[libata] bump versions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / sata_mv.c
bloba65ba636aaa8eeb0ddb66b160f4a5749409c1106
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/device.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <linux/libata.h>
37 #define DRV_NAME "sata_mv"
38 #define DRV_VERSION "0.8"
40 enum {
41 /* BAR's are enumerated in terms of pci_resource_start() terms */
42 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
43 MV_IO_BAR = 2, /* offset 0x18: IO space */
44 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
46 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
47 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
49 MV_PCI_REG_BASE = 0,
50 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
51 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
52 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
53 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
54 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
55 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
57 MV_SATAHC0_REG_BASE = 0x20000,
58 MV_FLASH_CTL = 0x1046c,
59 MV_GPIO_PORT_CTL = 0x104f0,
60 MV_RESET_CFG = 0x180d8,
62 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
63 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
64 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
65 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
67 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
69 MV_MAX_Q_DEPTH = 32,
70 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
72 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
73 * CRPB needs alignment on a 256B boundary. Size == 256B
74 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
75 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
77 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
78 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
79 MV_MAX_SG_CT = 176,
80 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
81 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
83 MV_PORTS_PER_HC = 4,
84 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
85 MV_PORT_HC_SHIFT = 2,
86 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
87 MV_PORT_MASK = 3,
89 /* Host Flags */
90 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
91 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
92 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
93 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
94 ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
95 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
97 CRQB_FLAG_READ = (1 << 0),
98 CRQB_TAG_SHIFT = 1,
99 CRQB_CMD_ADDR_SHIFT = 8,
100 CRQB_CMD_CS = (0x2 << 11),
101 CRQB_CMD_LAST = (1 << 15),
103 CRPB_FLAG_STATUS_SHIFT = 8,
105 EPRD_FLAG_END_OF_TBL = (1 << 31),
107 /* PCI interface registers */
109 PCI_COMMAND_OFS = 0xc00,
111 PCI_MAIN_CMD_STS_OFS = 0xd30,
112 STOP_PCI_MASTER = (1 << 2),
113 PCI_MASTER_EMPTY = (1 << 3),
114 GLOB_SFT_RST = (1 << 4),
116 MV_PCI_MODE = 0xd00,
117 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
118 MV_PCI_DISC_TIMER = 0xd04,
119 MV_PCI_MSI_TRIGGER = 0xc38,
120 MV_PCI_SERR_MASK = 0xc28,
121 MV_PCI_XBAR_TMOUT = 0x1d04,
122 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
123 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
124 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
125 MV_PCI_ERR_COMMAND = 0x1d50,
127 PCI_IRQ_CAUSE_OFS = 0x1d58,
128 PCI_IRQ_MASK_OFS = 0x1d5c,
129 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
131 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
132 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
133 PORT0_ERR = (1 << 0), /* shift by port # */
134 PORT0_DONE = (1 << 1), /* shift by port # */
135 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
136 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
137 PCI_ERR = (1 << 18),
138 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
139 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
140 PORTS_0_3_COAL_DONE = (1 << 8),
141 PORTS_4_7_COAL_DONE = (1 << 17),
142 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
143 GPIO_INT = (1 << 22),
144 SELF_INT = (1 << 23),
145 TWSI_INT = (1 << 24),
146 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
147 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
148 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
149 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
150 HC_MAIN_RSVD),
151 HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
152 HC_MAIN_RSVD_5),
154 /* SATAHC registers */
155 HC_CFG_OFS = 0,
157 HC_IRQ_CAUSE_OFS = 0x14,
158 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
159 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
160 DEV_IRQ = (1 << 8), /* shift by port # */
162 /* Shadow block registers */
163 SHD_BLK_OFS = 0x100,
164 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
166 /* SATA registers */
167 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
168 SATA_ACTIVE_OFS = 0x350,
169 PHY_MODE3 = 0x310,
170 PHY_MODE4 = 0x314,
171 PHY_MODE2 = 0x330,
172 MV5_PHY_MODE = 0x74,
173 MV5_LT_MODE = 0x30,
174 MV5_PHY_CTL = 0x0C,
175 SATA_INTERFACE_CTL = 0x050,
177 MV_M2_PREAMP_MASK = 0x7e0,
179 /* Port registers */
180 EDMA_CFG_OFS = 0,
181 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
182 EDMA_CFG_NCQ = (1 << 5),
183 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
184 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
185 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
187 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
188 EDMA_ERR_IRQ_MASK_OFS = 0xc,
189 EDMA_ERR_D_PAR = (1 << 0),
190 EDMA_ERR_PRD_PAR = (1 << 1),
191 EDMA_ERR_DEV = (1 << 2),
192 EDMA_ERR_DEV_DCON = (1 << 3),
193 EDMA_ERR_DEV_CON = (1 << 4),
194 EDMA_ERR_SERR = (1 << 5),
195 EDMA_ERR_SELF_DIS = (1 << 7),
196 EDMA_ERR_BIST_ASYNC = (1 << 8),
197 EDMA_ERR_CRBQ_PAR = (1 << 9),
198 EDMA_ERR_CRPB_PAR = (1 << 10),
199 EDMA_ERR_INTRL_PAR = (1 << 11),
200 EDMA_ERR_IORDY = (1 << 12),
201 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
202 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
203 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
204 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
205 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
206 EDMA_ERR_TRANS_PROTO = (1 << 31),
207 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
208 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
209 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
210 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
211 EDMA_ERR_LNK_DATA_RX |
212 EDMA_ERR_LNK_DATA_TX |
213 EDMA_ERR_TRANS_PROTO),
215 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
216 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
218 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
219 EDMA_REQ_Q_PTR_SHIFT = 5,
221 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
222 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
223 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
224 EDMA_RSP_Q_PTR_SHIFT = 3,
226 EDMA_CMD_OFS = 0x28,
227 EDMA_EN = (1 << 0),
228 EDMA_DS = (1 << 1),
229 ATA_RST = (1 << 2),
231 EDMA_IORDY_TMOUT = 0x34,
232 EDMA_ARB_CFG = 0x38,
234 /* Host private flags (hp_flags) */
235 MV_HP_FLAG_MSI = (1 << 0),
236 MV_HP_ERRATA_50XXB0 = (1 << 1),
237 MV_HP_ERRATA_50XXB2 = (1 << 2),
238 MV_HP_ERRATA_60X1B2 = (1 << 3),
239 MV_HP_ERRATA_60X1C0 = (1 << 4),
240 MV_HP_ERRATA_XX42A0 = (1 << 5),
241 MV_HP_50XX = (1 << 6),
242 MV_HP_GEN_IIE = (1 << 7),
244 /* Port private flags (pp_flags) */
245 MV_PP_FLAG_EDMA_EN = (1 << 0),
246 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
249 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
250 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
251 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
252 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
253 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
255 enum {
256 /* Our DMA boundary is determined by an ePRD being unable to handle
257 * anything larger than 64KB
259 MV_DMA_BOUNDARY = 0xffffU,
261 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
263 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
266 enum chip_type {
267 chip_504x,
268 chip_508x,
269 chip_5080,
270 chip_604x,
271 chip_608x,
272 chip_6042,
273 chip_7042,
276 /* Command ReQuest Block: 32B */
277 struct mv_crqb {
278 __le32 sg_addr;
279 __le32 sg_addr_hi;
280 __le16 ctrl_flags;
281 __le16 ata_cmd[11];
284 struct mv_crqb_iie {
285 __le32 addr;
286 __le32 addr_hi;
287 __le32 flags;
288 __le32 len;
289 __le32 ata_cmd[4];
292 /* Command ResPonse Block: 8B */
293 struct mv_crpb {
294 __le16 id;
295 __le16 flags;
296 __le32 tmstmp;
299 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
300 struct mv_sg {
301 __le32 addr;
302 __le32 flags_size;
303 __le32 addr_hi;
304 __le32 reserved;
307 struct mv_port_priv {
308 struct mv_crqb *crqb;
309 dma_addr_t crqb_dma;
310 struct mv_crpb *crpb;
311 dma_addr_t crpb_dma;
312 struct mv_sg *sg_tbl;
313 dma_addr_t sg_tbl_dma;
314 u32 pp_flags;
317 struct mv_port_signal {
318 u32 amps;
319 u32 pre;
322 struct mv_host_priv;
323 struct mv_hw_ops {
