&pkt->io_wait) > 0)
1469 return;
1471 if (atomic_read(&pkt->io_errors) > 0) {
1472 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1473 } else {
1474 pkt_start_write(pd, pkt);
1476 break;
1478 case PACKET_WRITE_WAIT_STATE:
1479 if (atomic_read(&pkt->io_wait) > 0)
1480 return;
1482 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1483 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1484 } else {
1485 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487 break;
1489 case PACKET_RECOVERY_STATE:
1490 if (pkt_start_recovery(pkt)) {
1491 pkt_start_write(pd, pkt);
1492 } else {
1493 VPRINTK("No recovery possible\n");
1494 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496 break;
1498 case PACKET_FINISHED_STATE:
1499 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1500 pkt_finish_packet(pkt, uptodate);
1501 return;
1503 default:
1504 BUG();
1505 break;
1510 static void pkt_handle_packets(struct pktcdvd_device *pd)
1512 struct packet_data *pkt, *next;
1514 VPRINTK("pkt_handle_packets\n");
1517 * Run state machine for active packets
1519 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1520 if (atomic_read(&pkt->run_sm) > 0) {
1521 atomic_set(&pkt->run_sm, 0);
1522 pkt_run_state_machine(pd, pkt);
1527 * Move no longer active packets to the free list
1529 spin_lock(&pd->cdrw.active_list_lock);
1530 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1531 if (pkt->state == PACKET_FINISHED_STATE) {
1532 list_del(&pkt->list);
1533 pkt_put_packet_data(pd, pkt);
1534 pkt_set_state(pkt, PACKET_IDLE_STATE);
1535 atomic_set(&pd->scan_queue, 1);
1538 spin_unlock(&pd->cdrw.active_list_lock);
1541 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543 struct packet_data *pkt;
1544 int i;
1546 for (i = 0; i < PACKET_NUM_STATES; i++)
1547 states[i] = 0;
1549 spin_lock(&pd->cdrw.active_list_lock);
1550 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1551 states[pkt->state]++;
1553 spin_unlock(&pd->cdrw.active_list_lock);
1557 * kcdrwd is woken up when writes have been queued for one of our
1558 * registered devices
1560 static int kcdrwd(void *foobar)
1562 struct pktcdvd_device *pd = foobar;
1563 struct packet_data *pkt;
1564 long min_sleep_time, residue;
1566 set_user_nice(current, -20);
1567 set_freezable();
1569 for (;;) {
1570 DECLARE_WAITQUEUE(wait, current);
1573 * Wait until there is something to do
1575 add_wait_queue(&pd->wqueue, &wait);
1576 for (;;) {
1577 set_current_state(TASK_INTERRUPTIBLE);
1579 /* Check if we need to run pkt_handle_queue */
1580 if (atomic_read(&pd->scan_queue) > 0)
1581 goto work_to_do;
1583 /* Check if we need to run the state machine for some packet */
1584 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1585 if (atomic_read(&pkt->run_sm) > 0)
1586 goto work_to_do;
1589 /* Check if we need to process the iosched queues */
1590 if (atomic_read(&pd->iosched.attention) != 0)
1591 goto work_to_do;
1593 /* Otherwise, go to sleep */
1594 if (PACKET_DEBUG > 1) {
1595 int states[PACKET_NUM_STATES];
1596 pkt_count_states(pd, states);
1597 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1598 states[0], states[1], states[2], states[3],
1599 states[4], states[5]);
1602 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1603 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1604 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1605 min_sleep_time = pkt->sleep_time;
1608 generic_unplug_device(bdev_get_queue(pd->bdev));
1610 VPRINTK("kcdrwd: sleeping\n");
1611 residue = schedule_timeout(min_sleep_time);
1612 VPRINTK("kcdrwd: wake up\n");
1614 /* make swsusp happy with our thread */
1615 try_to_freeze();
1617 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1618 if (!pkt->sleep_time)
1619 continue;
1620 pkt->sleep_time -= min_sleep_time - residue;
1621 if (pkt->sleep_time <= 0) {
1622 pkt->sleep_time = 0;
1623 atomic_inc(&pkt->run_sm);
1627 if (kthread_should_stop())
1628 break;
1630 work_to_do:
1631 set_current_state(TASK_RUNNING);
1632 remove_wait_queue(&pd->wqueue, &wait);
1634 if (kthread_should_stop())
1635 break;
1638 * if pkt_handle_queue returns true, we can queue
1639 * another request.
