2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements commit-related functionality of the LEB properties
28 #include <linux/crc16.h>
32 * first_dirty_cnode - find first dirty cnode.
33 * @c: UBIFS file-system description object
34 * @nnode: nnode at which to start
36 * This function returns the first dirty cnode or %NULL if there is not one.
38 static struct ubifs_cnode
*first_dirty_cnode(struct ubifs_nnode
*nnode
)
44 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
45 struct ubifs_cnode
*cnode
;
47 cnode
= nnode
->nbranch
[i
].cnode
;
49 test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
50 if (cnode
->level
== 0)
52 nnode
= (struct ubifs_nnode
*)cnode
;
58 return (struct ubifs_cnode
*)nnode
;
63 * next_dirty_cnode - find next dirty cnode.
64 * @cnode: cnode from which to begin searching
66 * This function returns the next dirty cnode or %NULL if there is not one.
68 static struct ubifs_cnode
*next_dirty_cnode(struct ubifs_cnode
*cnode
)
70 struct ubifs_nnode
*nnode
;
74 nnode
= cnode
->parent
;
77 for (i
= cnode
->iip
+ 1; i
< UBIFS_LPT_FANOUT
; i
++) {
78 cnode
= nnode
->nbranch
[i
].cnode
;
79 if (cnode
&& test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
80 if (cnode
->level
== 0)
81 return cnode
; /* cnode is a pnode */
82 /* cnode is a nnode */
83 return first_dirty_cnode((struct ubifs_nnode
*)cnode
);
86 return (struct ubifs_cnode
*)nnode
;
90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
91 * @c: UBIFS file-system description object
93 * This function returns the number of cnodes to commit.
95 static int get_cnodes_to_commit(struct ubifs_info
*c
)
97 struct ubifs_cnode
*cnode
, *cnext
;
103 if (!test_bit(DIRTY_CNODE
, &c
->nroot
->flags
))
106 c
->lpt_cnext
= first_dirty_cnode(c
->nroot
);
107 cnode
= c
->lpt_cnext
;
112 ubifs_assert(!test_bit(COW_ZNODE
, &cnode
->flags
));
113 __set_bit(COW_ZNODE
, &cnode
->flags
);
114 cnext
= next_dirty_cnode(cnode
);
116 cnode
->cnext
= c
->lpt_cnext
;
119 cnode
->cnext
= cnext
;
123 dbg_cmt("committing %d cnodes", cnt
);
124 dbg_lp("committing %d cnodes", cnt
);
125 ubifs_assert(cnt
== c
->dirty_nn_cnt
+ c
->dirty_pn_cnt
);
130 * upd_ltab - update LPT LEB properties.
131 * @c: UBIFS file-system description object
133 * @free: amount of free space
134 * @dirty: amount of dirty space to add
136 static void upd_ltab(struct ubifs_info
*c
, int lnum
, int free
, int dirty
)
138 dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 lnum
, c
->ltab
[lnum
- c
->lpt_first
].free
,
140 c
->ltab
[lnum
- c
->lpt_first
].dirty
, free
, dirty
);
141 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
142 c
->ltab
[lnum
- c
->lpt_first
].free
= free
;
143 c
->ltab
[lnum
- c
->lpt_first
].dirty
+= dirty
;
147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
148 * @c: UBIFS file-system description object
149 * @lnum: LEB number is passed and returned here
151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
152 * an empty LEB is found it is returned in @lnum and the function returns %0.
153 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
154 * never to run out of space.
156 static int alloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
160 n
= *lnum
- c
->lpt_first
+ 1;
161 for (i
= n
; i
< c
->lpt_lebs
; i
++) {
162 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
164 if (c
->ltab
[i
].free
== c
->leb_size
) {
166 *lnum
= i
+ c
->lpt_first
;
171 for (i
= 0; i
< n
; i
++) {
172 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
174 if (c
->ltab
[i
].free
== c
->leb_size
) {
176 *lnum
= i
+ c
->lpt_first
;
180 dbg_err("last LEB %d", *lnum
);
186 * layout_cnodes - layout cnodes for commit.
187 * @c: UBIFS file-system description object
189 * This function returns %0 on success and a negative error code on failure.
