Merge branch 'core-hweight-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree.c
blobd4437345706f8a539eee6dba201662fd791978ef
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
51 #include "rcutree.h"
53 /* Data structures. */
55 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
57 #define RCU_STATE_INITIALIZER(structname) { \
58 .level = { &structname.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &structname.orphan_cbs_list, \
72 .orphan_qlen = 0, \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85 int rcu_scheduler_active __read_mostly;
86 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
89 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
90 * permit this function to be invoked without holding the root rcu_node
91 * structure's ->lock, but of course results can be subject to change.
93 static int rcu_gp_in_progress(struct rcu_state *rsp)
95 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
99 * Note a quiescent state. Because we do not need to know
100 * how many quiescent states passed, just if there was at least
101 * one since the start of the grace period, this just sets a flag.
103 void rcu_sched_qs(int cpu)
105 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
112 void rcu_bh_qs(int cpu)
114 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
116 rdp->passed_quiesc_completed = rdp->gpnum - 1;
117 barrier();
118 rdp->passed_quiesc = 1;
122 * Note a context switch. This is a quiescent state for RCU-sched,
123 * and requires special handling for preemptible RCU.
125 void rcu_note_context_switch(int cpu)
127 rcu_sched_qs(cpu);
128 rcu_preempt_note_context_switch(cpu);
131 #ifdef CONFIG_NO_HZ
132 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
133 .dynticks_nesting = 1,
134 .dynticks = 1,
136 #endif /* #ifdef CONFIG_NO_HZ */
138 static int blimit = 10; /* Maximum callbacks per softirq. */
139 static int qhimark = 10000; /* If this many pending, ignore blimit. */
140 static int qlowmark = 100; /* Once only this many pending, use blimit. */
142 module_param(blimit, int, 0);
143 module_param(qhimark, int, 0);
144 module_param(qlowmark, int, 0);
146 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
147 static int rcu_pending(int cpu);
150 * Return the number of RCU-sched batches processed thus far for debug & stats.
152 long rcu_batches_completed_sched(void)
154 return rcu_sched_state.completed;
156 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
159 * Return the number of RCU BH batches processed thus far for debug & stats.
161 long rcu_batches_completed_bh(void)
163 return rcu_bh_state.completed;
165 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
168 * Force a quiescent state for RCU BH.
170 void rcu_bh_force_quiescent_state(void)
172 force_quiescent_state(&rcu_bh_state, 0);
174 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
177 * Force a quiescent state for RCU-sched.
179 void rcu_sched_force_quiescent_state(void)
181 force_quiescent_state(&rcu_sched_state, 0);
183 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
186 * Does the CPU have callbacks ready to be invoked?
188 static int
189 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
191 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
195 * Does the current CPU require a yet-as-unscheduled grace period?
197 static int
198 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
200 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
204 * Return the root node of the specified rcu_state structure.
206 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
208 return &rsp->node[0];
211 #ifdef CONFIG_SMP
214 * If the specified CPU is offline, tell the caller that it is in
215 * a quiescent state. Otherwise, whack it with a reschedule IPI.
216 * Grace periods can end up waiting on an offline CPU when that
217 * CPU is in the process of coming online -- it will be added to the
218 * rcu_node bitmasks before it actually makes it online. The same thing
219 * can happen while a CPU is in the process of coming online. Because this
220 * race is quite rare, we check for it after detecting that the grace
221 * period has been delayed rather than checking each and every CPU
222 * each and every time we start a new grace period.
224 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
227 * If the CPU is offline, it is in a quiescent state. We can
228 * trust its state not to change because interrupts are disabled.
230 if (cpu_is_offline(rdp->cpu)) {
231 rdp->offline_fqs++;
232 return 1;
235 /* If preemptable RCU, no point in sending reschedule IPI. */
236 if (rdp->preemptable)
237 return 0;
239 /* The CPU is online, so send it a reschedule IPI. */
240 if (rdp->cpu != smp_processor_id())
241 smp_send_reschedule(rdp->cpu);
242 else
243 set_need_resched();
244 rdp->resched_ipi++;
245 return 0;
248 #endif /* #ifdef CONFIG_SMP */
250 #ifdef CONFIG_NO_HZ
253 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
255 * Enter nohz mode, in other words, -leave- the mode in which RCU
256 * read-side critical sections can occur. (Though RCU read-side
257 * critical sections can occur in irq handlers in nohz mode, a possibility
258 * handled by rcu_irq_enter() and rcu_irq_exit()).
260 void rcu_enter_nohz(void)
262 unsigned long flags;
263 struct rcu_dynticks *rdtp;
265 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
266 local_irq_save(flags);
267 rdtp = &__get_cpu_var(rcu_dynticks);
268 rdtp->dynticks++;
269 rdtp->dynticks_nesting--;
270 WARN_ON_ONCE(rdtp->dynticks & 0x1);
271 local_irq_restore(flags);
275 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
277 * Exit nohz mode, in other words, -enter- the mode in which RCU
278 * read-side critical sections normally occur.
280 void rcu_exit_nohz(void)
282 unsigned long flags;
283 struct rcu_dynticks *rdtp;
285 local_irq_save(flags);
286 rdtp = &__get_cpu_var(rcu_dynticks);
287 rdtp->dynticks++;
288 rdtp->dynticks_nesting++;
289 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
290 local_irq_restore(flags);
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
295 * rcu_nmi_enter - inform RCU of entry to NMI context
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is active.
301 void rcu_nmi_enter(void)
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
305 if (rdtp->dynticks & 0x1)
306 return;
307 rdtp->dynticks_nmi++;
308 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
309 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
313 * rcu_nmi_exit - inform RCU of exit from NMI context
315 * If the CPU was idle with dynamic ticks active, and there is no
316 * irq handler running, this updates rdtp->dynticks_nmi to let the
317 * RCU grace-period handling know that the CPU is no longer active.
319 void rcu_nmi_exit(void)
321 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
323 if (rdtp->dynticks & 0x1)
324 return;
325 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
326 rdtp->dynticks_nmi++;
327 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
331 * rcu_irq_enter - inform RCU of entry to hard irq context
333 * If the CPU was idle with dynamic ticks active, this updates the
334 * rdtp->dynticks to let the RCU handling know that the CPU is active.