1641 while (pkt_handle_queue(pd))
1645 * Handle packet state machine
1647 pkt_handle_packets(pd);
1650 * Handle iosched queues
1652 pkt_iosched_process_queue(pd);
1655 return 0;
1658 static void pkt_print_settings(struct pktcdvd_device *pd)
1660 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1661 printk("%u blocks, ", pd->settings.size >> 2);
1662 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1665 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1667 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1669 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1670 cgc->cmd[2] = page_code | (page_control << 6);
1671 cgc->cmd[7] = cgc->buflen >> 8;
1672 cgc->cmd[8] = cgc->buflen & 0xff;
1673 cgc->data_direction = CGC_DATA_READ;
1674 return pkt_generic_packet(pd, cgc);
1677 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1679 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1680 memset(cgc->buffer, 0, 2);
1681 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1682 cgc->cmd[1] = 0x10; /* PF */
1683 cgc->cmd[7] = cgc->buflen >> 8;
1684 cgc->cmd[8] = cgc->buflen & 0xff;
1685 cgc->data_direction = CGC_DATA_WRITE;
1686 return pkt_generic_packet(pd, cgc);
1689 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1691 struct packet_command cgc;
1692 int ret;
1694 /* set up command and get the disc info */
1695 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1696 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1697 cgc.cmd[8] = cgc.buflen = 2;
1698 cgc.quiet = 1;
1700 if ((ret = pkt_generic_packet(pd, &cgc)))
1701 return ret;
1703 /* not all drives have the same disc_info length, so requeue
1704 * packet with the length the drive tells us it can supply
1706 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1707 sizeof(di->disc_information_length);
1709 if (cgc.buflen > sizeof(disc_information))
1710 cgc.buflen = sizeof(disc_information);
1712 cgc.cmd[8] = cgc.buflen;
1713 return pkt_generic_packet(pd, &cgc);
1716 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1718 struct packet_command cgc;
1719 int ret;
1721 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1722 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1723 cgc.cmd[1] = type & 3;
1724 cgc.cmd[4] = (track & 0xff00) >> 8;
1725 cgc.cmd[5] = track & 0xff;
1726 cgc.cmd[8] = 8;
1727 cgc.quiet = 1;
1729 if ((ret = pkt_generic_packet(pd, &cgc)))
1730 return ret;
1732 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1733 sizeof(ti->track_information_length);
1735 if (cgc.buflen > sizeof(track_information))
1736 cgc.buflen = sizeof(track_information);
1738 cgc.cmd[8] = cgc.buflen;
1739 return pkt_generic_packet(pd, &cgc);
1742 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1743 long *last_written)
1745 disc_information di;
1746 track_information ti;
1747 __u32 last_track;
1748 int ret = -1;
1750 if ((ret = pkt_get_disc_info(pd, &di)))
1751 return ret;
1753 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1754 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1755 return ret;
1757 /* if this track is blank, try the previous. */
1758 if (ti.blank) {
1759 last_track--;
1760 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1761 return ret;
1764 /* if last recorded field is valid, return it. */
1765 if (ti.lra_v) {
1766 *last_written = be32_to_cpu(ti.last_rec_address);
1767 } else {
1768 /* make it up instead */
1769 *last_written = be32_to_cpu(ti.track_start) +
1770 be32_to_cpu(ti.track_size);
1771 if (ti.free_blocks)
1772 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1774 return 0;
1778 * write mode select package based on pd->settings
1780 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1782 struct packet_command cgc;
1783 struct request_sense sense;
1784 write_param_page *wp;
1785 char buffer[128];
1786 int ret, size;
1788 /* doesn't apply to DVD+RW or DVD-RAM */
1789 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1790 return 0;
1792 memset(buffer, 0, sizeof(buffer));
1793 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1794 cgc.sense = &sense;
1795 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1796 pkt_dump_sense(&cgc);
1797 return ret;
1800 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1801 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1802 if (size > sizeof(buffer))
1803 size = sizeof(buffer);
1806 * now get it all
1808 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1809 cgc.sense = &sense;
1810 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1811 pkt_dump_sense(&cgc);
1812 return ret;
1816 * write page is offset header + block descriptor length
1818 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1820 wp->fp = pd->settings.fp;
1821 wp->track_mode = pd->settings.track_mode;
1822 wp->write_type = pd->settings.write_type;
1823 wp->data_block_type = pd->settings.block_mode;
1825 wp->multi_session = 0;
1827 #ifdef PACKET_USE_LS
1828 wp->link_size = 7;
1829 wp->ls_v = 1;
1830 #endif
1832 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1833 wp->session_format = 0;
1834 wp->subhdr2 = 0x20;
1835 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1836 wp->session_format = 0x20;
1837 wp->subhdr2 = 8;
1838 #if 0
1839 wp->mcn[0] = 0x80;
1840 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1841 #endif
1842 } else {
1844 * paranoia
1846 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1847 return 1;
1849 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1851 cgc.buflen = cgc.cmd[8] = size;
1852 if ((ret = pkt_mode_select(pd, &cgc))) {
1853 pkt_dump_sense(&cgc);
1854 return ret;
1857 pkt_print_settings(pd);
1858 return 0;
1862 * 1 -- we can write to this track, 0 -- we can't
1864 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1866 switch (pd->mmc3_profile) {
1867 case 0x1a: /* DVD+RW */
1868 case 0x12: /* DVD-RAM */
1869 /* The track is always writable on DVD+RW/DVD-RAM */
1870 return 1;
1871 default:
1872 break;
1875 if (!ti->packet || !ti->fp)
1876 return 0;
1879 * "good" settings as per Mt Fuji.