324 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
325 unsigned int port);
326 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
327 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
328 void __iomem *mmio);
329 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
330 unsigned int n_hc);
331 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
332 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
335 struct mv_host_priv {
336 u32 hp_flags;
337 struct mv_port_signal signal[8];
338 const struct mv_hw_ops *ops;
341 static void mv_irq_clear(struct ata_port *ap);
342 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
343 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
344 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
345 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
346 static void mv_phy_reset(struct ata_port *ap);
347 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
348 static int mv_port_start(struct ata_port *ap);
349 static void mv_port_stop(struct ata_port *ap);
350 static void mv_qc_prep(struct ata_queued_cmd *qc);
351 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
352 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
353 static irqreturn_t mv_interrupt(int irq, void *dev_instance);
354 static void mv_eng_timeout(struct ata_port *ap);
355 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
357 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
358 unsigned int port);
359 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
360 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
361 void __iomem *mmio);
362 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
363 unsigned int n_hc);
364 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
365 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
367 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
368 unsigned int port);
369 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
370 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
371 void __iomem *mmio);
372 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
373 unsigned int n_hc);
374 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
375 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
376 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
377 unsigned int port_no);
378 static void mv_stop_and_reset(struct ata_port *ap);
380 static struct scsi_host_template mv_sht = {
381 .module = THIS_MODULE,
382 .name = DRV_NAME,
383 .ioctl = ata_scsi_ioctl,
384 .queuecommand = ata_scsi_queuecmd,
385 .can_queue = MV_USE_Q_DEPTH,
386 .this_id = ATA_SHT_THIS_ID,
387 .sg_tablesize = MV_MAX_SG_CT / 2,
388 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
389 .emulated = ATA_SHT_EMULATED,
390 .use_clustering = ATA_SHT_USE_CLUSTERING,
391 .proc_name = DRV_NAME,
392 .dma_boundary = MV_DMA_BOUNDARY,
393 .slave_configure = ata_scsi_slave_config,
394 .slave_destroy = ata_scsi_slave_destroy,
395 .bios_param = ata_std_bios_param,
398 static const struct ata_port_operations mv5_ops = {
399 .port_disable = ata_port_disable,
401 .tf_load = ata_tf_load,
402 .tf_read = ata_tf_read,
403 .check_status = ata_check_status,
404 .exec_command = ata_exec_command,
405 .dev_select = ata_std_dev_select,
407 .phy_reset = mv_phy_reset,
409 .qc_prep = mv_qc_prep,
410 .qc_issue = mv_qc_issue,
411 .data_xfer = ata_data_xfer,
413 .eng_timeout = mv_eng_timeout,
415 .irq_handler = mv_interrupt,
416 .irq_clear = mv_irq_clear,
417 .irq_on = ata_irq_on,
418 .irq_ack = ata_irq_ack,
420 .scr_read = mv5_scr_read,
421 .scr_write = mv5_scr_write,
423 .port_start = mv_port_start,
424 .port_stop = mv_port_stop,
427 static const struct ata_port_operations mv6_ops = {
428 .port_disable = ata_port_disable,
430 .tf_load = ata_tf_load,
431 .tf_read = ata_tf_read,
432 .check_status = ata_check_status,
433 .exec_command = ata_exec_command,
434 .dev_select = ata_std_dev_select,
436 .phy_reset = mv_phy_reset,
438 .qc_prep = mv_qc_prep,
439 .qc_issue = mv_qc_issue,
440 .data_xfer = ata_data_xfer,
442 .eng_timeout = mv_eng_timeout,
444 .irq_handler = mv_interrupt,
445 .irq_clear = mv_irq_clear,
446 .irq_on = ata_irq_on,
447 .irq_ack = ata_irq_ack,
449 .scr_read = mv_scr_read,
450 .scr_write = mv_scr_write,
452 .port_start = mv_port_start,
453 .port_stop = mv_port_stop,
456 static const struct ata_port_operations mv_iie_ops = {
457 .port_disable = ata_port_disable,
459 .tf_load = ata_tf_load,
460 .tf_read = ata_tf_read,
461 .check_status = ata_check_status,
462 .exec_command = ata_exec_command,
463 .dev_select = ata_std_dev_select,
465 .phy_reset = mv_phy_reset,
467 .qc_prep = mv_qc_prep_iie,
468 .qc_issue = mv_qc_issue,
469 .data_xfer = ata_data_xfer,
471 .eng_timeout = mv_eng_timeout,
473 .irq_handler = mv_interrupt,
474 .irq_clear = mv_irq_clear,
475 .irq_on = ata_irq_on,
476 .irq_ack = ata_irq_ack,
478 .scr_read = mv_scr_read,
479 .scr_write = mv_scr_write,
481 .port_start = mv_port_start,
482 .port_stop = mv_port_stop,
485 static const struct ata_port_info mv_port_info[] = {
486 { /* chip_504x */
487 .sht = &mv_sht,
488 .flags = MV_COMMON_FLAGS,
489 .pio_mask = 0x1f, /* pio0-4 */
490 .udma_mask = 0x7f, /* udma0-6 */
491 .port_ops = &mv5_ops,
493 { /* chip_508x */
494 .sht = &mv_sht,
495 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
496 .pio_mask = 0x1f, /* pio0-4 */
497 .udma_mask = 0x7f, /* udma0-6 */
498 .port_ops = &mv5_ops,
500 { /* chip_5080 */
501 .sht = &mv_sht,
502 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
503 .pio_mask = 0x1f, /* pio0-4 */
504 .udma_mask = 0x7f, /* udma0-6 */
505 .port_ops = &mv5_ops,
507 { /* chip_604x */
508 .sht = &mv_sht,
509 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
510 .pio_mask = 0x1f, /* pio0-4 */
511 .udma_mask = 0x7f, /* udma0-6 */
512 .port_ops = &mv6_ops,
514 { /* chip_608x */
515 .sht = &mv_sht,
516 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
517 MV_FLAG_DUAL_HC),
518 .pio_mask = 0x1f, /* pio0-4 */
519 .udma_mask = 0x7f, /* udma0-6 */
520 .port_ops = &mv6_ops,
522 { /* chip_6042 */
523 .sht = &mv_sht,
524 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
525 .pio_mask = 0x1f, /* pio0-4 */
526 .udma_mask = 0x7f, /* udma0-6 */
527 .port_ops = &mv_iie_ops,
529 { /* chip_7042 */
530 .sht = &mv_sht,
531 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
532 .pio_mask = 0x1f, /* pio0-4 */
533 .udma_mask = 0x7f, /* udma0-6 */
534 .port_ops = &mv_iie_ops,
538 static const struct pci_device_id mv_pci_tbl[] = {
539 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
540 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
541 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
542 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
544 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
545 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
546 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
547 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
548 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
550 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
552 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
554 { } /* terminate list */
557 static struct pci_driver mv_pci_driver = {
558 .name = DRV_NAME,
559 .id_table = mv_pci_tbl,
560 .probe = mv_init_one,
561 .remove = ata_pci_remove_one,
564 static const struct mv_hw_ops mv5xxx_ops = {
565 .phy_errata = mv5_phy_errata,
566 .enable_leds = mv5_enable_leds,
567 .read_preamp = mv5_read_preamp,
568 .reset_hc = mv5_reset_hc,
569 .reset_flash = mv5_reset_flash,
570 .reset_bus = mv5_reset_bus,
573 static const struct mv_hw_ops mv6xxx_ops = {
574 .phy_errata = mv6_phy_errata,
575 .enable_leds = mv6_enable_leds,
576 .read_preamp = mv6_read_preamp,
577 .reset_hc = mv6_reset_hc,
578 .reset_flash = mv6_reset_flash,
579 .reset_bus = mv_reset_pci_bus,
583 * module options
585 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
589 * Functions
592 static inline void writelfl(unsigned long data, void __iomem *addr)
594 writel(data, addr);
595 (void) readl(addr); /* flush to avoid PCI posted write */
598 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
600 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
603 static inline unsigned int mv_hc_from_port(unsigned int port)
605 return port >> MV_PORT_HC_SHIFT;
608 static inline unsigned int mv_hardport_from_port(unsigned int port)
610 return port & MV_PORT_MASK;
613 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
614 unsigned int port)
616 return mv_hc_base(base, mv_hc_from_port(port));
619 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
621 return mv_hc_base_from_port(base, port) +
622 MV_SATAHC_ARBTR_REG_SZ +
623 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
626 static inline void __iomem *mv_ap_base(struct ata_port *ap)
628 return mv_port_base(ap->host->iomap[MV_PRIMARY_BAR], ap->port_no);
631 static inline int mv_get_hc_count(unsigned long port_flags)
633 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
636 static void mv_irq_clear(struct ata_port *ap)
641 * mv_start_dma - Enable eDMA engine
642 * @base: port base address
643 * @pp: port private data
645 * Verify the local cache of the eDMA state is accurate with a
646 * WARN_ON.