191 static int layout_cnodes(struct ubifs_info
*c
)
193 int lnum
, offs
, len
, alen
, done_lsave
, done_ltab
, err
;
194 struct ubifs_cnode
*cnode
;
196 cnode
= c
->lpt_cnext
;
199 lnum
= c
->nhead_lnum
;
200 offs
= c
->nhead_offs
;
201 /* Try to place lsave and ltab nicely */
202 done_lsave
= !c
->big_lpt
;
204 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
206 c
->lsave_lnum
= lnum
;
207 c
->lsave_offs
= offs
;
211 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
221 c
->dirty_nn_cnt
-= 1;
224 c
->dirty_pn_cnt
-= 1;
226 while (offs
+ len
> c
->leb_size
) {
227 alen
= ALIGN(offs
, c
->min_io_size
);
228 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
229 err
= alloc_lpt_leb(c
, &lnum
);
233 ubifs_assert(lnum
>= c
->lpt_first
&&
234 lnum
<= c
->lpt_last
);
235 /* Try to place lsave and ltab nicely */
238 c
->lsave_lnum
= lnum
;
239 c
->lsave_offs
= offs
;
253 cnode
->parent
->nbranch
[cnode
->iip
].lnum
= lnum
;
254 cnode
->parent
->nbranch
[cnode
->iip
].offs
= offs
;
260 cnode
= cnode
->cnext
;
261 } while (cnode
&& cnode
!= c
->lpt_cnext
);
263 /* Make sure to place LPT's save table */
265 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
266 alen
= ALIGN(offs
, c
->min_io_size
);
267 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
268 err
= alloc_lpt_leb(c
, &lnum
);
272 ubifs_assert(lnum
>= c
->lpt_first
&&
273 lnum
<= c
->lpt_last
);
276 c
->lsave_lnum
= lnum
;
277 c
->lsave_offs
= offs
;
281 /* Make sure to place LPT's own lprops table */
283 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
284 alen
= ALIGN(offs
, c
->min_io_size
);
285 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
286 err
= alloc_lpt_leb(c
, &lnum
);
290 ubifs_assert(lnum
>= c
->lpt_first
&&
291 lnum
<= c
->lpt_last
);
299 alen
= ALIGN(offs
, c
->min_io_size
);
300 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
305 * realloc_lpt_leb - allocate an LPT LEB that is empty.
306 * @c: UBIFS file-system description object
307 * @lnum: LEB number is passed and returned here
309 * This function duplicates exactly the results of the function alloc_lpt_leb.
310 * It is used during end commit to reallocate the same LEB numbers that were
311 * allocated by alloc_lpt_leb during start commit.
313 * This function finds the next LEB that was allocated by the alloc_lpt_leb
314 * function starting from @lnum. If a LEB is found it is returned in @lnum and
315 * the function returns %0. Otherwise the function returns -ENOSPC.
316 * Note however, that LPT is designed never to run out of space.
318 static int realloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
322 n
= *lnum
- c
->lpt_first
+ 1;
323 for (i
= n
; i
< c
->lpt_lebs
; i
++)
324 if (c
->ltab
[i
].cmt
) {
326 *lnum
= i
+ c
->lpt_first
;
330 for (i
= 0; i
< n
; i
++)
331 if (c
->ltab
[i
].cmt
) {
333 *lnum
= i
+ c
->lpt_first
;
336 dbg_err("last LEB %d", *lnum
);
342 * write_cnodes - write cnodes for commit.
343 * @c: UBIFS file-system description object
345 * This function returns %0 on success and a negative error code on failure.
347 static int write_cnodes(struct ubifs_info
*c
)
349 int lnum
, offs
, len
, from
, err
, wlen
, alen
, done_ltab
, done_lsave
;
350 struct ubifs_cnode
*cnode
;
351 void *buf
= c
->lpt_buf
;
353 cnode
= c
->lpt_cnext
;
356 lnum
= c
->nhead_lnum
;
357 offs
= c
->nhead_offs
;
359 /* Ensure empty LEB is unmapped */
361 err
= ubifs_leb_unmap(c
, lnum
);
365 /* Try to place lsave and ltab nicely */
366 done_lsave
= !c
->big_lpt
;
368 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
370 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
374 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
376 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
380 /* Loop for each cnode */
386 while (offs
+ len
> c
->leb_size
) {
389 alen
= ALIGN(wlen
, c
->min_io_size
);
390 memset(buf
+ offs
, 0xff, alen
- wlen
);
391 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
,
392 alen
, UBI_SHORTTERM
);
396 err
= realloc_lpt_leb(c
, &lnum
);
401 ubifs_assert(lnum
>= c
->lpt_first
&&
402 lnum
<= c
->lpt_last
);
403 err
= ubifs_leb_unmap(c
, lnum
);
406 /* Try to place lsave and ltab nicely */
409 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
415 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
422 ubifs_pack_nnode(c
, buf
+ offs
,
423 (struct ubifs_nnode
*)cnode
);
425 ubifs_pack_pnode(c
, buf
+ offs
,
426 (struct ubifs_pnode
*)cnode
);
428 * The reason for the barriers is the same as in case of TNC.