336 void rcu_irq_enter(void)
338 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
340 if (rdtp->dynticks_nesting++)
341 return;
342 rdtp->dynticks++;
343 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
344 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
348 * rcu_irq_exit - inform RCU of exit from hard irq context
350 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
351 * to put let the RCU handling be aware that the CPU is going back to idle
352 * with no ticks.
354 void rcu_irq_exit(void)
356 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
358 if (--rdtp->dynticks_nesting)
359 return;
360 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
361 rdtp->dynticks++;
362 WARN_ON_ONCE(rdtp->dynticks & 0x1);
364 /* If the interrupt queued a callback, get out of dyntick mode. */
365 if (__get_cpu_var(rcu_sched_data).nxtlist ||
366 __get_cpu_var(rcu_bh_data).nxtlist)
367 set_need_resched();
370 #ifdef CONFIG_SMP
373 * Snapshot the specified CPU's dynticks counter so that we can later
374 * credit them with an implicit quiescent state. Return 1 if this CPU
375 * is in dynticks idle mode, which is an extended quiescent state.
377 static int dyntick_save_progress_counter(struct rcu_data *rdp)
379 int ret;
380 int snap;
381 int snap_nmi;
383 snap = rdp->dynticks->dynticks;
384 snap_nmi = rdp->dynticks->dynticks_nmi;
385 smp_mb(); /* Order sampling of snap with end of grace period. */
386 rdp->dynticks_snap = snap;
387 rdp->dynticks_nmi_snap = snap_nmi;
388 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
389 if (ret)
390 rdp->dynticks_fqs++;
391 return ret;
395 * Return true if the specified CPU has passed through a quiescent
396 * state by virtue of being in or having passed through an dynticks
397 * idle state since the last call to dyntick_save_progress_counter()
398 * for this same CPU.
400 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
402 long curr;
403 long curr_nmi;
404 long snap;
405 long snap_nmi;
407 curr = rdp->dynticks->dynticks;
408 snap = rdp->dynticks_snap;
409 curr_nmi = rdp->dynticks->dynticks_nmi;
410 snap_nmi = rdp->dynticks_nmi_snap;
411 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
414 * If the CPU passed through or entered a dynticks idle phase with
415 * no active irq/NMI handlers, then we can safely pretend that the CPU
416 * already acknowledged the request to pass through a quiescent
417 * state. Either way, that CPU cannot possibly be in an RCU
418 * read-side critical section that started before the beginning
419 * of the current RCU grace period.
421 if ((curr != snap || (curr & 0x1) == 0) &&
422 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
423 rdp->dynticks_fqs++;
424 return 1;
427 /* Go check for the CPU being offline. */
428 return rcu_implicit_offline_qs(rdp);
431 #endif /* #ifdef CONFIG_SMP */
433 #else /* #ifdef CONFIG_NO_HZ */
435 #ifdef CONFIG_SMP
437 static int dyntick_save_progress_counter(struct rcu_data *rdp)
439 return 0;
442 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
444 return rcu_implicit_offline_qs(rdp);
447 #endif /* #ifdef CONFIG_SMP */
449 #endif /* #else #ifdef CONFIG_NO_HZ */
451 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
453 int rcu_cpu_stall_panicking __read_mostly;
455 static void record_gp_stall_check_time(struct rcu_state *rsp)
457 rsp->gp_start = jiffies;
458 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
461 static void print_other_cpu_stall(struct rcu_state *rsp)
463 int cpu;
464 long delta;
465 unsigned long flags;
466 struct rcu_node *rnp = rcu_get_root(rsp);
468 /* Only let one CPU complain about others per time interval. */
470 raw_spin_lock_irqsave(&rnp->lock, flags);
471 delta = jiffies - rsp->jiffies_stall;
472 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
473 raw_spin_unlock_irqrestore(&rnp->lock, flags);
474 return;
476 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
479 * Now rat on any tasks that got kicked up to the root rcu_node
480 * due to CPU offlining.
482 rcu_print_task_stall(rnp);
483 raw_spin_unlock_irqrestore(&rnp->lock, flags);
485 /* OK, time to rat on our buddy... */
487 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
488 rsp->name);
489 rcu_for_each_leaf_node(rsp, rnp) {
490 raw_spin_lock_irqsave(&rnp->lock, flags);
491 rcu_print_task_stall(rnp);
492 raw_spin_unlock_irqrestore(&rnp->lock, flags);
493 if (rnp->qsmask == 0)
494 continue;
495 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
496 if (rnp->qsmask & (1UL << cpu))
497 printk(" %d", rnp->grplo + cpu);
499 printk("} (detected by %d, t=%ld jiffies)\n",
500 smp_processor_id(), (long)(jiffies - rsp->gp_start));
501 trigger_all_cpu_backtrace();
503 /* If so configured, complain about tasks blocking the grace period. */
505 rcu_print_detail_task_stall(rsp);
507 force_quiescent_state(rsp, 0); /* Kick them all. */
510 static void print_cpu_stall(struct rcu_state *rsp)
512 unsigned long flags;
513 struct rcu_node *rnp = rcu_get_root(rsp);
515 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
516 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
517 trigger_all_cpu_backtrace();
519 raw_spin_lock_irqsave(&rnp->lock, flags);
520 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
521 rsp->jiffies_stall =
522 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
523 raw_spin_unlock_irqrestore(&rnp->lock, flags);
525 set_need_resched(); /* kick ourselves to get things going. */
528 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
530 long delta;
531 struct rcu_node *rnp;
533 if (rcu_cpu_stall_panicking)
534 return;
535 delta = jiffies - rsp->jiffies_stall;
536 rnp = rdp->mynode;
537 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
539 /* We haven't checked in, so go dump stack. */
540 print_cpu_stall(rsp);
542 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
544 /* They had two time units to dump stack, so complain. */
545 print_other_cpu_stall(rsp);
549 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
551 rcu_cpu_stall_panicking = 1;
552 return NOTIFY_DONE;
555 static struct notifier_block rcu_panic_block = {
556 .notifier_call = rcu_panic,
559 static void __init check_cpu_stall_init(void)
561 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
564 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
566 static void record_gp_stall_check_time(struct rcu_state *rsp)
570 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
574 static void __init check_cpu_stall_init(void)
578 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
581 * Update CPU-local rcu_data state to record the newly noticed grace period.
582 * This is used both when we started the grace period and when we notice
583 * that someone else started the grace period. The caller must hold the
584 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
585 * and must have irqs disabled.