648 * LOCKING:
649 * Inherited from caller.
651 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
653 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
654 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
655 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
657 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
661 * mv_stop_dma - Disable eDMA engine
662 * @ap: ATA channel to manipulate
664 * Verify the local cache of the eDMA state is accurate with a
665 * WARN_ON.
667 * LOCKING:
668 * Inherited from caller.
670 static void mv_stop_dma(struct ata_port *ap)
672 void __iomem *port_mmio = mv_ap_base(ap);
673 struct mv_port_priv *pp = ap->private_data;
674 u32 reg;
675 int i;
677 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
678 /* Disable EDMA if active. The disable bit auto clears.
680 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
681 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
682 } else {
683 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
686 /* now properly wait for the eDMA to stop */
687 for (i = 1000; i > 0; i--) {
688 reg = readl(port_mmio + EDMA_CMD_OFS);
689 if (!(EDMA_EN & reg)) {
690 break;
692 udelay(100);
695 if (EDMA_EN & reg) {
696 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
697 /* FIXME: Consider doing a reset here to recover */
701 #ifdef ATA_DEBUG
702 static void mv_dump_mem(void __iomem *start, unsigned bytes)
704 int b, w;
705 for (b = 0; b < bytes; ) {
706 DPRINTK("%p: ", start + b);
707 for (w = 0; b < bytes && w < 4; w++) {
708 printk("%08x ",readl(start + b));
709 b += sizeof(u32);
711 printk("\n");
714 #endif
716 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
718 #ifdef ATA_DEBUG
719 int b, w;
720 u32 dw;
721 for (b = 0; b < bytes; ) {
722 DPRINTK("%02x: ", b);
723 for (w = 0; b < bytes && w < 4; w++) {
724 (void) pci_read_config_dword(pdev,b,&dw);
725 printk("%08x ",dw);
726 b += sizeof(u32);
728 printk("\n");
730 #endif
732 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
733 struct pci_dev *pdev)
735 #ifdef ATA_DEBUG
736 void __iomem *hc_base = mv_hc_base(mmio_base,
737 port >> MV_PORT_HC_SHIFT);
738 void __iomem *port_base;
739 int start_port, num_ports, p, start_hc, num_hcs, hc;
741 if (0 > port) {
742 start_hc = start_port = 0;
743 num_ports = 8; /* shld be benign for 4 port devs */
744 num_hcs = 2;
745 } else {
746 start_hc = port >> MV_PORT_HC_SHIFT;
747 start_port = port;
748 num_ports = num_hcs = 1;
750 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
751 num_ports > 1 ? num_ports - 1 : start_port);
753 if (NULL != pdev) {
754 DPRINTK("PCI config space regs:\n");
755 mv_dump_pci_cfg(pdev, 0x68);
757 DPRINTK("PCI regs:\n");
758 mv_dump_mem(mmio_base+0xc00, 0x3c);
759 mv_dump_mem(mmio_base+0xd00, 0x34);
760 mv_dump_mem(mmio_base+0xf00, 0x4);
761 mv_dump_mem(mmio_base+0x1d00, 0x6c);
762 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
763 hc_base = mv_hc_base(mmio_base, hc);
764 DPRINTK("HC regs (HC %i):\n", hc);
765 mv_dump_mem(hc_base, 0x1c);
767 for (p = start_port; p < start_port + num_ports; p++) {
768 port_base = mv_port_base(mmio_base, p);
769 DPRINTK("EDMA regs (port %i):\n",p);
770 mv_dump_mem(port_base, 0x54);
771 DPRINTK("SATA regs (port %i):\n",p);
772 mv_dump_mem(port_base+0x300, 0x60);
774 #endif
777 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
779 unsigned int ofs;
781 switch (sc_reg_in) {
782 case SCR_STATUS:
783 case SCR_CONTROL:
784 case SCR_ERROR:
785 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
786 break;
787 case SCR_ACTIVE:
788 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
789 break;
790 default:
791 ofs = 0xffffffffU;
792 break;
794 return ofs;
797 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
799 unsigned int ofs = mv_scr_offset(sc_reg_in);
801 if (0xffffffffU != ofs) {
802 return readl(mv_ap_base(ap) + ofs);
803 } else {
804 return (u32) ofs;
808 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
810 unsigned int ofs = mv_scr_offset(sc_reg_in);
812 if (0xffffffffU != ofs) {
813 writelfl(val, mv_ap_base(ap) + ofs);
817 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
819 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
821 /* set up non-NCQ EDMA configuration */
822 cfg &= ~(1 << 9); /* disable equeue */
824 if (IS_GEN_I(hpriv)) {
825 cfg &= ~0x1f; /* clear queue depth */
826 cfg |= (1 << 8); /* enab config burst size mask */
829 else if (IS_GEN_II(hpriv)) {
830 cfg &= ~0x1f; /* clear queue depth */
831 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
832 cfg &= ~(EDMA_CFG_NCQ | EDMA_CFG_NCQ_GO_ON_ERR); /* clear NCQ */
835 else if (IS_GEN_IIE(hpriv)) {
836 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
837 cfg |= (1 << 22); /* enab 4-entry host queue cache */
838 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
839 cfg |= (1 << 18); /* enab early completion */
840 cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
841 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
842 cfg &= ~(EDMA_CFG_NCQ | EDMA_CFG_NCQ_GO_ON_ERR); /* clear NCQ */
845 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
849 * mv_port_start - Port specific init/start routine.
850 * @ap: ATA channel to manipulate
852 * Allocate and point to DMA memory, init port private memory,
853 * zero indices.
855 * LOCKING:
856 * Inherited from caller.