429 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
430 * 'dirty_cow_pnode()' are the functions for which this is
433 clear_bit(DIRTY_CNODE
, &cnode
->flags
);
434 smp_mb__before_clear_bit();
435 clear_bit(COW_ZNODE
, &cnode
->flags
);
436 smp_mb__after_clear_bit();
438 cnode
= cnode
->cnext
;
439 } while (cnode
&& cnode
!= c
->lpt_cnext
);
441 /* Make sure to place LPT's save table */
443 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
445 alen
= ALIGN(wlen
, c
->min_io_size
);
446 memset(buf
+ offs
, 0xff, alen
- wlen
);
447 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
451 err
= realloc_lpt_leb(c
, &lnum
);
455 ubifs_assert(lnum
>= c
->lpt_first
&&
456 lnum
<= c
->lpt_last
);
457 err
= ubifs_leb_unmap(c
, lnum
);
462 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
466 /* Make sure to place LPT's own lprops table */
468 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
470 alen
= ALIGN(wlen
, c
->min_io_size
);
471 memset(buf
+ offs
, 0xff, alen
- wlen
);
472 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
476 err
= realloc_lpt_leb(c
, &lnum
);
480 ubifs_assert(lnum
>= c
->lpt_first
&&
481 lnum
<= c
->lpt_last
);
482 err
= ubifs_leb_unmap(c
, lnum
);
487 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
491 /* Write remaining data in buffer */
493 alen
= ALIGN(wlen
, c
->min_io_size
);
494 memset(buf
+ offs
, 0xff, alen
- wlen
);
495 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
, UBI_SHORTTERM
);
498 c
->nhead_lnum
= lnum
;
499 c
->nhead_offs
= ALIGN(offs
, c
->min_io_size
);
501 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
502 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
503 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
505 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
510 * next_pnode - find next pnode.
511 * @c: UBIFS file-system description object
514 * This function returns the next pnode or %NULL if there are no more pnodes.
516 static struct ubifs_pnode
*next_pnode(struct ubifs_info
*c
,
517 struct ubifs_pnode
*pnode
)
519 struct ubifs_nnode
*nnode
;
522 /* Try to go right */
523 nnode
= pnode
->parent
;
524 iip
= pnode
->iip
+ 1;
525 if (iip
< UBIFS_LPT_FANOUT
) {
526 /* We assume here that LEB zero is never an LPT LEB */
527 if (nnode
->nbranch
[iip
].lnum
)
528 return ubifs_get_pnode(c
, nnode
, iip
);
533 /* Go up while can't go right */
535 iip
= nnode
->iip
+ 1;
536 nnode
= nnode
->parent
;
539 /* We assume here that LEB zero is never an LPT LEB */
540 } while (iip
>= UBIFS_LPT_FANOUT
|| !nnode
->nbranch
[iip
].lnum
);
543 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
545 return (void *)nnode
;
547 /* Go down to level 1 */
548 while (nnode
->level
> 1) {
549 nnode
= ubifs_get_nnode(c
, nnode
, 0);
551 return (void *)nnode
;
554 return ubifs_get_pnode(c
, nnode
, 0);
558 * pnode_lookup - lookup a pnode in the LPT.
559 * @c: UBIFS file-system description object
560 * @i: pnode number (0 to main_lebs - 1)
562 * This function returns a pointer to the pnode on success or a negative
563 * error code on failure.
565 static struct ubifs_pnode
*pnode_lookup(struct ubifs_info
*c
, int i
)
567 int err
, h
, iip
, shft
;
568 struct ubifs_nnode
*nnode
;
571 err
= ubifs_read_nnode(c
, NULL
, 0);
575 i
<<= UBIFS_LPT_FANOUT_SHIFT
;
577 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
578 for (h
= 1; h
< c
->lpt_hght
; h
++) {
579 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
580 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
581 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
583 return ERR_PTR(PTR_ERR(nnode
));
585 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
586 return ubifs_get_pnode(c
, nnode
, iip
);
590 * add_pnode_dirt - add dirty space to LPT LEB properties.
591 * @c: UBIFS file-system description object
592 * @pnode: pnode for which to add dirt
594 static void add_pnode_dirt(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
596 ubifs_add_lpt_dirt(c
, pnode
->parent
->nbranch
[pnode
->iip
].lnum
,
601 * do_make_pnode_dirty - mark a pnode dirty.
602 * @c: UBIFS file-system description object
603 * @pnode: pnode to mark dirty
605 static void do_make_pnode_dirty(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
607 /* Assumes cnext list is empty i.e. not called during commit */
608 if (!test_and_set_bit(DIRTY_CNODE
, &pnode
->flags
)) {
609 struct ubifs_nnode
*nnode
;
611 c
->dirty_pn_cnt
+= 1;
612 add_pnode_dirt(c
, pnode
);
613 /* Mark parent and ancestors dirty too */
614 nnode
= pnode
->parent
;
616 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
617 c
->dirty_nn_cnt
+= 1;
618 ubifs_add_nnode_dirt(c
, nnode
);
619 nnode
= nnode
->parent
;
627 * make_tree_dirty - mark the entire LEB properties tree dirty.
628 * @c: UBIFS file-system description object
630 * This function is used by the "small" LPT model to cause the entire LEB
631 * properties tree to be written. The "small" LPT model does not use LPT
632 * garbage collection because it is more efficient to write the entire tree
633 * (because it is small).
635 * This function returns %0 on success and a negative error code on failure.