587 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
589 if (rdp->gpnum != rnp->gpnum) {
590 rdp->qs_pending = 1;
591 rdp->passed_quiesc = 0;
592 rdp->gpnum = rnp->gpnum;
596 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
598 unsigned long flags;
599 struct rcu_node *rnp;
601 local_irq_save(flags);
602 rnp = rdp->mynode;
603 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
604 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
605 local_irq_restore(flags);
606 return;
608 __note_new_gpnum(rsp, rnp, rdp);
609 raw_spin_unlock_irqrestore(&rnp->lock, flags);
613 * Did someone else start a new RCU grace period start since we last
614 * checked? Update local state appropriately if so. Must be called
615 * on the CPU corresponding to rdp.
617 static int
618 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
620 unsigned long flags;
621 int ret = 0;
623 local_irq_save(flags);
624 if (rdp->gpnum != rsp->gpnum) {
625 note_new_gpnum(rsp, rdp);
626 ret = 1;
628 local_irq_restore(flags);
629 return ret;
633 * Advance this CPU's callbacks, but only if the current grace period
634 * has ended. This may be called only from the CPU to whom the rdp
635 * belongs. In addition, the corresponding leaf rcu_node structure's
636 * ->lock must be held by the caller, with irqs disabled.
638 static void
639 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
641 /* Did another grace period end? */
642 if (rdp->completed != rnp->completed) {
644 /* Advance callbacks. No harm if list empty. */
645 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
646 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
647 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
649 /* Remember that we saw this grace-period completion. */
650 rdp->completed = rnp->completed;
655 * Advance this CPU's callbacks, but only if the current grace period
656 * has ended. This may be called only from the CPU to whom the rdp
657 * belongs.
659 static void
660 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
662 unsigned long flags;
663 struct rcu_node *rnp;
665 local_irq_save(flags);
666 rnp = rdp->mynode;
667 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
668 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
669 local_irq_restore(flags);
670 return;
672 __rcu_process_gp_end(rsp, rnp, rdp);
673 raw_spin_unlock_irqrestore(&rnp->lock, flags);
677 * Do per-CPU grace-period initialization for running CPU. The caller
678 * must hold the lock of the leaf rcu_node structure corresponding to
679 * this CPU.
681 static void
682 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
684 /* Prior grace period ended, so advance callbacks for current CPU. */
685 __rcu_process_gp_end(rsp, rnp, rdp);
688 * Because this CPU just now started the new grace period, we know
689 * that all of its callbacks will be covered by this upcoming grace
690 * period, even the ones that were registered arbitrarily recently.
691 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
693 * Other CPUs cannot be sure exactly when the grace period started.
694 * Therefore, their recently registered callbacks must pass through
695 * an additional RCU_NEXT_READY stage, so that they will be handled
696 * by the next RCU grace period.
698 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
699 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
701 /* Set state so that this CPU will detect the next quiescent state. */
702 __note_new_gpnum(rsp, rnp, rdp);
706 * Start a new RCU grace period if warranted, re-initializing the hierarchy
707 * in preparation for detecting the next grace period. The caller must hold
708 * the root node's ->lock, which is released before return. Hard irqs must
709 * be disabled.
711 static void
712 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
713 __releases(rcu_get_root(rsp)->lock)
715 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
716 struct rcu_node *rnp = rcu_get_root(rsp);
718 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
719 if (cpu_needs_another_gp(rsp, rdp))
720 rsp->fqs_need_gp = 1;
721 if (rnp->completed == rsp->completed) {
722 raw_spin_unlock_irqrestore(&rnp->lock, flags);
723 return;
725 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
728 * Propagate new ->completed value to rcu_node structures
729 * so that other CPUs don't have to wait until the start
730 * of the next grace period to process their callbacks.
732 rcu_for_each_node_breadth_first(rsp, rnp) {
733 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
734 rnp->completed = rsp->completed;
735 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
737 local_irq_restore(flags);
738 return;
741 /* Advance to a new grace period and initialize state. */
742 rsp->gpnum++;
743 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
744 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
745 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
746 record_gp_stall_check_time(rsp);
748 /* Special-case the common single-level case. */
749 if (NUM_RCU_NODES == 1) {
750 rcu_preempt_check_blocked_tasks(rnp);
751 rnp->qsmask = rnp->qsmaskinit;
752 rnp->gpnum = rsp->gpnum;
753 rnp->completed = rsp->completed;
754 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
755 rcu_start_gp_per_cpu(rsp, rnp, rdp);
756 raw_spin_unlock_irqrestore(&rnp->lock, flags);
757 return;
760 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
763 /* Exclude any concurrent CPU-hotplug operations. */
764 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
767 * Set the quiescent-state-needed bits in all the rcu_node
768 * structures for all currently online CPUs in breadth-first
769 * order, starting from the root rcu_node structure. This
770 * operation relies on the layout of the hierarchy within the
771 * rsp->node[] array. Note that other CPUs will access only
772 * the leaves of the hierarchy, which still indicate that no
773 * grace period is in progress, at least until the corresponding
774 * leaf node has been initialized. In addition, we have excluded
775 * CPU-hotplug operations.
777 * Note that the grace period cannot complete until we finish
778 * the initialization process, as there will be at least one
779 * qsmask bit set in the root node until that time, namely the
780 * one corresponding to this CPU, due to the fact that we have
781 * irqs disabled.
783 rcu_for_each_node_breadth_first(rsp, rnp) {
784 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
785 rcu_preempt_check_blocked_tasks(rnp);
786 rnp->qsmask = rnp->qsmaskinit;
787 rnp->gpnum = rsp->gpnum;
788 rnp->completed = rsp->completed;
789 if (rnp == rdp->mynode)
790 rcu_start_gp_per_cpu(rsp, rnp, rdp);
791 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
794 rnp = rcu_get_root(rsp);
795 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
796 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
797 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
798 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
802 * Report a full set of quiescent states to the specified rcu_state
803 * data structure. This involves cleaning up after the prior grace
804 * period and letting rcu_start_gp() start up the next grace period
805 * if one is needed. Note that the caller must hold rnp->lock, as
806 * required by rcu_start_gp(), which will release it.