858 static int mv_port_start(struct ata_port *ap)
860 struct device *dev = ap->host->dev;
861 struct mv_host_priv *hpriv = ap->host->private_data;
862 struct mv_port_priv *pp;
863 void __iomem *port_mmio = mv_ap_base(ap);
864 void *mem;
865 dma_addr_t mem_dma;
866 int rc;
868 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
869 if (!pp)
870 return -ENOMEM;
872 mem = dmam_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
873 GFP_KERNEL);
874 if (!mem)
875 return -ENOMEM;
876 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
878 rc = ata_pad_alloc(ap, dev);
879 if (rc)
880 return rc;
882 /* First item in chunk of DMA memory:
883 * 32-slot command request table (CRQB), 32 bytes each in size
885 pp->crqb = mem;
886 pp->crqb_dma = mem_dma;
887 mem += MV_CRQB_Q_SZ;
888 mem_dma += MV_CRQB_Q_SZ;
890 /* Second item:
891 * 32-slot command response table (CRPB), 8 bytes each in size
893 pp->crpb = mem;
894 pp->crpb_dma = mem_dma;
895 mem += MV_CRPB_Q_SZ;
896 mem_dma += MV_CRPB_Q_SZ;
898 /* Third item:
899 * Table of scatter-gather descriptors (ePRD), 16 bytes each
901 pp->sg_tbl = mem;
902 pp->sg_tbl_dma = mem_dma;
904 mv_edma_cfg(hpriv, port_mmio);
906 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
907 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
908 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
910 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
911 writelfl(pp->crqb_dma & 0xffffffff,
912 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
913 else
914 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
916 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
918 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
919 writelfl(pp->crpb_dma & 0xffffffff,
920 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
921 else
922 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
924 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
925 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
927 /* Don't turn on EDMA here...do it before DMA commands only. Else
928 * we'll be unable to send non-data, PIO, etc due to restricted access
929 * to shadow regs.
931 ap->private_data = pp;
932 return 0;
936 * mv_port_stop - Port specific cleanup/stop routine.
937 * @ap: ATA channel to manipulate
939 * Stop DMA, cleanup port memory.
941 * LOCKING:
942 * This routine uses the host lock to protect the DMA stop.
944 static void mv_port_stop(struct ata_port *ap)
946 unsigned long flags;
948 spin_lock_irqsave(&ap->host->lock, flags);
949 mv_stop_dma(ap);
950 spin_unlock_irqrestore(&ap->host->lock, flags);
954 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
955 * @qc: queued command whose SG list to source from
957 * Populate the SG list and mark the last entry.
959 * LOCKING:
960 * Inherited from caller.
962 static void mv_fill_sg(struct ata_queued_cmd *qc)
964 struct mv_port_priv *pp = qc->ap->private_data;
965 unsigned int i = 0;
966 struct scatterlist *sg;
968 ata_for_each_sg(sg, qc) {
969 dma_addr_t addr;
970 u32 sg_len, len, offset;
972 addr = sg_dma_address(sg);
973 sg_len = sg_dma_len(sg);
975 while (sg_len) {
976 offset = addr & MV_DMA_BOUNDARY;
977 len = sg_len;
978 if ((offset + sg_len) > 0x10000)
979 len = 0x10000 - offset;
981 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
982 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
983 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
985 sg_len -= len;
986 addr += len;
988 if (!sg_len && ata_sg_is_last(sg, qc))
989 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
991 i++;
996 static inline unsigned mv_inc_q_index(unsigned index)
998 return (index + 1) & MV_MAX_Q_DEPTH_MASK;
1001 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1003 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1004 (last ? CRQB_CMD_LAST : 0);
1005 *cmdw = cpu_to_le16(tmp);
1009 * mv_qc_prep - Host specific command preparation.
1010 * @qc: queued command to prepare
1012 * This routine simply redirects to the general purpose routine
1013 * if command is not DMA. Else, it handles prep of the CRQB
1014 * (command request block), does some sanity checking, and calls
1015 * the SG load routine.
1017 * LOCKING:
1018 * Inherited from caller.
1020 static void mv_qc_prep(struct ata_queued_cmd *qc)
1022 struct ata_port *ap = qc->ap;
1023 struct mv_port_priv *pp = ap->private_data;
1024 __le16 *cw;
1025 struct ata_taskfile *tf;
1026 u16 flags = 0;
1027 unsigned in_index;
1029 if (ATA_PROT_DMA != qc->tf.protocol)
1030 return;
1032 /* Fill in command request block
1034 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1035 flags |= CRQB_FLAG_READ;
1036 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1037 flags |= qc->tag << CRQB_TAG_SHIFT;
1039 /* get current queue index from hardware */
1040 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1041 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1043 pp->crqb[in_index].sg_addr =
1044 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1045 pp->crqb[in_index].sg_addr_hi =
1046 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1047 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1049 cw = &pp->crqb[in_index].ata_cmd[0];
1050 tf = &qc->tf;
1052 /* Sadly, the CRQB cannot accomodate all registers--there are
1053 * only 11 bytes...so we must pick and choose required
1054 * registers based on the command. So, we drop feature and
1055 * hob_feature for [RW] DMA commands, but they are needed for
1056 * NCQ. NCQ will drop hob_nsect.
1058 switch (tf->command) {
1059 case ATA_CMD_READ:
1060 case ATA_CMD_READ_EXT:
1061 case ATA_CMD_WRITE:
1062 case ATA_CMD_WRITE_EXT:
1063 case ATA_CMD_WRITE_FUA_EXT:
1064 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1065 break;
1066 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1067 case ATA_CMD_FPDMA_READ:
1068 case ATA_CMD_FPDMA_WRITE:
1069 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1070 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1071 break;
1072 #endif /* FIXME: remove this line when NCQ added */
1073 default:
1074 /* The only other commands EDMA supports in non-queued and
1075 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1076 * of which are defined/used by Linux. If we get here, this
1077 * driver needs work.
1079 * FIXME: modify libata to give qc_prep a return value and
1080 * return error here.
1082 BUG_ON(tf->command);
1083 break;
1085 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1086 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1087 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1088 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1089 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1090 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1091 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1092 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1093 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1095 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1096 return;
1097 mv_fill_sg(qc);
1101 * mv_qc_prep_iie - Host specific command preparation.
1102 * @qc: queued command to prepare
1104 * This routine simply redirects to the general purpose routine
1105 * if command is not DMA. Else, it handles prep of the CRQB
1106 * (command request block), does some sanity checking, and calls
1107 * the SG load routine.
1109 * LOCKING:
1110 * Inherited from caller.
1112 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1114 struct ata_port *ap = qc->ap;
1115 struct mv_port_priv *pp = ap->private_data;
1116 struct mv_crqb_iie *crqb;
1117 struct ata_taskfile *tf;
1118 unsigned in_index;
1119 u32 flags = 0;
1121 if (ATA_PROT_DMA != qc->tf.protocol)
1122 return;
1124 /* Fill in Gen IIE command request block
1126 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1127 flags |= CRQB_FLAG_READ;
1129 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1130 flags |= qc->tag << CRQB_TAG_SHIFT;
1132 /* get current queue index from hardware */
1133 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1134 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1136 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1137 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1138 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1139 crqb->flags = cpu_to_le32(flags);
1141 tf = &qc->tf;
1142 crqb->ata_cmd[0] = cpu_to_le32(
1143 (tf->command << 16) |
1144 (tf->feature << 24)
1146 crqb->ata_cmd[1] = cpu_to_le32(
1147 (tf->lbal << 0) |
1148 (tf->lbam << 8) |
1149 (tf->lbah << 16) |
1150 (tf->device << 24)
1152 crqb->ata_cmd[2] = cpu_to_le32(
1153 (tf->hob_lbal << 0) |
1154 (tf->hob_lbam << 8) |
1155 (tf->hob_lbah << 16) |
1156 (tf->hob_feature << 24)
1158 crqb->ata_cmd[3] = cpu_to_le32(
1159 (tf->nsect << 0) |
1160 (tf->hob_nsect << 8)
1163 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1164 return;
1165 mv_fill_sg(qc);
1169 * mv_qc_issue - Initiate a command to the host
1170 * @qc: queued command to start
1172 * This routine simply redirects to the general purpose routine
1173 * if command is not DMA. Else, it sanity checks our local
1174 * caches of the request producer/consumer indices then enables
1175 * DMA and bumps the request producer index.
1177 * LOCKING:
1178 * Inherited from caller.
1180 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1182 void __iomem *port_mmio = mv_ap_base(qc->ap);
1183 struct mv_port_priv *pp = qc->ap->private_data;
1184 unsigned in_index;
1185 u32 in_ptr;
1187 if (ATA_PROT_DMA != qc->tf.protocol) {
1188 /* We're about to send a non-EDMA capable command to the
1189 * port. Turn off EDMA so there won't be problems accessing
1190 * shadow block, etc registers.