1881 if (ti->rt == 0 && ti->blank == 0)
1882 return 1;
1884 if (ti->rt == 0 && ti->blank == 1)
1885 return 1;
1887 if (ti->rt == 1 && ti->blank == 0)
1888 return 1;
1890 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1891 return 0;
1895 * 1 -- we can write to this disc, 0 -- we can't
1897 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1899 switch (pd->mmc3_profile) {
1900 case 0x0a: /* CD-RW */
1901 case 0xffff: /* MMC3 not supported */
1902 break;
1903 case 0x1a: /* DVD+RW */
1904 case 0x13: /* DVD-RW */
1905 case 0x12: /* DVD-RAM */
1906 return 1;
1907 default:
1908 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1909 return 0;
1913 * for disc type 0xff we should probably reserve a new track.
1914 * but i'm not sure, should we leave this to user apps? probably.
1916 if (di->disc_type == 0xff) {
1917 printk(DRIVER_NAME": Unknown disc. No track?\n");
1918 return 0;
1921 if (di->disc_type != 0x20 && di->disc_type != 0) {
1922 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1923 return 0;
1926 if (di->erasable == 0) {
1927 printk(DRIVER_NAME": Disc not erasable\n");
1928 return 0;
1931 if (di->border_status == PACKET_SESSION_RESERVED) {
1932 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1933 return 0;
1936 return 1;
1939 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1941 struct packet_command cgc;
1942 unsigned char buf[12];
1943 disc_information di;
1944 track_information ti;
1945 int ret, track;
1947 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1948 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1949 cgc.cmd[8] = 8;
1950 ret = pkt_generic_packet(pd, &cgc);
1951 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1953 memset(&di, 0, sizeof(disc_information));
1954 memset(&ti, 0, sizeof(track_information));
1956 if ((ret = pkt_get_disc_info(pd, &di))) {
1957 printk("failed get_disc\n");
1958 return ret;
1961 if (!pkt_writable_disc(pd, &di))
1962 return -EROFS;
1964 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1966 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1967 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1968 printk(DRIVER_NAME": failed get_track\n");
1969 return ret;
1972 if (!pkt_writable_track(pd, &ti)) {
1973 printk(DRIVER_NAME": can't write to this track\n");
1974 return -EROFS;
1978 * we keep packet size in 512 byte units, makes it easier to
1979 * deal with request calculations.
1981 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1982 if (pd->settings.size == 0) {
1983 printk(DRIVER_NAME": detected zero packet size!\n");
1984 return -ENXIO;
1986 if (pd->settings.size > PACKET_MAX_SECTORS) {
1987 printk(DRIVER_NAME": packet size is too big\n");
1988 return -EROFS;
1990 pd->settings.fp = ti.fp;
1991 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1993 if (ti.nwa_v) {
1994 pd->nwa = be32_to_cpu(ti.next_writable);
1995 set_bit(PACKET_NWA_VALID, &pd->flags);
1999 * in theory we could use lra on -RW media as well and just zero
2000 * blocks that haven't been written yet, but in practice that
2001 * is just a no-go. we'll use that for -R, naturally.
2003 if (ti.lra_v) {
2004 pd->lra = be32_to_cpu(ti.last_rec_address);
2005 set_bit(PACKET_LRA_VALID, &pd->flags);
2006 } else {
2007 pd->lra = 0xffffffff;
2008 set_bit(PACKET_LRA_VALID, &pd->flags);
2012 * fine for now
2014 pd->settings.link_loss = 7;
2015 pd->settings.write_type = 0; /* packet */
2016 pd->settings.track_mode = ti.track_mode;
2019 * mode1 or mode2 disc
2021 switch (ti.data_mode) {
2022 case PACKET_MODE1:
2023 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2024 break;
2025 case PACKET_MODE2:
2026 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2027 break;
2028 default:
2029 printk(DRIVER_NAME": unknown data mode\n");
2030 return -EROFS;
2032 return 0;
2036 * enable/disable write caching on drive
2038 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2039 int set)
2041 struct packet_command cgc;
2042 struct request_sense sense;
2043 unsigned char buf[64];
2044 int ret;
2046 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2047 cgc.sense = &sense;
2048 cgc.buflen = pd->mode_offset + 12;
2051 * caching mode page might not be there, so quiet this command
2053 cgc.quiet = 1;
2055 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2056 return ret;
2058 buf[pd->mode_offset + 10] |= (!!set << 2);
2060 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2061 ret = pkt_mode_select(pd, &cgc);
2062 if (ret) {
2063 printk(DRIVER_NAME": write caching control failed\n");
2064 pkt_dump_sense(&cgc);
2065 } else if (!ret && set)
2066 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2067 return ret;
2070 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2072 struct packet_command cgc;
2074 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2075 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2076 cgc.cmd[4] = lockflag ? 1 : 0;
2077 return pkt_generic_packet(pd, &cgc);
2081 * Returns drive maximum write speed
2083 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2084 unsigned *write_speed)
2086 struct packet_command cgc;
2087 struct request_sense sense;
2088 unsigned char buf[256+18];
2089 unsigned char *cap_buf;
2090 int ret, offset;
2092 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2093 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2094 cgc.sense = &sense;
2096 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2097 if (ret) {
2098 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2099 sizeof(struct mode_page_header);
2100 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2101 if (ret) {
2102 pkt_dump_sense(&cgc);
2103 return ret;
2107 offset = 20; /* Obsoleted field, used by older drives */