808 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
809 __releases(rcu_get_root(rsp)->lock)
811 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
812 rsp->completed = rsp->gpnum;
813 rsp->signaled = RCU_GP_IDLE;
814 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
818 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
819 * Allows quiescent states for a group of CPUs to be reported at one go
820 * to the specified rcu_node structure, though all the CPUs in the group
821 * must be represented by the same rcu_node structure (which need not be
822 * a leaf rcu_node structure, though it often will be). That structure's
823 * lock must be held upon entry, and it is released before return.
825 static void
826 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
827 struct rcu_node *rnp, unsigned long flags)
828 __releases(rnp->lock)
830 struct rcu_node *rnp_c;
832 /* Walk up the rcu_node hierarchy. */
833 for (;;) {
834 if (!(rnp->qsmask & mask)) {
836 /* Our bit has already been cleared, so done. */
837 raw_spin_unlock_irqrestore(&rnp->lock, flags);
838 return;
840 rnp->qsmask &= ~mask;
841 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
843 /* Other bits still set at this level, so done. */
844 raw_spin_unlock_irqrestore(&rnp->lock, flags);
845 return;
847 mask = rnp->grpmask;
848 if (rnp->parent == NULL) {
850 /* No more levels. Exit loop holding root lock. */
852 break;
854 raw_spin_unlock_irqrestore(&rnp->lock, flags);
855 rnp_c = rnp;
856 rnp = rnp->parent;
857 raw_spin_lock_irqsave(&rnp->lock, flags);
858 WARN_ON_ONCE(rnp_c->qsmask);
862 * Get here if we are the last CPU to pass through a quiescent
863 * state for this grace period. Invoke rcu_report_qs_rsp()
864 * to clean up and start the next grace period if one is needed.
866 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
870 * Record a quiescent state for the specified CPU to that CPU's rcu_data
871 * structure. This must be either called from the specified CPU, or
872 * called when the specified CPU is known to be offline (and when it is
873 * also known that no other CPU is concurrently trying to help the offline
874 * CPU). The lastcomp argument is used to make sure we are still in the
875 * grace period of interest. We don't want to end the current grace period
876 * based on quiescent states detected in an earlier grace period!
878 static void
879 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
881 unsigned long flags;
882 unsigned long mask;
883 struct rcu_node *rnp;
885 rnp = rdp->mynode;
886 raw_spin_lock_irqsave(&rnp->lock, flags);
887 if (lastcomp != rnp->completed) {
890 * Someone beat us to it for this grace period, so leave.
891 * The race with GP start is resolved by the fact that we
892 * hold the leaf rcu_node lock, so that the per-CPU bits
893 * cannot yet be initialized -- so we would simply find our
894 * CPU's bit already cleared in rcu_report_qs_rnp() if this
895 * race occurred.
897 rdp->passed_quiesc = 0; /* try again later! */
898 raw_spin_unlock_irqrestore(&rnp->lock, flags);
899 return;
901 mask = rdp->grpmask;
902 if ((rnp->qsmask & mask) == 0) {
903 raw_spin_unlock_irqrestore(&rnp->lock, flags);
904 } else {
905 rdp->qs_pending = 0;
908 * This GP can't end until cpu checks in, so all of our
909 * callbacks can be processed during the next GP.
911 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
913 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
918 * Check to see if there is a new grace period of which this CPU
919 * is not yet aware, and if so, set up local rcu_data state for it.
920 * Otherwise, see if this CPU has just passed through its first
921 * quiescent state for this grace period, and record that fact if so.
923 static void
924 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
926 /* If there is now a new grace period, record and return. */
927 if (check_for_new_grace_period(rsp, rdp))
928 return;
931 * Does this CPU still need to do its part for current grace period?
932 * If no, return and let the other CPUs do their part as well.
934 if (!rdp->qs_pending)
935 return;
938 * Was there a quiescent state since the beginning of the grace
939 * period? If no, then exit and wait for the next call.
941 if (!rdp->passed_quiesc)
942 return;
945 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
946 * judge of that).
948 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
951 #ifdef CONFIG_HOTPLUG_CPU
954 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
955 * specified flavor of RCU. The callbacks will be adopted by the next
956 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
957 * comes first. Because this is invoked from the CPU_DYING notifier,
958 * irqs are already disabled.
960 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
962 int i;
963 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
965 if (rdp->nxtlist == NULL)
966 return; /* irqs disabled, so comparison is stable. */
967 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
968 *rsp->orphan_cbs_tail = rdp->nxtlist;
969 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
970 rdp->nxtlist = NULL;
971 for (i = 0; i < RCU_NEXT_SIZE; i++)
972 rdp->nxttail[i] = &rdp->nxtlist;
973 rsp->orphan_qlen += rdp->qlen;
974 rdp->qlen = 0;
975 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
979 * Adopt previously orphaned RCU callbacks.
981 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
983 unsigned long flags;
984 struct rcu_data *rdp;
986 raw_spin_lock_irqsave(&rsp->onofflock, flags);
987 rdp = rsp->rda[smp_processor_id()];
988 if (rsp->orphan_cbs_list == NULL) {
989 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
990 return;
992 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
993 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
994 rdp->qlen += rsp->orphan_qlen;
995 rsp->orphan_cbs_list = NULL;
996 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
997 rsp->orphan_qlen = 0;
998 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1002 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1003 * and move all callbacks from the outgoing CPU to the current one.
1005 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1007 unsigned long flags;
1008 unsigned long mask;
1009 int need_report = 0;
1010 struct rcu_data *rdp = rsp->rda[cpu];
1011 struct rcu_node *rnp;
1013 /* Exclude any attempts to start a new grace period. */
1014 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1016 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1017 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1018 mask = rdp->grpmask; /* rnp->grplo is constant. */
1019 do {
1020 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1021 rnp->qsmaskinit &= ~mask;
1022 if (rnp->qsmaskinit != 0) {
1023 if (rnp != rdp->mynode)
1024 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1025 break;
1027 if (rnp == rdp->mynode)
1028 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1029 else
1030 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1031 mask = rnp->grpmask;
1032 rnp = rnp->parent;
1033 } while (rnp != NULL);
1036 * We still hold the leaf rcu_node structure lock here, and
1037 * irqs are still disabled. The reason for this subterfuge is
1038 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1039 * held leads to deadlock.