1192 mv_stop_dma(qc->ap);
1193 return ata_qc_issue_prot(qc);
1196 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1197 in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1199 /* until we do queuing, the queue should be empty at this point */
1200 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1201 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1203 in_index = mv_inc_q_index(in_index); /* now incr producer index */
1205 mv_start_dma(port_mmio, pp);
1207 /* and write the request in pointer to kick the EDMA to life */
1208 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1209 in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1210 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1212 return 0;
1216 * mv_get_crpb_status - get status from most recently completed cmd
1217 * @ap: ATA channel to manipulate
1219 * This routine is for use when the port is in DMA mode, when it
1220 * will be using the CRPB (command response block) method of
1221 * returning command completion information. We check indices
1222 * are good, grab status, and bump the response consumer index to
1223 * prove that we're up to date.
1225 * LOCKING:
1226 * Inherited from caller.
1228 static u8 mv_get_crpb_status(struct ata_port *ap)
1230 void __iomem *port_mmio = mv_ap_base(ap);
1231 struct mv_port_priv *pp = ap->private_data;
1232 unsigned out_index;
1233 u32 out_ptr;
1234 u8 ata_status;
1236 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1237 out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1239 ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1240 >> CRPB_FLAG_STATUS_SHIFT;
1242 /* increment our consumer index... */
1243 out_index = mv_inc_q_index(out_index);
1245 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1246 WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1247 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1249 /* write out our inc'd consumer index so EDMA knows we're caught up */
1250 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1251 out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1252 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1254 /* Return ATA status register for completed CRPB */
1255 return ata_status;
1259 * mv_err_intr - Handle error interrupts on the port
1260 * @ap: ATA channel to manipulate
1261 * @reset_allowed: bool: 0 == don't trigger from reset here
1263 * In most cases, just clear the interrupt and move on. However,
1264 * some cases require an eDMA reset, which is done right before
1265 * the COMRESET in mv_phy_reset(). The SERR case requires a
1266 * clear of pending errors in the SATA SERROR register. Finally,
1267 * if the port disabled DMA, update our cached copy to match.
1269 * LOCKING:
1270 * Inherited from caller.
1272 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1274 void __iomem *port_mmio = mv_ap_base(ap);
1275 u32 edma_err_cause, serr = 0;
1277 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1279 if (EDMA_ERR_SERR & edma_err_cause) {
1280 sata_scr_read(ap, SCR_ERROR, &serr);
1281 sata_scr_write_flush(ap, SCR_ERROR, serr);
1283 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1284 struct mv_port_priv *pp = ap->private_data;
1285 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1287 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1288 "SERR: 0x%08x\n", ap->print_id, edma_err_cause, serr);
1290 /* Clear EDMA now that SERR cleanup done */
1291 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1293 /* check for fatal here and recover if needed */
1294 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1295 mv_stop_and_reset(ap);
1299 * mv_host_intr - Handle all interrupts on the given host controller
1300 * @host: host specific structure
1301 * @relevant: port error bits relevant to this host controller
1302 * @hc: which host controller we're to look at
1304 * Read then write clear the HC interrupt status then walk each
1305 * port connected to the HC and see if it needs servicing. Port
1306 * success ints are reported in the HC interrupt status reg, the
1307 * port error ints are reported in the higher level main
1308 * interrupt status register and thus are passed in via the
1309 * 'relevant' argument.
1311 * LOCKING:
1312 * Inherited from caller.
1314 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1316 void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
1317 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1318 struct ata_queued_cmd *qc;
1319 u32 hc_irq_cause;
1320 int shift, port, port0, hard_port, handled;
1321 unsigned int err_mask;
1323 if (hc == 0) {
1324 port0 = 0;
1325 } else {
1326 port0 = MV_PORTS_PER_HC;
1329 /* we'll need the HC success int register in most cases */
1330 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1331 if (hc_irq_cause) {
1332 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1335 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1336 hc,relevant,hc_irq_cause);
1338 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1339 u8 ata_status = 0;
1340 struct ata_port *ap = host->ports[port];
1341 struct mv_port_priv *pp = ap->private_data;
1343 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1344 handled = 0; /* ensure ata_status is set if handled++ */
1346 /* Note that DEV_IRQ might happen spuriously during EDMA,
1347 * and should be ignored in such cases.
1348 * The cause of this is still under investigation.
1350 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1351 /* EDMA: check for response queue interrupt */
1352 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1353 ata_status = mv_get_crpb_status(ap);
1354 handled = 1;
1356 } else {
1357 /* PIO: check for device (drive) interrupt */
1358 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1359 ata_status = readb(ap->ioaddr.status_addr);
1360 handled = 1;
1361 /* ignore spurious intr if drive still BUSY */
1362 if (ata_status & ATA_BUSY) {
1363 ata_status = 0;
1364 handled = 0;
1369 if (ap && (ap->flags & ATA_FLAG_DISABLED))
1370 continue;
1372 err_mask = ac_err_mask(ata_status);
1374 shift = port << 1; /* (port * 2) */
1375 if (port >= MV_PORTS_PER_HC) {
1376 shift++; /* skip bit 8 in the HC Main IRQ reg */
1378 if ((PORT0_ERR << shift) & relevant) {
1379 mv_err_intr(ap, 1);
1380 err_mask |= AC_ERR_OTHER;
1381 handled = 1;
1384 if (handled) {
1385 qc = ata_qc_from_tag(ap, ap->active_tag);
1386 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1387 VPRINTK("port %u IRQ found for qc, "
1388 "ata_status 0x%x\n", port,ata_status);
1389 /* mark qc status appropriately */
1390 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1391 qc->err_mask |= err_mask;
1392 ata_qc_complete(qc);
1397 VPRINTK("EXIT\n");
1401 * mv_interrupt -
1402 * @irq: unused
1403 * @dev_instance: private data; in this case the host structure
1404 * @regs: unused
1406 * Read the read only register to determine if any host
1407 * controllers have pending interrupts. If so, call lower level
1408 * routine to handle. Also check for PCI errors which are only
1409 * reported here.
1411 * LOCKING:
1412 * This routine holds the host lock while processing pending
1413 * interrupts.