637 static int make_tree_dirty(struct ubifs_info
*c
)
639 struct ubifs_pnode
*pnode
;
641 pnode
= pnode_lookup(c
, 0);
643 do_make_pnode_dirty(c
, pnode
);
644 pnode
= next_pnode(c
, pnode
);
646 return PTR_ERR(pnode
);
652 * need_write_all - determine if the LPT area is running out of free space.
653 * @c: UBIFS file-system description object
655 * This function returns %1 if the LPT area is running out of free space and %0
658 static int need_write_all(struct ubifs_info
*c
)
663 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
664 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
665 free
+= c
->leb_size
- c
->nhead_offs
;
666 else if (c
->ltab
[i
].free
== c
->leb_size
)
668 else if (c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
671 /* Less than twice the size left */
672 if (free
<= c
->lpt_sz
* 2)
678 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
679 * @c: UBIFS file-system description object
681 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
682 * free space and so may be reused as soon as the next commit is completed.
683 * This function is called during start commit to mark LPT LEBs for trivial GC.
685 static void lpt_tgc_start(struct ubifs_info
*c
)
689 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
690 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
692 if (c
->ltab
[i
].dirty
> 0 &&
693 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
) {
695 c
->ltab
[i
].free
= c
->leb_size
;
696 c
->ltab
[i
].dirty
= 0;
697 dbg_lp("LEB %d", i
+ c
->lpt_first
);
703 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
704 * @c: UBIFS file-system description object
706 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
707 * free space and so may be reused as soon as the next commit is completed.
708 * This function is called after the commit is completed (master node has been
709 * written) and unmaps LPT LEBs that were marked for trivial GC.
711 static int lpt_tgc_end(struct ubifs_info
*c
)
715 for (i
= 0; i
< c
->lpt_lebs
; i
++)
716 if (c
->ltab
[i
].tgc
) {
717 err
= ubifs_leb_unmap(c
, i
+ c
->lpt_first
);
721 dbg_lp("LEB %d", i
+ c
->lpt_first
);
727 * populate_lsave - fill the lsave array with important LEB numbers.
728 * @c: the UBIFS file-system description object
730 * This function is only called for the "big" model. It records a small number
731 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
732 * most important to least important): empty, freeable, freeable index, dirty
733 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
734 * their pnodes into memory. That will stop us from having to scan the LPT
735 * straight away. For the "small" model we assume that scanning the LPT is no
738 static void populate_lsave(struct ubifs_info
*c
)
740 struct ubifs_lprops
*lprops
;
741 struct ubifs_lpt_heap
*heap
;
744 ubifs_assert(c
->big_lpt
);
745 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
746 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
747 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
749 list_for_each_entry(lprops
, &c
->empty_list
, list
) {
750 c
->lsave
[cnt
++] = lprops
->lnum
;
751 if (cnt
>= c
->lsave_cnt
)
754 list_for_each_entry(lprops
, &c
->freeable_list
, list
) {
755 c
->lsave
[cnt
++] = lprops
->lnum
;
756 if (cnt
>= c
->lsave_cnt
)
759 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
760 c
->lsave
[cnt
++] = lprops
->lnum
;
761 if (cnt
>= c
->lsave_cnt
)
764 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
765 for (i
= 0; i
< heap
->cnt
; i
++) {
766 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
767 if (cnt
>= c
->lsave_cnt
)
770 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
771 for (i
= 0; i
< heap
->cnt
; i
++) {
772 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
773 if (cnt
>= c
->lsave_cnt
)
776 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
777 for (i
= 0; i
< heap
->cnt
; i
++) {
778 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
779 if (cnt
>= c
->lsave_cnt
)
782 /* Fill it up completely */
783 while (cnt
< c
->lsave_cnt
)
784 c
->lsave
[cnt
++] = c
->main_first
;
788 * nnode_lookup - lookup a nnode in the LPT.
789 * @c: UBIFS file-system description object
792 * This function returns a pointer to the nnode on success or a negative
793 * error code on failure.
795 static struct ubifs_nnode
*nnode_lookup(struct ubifs_info
*c
, int i
)
798 struct ubifs_nnode
*nnode
;
801 err
= ubifs_read_nnode(c
, NULL
, 0);
807 iip
= i
& (UBIFS_LPT_FANOUT
- 1);
808 i
>>= UBIFS_LPT_FANOUT_SHIFT
;
811 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
819 * make_nnode_dirty - find a nnode and, if found, make it dirty.
820 * @c: UBIFS file-system description object
821 * @node_num: nnode number of nnode to make dirty
822 * @lnum: LEB number where nnode was written
823 * @offs: offset where nnode was written
825 * This function is used by LPT garbage collection. LPT garbage collection is
826 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
827 * simply involves marking all the nodes in the LEB being garbage-collected as
828 * dirty. The dirty nodes are written next commit, after which the LEB is free
831 * This function returns %0 on success and a negative error code on failure.