1041 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1042 rnp = rdp->mynode;
1043 if (need_report & RCU_OFL_TASKS_NORM_GP)
1044 rcu_report_unblock_qs_rnp(rnp, flags);
1045 else
1046 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1047 if (need_report & RCU_OFL_TASKS_EXP_GP)
1048 rcu_report_exp_rnp(rsp, rnp);
1050 rcu_adopt_orphan_cbs(rsp);
1054 * Remove the specified CPU from the RCU hierarchy and move any pending
1055 * callbacks that it might have to the current CPU. This code assumes
1056 * that at least one CPU in the system will remain running at all times.
1057 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1059 static void rcu_offline_cpu(int cpu)
1061 __rcu_offline_cpu(cpu, &rcu_sched_state);
1062 __rcu_offline_cpu(cpu, &rcu_bh_state);
1063 rcu_preempt_offline_cpu(cpu);
1066 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1068 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1072 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1076 static void rcu_offline_cpu(int cpu)
1080 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1083 * Invoke any RCU callbacks that have made it to the end of their grace
1084 * period. Thottle as specified by rdp->blimit.
1086 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1088 unsigned long flags;
1089 struct rcu_head *next, *list, **tail;
1090 int count;
1092 /* If no callbacks are ready, just return.*/
1093 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1094 return;
1097 * Extract the list of ready callbacks, disabling to prevent
1098 * races with call_rcu() from interrupt handlers.
1100 local_irq_save(flags);
1101 list = rdp->nxtlist;
1102 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1103 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1104 tail = rdp->nxttail[RCU_DONE_TAIL];
1105 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1106 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1107 rdp->nxttail[count] = &rdp->nxtlist;
1108 local_irq_restore(flags);
1110 /* Invoke callbacks. */
1111 count = 0;
1112 while (list) {
1113 next = list->next;
1114 prefetch(next);
1115 list->func(list);
1116 list = next;
1117 if (++count >= rdp->blimit)
1118 break;
1121 local_irq_save(flags);
1123 /* Update count, and requeue any remaining callbacks. */
1124 rdp->qlen -= count;
1125 if (list != NULL) {
1126 *tail = rdp->nxtlist;
1127 rdp->nxtlist = list;
1128 for (count = 0; count < RCU_NEXT_SIZE; count++)
1129 if (&rdp->nxtlist == rdp->nxttail[count])
1130 rdp->nxttail[count] = tail;
1131 else
1132 break;
1135 /* Reinstate batch limit if we have worked down the excess. */
1136 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1137 rdp->blimit = blimit;
1139 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1140 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1141 rdp->qlen_last_fqs_check = 0;
1142 rdp->n_force_qs_snap = rsp->n_force_qs;
1143 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1144 rdp->qlen_last_fqs_check = rdp->qlen;
1146 local_irq_restore(flags);
1148 /* Re-raise the RCU softirq if there are callbacks remaining. */
1149 if (cpu_has_callbacks_ready_to_invoke(rdp))
1150 raise_softirq(RCU_SOFTIRQ);
1154 * Check to see if this CPU is in a non-context-switch quiescent state
1155 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1156 * Also schedule the RCU softirq handler.
1158 * This function must be called with hardirqs disabled. It is normally
1159 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1160 * false, there is no point in invoking rcu_check_callbacks().
1162 void rcu_check_callbacks(int cpu, int user)
1164 if (user ||
1165 (idle_cpu(cpu) && rcu_scheduler_active &&
1166 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1169 * Get here if this CPU took its interrupt from user
1170 * mode or from the idle loop, and if this is not a
1171 * nested interrupt. In this case, the CPU is in
1172 * a quiescent state, so note it.
1174 * No memory barrier is required here because both
1175 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1176 * variables that other CPUs neither access nor modify,
1177 * at least not while the corresponding CPU is online.
1180 rcu_sched_qs(cpu);
1181 rcu_bh_qs(cpu);
1183 } else if (!in_softirq()) {
1186 * Get here if this CPU did not take its interrupt from
1187 * softirq, in other words, if it is not interrupting
1188 * a rcu_bh read-side critical section. This is an _bh
1189 * critical section, so note it.
1192 rcu_bh_qs(cpu);
1194 rcu_preempt_check_callbacks(cpu);
1195 if (rcu_pending(cpu))
1196 raise_softirq(RCU_SOFTIRQ);
1199 #ifdef CONFIG_SMP
1202 * Scan the leaf rcu_node structures, processing dyntick state for any that
1203 * have not yet encountered a quiescent state, using the function specified.
1204 * The caller must have suppressed start of new grace periods.
1206 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1208 unsigned long bit;
1209 int cpu;
1210 unsigned long flags;
1211 unsigned long mask;
1212 struct rcu_node *rnp;
1214 rcu_for_each_leaf_node(rsp, rnp) {
1215 mask = 0;
1216 raw_spin_lock_irqsave(&rnp->lock, flags);
1217 if (!rcu_gp_in_progress(rsp)) {
1218 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1219 return;
1221 if (rnp->qsmask == 0) {
1222 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1223 continue;
1225 cpu = rnp->grplo;
1226 bit = 1;
1227 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1228 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1229 mask |= bit;
1231 if (mask != 0) {
1233 /* rcu_report_qs_rnp() releases rnp->lock. */
1234 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1235 continue;
1237 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1242 * Force quiescent states on reluctant CPUs, and also detect which
1243 * CPUs are in dyntick-idle mode.
1245 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1247 unsigned long flags;
1248 struct rcu_node *rnp = rcu_get_root(rsp);
1250 if (!rcu_gp_in_progress(rsp))
1251 return; /* No grace period in progress, nothing to force. */
1252 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1253 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1254 return; /* Someone else is already on the job. */
1256 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1257 goto unlock_fqs_ret; /* no emergency and done recently. */
1258 rsp->n_force_qs++;
1259 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1260 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1261 if(!rcu_gp_in_progress(rsp)) {
1262 rsp->n_force_qs_ngp++;
1263 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1264 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1266 rsp->fqs_active = 1;
1267 switch (rsp->signaled) {
1268 case RCU_GP_IDLE:
1269 case RCU_GP_INIT:
1271 break; /* grace period idle or initializing, ignore. */
1273 case RCU_SAVE_DYNTICK:
1274 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1275 break; /* So gcc recognizes the dead code. */
1277 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1279 /* Record dyntick-idle state. */
1280 force_qs_rnp(rsp, dyntick_save_progress_counter);
1281 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1282 if (rcu_gp_in_progress(rsp))
1283 rsp->signaled = RCU_FORCE_QS;
1284 break;
1286 case RCU_FORCE_QS:
1288 /* Check dyntick-idle state, send IPI to laggarts. */
1289 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1290 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1292 /* Leave state in case more forcing is required. */
1294 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1295 break;
1297 rsp->fqs_active = 0;
1298 if (rsp->fqs_need_gp) {
1299 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1300 rsp->fqs_need_gp = 0;
1301 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1302 return;
1304 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1305 unlock_fqs_ret:
1306 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1309 #else /* #ifdef CONFIG_SMP */
1311 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1313 set_need_resched();
1316 #endif /* #else #ifdef CONFIG_SMP */
1319 * This does the RCU processing work from softirq context for the
1320 * specified rcu_state and rcu_data structures. This may be called
1321 * only from the CPU to whom the rdp belongs.