1415 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1417 struct ata_host *host = dev_instance;
1418 unsigned int hc, handled = 0, n_hcs;
1419 void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
1420 struct mv_host_priv *hpriv;
1421 u32 irq_stat;
1423 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1425 /* check the cases where we either have nothing pending or have read
1426 * a bogus register value which can indicate HW removal or PCI fault
1428 if (!irq_stat || (0xffffffffU == irq_stat)) {
1429 return IRQ_NONE;
1432 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1433 spin_lock(&host->lock);
1435 for (hc = 0; hc < n_hcs; hc++) {
1436 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1437 if (relevant) {
1438 mv_host_intr(host, relevant, hc);
1439 handled++;
1443 hpriv = host->private_data;
1444 if (IS_60XX(hpriv)) {
1445 /* deal with the interrupt coalescing bits */
1446 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1447 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1448 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1449 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1453 if (PCI_ERR & irq_stat) {
1454 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1455 readl(mmio + PCI_IRQ_CAUSE_OFS));
1457 DPRINTK("All regs @ PCI error\n");
1458 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1460 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1461 handled++;
1463 spin_unlock(&host->lock);
1465 return IRQ_RETVAL(handled);
1468 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1470 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1471 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1473 return hc_mmio + ofs;
1476 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1478 unsigned int ofs;
1480 switch (sc_reg_in) {
1481 case SCR_STATUS:
1482 case SCR_ERROR:
1483 case SCR_CONTROL:
1484 ofs = sc_reg_in * sizeof(u32);
1485 break;
1486 default:
1487 ofs = 0xffffffffU;
1488 break;
1490 return ofs;
1493 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1495 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1496 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1497 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1499 if (ofs != 0xffffffffU)
1500 return readl(addr + ofs);
1501 else
1502 return (u32) ofs;
1505 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1507 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1508 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1509 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1511 if (ofs != 0xffffffffU)
1512 writelfl(val, addr + ofs);
1515 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1517 u8 rev_id;
1518 int early_5080;
1520 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1522 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1524 if (!early_5080) {
1525 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1526 tmp |= (1 << 0);
1527 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1530 mv_reset_pci_bus(pdev, mmio);
1533 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1535 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1538 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1539 void __iomem *mmio)
1541 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1542 u32 tmp;
1544 tmp = readl(phy_mmio + MV5_PHY_MODE);
1546 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1547 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1550 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1552 u32 tmp;
1554 writel(0, mmio + MV_GPIO_PORT_CTL);
1556 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1558 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1559 tmp |= ~(1 << 0);
1560 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1563 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1564 unsigned int port)
1566 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1567 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1568 u32 tmp;
1569 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1571 if (fix_apm_sq) {
1572 tmp = readl(phy_mmio + MV5_LT_MODE);
1573 tmp |= (1 << 19);
1574 writel(tmp, phy_mmio + MV5_LT_MODE);
1576 tmp = readl(phy_mmio + MV5_PHY_CTL);
1577 tmp &= ~0x3;
1578 tmp |= 0x1;
1579 writel(tmp, phy_mmio + MV5_PHY_CTL);
1582 tmp = readl(phy_mmio + MV5_PHY_MODE);
1583 tmp &= ~mask;
1584 tmp |= hpriv->signal[port].pre;
1585 tmp |= hpriv->signal[port].amps;
1586 writel(tmp, phy_mmio + MV5_PHY_MODE);
1590 #undef ZERO
1591 #define ZERO(reg) writel(0, port_mmio + (reg))
1592 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1593 unsigned int port)
1595 void __iomem *port_mmio = mv_port_base(mmio, port);
1597 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1599 mv_channel_reset(hpriv, mmio, port);
1601 ZERO(0x028); /* command */
1602 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1603 ZERO(0x004); /* timer */
1604 ZERO(0x008); /* irq err cause */
1605 ZERO(0x00c); /* irq err mask */
1606 ZERO(0x010); /* rq bah */
1607 ZERO(0x014); /* rq inp */
1608 ZERO(0x018); /* rq outp */
1609 ZERO(0x01c); /* respq bah */
1610 ZERO(0x024); /* respq outp */
1611 ZERO(0x020); /* respq inp */
1612 ZERO(0x02c); /* test control */
1613 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1615 #undef ZERO
1617 #define ZERO(reg) writel(0, hc_mmio + (reg))
1618 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1619 unsigned int hc)
1621 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1622 u32 tmp;
1624 ZERO(0x00c);
1625 ZERO(0x010);
1626 ZERO(0x014);
1627 ZERO(0x018);
1629 tmp = readl(hc_mmio + 0x20);
1630 tmp &= 0x1c1c1c1c;
1631 tmp |= 0x03030303;
1632 writel(tmp, hc_mmio + 0x20);
1634 #undef ZERO
1636 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1637 unsigned int n_hc)
1639 unsigned int hc, port;
1641 for (hc = 0; hc < n_hc; hc++) {
1642 for (port = 0; port < MV_PORTS_PER_HC; port++)
1643 mv5_reset_hc_port(hpriv, mmio,
1644 (hc * MV_PORTS_PER_HC) + port);
1646 mv5_reset_one_hc(hpriv, mmio, hc);
1649 return 0;
1652 #undef ZERO
1653 #define ZERO(reg) writel(0, mmio + (reg))
1654 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1656 u32 tmp;
1658 tmp = readl(mmio + MV_PCI_MODE);
1659 tmp &= 0xff00ffff;
1660 writel(tmp, mmio + MV_PCI_MODE);
1662 ZERO(MV_PCI_DISC_TIMER);
1663 ZERO(MV_PCI_MSI_TRIGGER);
1664 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1665 ZERO(HC_MAIN_IRQ_MASK_OFS);
1666 ZERO(MV_PCI_SERR_MASK);
1667 ZERO(PCI_IRQ_CAUSE_OFS);
1668 ZERO(PCI_IRQ_MASK_OFS);
1669 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1670 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1671 ZERO(MV_PCI_ERR_ATTRIBUTE);
1672 ZERO(MV_PCI_ERR_COMMAND);
1674 #undef ZERO
1676 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1678 u32 tmp;
1680 mv5_reset_flash(hpriv, mmio);
1682 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1683 tmp &= 0x3;
1684 tmp |= (1 << 5) | (1 << 6);
1685 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1689 * mv6_reset_hc - Perform the 6xxx global soft reset
1690 * @mmio: base address of the HBA
1692 * This routine only applies to 6xxx parts.
1694 * LOCKING:
1695 * Inherited from caller.
1697 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1698 unsigned int n_hc)
1700 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1701 int i, rc = 0;
1702 u32 t;
1704 /* Following procedure defined in PCI "main command and status
1705 * register" table.
1707 t = readl(reg);
1708 writel(t | STOP_PCI_MASTER, reg);
1710 for (i = 0; i < 1000; i++) {
1711 udelay(1);
1712 t = readl(reg);
1713 if (PCI_MASTER_EMPTY & t) {
1714 break;
1717 if (!(PCI_MASTER_EMPTY & t)) {
1718 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1719 rc = 1;
1720 goto done;
1723 /* set reset */
1724 i = 5;
1725 do {
1726 writel(t | GLOB_SFT_RST, reg);
1727 t = readl(reg);
1728 udelay(1);
1729 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1731 if (!(GLOB_SFT_RST & t)) {
1732 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1733 rc = 1;
1734 goto done;
1737 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1738 i = 5;
1739 do {
1740 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1741 t = readl(reg);
1742 udelay(1);
1743 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1745 if (GLOB_SFT_RST & t) {
1746 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1747 rc = 1;
1749 done:
1750 return rc;
1753 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1754 void __iomem *mmio)
1756 void __iomem *port_mmio;
1757 u32 tmp;
1759 tmp = readl(mmio + MV_RESET_CFG);
1760 if ((tmp & (1 << 0)) == 0) {
1761 hpriv->signal[idx].amps = 0x7 << 8;
1762 hpriv->signal[idx].pre = 0x1 << 5;
1763 return;
1766 port_mmio = mv_port_base(mmio, idx);
1767 tmp = readl(port_mmio + PHY_MODE2);
1769 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1770 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1773 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1775 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1778 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1779 unsigned int port)
1781 void __iomem *port_mmio = mv_port_base(mmio, port);
1783 u32 hp_flags = hpriv->hp_flags;
1784 int fix_phy_mode2 =
1785 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1786 int fix_phy_mode4 =
1787 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1788 u32 m2, tmp;
1790 if (fix_phy_mode2) {
1791 m2 = readl(port_mmio + PHY_MODE2);
1792 m2 &= ~(1 << 16);
1793 m2 |= (1 << 31);
1794 writel(m2, port_mmio + PHY_MODE2);
1796 udelay(200);
1798 m2 = readl(port_mmio + PHY_MODE2);
1799 m2 &= ~((1 << 16) | (1 << 31));
1800 writel(m2, port_mmio + PHY_MODE2);
1802 udelay(200);
1805 /* who knows what this magic does */
1806 tmp = readl(port_mmio + PHY_MODE3);
1807 tmp &= ~0x7F800000;
1808 tmp |= 0x2A800000;
1809 writel(tmp, port_mmio + PHY_MODE3);
1811 if (fix_phy_mode4) {
1812 u32 m4;
1814 m4 = readl(port_mmio + PHY_MODE4);
1816 if (hp_flags & MV_HP_ERRATA_60X1B2)
1817 tmp = readl(port_mmio + 0x310);
1819 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1821 writel(m4, port_mmio + PHY_MODE4);
1823 if (hp_flags & MV_HP_ERRATA_60X1B2)
1824 writel(tmp, port_mmio + 0x310);
1827 /* Revert values of pre-emphasis and signal amps to the saved ones */
1828 m2 = readl(port_mmio + PHY_MODE2);
1830 m2 &= ~MV_M2_PREAMP_MASK;
1831 m2 |= hpriv->signal[port].amps;
1832 m2 |= hpriv->signal[port].pre;
1833 m2 &= ~(1 << 16);
1835 /* according to mvSata 3.6.1, some IIE values are fixed */
1836 if (IS_GEN_IIE(hpriv)) {
1837 m2 &= ~0xC30FF01F;
1838 m2 |= 0x0000900F;
1841 writel(m2, port_mmio + PHY_MODE2);
1844 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1845 unsigned int port_no)
1847 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1849 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1851 if (IS_60XX(hpriv)) {
1852 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1853 ifctl |= (1 << 7); /* enable gen2i speed */
1854 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1855 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1858 udelay(25); /* allow reset propagation */
1860 /* Spec never mentions clearing the bit. Marvell's driver does
1861 * clear the bit, however.