833 static int make_nnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
836 struct ubifs_nnode
*nnode
;
838 nnode
= nnode_lookup(c
, node_num
);
840 return PTR_ERR(nnode
);
842 struct ubifs_nbranch
*branch
;
844 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
845 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
846 return 0; /* nnode is obsolete */
847 } else if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
848 return 0; /* nnode is obsolete */
849 /* Assumes cnext list is empty i.e. not called during commit */
850 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
851 c
->dirty_nn_cnt
+= 1;
852 ubifs_add_nnode_dirt(c
, nnode
);
853 /* Mark parent and ancestors dirty too */
854 nnode
= nnode
->parent
;
856 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
857 c
->dirty_nn_cnt
+= 1;
858 ubifs_add_nnode_dirt(c
, nnode
);
859 nnode
= nnode
->parent
;
868 * make_pnode_dirty - find a pnode and, if found, make it dirty.
869 * @c: UBIFS file-system description object
870 * @node_num: pnode number of pnode to make dirty
871 * @lnum: LEB number where pnode was written
872 * @offs: offset where pnode was written
874 * This function is used by LPT garbage collection. LPT garbage collection is
875 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
876 * simply involves marking all the nodes in the LEB being garbage-collected as
877 * dirty. The dirty nodes are written next commit, after which the LEB is free
880 * This function returns %0 on success and a negative error code on failure.
882 static int make_pnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
885 struct ubifs_pnode
*pnode
;
886 struct ubifs_nbranch
*branch
;
888 pnode
= pnode_lookup(c
, node_num
);
890 return PTR_ERR(pnode
);
891 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
892 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
894 do_make_pnode_dirty(c
, pnode
);
899 * make_ltab_dirty - make ltab node dirty.
900 * @c: UBIFS file-system description object
901 * @lnum: LEB number where ltab was written
902 * @offs: offset where ltab was written
904 * This function is used by LPT garbage collection. LPT garbage collection is
905 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
906 * simply involves marking all the nodes in the LEB being garbage-collected as
907 * dirty. The dirty nodes are written next commit, after which the LEB is free
910 * This function returns %0 on success and a negative error code on failure.
912 static int make_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
914 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
915 return 0; /* This ltab node is obsolete */
916 if (!(c
->lpt_drty_flgs
& LTAB_DIRTY
)) {
917 c
->lpt_drty_flgs
|= LTAB_DIRTY
;
918 ubifs_add_lpt_dirt(c
, c
->ltab_lnum
, c
->ltab_sz
);
924 * make_lsave_dirty - make lsave node dirty.
925 * @c: UBIFS file-system description object
926 * @lnum: LEB number where lsave was written
927 * @offs: offset where lsave was written
929 * This function is used by LPT garbage collection. LPT garbage collection is
930 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
931 * simply involves marking all the nodes in the LEB being garbage-collected as
932 * dirty. The dirty nodes are written next commit, after which the LEB is free
935 * This function returns %0 on success and a negative error code on failure.
937 static int make_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
939 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
940 return 0; /* This lsave node is obsolete */
941 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
942 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
943 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
949 * make_node_dirty - make node dirty.
950 * @c: UBIFS file-system description object
951 * @node_type: LPT node type
952 * @node_num: node number
953 * @lnum: LEB number where node was written
954 * @offs: offset where node was written
956 * This function is used by LPT garbage collection. LPT garbage collection is
957 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
958 * simply involves marking all the nodes in the LEB being garbage-collected as
959 * dirty. The dirty nodes are written next commit, after which the LEB is free
962 * This function returns %0 on success and a negative error code on failure.
964 static int make_node_dirty(struct ubifs_info
*c
, int node_type
, int node_num
,
968 case UBIFS_LPT_NNODE
:
969 return make_nnode_dirty(c
, node_num
, lnum
, offs
);
970 case UBIFS_LPT_PNODE
:
971 return make_pnode_dirty(c
, node_num
, lnum
, offs
);
973 return make_ltab_dirty(c
, lnum
, offs
);
974 case UBIFS_LPT_LSAVE
:
975 return make_lsave_dirty(c
, lnum
, offs
);
981 * get_lpt_node_len - return the length of a node based on its type.
982 * @c: UBIFS file-system description object
983 * @node_type: LPT node type
985 static int get_lpt_node_len(struct ubifs_info
*c
, int node_type
)
988 case UBIFS_LPT_NNODE
:
990 case UBIFS_LPT_PNODE
:
994 case UBIFS_LPT_LSAVE
:
1001 * get_pad_len - return the length of padding in a buffer.
1002 * @c: UBIFS file-system description object
1004 * @len: length of buffer
1006 static int get_pad_len(struct ubifs_info
*c
, uint8_t *buf
, int len
)
1010 if (c
->min_io_size
== 1)
1012 offs
= c
->leb_size
- len
;
1013 pad_len
= ALIGN(offs
, c
->min_io_size
) - offs
;
1018 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1019 * @c: UBIFS file-system description object
1021 * @node_num: node number is returned here
1023 static int get_lpt_node_type(struct ubifs_info
*c
, uint8_t *buf
, int *node_num
)
1025 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1026 int pos
= 0, node_type
;
1028 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1029 *node_num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
1034 * is_a_node - determine if a buffer contains a node.