1323 static void
1324 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1326 unsigned long flags;
1328 WARN_ON_ONCE(rdp->beenonline == 0);
1331 * If an RCU GP has gone long enough, go check for dyntick
1332 * idle CPUs and, if needed, send resched IPIs.
1334 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1335 force_quiescent_state(rsp, 1);
1338 * Advance callbacks in response to end of earlier grace
1339 * period that some other CPU ended.
1341 rcu_process_gp_end(rsp, rdp);
1343 /* Update RCU state based on any recent quiescent states. */
1344 rcu_check_quiescent_state(rsp, rdp);
1346 /* Does this CPU require a not-yet-started grace period? */
1347 if (cpu_needs_another_gp(rsp, rdp)) {
1348 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1349 rcu_start_gp(rsp, flags); /* releases above lock */
1352 /* If there are callbacks ready, invoke them. */
1353 rcu_do_batch(rsp, rdp);
1357 * Do softirq processing for the current CPU.
1359 static void rcu_process_callbacks(struct softirq_action *unused)
1362 * Memory references from any prior RCU read-side critical sections
1363 * executed by the interrupted code must be seen before any RCU
1364 * grace-period manipulations below.
1366 smp_mb(); /* See above block comment. */
1368 __rcu_process_callbacks(&rcu_sched_state,
1369 &__get_cpu_var(rcu_sched_data));
1370 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1371 rcu_preempt_process_callbacks();
1374 * Memory references from any later RCU read-side critical sections
1375 * executed by the interrupted code must be seen after any RCU
1376 * grace-period manipulations above.
1378 smp_mb(); /* See above block comment. */
1380 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1381 rcu_needs_cpu_flush();
1384 static void
1385 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1386 struct rcu_state *rsp)
1388 unsigned long flags;
1389 struct rcu_data *rdp;
1391 head->func = func;
1392 head->next = NULL;
1394 smp_mb(); /* Ensure RCU update seen before callback registry. */
1397 * Opportunistically note grace-period endings and beginnings.
1398 * Note that we might see a beginning right after we see an
1399 * end, but never vice versa, since this CPU has to pass through
1400 * a quiescent state betweentimes.
1402 local_irq_save(flags);
1403 rdp = rsp->rda[smp_processor_id()];
1404 rcu_process_gp_end(rsp, rdp);
1405 check_for_new_grace_period(rsp, rdp);
1407 /* Add the callback to our list. */
1408 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1409 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1411 /* Start a new grace period if one not already started. */
1412 if (!rcu_gp_in_progress(rsp)) {
1413 unsigned long nestflag;
1414 struct rcu_node *rnp_root = rcu_get_root(rsp);
1416 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1417 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1421 * Force the grace period if too many callbacks or too long waiting.
1422 * Enforce hysteresis, and don't invoke force_quiescent_state()
1423 * if some other CPU has recently done so. Also, don't bother
1424 * invoking force_quiescent_state() if the newly enqueued callback
1425 * is the only one waiting for a grace period to complete.
1427 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1428 rdp->blimit = LONG_MAX;
1429 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1430 *rdp->nxttail[RCU_DONE_TAIL] != head)
1431 force_quiescent_state(rsp, 0);
1432 rdp->n_force_qs_snap = rsp->n_force_qs;
1433 rdp->qlen_last_fqs_check = rdp->qlen;
1434 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1435 force_quiescent_state(rsp, 1);
1436 local_irq_restore(flags);
1440 * Queue an RCU-sched callback for invocation after a grace period.
1442 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1444 __call_rcu(head, func, &rcu_sched_state);
1446 EXPORT_SYMBOL_GPL(call_rcu_sched);
1449 * Queue an RCU for invocation after a quicker grace period.
1451 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1453 __call_rcu(head, func, &rcu_bh_state);
1455 EXPORT_SYMBOL_GPL(call_rcu_bh);
1458 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1460 * Control will return to the caller some time after a full rcu-sched
1461 * grace period has elapsed, in other words after all currently executing
1462 * rcu-sched read-side critical sections have completed. These read-side
1463 * critical sections are delimited by rcu_read_lock_sched() and
1464 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1465 * local_irq_disable(), and so on may be used in place of
1466 * rcu_read_lock_sched().
1468 * This means that all preempt_disable code sequences, including NMI and
1469 * hardware-interrupt handlers, in progress on entry will have completed
1470 * before this primitive returns. However, this does not guarantee that
1471 * softirq handlers will have completed, since in some kernels, these
1472 * handlers can run in process context, and can block.
1474 * This primitive provides the guarantees made by the (now removed)
1475 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1476 * guarantees that rcu_read_lock() sections will have completed.
1477 * In "classic RCU", these two guarantees happen to be one and
1478 * the same, but can differ in realtime RCU implementations.
1480 void synchronize_sched(void)
1482 struct rcu_synchronize rcu;
1484 if (rcu_blocking_is_gp())
1485 return;
1487 init_rcu_head_on_stack(&rcu.head);
1488 init_completion(&rcu.completion);
1489 /* Will wake me after RCU finished. */
1490 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1491 /* Wait for it. */
1492 wait_for_completion(&rcu.completion);
1493 destroy_rcu_head_on_stack(&rcu.head);
1495 EXPORT_SYMBOL_GPL(synchronize_sched);
1498 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1500 * Control will return to the caller some time after a full rcu_bh grace
1501 * period has elapsed, in other words after all currently executing rcu_bh
1502 * read-side critical sections have completed. RCU read-side critical
1503 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1504 * and may be nested.