2108 if (cap_buf[1] >= 28)
2109 offset = 28; /* Current write speed selected */
2110 if (cap_buf[1] >= 30) {
2111 /* If the drive reports at least one "Logical Unit Write
2112 * Speed Performance Descriptor Block", use the information
2113 * in the first block. (contains the highest speed)
2115 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2116 if (num_spdb > 0)
2117 offset = 34;
2120 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2121 return 0;
2124 /* These tables from cdrecord - I don't have orange book */
2125 /* standard speed CD-RW (1-4x) */
2126 static char clv_to_speed[16] = {
2127 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2128 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2130 /* high speed CD-RW (-10x) */
2131 static char hs_clv_to_speed[16] = {
2132 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2133 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2135 /* ultra high speed CD-RW */
2136 static char us_clv_to_speed[16] = {
2137 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2138 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2142 * reads the maximum media speed from ATIP
2144 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2145 unsigned *speed)
2147 struct packet_command cgc;
2148 struct request_sense sense;
2149 unsigned char buf[64];
2150 unsigned int size, st, sp;
2151 int ret;
2153 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2154 cgc.sense = &sense;
2155 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2156 cgc.cmd[1] = 2;
2157 cgc.cmd[2] = 4; /* READ ATIP */
2158 cgc.cmd[8] = 2;
2159 ret = pkt_generic_packet(pd, &cgc);
2160 if (ret) {
2161 pkt_dump_sense(&cgc);
2162 return ret;
2164 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2165 if (size > sizeof(buf))
2166 size = sizeof(buf);
2168 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2169 cgc.sense = &sense;
2170 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2171 cgc.cmd[1] = 2;
2172 cgc.cmd[2] = 4;
2173 cgc.cmd[8] = size;
2174 ret = pkt_generic_packet(pd, &cgc);
2175 if (ret) {
2176 pkt_dump_sense(&cgc);
2177 return ret;
2180 if (!(buf[6] & 0x40)) {
2181 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2182 return 1;
2184 if (!(buf[6] & 0x4)) {
2185 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2186 return 1;
2189 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2191 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2193 /* Info from cdrecord */
2194 switch (st) {
2195 case 0: /* standard speed */
2196 *speed = clv_to_speed[sp];
2197 break;
2198 case 1: /* high speed */
2199 *speed = hs_clv_to_speed[sp];
2200 break;
2201 case 2: /* ultra high speed */
2202 *speed = us_clv_to_speed[sp];
2203 break;
2204 default:
2205 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2206 return 1;
2208 if (*speed) {
2209 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2210 return 0;
2211 } else {
2212 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2213 return 1;
2217 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2219 struct packet_command cgc;
2220 struct request_sense sense;
2221 int ret;
2223 VPRINTK(DRIVER_NAME": Performing OPC\n");
2225 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2226 cgc.sense = &sense;
2227 cgc.timeout = 60*HZ;
2228 cgc.cmd[0] = GPCMD_SEND_OPC;
2229 cgc.cmd[1] = 1;
2230 if ((ret = pkt_generic_packet(pd, &cgc)))
2231 pkt_dump_sense(&cgc);
2232 return ret;
2235 static int pkt_open_write(struct pktcdvd_device *pd)
2237 int ret;
2238 unsigned int write_speed, media_write_speed, read_speed;
2240 if ((ret = pkt_probe_settings(pd))) {
2241 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2242 return ret;
2245 if ((ret = pkt_set_write_settings(pd))) {
2246 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2247 return -EIO;
2250 pkt_write_caching(pd, USE_WCACHING);
2252 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2253 write_speed = 16 * 177;
2254 switch (pd->mmc3_profile) {
2255 case 0x13: /* DVD-RW */
2256 case 0x1a: /* DVD+RW */
2257 case 0x12: /* DVD-RAM */
2258 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2259 break;
2260 default:
2261 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2262 media_write_speed = 16;
2263 write_speed = min(write_speed, media_write_speed * 177);
2264 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2265 break;
2267 read_speed = write_speed;
2269 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2270 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2271 return -EIO;
2273 pd->write_speed = write_speed;
2274 pd->read_speed = read_speed;
2276 if ((ret = pkt_perform_opc(pd))) {
2277 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2280 return 0;
2284 * called at open time.
2286 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2288 int ret;
2289 long lba;
2290 struct request_queue *q;
2293 * We need to re-open the cdrom device without O_NONBLOCK to be able
2294 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2295 * so bdget() can't fail.
2297 bdget(pd->bdev->bd_dev);
2298 if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2299 goto out;
2301 if ((ret = bd_claim(pd->bdev, pd)))
2302 goto out_putdev;
2304 if ((ret = pkt_get_last_written(pd, &lba))) {
2305 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2306 goto out_unclaim;
2309 set_capacity(pd->disk, lba << 2);
2310 set_capacity(pd->bdev->bd_disk, lba << 2);
2311 bd_set_size(pd->bdev, (loff_t)lba << 11);
2313 q = bdev_get_queue(pd->bdev);
2314 if (write) {
2315 if ((ret = pkt_open_write(pd)))
2316 goto out_unclaim;
2318 * Some CDRW drives can not handle writes larger than one packet,
2319 * even if the size is a multiple of the packet size.