1863 writelfl(0, port_mmio + EDMA_CMD_OFS);
1865 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1867 if (IS_50XX(hpriv))
1868 mdelay(1);
1871 static void mv_stop_and_reset(struct ata_port *ap)
1873 struct mv_host_priv *hpriv = ap->host->private_data;
1874 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1876 mv_stop_dma(ap);
1878 mv_channel_reset(hpriv, mmio, ap->port_no);
1880 __mv_phy_reset(ap, 0);
1883 static inline void __msleep(unsigned int msec, int can_sleep)
1885 if (can_sleep)
1886 msleep(msec);
1887 else
1888 mdelay(msec);
1892 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1893 * @ap: ATA channel to manipulate
1895 * Part of this is taken from __sata_phy_reset and modified to
1896 * not sleep since this routine gets called from interrupt level.
1898 * LOCKING:
1899 * Inherited from caller. This is coded to safe to call at
1900 * interrupt level, i.e. it does not sleep.
1902 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1904 struct mv_port_priv *pp = ap->private_data;
1905 struct mv_host_priv *hpriv = ap->host->private_data;
1906 void __iomem *port_mmio = mv_ap_base(ap);
1907 struct ata_taskfile tf;
1908 struct ata_device *dev = &ap->device[0];
1909 unsigned long timeout;
1910 int retry = 5;
1911 u32 sstatus;
1913 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1915 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1916 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1917 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1919 /* Issue COMRESET via SControl */
1920 comreset_retry:
1921 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1922 __msleep(1, can_sleep);
1924 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1925 __msleep(20, can_sleep);
1927 timeout = jiffies + msecs_to_jiffies(200);
1928 do {
1929 sata_scr_read(ap, SCR_STATUS, &sstatus);
1930 if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
1931 break;
1933 __msleep(1, can_sleep);
1934 } while (time_before(jiffies, timeout));
1936 /* work around errata */
1937 if (IS_60XX(hpriv) &&
1938 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1939 (retry-- > 0))
1940 goto comreset_retry;
1942 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1943 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1944 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1946 if (ata_port_online(ap)) {
1947 ata_port_probe(ap);
1948 } else {
1949 sata_scr_read(ap, SCR_STATUS, &sstatus);
1950 ata_port_printk(ap, KERN_INFO,
1951 "no device found (phy stat %08x)\n", sstatus);
1952 ata_port_disable(ap);
1953 return;
1955 ap->cbl = ATA_CBL_SATA;
1957 /* even after SStatus reflects that device is ready,
1958 * it seems to take a while for link to be fully
1959 * established (and thus Status no longer 0x80/0x7F),
1960 * so we poll a bit for that, here.
1962 retry = 20;
1963 while (1) {
1964 u8 drv_stat = ata_check_status(ap);
1965 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
1966 break;
1967 __msleep(500, can_sleep);
1968 if (retry-- <= 0)
1969 break;
1972 tf.lbah = readb(ap->ioaddr.lbah_addr);
1973 tf.lbam = readb(ap->ioaddr.lbam_addr);
1974 tf.lbal = readb(ap->ioaddr.lbal_addr);
1975 tf.nsect = readb(ap->ioaddr.nsect_addr);
1977 dev->class = ata_dev_classify(&tf);
1978 if (!ata_dev_enabled(dev)) {
1979 VPRINTK("Port disabled post-sig: No device present.\n");
1980 ata_port_disable(ap);
1983 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1985 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1987 VPRINTK("EXIT\n");
1990 static void mv_phy_reset(struct ata_port *ap)
1992 __mv_phy_reset(ap, 1);
1996 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1997 * @ap: ATA channel to manipulate
1999 * Intent is to clear all pending error conditions, reset the
2000 * chip/bus, fail the command, and move on.
2002 * LOCKING:
2003 * This routine holds the host lock while failing the command.
2005 static void mv_eng_timeout(struct ata_port *ap)
2007 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
2008 struct ata_queued_cmd *qc;
2009 unsigned long flags;
2011 ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
2012 DPRINTK("All regs @ start of eng_timeout\n");
2013 mv_dump_all_regs(mmio, ap->port_no, to_pci_dev(ap->host->dev));
2015 qc = ata_qc_from_tag(ap, ap->active_tag);
2016 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2017 mmio, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
2019 spin_lock_irqsave(&ap->host->lock, flags);
2020 mv_err_intr(ap, 0);
2021 mv_stop_and_reset(ap);
2022 spin_unlock_irqrestore(&ap->host->lock, flags);
2024 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2025 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2026 qc->err_mask |= AC_ERR_TIMEOUT;
2027 ata_eh_qc_complete(qc);
2032 * mv_port_init - Perform some early initialization on a single port.
2033 * @port: libata data structure storing shadow register addresses
2034 * @port_mmio: base address of the port
2036 * Initialize shadow register mmio addresses, clear outstanding
2037 * interrupts on the port, and unmask interrupts for the future
2038 * start of the port.
2040 * LOCKING:
2041 * Inherited from caller.