1506 void synchronize_rcu_bh(void)
1508 struct rcu_synchronize rcu;
1510 if (rcu_blocking_is_gp())
1511 return;
1513 init_rcu_head_on_stack(&rcu.head);
1514 init_completion(&rcu.completion);
1515 /* Will wake me after RCU finished. */
1516 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1517 /* Wait for it. */
1518 wait_for_completion(&rcu.completion);
1519 destroy_rcu_head_on_stack(&rcu.head);
1521 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1524 * Check to see if there is any immediate RCU-related work to be done
1525 * by the current CPU, for the specified type of RCU, returning 1 if so.
1526 * The checks are in order of increasing expense: checks that can be
1527 * carried out against CPU-local state are performed first. However,
1528 * we must check for CPU stalls first, else we might not get a chance.
1530 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1532 struct rcu_node *rnp = rdp->mynode;
1534 rdp->n_rcu_pending++;
1536 /* Check for CPU stalls, if enabled. */
1537 check_cpu_stall(rsp, rdp);
1539 /* Is the RCU core waiting for a quiescent state from this CPU? */
1540 if (rdp->qs_pending && !rdp->passed_quiesc) {
1543 * If force_quiescent_state() coming soon and this CPU
1544 * needs a quiescent state, and this is either RCU-sched
1545 * or RCU-bh, force a local reschedule.
1547 rdp->n_rp_qs_pending++;
1548 if (!rdp->preemptable &&
1549 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1550 jiffies))
1551 set_need_resched();
1552 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1553 rdp->n_rp_report_qs++;
1554 return 1;
1557 /* Does this CPU have callbacks ready to invoke? */
1558 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1559 rdp->n_rp_cb_ready++;
1560 return 1;
1563 /* Has RCU gone idle with this CPU needing another grace period? */
1564 if (cpu_needs_another_gp(rsp, rdp)) {
1565 rdp->n_rp_cpu_needs_gp++;
1566 return 1;
1569 /* Has another RCU grace period completed? */
1570 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1571 rdp->n_rp_gp_completed++;
1572 return 1;
1575 /* Has a new RCU grace period started? */
1576 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1577 rdp->n_rp_gp_started++;
1578 return 1;
1581 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1582 if (rcu_gp_in_progress(rsp) &&
1583 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1584 rdp->n_rp_need_fqs++;
1585 return 1;
1588 /* nothing to do */
1589 rdp->n_rp_need_nothing++;
1590 return 0;
1594 * Check to see if there is any immediate RCU-related work to be done
1595 * by the current CPU, returning 1 if so. This function is part of the
1596 * RCU implementation; it is -not- an exported member of the RCU API.
1598 static int rcu_pending(int cpu)
1600 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1601 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1602 rcu_preempt_pending(cpu);
1606 * Check to see if any future RCU-related work will need to be done
1607 * by the current CPU, even if none need be done immediately, returning
1608 * 1 if so.
1610 static int rcu_needs_cpu_quick_check(int cpu)
1612 /* RCU callbacks either ready or pending? */
1613 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1614 per_cpu(rcu_bh_data, cpu).nxtlist ||
1615 rcu_preempt_needs_cpu(cpu);
1618 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1619 static atomic_t rcu_barrier_cpu_count;
1620 static DEFINE_MUTEX(rcu_barrier_mutex);
1621 static struct completion rcu_barrier_completion;
1623 static void rcu_barrier_callback(struct rcu_head *notused)
1625 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1626 complete(&rcu_barrier_completion);
1630 * Called with preemption disabled, and from cross-cpu IRQ context.
1632 static void rcu_barrier_func(void *type)
1634 int cpu = smp_processor_id();
1635 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1636 void (*call_rcu_func)(struct rcu_head *head,
1637 void (*func)(struct rcu_head *head));
1639 atomic_inc(&rcu_barrier_cpu_count);
1640 call_rcu_func = type;
1641 call_rcu_func(head, rcu_barrier_callback);
1645 * Orchestrate the specified type of RCU barrier, waiting for all
1646 * RCU callbacks of the specified type to complete.
1648 static void _rcu_barrier(struct rcu_state *rsp,
1649 void (*call_rcu_func)(struct rcu_head *head,
1650 void (*func)(struct rcu_head *head)))
1652 BUG_ON(in_interrupt());
1653 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1654 mutex_lock(&rcu_barrier_mutex);
1655 init_completion(&rcu_barrier_completion);
1657 * Initialize rcu_barrier_cpu_count to 1, then invoke
1658 * rcu_barrier_func() on each CPU, so that each CPU also has
1659 * incremented rcu_barrier_cpu_count. Only then is it safe to
1660 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1661 * might complete its grace period before all of the other CPUs
1662 * did their increment, causing this function to return too
1663 * early.
1665 atomic_set(&rcu_barrier_cpu_count, 1);
1666 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1667 rcu_adopt_orphan_cbs(rsp);
1668 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1669 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1670 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1671 complete(&rcu_barrier_completion);
1672 wait_for_completion(&rcu_barrier_completion);
1673 mutex_unlock(&rcu_barrier_mutex);
1677 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1679 void rcu_barrier_bh(void)
1681 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1683 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1686 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1688 void rcu_barrier_sched(void)
1690 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1692 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1695 * Do boot-time initialization of a CPU's per-CPU RCU data.
1697 static void __init
1698 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1700 unsigned long flags;
1701 int i;
1702 struct rcu_data *rdp = rsp->rda[cpu];
1703 struct rcu_node *rnp = rcu_get_root(rsp);
1705 /* Set up local state, ensuring consistent view of global state. */
1706 raw_spin_lock_irqsave(&rnp->lock, flags);
1707 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1708 rdp->nxtlist = NULL;
1709 for (i = 0; i < RCU_NEXT_SIZE; i++)
1710 rdp->nxttail[i] = &rdp->nxtlist;
1711 rdp->qlen = 0;
1712 #ifdef CONFIG_NO_HZ
1713 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1714 #endif /* #ifdef CONFIG_NO_HZ */
1715 rdp->cpu = cpu;
1716 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1720 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1721 * offline event can be happening at a given time. Note also that we
1722 * can accept some slop in the rsp->completed access due to the fact
1723 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1725 static void __cpuinit
1726 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1728 unsigned long flags;
1729 unsigned long mask;
1730 struct rcu_data *rdp = rsp->rda[cpu];
1731 struct rcu_node *rnp = rcu_get_root(rsp);
1733 /* Set up local state, ensuring consistent view of global state. */
1734 raw_spin_lock_irqsave(&rnp->lock, flags);
1735 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1736 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1737 rdp->beenonline = 1; /* We have now been online. */
1738 rdp->preemptable = preemptable;
1739 rdp->qlen_last_fqs_check = 0;
1740 rdp->n_force_qs_snap = rsp->n_force_qs;
1741 rdp->blimit = blimit;
1742 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1745 * A new grace period might start here. If so, we won't be part
1746 * of it, but that is OK, as we are currently in a quiescent state.