2321 spin_lock_irq(q->queue_lock);
2322 blk_queue_max_hw_sectors(q, pd->settings.size);
2323 spin_unlock_irq(q->queue_lock);
2324 set_bit(PACKET_WRITABLE, &pd->flags);
2325 } else {
2326 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2327 clear_bit(PACKET_WRITABLE, &pd->flags);
2330 if ((ret = pkt_set_segment_merging(pd, q)))
2331 goto out_unclaim;
2333 if (write) {
2334 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2335 printk(DRIVER_NAME": not enough memory for buffers\n");
2336 ret = -ENOMEM;
2337 goto out_unclaim;
2339 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2342 return 0;
2344 out_unclaim:
2345 bd_release(pd->bdev);
2346 out_putdev:
2347 blkdev_put(pd->bdev, FMODE_READ);
2348 out:
2349 return ret;
2353 * called when the device is closed. makes sure that the device flushes
2354 * the internal cache before we close.
2356 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2358 if (flush && pkt_flush_cache(pd))
2359 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2361 pkt_lock_door(pd, 0);
2363 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2364 bd_release(pd->bdev);
2365 blkdev_put(pd->bdev, FMODE_READ);
2367 pkt_shrink_pktlist(pd);
2370 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2372 if (dev_minor >= MAX_WRITERS)
2373 return NULL;
2374 return pkt_devs[dev_minor];
2377 static int pkt_open(struct block_device *bdev, fmode_t mode)
2379 struct pktcdvd_device *pd = NULL;
2380 int ret;
2382 VPRINTK(DRIVER_NAME": entering open\n");
2384 mutex_lock(&ctl_mutex);
2385 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2386 if (!pd) {
2387 ret = -ENODEV;
2388 goto out;
2390 BUG_ON(pd->refcnt < 0);
2392 pd->refcnt++;
2393 if (pd->refcnt > 1) {
2394 if ((mode & FMODE_WRITE) &&
2395 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2396 ret = -EBUSY;
2397 goto out_dec;
2399 } else {
2400 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2401 if (ret)
2402 goto out_dec;
2404 * needed here as well, since ext2 (among others) may change
2405 * the blocksize at mount time
2407 set_blocksize(bdev, CD_FRAMESIZE);
2410 mutex_unlock(&ctl_mutex);
2411 return 0;
2413 out_dec:
2414 pd->refcnt--;
2415 out:
2416 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2417 mutex_unlock(&ctl_mutex);
2418 return ret;
2421 static int pkt_close(struct gendisk *disk, fmode_t mode)
2423 struct pktcdvd_device *pd = disk->private_data;
2424 int ret = 0;
2426 mutex_lock(&ctl_mutex);
2427 pd->refcnt--;
2428 BUG_ON(pd->refcnt < 0);
2429 if (pd->refcnt == 0) {
2430 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2431 pkt_release_dev(pd, flush);
2433 mutex_unlock(&ctl_mutex);
2434 return ret;
2438 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2440 struct packet_stacked_data *psd = bio->bi_private;
2441 struct pktcdvd_device *pd = psd->pd;
2443 bio_put(bio);
2444 bio_endio(psd->bio, err);
2445 mempool_free(psd, psd_pool);
2446 pkt_bio_finished(pd);
2449 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2451 struct pktcdvd_device *pd;
2452 char b[BDEVNAME_SIZE];
2453 sector_t zone;
2454 struct packet_data *pkt;
2455 int was_empty, blocked_bio;
2456 struct pkt_rb_node *node;
2458 pd = q->queuedata;
2459 if (!pd) {
2460 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2461 goto end_io;
2465 * Clone READ bios so we can have our own bi_end_io callback.
2467 if (bio_data_dir(bio) == READ) {
2468 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2469 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2471 psd->pd = pd;
2472 psd->bio = bio;
2473 cloned_bio->bi_bdev = pd->bdev;
2474 cloned_bio->bi_private = psd;
2475 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2476 pd->stats.secs_r += bio->bi_size >> 9;
2477 pkt_queue_bio(pd, cloned_bio);
2478 return 0;
2481 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2482 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2483 pd->name, (unsigned long long)bio->bi_sector);
2484 goto end_io;
2487 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2488 printk(DRIVER_NAME": wrong bio size\n");
2489 goto end_io;
2492 blk_queue_bounce(q, &bio);
2494 zone = ZONE(bio->bi_sector, pd);
2495 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2496 (unsigned long long)bio->bi_sector,
2497 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2499 /* Check if we have to split the bio */
2501 struct bio_pair *bp;
2502 sector_t last_zone;
2503 int first_sectors;
2505 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2506 if (last_zone != zone) {
2507 BUG_ON(last_zone != zone + pd->settings.size);
2508 first_sectors = last_zone - bio->bi_sector;
2509 bp = bio_split(bio, first_sectors);
2510 BUG_ON(!bp);
2511 pkt_make_request(q, &bp->bio1);
2512 pkt_make_request(q, &bp->bio2);
2513 bio_pair_release(bp);
2514 return 0;
2519 * If we find a matching packet in state WAITING or READ_WAIT, we can
2520 * just append this bio to that packet.