2043 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2045 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2046 unsigned serr_ofs;
2048 /* PIO related setup
2050 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2051 port->error_addr =
2052 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2053 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2054 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2055 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2056 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2057 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2058 port->status_addr =
2059 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2060 /* special case: control/altstatus doesn't have ATA_REG_ address */
2061 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2063 /* unused: */
2064 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2066 /* Clear any currently outstanding port interrupt conditions */
2067 serr_ofs = mv_scr_offset(SCR_ERROR);
2068 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2069 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2071 /* unmask all EDMA error interrupts */
2072 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2074 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2075 readl(port_mmio + EDMA_CFG_OFS),
2076 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2077 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2080 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2081 unsigned int board_idx)
2083 u8 rev_id;
2084 u32 hp_flags = hpriv->hp_flags;
2086 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2088 switch(board_idx) {
2089 case chip_5080:
2090 hpriv->ops = &mv5xxx_ops;
2091 hp_flags |= MV_HP_50XX;
2093 switch (rev_id) {
2094 case 0x1:
2095 hp_flags |= MV_HP_ERRATA_50XXB0;
2096 break;
2097 case 0x3:
2098 hp_flags |= MV_HP_ERRATA_50XXB2;
2099 break;
2100 default:
2101 dev_printk(KERN_WARNING, &pdev->dev,
2102 "Applying 50XXB2 workarounds to unknown rev\n");
2103 hp_flags |= MV_HP_ERRATA_50XXB2;
2104 break;
2106 break;
2108 case chip_504x:
2109 case chip_508x:
2110 hpriv->ops = &mv5xxx_ops;
2111 hp_flags |= MV_HP_50XX;
2113 switch (rev_id) {
2114 case 0x0:
2115 hp_flags |= MV_HP_ERRATA_50XXB0;
2116 break;
2117 case 0x3:
2118 hp_flags |= MV_HP_ERRATA_50XXB2;
2119 break;
2120 default:
2121 dev_printk(KERN_WARNING, &pdev->dev,
2122 "Applying B2 workarounds to unknown rev\n");
2123 hp_flags |= MV_HP_ERRATA_50XXB2;
2124 break;
2126 break;
2128 case chip_604x:
2129 case chip_608x:
2130 hpriv->ops = &mv6xxx_ops;
2132 switch (rev_id) {
2133 case 0x7:
2134 hp_flags |= MV_HP_ERRATA_60X1B2;
2135 break;
2136 case 0x9:
2137 hp_flags |= MV_HP_ERRATA_60X1C0;
2138 break;
2139 default:
2140 dev_printk(KERN_WARNING, &pdev->dev,
2141 "Applying B2 workarounds to unknown rev\n");
2142 hp_flags |= MV_HP_ERRATA_60X1B2;
2143 break;
2145 break;
2147 case chip_7042:
2148 case chip_6042:
2149 hpriv->ops = &mv6xxx_ops;
2151 hp_flags |= MV_HP_GEN_IIE;
2153 switch (rev_id) {
2154 case 0x0:
2155 hp_flags |= MV_HP_ERRATA_XX42A0;
2156 break;
2157 case 0x1:
2158 hp_flags |= MV_HP_ERRATA_60X1C0;
2159 break;
2160 default:
2161 dev_printk(KERN_WARNING, &pdev->dev,
2162 "Applying 60X1C0 workarounds to unknown rev\n");
2163 hp_flags |= MV_HP_ERRATA_60X1C0;
2164 break;
2166 break;
2168 default:
2169 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2170 return 1;
2173 hpriv->hp_flags = hp_flags;
2175 return 0;
2179 * mv_init_host - Perform some early initialization of the host.
2180 * @pdev: host PCI device
2181 * @probe_ent: early data struct representing the host
2183 * If possible, do an early global reset of the host. Then do
2184 * our port init and clear/unmask all/relevant host interrupts.
2186 * LOCKING:
2187 * Inherited from caller.
2189 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2190 unsigned int board_idx)
2192 int rc = 0, n_hc, port, hc;
2193 void __iomem *mmio = probe_ent->iomap[MV_PRIMARY_BAR];
2194 struct mv_host_priv *hpriv = probe_ent->private_data;
2196 /* global interrupt mask */
2197 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2199 rc = mv_chip_id(pdev, hpriv, board_idx);
2200 if (rc)
2201 goto done;
2203 n_hc = mv_get_hc_count(probe_ent->port_flags);
2204 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2206 for (port = 0; port < probe_ent->n_ports; port++)
2207 hpriv->ops->read_preamp(hpriv, port, mmio);
2209 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2210 if (rc)
2211 goto done;
2213 hpriv->ops->reset_flash(hpriv, mmio);
2214 hpriv->ops->reset_bus(pdev, mmio);
2215 hpriv->ops->enable_leds(hpriv, mmio);
2217 for (port = 0; port < probe_ent->n_ports; port++) {
2218 if (IS_60XX(hpriv)) {
2219 void __iomem *port_mmio = mv_port_base(mmio, port);
2221 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2222 ifctl |= (1 << 7); /* enable gen2i speed */
2223 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2224 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2227 hpriv->ops->phy_errata(hpriv, mmio, port);
2230 for (port = 0; port < probe_ent->n_ports; port++) {
2231 void __iomem *port_mmio = mv_port_base(mmio, port);
2232 mv_port_init(&probe_ent->port[port], port_mmio);
2235 for (hc = 0; hc < n_hc; hc++) {
2236 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2238 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2239 "(before clear)=0x%08x\n", hc,
2240 readl(hc_mmio + HC_CFG_OFS),
2241 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2243 /* Clear any currently outstanding hc interrupt conditions */
2244 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2247 /* Clear any currently outstanding host interrupt conditions */
2248 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2250 /* and unmask interrupt generation for host regs */
2251 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2253 if (IS_50XX(hpriv))
2254 writelfl(~HC_MAIN_MASKED_IRQS_5, mmio + HC_MAIN_IRQ_MASK_OFS);
2255 else
2256 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2258 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2259 "PCI int cause/mask=0x%08x/0x%08x\n",
2260 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2261 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2262 readl(mmio + PCI_IRQ_CAUSE_OFS),
2263 readl(mmio + PCI_IRQ_MASK_OFS));
2265 done:
2266 return rc;
2270 * mv_print_info - Dump key info to kernel log for perusal.
2271 * @probe_ent: early data struct representing the host
2273 * FIXME: complete this.
2275 * LOCKING:
2276 * Inherited from caller.
2278 static void mv_print_info(struct ata_probe_ent *probe_ent)
2280 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2281 struct mv_host_priv *hpriv = probe_ent->private_data;
2282 u8 rev_id, scc;
2283 const char *scc_s;
2285 /* Use this to determine the HW stepping of the chip so we know
2286 * what errata to workaround
2288 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2290 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2291 if (scc == 0)
2292 scc_s = "SCSI";
2293 else if (scc == 0x01)
2294 scc_s = "RAID";
2295 else
2296 scc_s = "unknown";
2298 dev_printk(KERN_INFO, &pdev->dev,
2299 "%u slots %u ports %s mode IRQ via %s\n",
2300 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2301 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2305 * mv_init_one - handle a positive probe of a Marvell host
2306 * @pdev: PCI device found
2307 * @ent: PCI device ID entry for the matched host
2309 * LOCKING:
2310 * Inherited from caller.
2312 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2314 static int printed_version = 0;
2315 struct device *dev = &pdev->dev;
2316 struct ata_probe_ent *probe_ent;
2317 struct mv_host_priv *hpriv;
2318 unsigned int board_idx = (unsigned int)ent->driver_data;
2319 int rc;
2321 if (!printed_version++)
2322 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2324 rc = pcim_enable_device(pdev);
2325 if (rc)
2326 return rc;
2327 pci_set_master(pdev);
2329 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
2330 if (rc == -EBUSY)
2331 pcim_pin_device(pdev);
2332 if (rc)
2333 return rc;
2335 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
2336 if (probe_ent == NULL)
2337 return -ENOMEM;
2339 probe_ent->dev = pci_dev_to_dev(pdev);
2340 INIT_LIST_HEAD(&probe_ent->node);
2342 hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
2343 if (!hpriv)
2344 return -ENOMEM;
2346 probe_ent->sht = mv_port_info[board_idx].sht;
2347 probe_ent->port_flags = mv_port_info[board_idx].flags;
2348 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2349 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2350 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2352 probe_ent->irq = pdev->irq;
2353 probe_ent->irq_flags = IRQF_SHARED;
2354 probe_ent->iomap = pcim_iomap_table(pdev);
2355 probe_ent->private_data = hpriv;
2357 /* initialize adapter */
2358 rc = mv_init_host(pdev, probe_ent, board_idx);
2359 if (rc)
2360 return rc;
2362 /* Enable interrupts */
2363 if (msi && pci_enable_msi(pdev))
2364 pci_intx(pdev, 1);
2366 mv_dump_pci_cfg(pdev, 0x68);
2367 mv_print_info(probe_ent);
2369 if (ata_device_add(probe_ent) == 0)
2370 return -ENODEV;
2372 devm_kfree(dev, probe_ent);
2373 return 0;
2376 static int __init mv_init(void)
2378 return pci_register_driver(&mv_pci_driver);
2381 static void __exit mv_exit(void)
2383 pci_unregister_driver(&mv_pci_driver);
2386 MODULE_AUTHOR("Brett Russ");
2387 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2388 MODULE_LICENSE("GPL");
2389 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2390 MODULE_VERSION(DRV_VERSION);
2392 module_param(msi, int, 0444);
2393 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2395 module_init(mv_init);
2396 module_exit(mv_exit);