1749 /* Exclude any attempts to start a new GP on large systems. */
1750 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1752 /* Add CPU to rcu_node bitmasks. */
1753 rnp = rdp->mynode;
1754 mask = rdp->grpmask;
1755 do {
1756 /* Exclude any attempts to start a new GP on small systems. */
1757 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1758 rnp->qsmaskinit |= mask;
1759 mask = rnp->grpmask;
1760 if (rnp == rdp->mynode) {
1761 rdp->gpnum = rnp->completed; /* if GP in progress... */
1762 rdp->completed = rnp->completed;
1763 rdp->passed_quiesc_completed = rnp->completed - 1;
1765 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1766 rnp = rnp->parent;
1767 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1769 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1772 static void __cpuinit rcu_online_cpu(int cpu)
1774 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1775 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1776 rcu_preempt_init_percpu_data(cpu);
1780 * Handle CPU online/offline notification events.
1782 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1783 unsigned long action, void *hcpu)
1785 long cpu = (long)hcpu;
1787 switch (action) {
1788 case CPU_UP_PREPARE:
1789 case CPU_UP_PREPARE_FROZEN:
1790 rcu_online_cpu(cpu);
1791 break;
1792 case CPU_DYING:
1793 case CPU_DYING_FROZEN:
1795 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1796 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1797 * returns, all online cpus have queued rcu_barrier_func().
1798 * The dying CPU clears its cpu_online_mask bit and
1799 * moves all of its RCU callbacks to ->orphan_cbs_list
1800 * in the context of stop_machine(), so subsequent calls
1801 * to _rcu_barrier() will adopt these callbacks and only
1802 * then queue rcu_barrier_func() on all remaining CPUs.
1804 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1805 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1806 rcu_preempt_send_cbs_to_orphanage();
1807 break;
1808 case CPU_DEAD:
1809 case CPU_DEAD_FROZEN:
1810 case CPU_UP_CANCELED:
1811 case CPU_UP_CANCELED_FROZEN:
1812 rcu_offline_cpu(cpu);
1813 break;
1814 default:
1815 break;
1817 return NOTIFY_OK;
1821 * This function is invoked towards the end of the scheduler's initialization
1822 * process. Before this is called, the idle task might contain
1823 * RCU read-side critical sections (during which time, this idle
1824 * task is booting the system). After this function is called, the
1825 * idle tasks are prohibited from containing RCU read-side critical
1826 * sections. This function also enables RCU lockdep checking.
1828 void rcu_scheduler_starting(void)
1830 WARN_ON(num_online_cpus() != 1);
1831 WARN_ON(nr_context_switches() > 0);
1832 rcu_scheduler_active = 1;
1836 * Compute the per-level fanout, either using the exact fanout specified
1837 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1839 #ifdef CONFIG_RCU_FANOUT_EXACT
1840 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1842 int i;
1844 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1845 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1847 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1848 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1850 int ccur;
1851 int cprv;
1852 int i;
1854 cprv = NR_CPUS;
1855 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1856 ccur = rsp->levelcnt[i];
1857 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1858 cprv = ccur;
1861 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1864 * Helper function for rcu_init() that initializes one rcu_state structure.
1866 static void __init rcu_init_one(struct rcu_state *rsp)
1868 static char *buf[] = { "rcu_node_level_0",
1869 "rcu_node_level_1",
1870 "rcu_node_level_2",
1871 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1872 int cpustride = 1;
1873 int i;
1874 int j;
1875 struct rcu_node *rnp;
1877 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1879 /* Initialize the level-tracking arrays. */
1881 for (i = 1; i < NUM_RCU_LVLS; i++)
1882 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1883 rcu_init_levelspread(rsp);
1885 /* Initialize the elements themselves, starting from the leaves. */
1887 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1888 cpustride *= rsp->levelspread[i];
1889 rnp = rsp->level[i];
1890 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1891 raw_spin_lock_init(&rnp->lock);
1892 lockdep_set_class_and_name(&rnp->lock,
1893 &rcu_node_class[i], buf[i]);
1894 rnp->gpnum = 0;
1895 rnp->qsmask = 0;
1896 rnp->qsmaskinit = 0;
1897 rnp->grplo = j * cpustride;
1898 rnp->grphi = (j + 1) * cpustride - 1;
1899 if (rnp->grphi >= NR_CPUS)
1900 rnp->grphi = NR_CPUS - 1;
1901 if (i == 0) {
1902 rnp->grpnum = 0;
1903 rnp->grpmask = 0;
1904 rnp->parent = NULL;
1905 } else {
1906 rnp->grpnum = j % rsp->levelspread[i - 1];
1907 rnp->grpmask = 1UL << rnp->grpnum;
1908 rnp->parent = rsp->level[i - 1] +
1909 j / rsp->levelspread[i - 1];
1911 rnp->level = i;
1912 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1913 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1914 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1915 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1919 rnp = rsp->level[NUM_RCU_LVLS - 1];
1920 for_each_possible_cpu(i) {
1921 while (i > rnp->grphi)
1922 rnp++;
1923 rsp->rda[i]->mynode = rnp;
1924 rcu_boot_init_percpu_data(i, rsp);
1929 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1930 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1931 * structure.
1933 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1934 do { \
1935 int i; \
1937 for_each_possible_cpu(i) { \
1938 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1940 rcu_init_one(rsp); \
1941 } while (0)
1943 void __init rcu_init(void)
1945 int cpu;
1947 rcu_bootup_announce();
1948 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1949 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
1950 __rcu_init_preempt();
1951 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1954 * We don't need protection against CPU-hotplug here because
1955 * this is called early in boot, before either interrupts
1956 * or the scheduler are operational.
1958 cpu_notifier(rcu_cpu_notify, 0);
1959 for_each_online_cpu(cpu)
1960 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1961 check_cpu_stall_init();
1964 #include "rcutree_plugin.h"