2522 spin_lock(&pd->cdrw.active_list_lock);
2523 blocked_bio = 0;
2524 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2525 if (pkt->sector == zone) {
2526 spin_lock(&pkt->lock);
2527 if ((pkt->state == PACKET_WAITING_STATE) ||
2528 (pkt->state == PACKET_READ_WAIT_STATE)) {
2529 bio_list_add(&pkt->orig_bios, bio);
2530 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2531 if ((pkt->write_size >= pkt->frames) &&
2532 (pkt->state == PACKET_WAITING_STATE)) {
2533 atomic_inc(&pkt->run_sm);
2534 wake_up(&pd->wqueue);
2536 spin_unlock(&pkt->lock);
2537 spin_unlock(&pd->cdrw.active_list_lock);
2538 return 0;
2539 } else {
2540 blocked_bio = 1;
2542 spin_unlock(&pkt->lock);
2545 spin_unlock(&pd->cdrw.active_list_lock);
2548 * Test if there is enough room left in the bio work queue
2549 * (queue size >= congestion on mark).
2550 * If not, wait till the work queue size is below the congestion off mark.
2552 spin_lock(&pd->lock);
2553 if (pd->write_congestion_on > 0
2554 && pd->bio_queue_size >= pd->write_congestion_on) {
2555 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2556 do {
2557 spin_unlock(&pd->lock);
2558 congestion_wait(BLK_RW_ASYNC, HZ);
2559 spin_lock(&pd->lock);
2560 } while(pd->bio_queue_size > pd->write_congestion_off);
2562 spin_unlock(&pd->lock);
2565 * No matching packet found. Store the bio in the work queue.
2567 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2568 node->bio = bio;
2569 spin_lock(&pd->lock);
2570 BUG_ON(pd->bio_queue_size < 0);
2571 was_empty = (pd->bio_queue_size == 0);
2572 pkt_rbtree_insert(pd, node);
2573 spin_unlock(&pd->lock);
2576 * Wake up the worker thread.
2578 atomic_set(&pd->scan_queue, 1);
2579 if (was_empty) {
2580 /* This wake_up is required for correct operation */
2581 wake_up(&pd->wqueue);
2582 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2584 * This wake up is not required for correct operation,
2585 * but improves performance in some cases.
2587 wake_up(&pd->wqueue);
2589 return 0;
2590 end_io:
2591 bio_io_error(bio);
2592 return 0;
2597 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2598 struct bio_vec *bvec)
2600 struct pktcdvd_device *pd = q->queuedata;
2601 sector_t zone = ZONE(bmd->bi_sector, pd);
2602 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2603 int remaining = (pd->settings.size << 9) - used;
2604 int remaining2;
2607 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2608 * boundary, pkt_make_request() will split the bio.
2610 remaining2 = PAGE_SIZE - bmd->bi_size;
2611 remaining = max(remaining, remaining2);
2613 BUG_ON(remaining < 0);
2614 return remaining;
2617 static void pkt_init_queue(struct pktcdvd_device *pd)
2619 struct request_queue *q = pd->disk->queue;
2621 blk_queue_make_request(q, pkt_make_request);
2622 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2623 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2624 blk_queue_merge_bvec(q, pkt_merge_bvec);
2625 q->queuedata = pd;
2628 static int pkt_seq_show(struct seq_file *m, void *p)
2630 struct pktcdvd_device *pd = m->private;
2631 char *msg;
2632 char bdev_buf[BDEVNAME_SIZE];
2633 int states[PACKET_NUM_STATES];
2635 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2636 bdevname(pd->bdev, bdev_buf));
2638 seq_printf(m, "\nSettings:\n");
2639 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2641 if (pd->settings.write_type == 0)
2642 msg = "Packet";
2643 else
2644 msg = "Unknown";
2645 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2647 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2648 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2650 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2652 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2653 msg = "Mode 1";
2654 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2655 msg = "Mode 2";
2656 else
2657 msg = "Unknown";
2658 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2660 seq_printf(m, "\nStatistics:\n");
2661 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2662 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2663 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2664 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2665 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2667 seq_printf(m, "\nMisc:\n");
2668 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2669 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2670 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2671 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2672 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2673 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2675 seq_printf(m, "\nQueue state:\n");
2676 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2677 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2678 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2680 pkt_count_states(pd, states);
2681 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2682 states[0], states[1], states[2], states[3], states[4], states[5]);
2684 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2685 pd->write_congestion_off,
2686 pd->write_congestion_on);
2687 return 0;
2690 static int pkt_seq_open(struct inode *inode, struct file *file)
2692 return single_open(file, pkt_seq_show, PDE(inode)->data);
2695 static const struct file_operations pkt_proc_fops = {
2696 .open = pkt_seq_open,
2697 .read = seq_read,
2698 .llseek = seq_lseek,
2699 .release = single_release
2702 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2704 int i;
2705 int ret = 0;
2706 char b[BDEVNAME_SIZE];
2707 struct block_device *bdev;
2709 if (pd->pkt_dev == dev) {
2710 printk(DRIVER_NAME": Recursive setup not allowed\n");
2711 return -EBUSY;
2713 for (i = 0; i < MAX_WRITERS; i++) {
2714 struct pktcdvd_device *pd2 = pkt_devs[i];
2715 if (!pd2)
2716 continue;
2717 if (pd2->bdev->bd_dev == dev) {
2718 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2719 return -EBUSY;
2721 if (pd2->pkt_dev == dev) {
2722 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2723 return -EBUSY;
2727 bdev = bdget(dev);
2728 if (!bdev)
2729 return -ENOMEM;
2730 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2731 if (ret)
2732 return ret;
2734 /* This is safe, since we have a reference from open(). */
2735 __module_get(THIS_MODULE);
2737 pd->bdev = bdev;
2738 set_blocksize(bdev, CD_FRAMESIZE);
2740 pkt_init_queue(pd);
2742 atomic_set(&pd->cdrw.pending_bios, 0);
2743 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2744 if (IS_ERR(pd->cdrw.thread)) {
2745 printk(DRIVER_NAME": can't start kernel thread\n");
2746 ret = -ENOMEM;
2747 goto out_mem;
2750 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2751 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2752 return 0;
2754 out_mem:
2755 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2756 /* This is safe: open() is still holding a reference. */
2757 module_put(THIS_MODULE);
2758 return ret;
2761 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2763 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2765 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2766 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2768 switch (cmd) {
2769 case CDROMEJECT:
2771 * The door gets locked when the device is opened, so we
2772 * have to unlock it or else the eject command fails.