1035 * @c: UBIFS file-system description object
1037 * @len: length of buffer
1039 * This function returns %1 if the buffer contains a node or %0 if it does not.
1041 static int is_a_node(struct ubifs_info
*c
, uint8_t *buf
, int len
)
1043 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1044 int pos
= 0, node_type
, node_len
;
1045 uint16_t crc
, calc_crc
;
1047 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1048 if (node_type
== UBIFS_LPT_NOT_A_NODE
)
1050 node_len
= get_lpt_node_len(c
, node_type
);
1051 if (!node_len
|| node_len
> len
)
1055 crc
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_CRC_BITS
);
1056 calc_crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
1057 node_len
- UBIFS_LPT_CRC_BYTES
);
1058 if (crc
!= calc_crc
)
1065 * lpt_gc_lnum - garbage collect a LPT LEB.
1066 * @c: UBIFS file-system description object
1067 * @lnum: LEB number to garbage collect
1069 * LPT garbage collection is used only for the "big" LPT model
1070 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1071 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1072 * next commit, after which the LEB is free to be reused.
1074 * This function returns %0 on success and a negative error code on failure.
1076 static int lpt_gc_lnum(struct ubifs_info
*c
, int lnum
)
1078 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1079 void *buf
= c
->lpt_buf
;
1081 dbg_lp("LEB %d", lnum
);
1082 err
= ubi_read(c
->ubi
, lnum
, buf
, 0, c
->leb_size
);
1084 ubifs_err("cannot read LEB %d, error %d", lnum
, err
);
1088 if (!is_a_node(c
, buf
, len
)) {
1091 pad_len
= get_pad_len(c
, buf
, len
);
1099 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1100 node_len
= get_lpt_node_len(c
, node_type
);
1101 offs
= c
->leb_size
- len
;
1102 ubifs_assert(node_len
!= 0);
1103 mutex_lock(&c
->lp_mutex
);
1104 err
= make_node_dirty(c
, node_type
, node_num
, lnum
, offs
);
1105 mutex_unlock(&c
->lp_mutex
);
1115 * lpt_gc - LPT garbage collection.
1116 * @c: UBIFS file-system description object
1118 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1119 * Returns %0 on success and a negative error code on failure.
1121 static int lpt_gc(struct ubifs_info
*c
)
1123 int i
, lnum
= -1, dirty
= 0;
1125 mutex_lock(&c
->lp_mutex
);
1126 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1127 ubifs_assert(!c
->ltab
[i
].tgc
);
1128 if (i
+ c
->lpt_first
== c
->nhead_lnum
||
1129 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
1131 if (c
->ltab
[i
].dirty
> dirty
) {
1132 dirty
= c
->ltab
[i
].dirty
;
1133 lnum
= i
+ c
->lpt_first
;
1136 mutex_unlock(&c
->lp_mutex
);
1139 return lpt_gc_lnum(c
, lnum
);
1143 * ubifs_lpt_start_commit - UBIFS commit starts.
1144 * @c: the UBIFS file-system description object
1146 * This function has to be called when UBIFS starts the commit operation.
1147 * This function "freezes" all currently dirty LEB properties and does not
1148 * change them anymore. Further changes are saved and tracked separately
1149 * because they are not part of this commit. This function returns zero in case
1150 * of success and a negative error code in case of failure.
1152 int ubifs_lpt_start_commit(struct ubifs_info
*c
)
1158 mutex_lock(&c
->lp_mutex
);
1159 err
= dbg_check_ltab(c
);
1163 if (c
->check_lpt_free
) {
1165 * We ensure there is enough free space in
1166 * ubifs_lpt_post_commit() by marking nodes dirty. That
1167 * information is lost when we unmount, so we also need
1168 * to check free space once after mounting also.
1170 c
->check_lpt_free
= 0;
1171 while (need_write_all(c
)) {
1172 mutex_unlock(&c
->lp_mutex
);
1176 mutex_lock(&c
->lp_mutex
);
1182 if (!c
->dirty_pn_cnt
) {
1183 dbg_cmt("no cnodes to commit");
1188 if (!c
->big_lpt
&& need_write_all(c
)) {
1189 /* If needed, write everything */
1190 err
= make_tree_dirty(c
);
1199 cnt
= get_cnodes_to_commit(c
);
1200 ubifs_assert(cnt
!= 0);
1202 err
= layout_cnodes(c
);
1206 /* Copy the LPT's own lprops for end commit to write */
1207 memcpy(c
->ltab_cmt
, c
->ltab
,
1208 sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1209 c
->lpt_drty_flgs
&= ~(LTAB_DIRTY
| LSAVE_DIRTY
);
1212 mutex_unlock(&c
->lp_mutex
);
1217 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1218 * @c: UBIFS file-system description object
1220 static void free_obsolete_cnodes(struct ubifs_info
*c
)
1222 struct ubifs_cnode
*cnode
, *cnext
;
1224 cnext
= c
->lpt_cnext
;
1229 cnext
= cnode
->cnext
;
1230 if (test_bit(OBSOLETE_CNODE
, &cnode
->flags
))
1233 cnode
->cnext
= NULL
;
1234 } while (cnext
!= c
->lpt_cnext
);
1235 c
->lpt_cnext
= NULL
;
1239 * ubifs_lpt_end_commit - finish the commit operation.