2774 if (pd->refcnt == 1)
2775 pkt_lock_door(pd, 0);
2776 /* fallthru */
2778 * forward selected CDROM ioctls to CD-ROM, for UDF
2780 case CDROMMULTISESSION:
2781 case CDROMREADTOCENTRY:
2782 case CDROM_LAST_WRITTEN:
2783 case CDROM_SEND_PACKET:
2784 case SCSI_IOCTL_SEND_COMMAND:
2785 return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2787 default:
2788 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2789 return -ENOTTY;
2792 return 0;
2795 static int pkt_media_changed(struct gendisk *disk)
2797 struct pktcdvd_device *pd = disk->private_data;
2798 struct gendisk *attached_disk;
2800 if (!pd)
2801 return 0;
2802 if (!pd->bdev)
2803 return 0;
2804 attached_disk = pd->bdev->bd_disk;
2805 if (!attached_disk)
2806 return 0;
2807 return attached_disk->fops->media_changed(attached_disk);
2810 static const struct block_device_operations pktcdvd_ops = {
2811 .owner = THIS_MODULE,
2812 .open = pkt_open,
2813 .release = pkt_close,
2814 .locked_ioctl = pkt_ioctl,
2815 .media_changed = pkt_media_changed,
2818 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2820 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824 * Set up mapping from pktcdvd device to CD-ROM device.
2826 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2828 int idx;
2829 int ret = -ENOMEM;
2830 struct pktcdvd_device *pd;
2831 struct gendisk *disk;
2833 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2835 for (idx = 0; idx < MAX_WRITERS; idx++)
2836 if (!pkt_devs[idx])
2837 break;
2838 if (idx == MAX_WRITERS) {
2839 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2840 ret = -EBUSY;
2841 goto out_mutex;
2844 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2845 if (!pd)
2846 goto out_mutex;
2848 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2849 sizeof(struct pkt_rb_node));
2850 if (!pd->rb_pool)
2851 goto out_mem;
2853 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2854 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2855 spin_lock_init(&pd->cdrw.active_list_lock);
2857 spin_lock_init(&pd->lock);
2858 spin_lock_init(&pd->iosched.lock);
2859 bio_list_init(&pd->iosched.read_queue);
2860 bio_list_init(&pd->iosched.write_queue);
2861 sprintf(pd->name, DRIVER_NAME"%d", idx);
2862 init_waitqueue_head(&pd->wqueue);
2863 pd->bio_queue = RB_ROOT;
2865 pd->write_congestion_on = write_congestion_on;
2866 pd->write_congestion_off = write_congestion_off;
2868 disk = alloc_disk(1);
2869 if (!disk)
2870 goto out_mem;
2871 pd->disk = disk;
2872 disk->major = pktdev_major;
2873 disk->first_minor = idx;
2874 disk->fops = &pktcdvd_ops;
2875 disk->flags = GENHD_FL_REMOVABLE;
2876 strcpy(disk->disk_name, pd->name);
2877 disk->devnode = pktcdvd_devnode;
2878 disk->private_data = pd;
2879 disk->queue = blk_alloc_queue(GFP_KERNEL);
2880 if (!disk->queue)
2881 goto out_mem2;
2883 pd->pkt_dev = MKDEV(pktdev_major, idx);
2884 ret = pkt_new_dev(pd, dev);
2885 if (ret)
2886 goto out_new_dev;
2888 add_disk(disk);
2890 pkt_sysfs_dev_new(pd);
2891 pkt_debugfs_dev_new(pd);
2893 pkt_devs[idx] = pd;
2894 if (pkt_dev)
2895 *pkt_dev = pd->pkt_dev;
2897 mutex_unlock(&ctl_mutex);
2898 return 0;
2900 out_new_dev:
2901 blk_cleanup_queue(disk->queue);
2902 out_mem2:
2903 put_disk(disk);
2904 out_mem:
2905 if (pd->rb_pool)
2906 mempool_destroy(pd->rb_pool);
2907 kfree(pd);
2908 out_mutex:
2909 mutex_unlock(&ctl_mutex);
2910 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2911 return ret;
2915 * Tear down mapping from pktcdvd device to CD-ROM device.