1240 * @c: the UBIFS file-system description object
1242 * This function has to be called when the commit operation finishes. It
1243 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1244 * the media. Returns zero in case of success and a negative error code in case
1247 int ubifs_lpt_end_commit(struct ubifs_info
*c
)
1256 err
= write_cnodes(c
);
1260 mutex_lock(&c
->lp_mutex
);
1261 free_obsolete_cnodes(c
);
1262 mutex_unlock(&c
->lp_mutex
);
1268 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1269 * @c: UBIFS file-system description object
1271 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1272 * commit for the "big" LPT model.
1274 int ubifs_lpt_post_commit(struct ubifs_info
*c
)
1278 mutex_lock(&c
->lp_mutex
);
1279 err
= lpt_tgc_end(c
);
1283 while (need_write_all(c
)) {
1284 mutex_unlock(&c
->lp_mutex
);
1288 mutex_lock(&c
->lp_mutex
);
1291 mutex_unlock(&c
->lp_mutex
);
1296 * first_nnode - find the first nnode in memory.
1297 * @c: UBIFS file-system description object
1298 * @hght: height of tree where nnode found is returned here
1300 * This function returns a pointer to the nnode found or %NULL if no nnode is
1301 * found. This function is a helper to 'ubifs_lpt_free()'.
1303 static struct ubifs_nnode
*first_nnode(struct ubifs_info
*c
, int *hght
)
1305 struct ubifs_nnode
*nnode
;
1312 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1314 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1315 if (nnode
->nbranch
[i
].nnode
) {
1317 nnode
= nnode
->nbranch
[i
].nnode
;
1329 * next_nnode - find the next nnode in memory.
1330 * @c: UBIFS file-system description object
1331 * @nnode: nnode from which to start.
1332 * @hght: height of tree where nnode is, is passed and returned here
1334 * This function returns a pointer to the nnode found or %NULL if no nnode is
1335 * found. This function is a helper to 'ubifs_lpt_free()'.
1337 static struct ubifs_nnode
*next_nnode(struct ubifs_info
*c
,
1338 struct ubifs_nnode
*nnode
, int *hght
)
1340 struct ubifs_nnode
*parent
;
1341 int iip
, h
, i
, found
;
1343 parent
= nnode
->parent
;
1346 if (nnode
->iip
== UBIFS_LPT_FANOUT
- 1) {
1350 for (iip
= nnode
->iip
+ 1; iip
< UBIFS_LPT_FANOUT
; iip
++) {
1351 nnode
= parent
->nbranch
[iip
].nnode
;
1359 for (h
= *hght
+ 1; h
< c
->lpt_hght
; h
++) {
1361 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1362 if (nnode
->nbranch
[i
].nnode
) {
1364 nnode
= nnode
->nbranch
[i
].nnode
;
1376 * ubifs_lpt_free - free resources owned by the LPT.
1377 * @c: UBIFS file-system description object
1378 * @wr_only: free only resources used for writing
1380 void ubifs_lpt_free(struct ubifs_info
*c
, int wr_only
)
1382 struct ubifs_nnode
*nnode
;
1385 /* Free write-only things first */
1387 free_obsolete_cnodes(c
); /* Leftover from a failed commit */
1399 /* Now free the rest */
1401 nnode
= first_nnode(c
, &hght
);
1403 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++)
1404 kfree(nnode
->nbranch
[i
].nnode
);
1405 nnode
= next_nnode(c
, nnode
, &hght
);
1407 for (i
= 0; i
< LPROPS_HEAP_CNT
; i
++)
1408 kfree(c
->lpt_heap
[i
].arr
);
1409 kfree(c
->dirty_idx
.arr
);
1412 kfree(c
->lpt_nod_buf
);
1415 #ifdef CONFIG_UBIFS_FS_DEBUG
1418 * dbg_is_all_ff - determine if a buffer contains only 0xff bytes.
1420 * @len: buffer length
1422 static int dbg_is_all_ff(uint8_t *buf
, int len
)
1426 for (i
= 0; i
< len
; i
++)
1433 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1434 * @c: the UBIFS file-system description object
1435 * @lnum: LEB number where nnode was written
1436 * @offs: offset where nnode was written
1438 static int dbg_is_nnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1440 struct ubifs_nnode
*nnode
;
1443 /* Entire tree is in memory so first_nnode / next_nnode are ok */
1444 nnode
= first_nnode(c
, &hght
);
1445 for (; nnode
; nnode
= next_nnode(c
, nnode
, &hght
)) {
1446 struct ubifs_nbranch
*branch
;
1449 if (nnode
->parent
) {
1450 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
1451 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1453 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1457 if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
1459 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1468 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1469 * @c: the UBIFS file-system description object
1470 * @lnum: LEB number where pnode was written
1471 * @offs: offset where pnode was written
1473 static int dbg_is_pnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1477 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1478 for (i
= 0; i
< cnt
; i
++) {
1479 struct ubifs_pnode
*pnode
;
1480 struct ubifs_nbranch
*branch
;
1483 pnode
= pnode_lookup(c
, i
);
1485 return PTR_ERR(pnode
);
1486 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
1487 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1489 if (test_bit(DIRTY_CNODE
, &pnode
->flags
))
1497 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1498 * @c: the UBIFS file-system description object
1499 * @lnum: LEB number where ltab node was written
1500 * @offs: offset where ltab node was written
1502 static int dbg_is_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1504 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
1506 return (c
->lpt_drty_flgs
& LTAB_DIRTY
) != 0;
1510 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1511 * @c: the UBIFS file-system description object
1512 * @lnum: LEB number where lsave node was written
1513 * @offs: offset where lsave node was written
1515 static int dbg_is_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1517 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
1519 return (c
->lpt_drty_flgs
& LSAVE_DIRTY
) != 0;
1523 * dbg_is_node_dirty - determine if a node is dirty.
1524 * @c: the UBIFS file-system description object
1525 * @node_type: node type
1526 * @lnum: LEB number where node was written
1527 * @offs: offset where node was written
1529 static int dbg_is_node_dirty(struct ubifs_info
*c
, int node_type
, int lnum
,
1532 switch (node_type
) {
1533 case UBIFS_LPT_NNODE
:
1534 return dbg_is_nnode_dirty(c
, lnum
, offs
);
1535 case UBIFS_LPT_PNODE
:
1536 return dbg_is_pnode_dirty(c
, lnum
, offs
);
1537 case UBIFS_LPT_LTAB
:
1538 return dbg_is_ltab_dirty(c
, lnum
, offs
);
1539 case UBIFS_LPT_LSAVE
:
1540 return dbg_is_lsave_dirty(c
, lnum
, offs
);
1546 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1547 * @c: the UBIFS file-system description object
1548 * @lnum: LEB number where node was written
1549 * @offs: offset where node was written
1551 * This function returns %0 on success and a negative error code on failure.
1553 static int dbg_check_ltab_lnum(struct ubifs_info
*c
, int lnum
)
1555 int err
, len
= c
->leb_size
, dirty
= 0, node_type
, node_num
, node_len
;
1557 void *buf
= c
->dbg_buf
;
1559 dbg_lp("LEB %d", lnum
);
1560 err
= ubi_read(c
->ubi
, lnum
, buf
, 0, c
->leb_size
);
1562 dbg_msg("ubi_read failed, LEB %d, error %d", lnum
, err
);
1566 if (!is_a_node(c
, buf
, len
)) {
1569 pad_len
= get_pad_len(c
, buf
, len
);
1576 if (!dbg_is_all_ff(buf
, len
)) {
1577 dbg_msg("invalid empty space in LEB %d at %d",
1578 lnum
, c
->leb_size
- len
);
1581 i
= lnum
- c
->lpt_first
;
1582 if (len
!= c
->ltab
[i
].free
) {
1583 dbg_msg("invalid free space in LEB %d "
1584 "(free %d, expected %d)",
1585 lnum
, len
, c
->ltab
[i
].free
);
1588 if (dirty
!= c
->ltab
[i
].dirty
) {
1589 dbg_msg("invalid dirty space in LEB %d "
1590 "(dirty %d, expected %d)",
1591 lnum
, dirty
, c
->ltab
[i
].dirty
);
1596 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1597 node_len
= get_lpt_node_len(c
, node_type
);
1598 ret
= dbg_is_node_dirty(c
, node_type
, lnum
, c
->leb_size
- len
);
1607 * dbg_check_ltab - check the free and dirty space in the ltab.
1608 * @c: the UBIFS file-system description object
1610 * This function returns %0 on success and a negative error code on failure.
1612 int dbg_check_ltab(struct ubifs_info
*c
)
1614 int lnum
, err
, i
, cnt
;
1616 if (!(ubifs_chk_flags
& UBIFS_CHK_LPROPS
))
1619 /* Bring the entire tree into memory */
1620 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1621 for (i
= 0; i
< cnt
; i
++) {
1622 struct ubifs_pnode
*pnode
;
1624 pnode
= pnode_lookup(c
, i
);
1626 return PTR_ERR(pnode
);
1631 err
= dbg_check_lpt_nodes(c
, (struct ubifs_cnode
*)c
->nroot
, 0, 0);
1635 /* Check each LEB */
1636 for (lnum
= c
->lpt_first
; lnum
<= c
->lpt_last
; lnum
++) {
1637 err
= dbg_check_ltab_lnum(c
, lnum
);
1639 dbg_err("failed at LEB %d", lnum
);
1644 dbg_lp("succeeded");
1648 #endif /* CONFIG_UBIFS_FS_DEBUG */