2917 static int pkt_remove_dev(dev_t pkt_dev)
2919 struct pktcdvd_device *pd;
2920 int idx;
2921 int ret = 0;
2923 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2925 for (idx = 0; idx < MAX_WRITERS; idx++) {
2926 pd = pkt_devs[idx];
2927 if (pd && (pd->pkt_dev == pkt_dev))
2928 break;
2930 if (idx == MAX_WRITERS) {
2931 DPRINTK(DRIVER_NAME": dev not setup\n");
2932 ret = -ENXIO;
2933 goto out;
2936 if (pd->refcnt > 0) {
2937 ret = -EBUSY;
2938 goto out;
2940 if (!IS_ERR(pd->cdrw.thread))
2941 kthread_stop(pd->cdrw.thread);
2943 pkt_devs[idx] = NULL;
2945 pkt_debugfs_dev_remove(pd);
2946 pkt_sysfs_dev_remove(pd);
2948 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2950 remove_proc_entry(pd->name, pkt_proc);
2951 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2953 del_gendisk(pd->disk);
2954 blk_cleanup_queue(pd->disk->queue);
2955 put_disk(pd->disk);
2957 mempool_destroy(pd->rb_pool);
2958 kfree(pd);
2960 /* This is safe: open() is still holding a reference. */
2961 module_put(THIS_MODULE);
2963 out:
2964 mutex_unlock(&ctl_mutex);
2965 return ret;
2968 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2970 struct pktcdvd_device *pd;
2972 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2974 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2975 if (pd) {
2976 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2977 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2978 } else {
2979 ctrl_cmd->dev = 0;
2980 ctrl_cmd->pkt_dev = 0;
2982 ctrl_cmd->num_devices = MAX_WRITERS;
2984 mutex_unlock(&ctl_mutex);
2987 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2989 void __user *argp = (void __user *)arg;
2990 struct pkt_ctrl_command ctrl_cmd;
2991 int ret = 0;
2992 dev_t pkt_dev = 0;
2994 if (cmd != PACKET_CTRL_CMD)
2995 return -ENOTTY;
2997 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2998 return -EFAULT;
3000 switch (ctrl_cmd.command) {
3001 case PKT_CTRL_CMD_SETUP:
3002 if (!capable(CAP_SYS_ADMIN))
3003 return -EPERM;
3004 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3005 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3006 break;
3007 case PKT_CTRL_CMD_TEARDOWN:
3008 if (!capable(CAP_SYS_ADMIN))
3009 return -EPERM;
3010 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3011 break;
3012 case PKT_CTRL_CMD_STATUS:
3013 pkt_get_status(&ctrl_cmd);
3014 break;
3015 default:
3016 return -ENOTTY;
3019 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3020 return -EFAULT;
3021 return ret;
3025 static const struct file_operations pkt_ctl_fops = {
3026 .ioctl = pkt_ctl_ioctl,
3027 .owner = THIS_MODULE,
3030 static struct miscdevice pkt_misc = {
3031 .minor = MISC_DYNAMIC_MINOR,
3032 .name = DRIVER_NAME,
3033 .nodename = "pktcdvd/control",
3034 .fops = &pkt_ctl_fops
3037 static int __init pkt_init(void)
3039 int ret;
3041 mutex_init(&ctl_mutex);
3043 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3044 sizeof(struct packet_stacked_data));
3045 if (!psd_pool)
3046 return -ENOMEM;
3048 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3049 if (ret < 0) {
3050 printk(DRIVER_NAME": Unable to register block device\n");
3051 goto out2;
3053 if (!pktdev_major)
3054 pktdev_major = ret;
3056 ret = pkt_sysfs_init();
3057 if (ret)
3058 goto out;
3060 pkt_debugfs_init();
3062 ret = misc_register(&pkt_misc);
3063 if (ret) {
3064 printk(DRIVER_NAME": Unable to register misc device\n");
3065 goto out_misc;
3068 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3070 return 0;
3072 out_misc:
3073 pkt_debugfs_cleanup();
3074 pkt_sysfs_cleanup();
3075 out:
3076 unregister_blkdev(pktdev_major, DRIVER_NAME);
3077 out2:
3078 mempool_destroy(psd_pool);
3079 return ret;
3082 static void __exit pkt_exit(void)
3084 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3085 misc_deregister(&pkt_misc);
3087 pkt_debugfs_cleanup();
3088 pkt_sysfs_cleanup();
3090 unregister_blkdev(pktdev_major, DRIVER_NAME);
3091 mempool_destroy(psd_pool);
3094 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3095 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3096 MODULE_LICENSE("GPL");
3098 module_init(pkt_init);
3099 module_exit(pkt_exit);