1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #include <cluster/masklog.h>
39 #include "extent_map.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
52 struct buffer_head
*bh_result
, int create
)
56 struct ocfs2_dinode
*fe
= NULL
;
57 struct buffer_head
*bh
= NULL
;
58 struct buffer_head
*buffer_cache_bh
= NULL
;
59 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
64 (unsigned long long)iblock
, bh_result
, create
);
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
68 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
69 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock
);
74 status
= ocfs2_read_inode_block(inode
, &bh
);
79 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
81 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
82 le32_to_cpu(fe
->i_clusters
))) {
83 mlog(ML_ERROR
, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock
);
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
91 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
93 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
94 if (!buffer_cache_bh
) {
95 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh
)
104 && ocfs2_inode_is_new(inode
)) {
105 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
107 mlog(ML_ERROR
, "couldn't kmap!\n");
110 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
111 buffer_cache_bh
->b_data
,
113 kunmap_atomic(kaddr
, KM_USER0
);
114 set_buffer_uptodate(bh_result
);
116 brelse(buffer_cache_bh
);
119 map_bh(bh_result
, inode
->i_sb
,
120 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
130 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
131 struct buffer_head
*bh_result
, int create
)
134 unsigned int ext_flags
;
135 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
136 u64 p_blkno
, count
, past_eof
;
137 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
140 (unsigned long long)iblock
, bh_result
, create
);
142 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
143 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
144 inode
, inode
->i_ino
);
146 if (S_ISLNK(inode
->i_mode
)) {
147 /* this always does I/O for some reason. */
148 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
152 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
155 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
157 (unsigned long long)p_blkno
);
161 if (max_blocks
< count
)
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
175 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
176 clear_buffer_dirty(bh_result
);
177 clear_buffer_uptodate(bh_result
);
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
183 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
185 bh_result
->b_size
= count
<< inode
->i_blkbits
;
187 if (!ocfs2_sparse_alloc(osb
)) {
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock
,
193 (unsigned long long)p_blkno
,
194 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
195 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
201 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
204 (unsigned long long)past_eof
);
205 if (create
&& (iblock
>= past_eof
))
206 set_buffer_new(bh_result
);
215 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
216 struct buffer_head
*di_bh
)
220 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
222 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
223 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
228 size
= i_size_read(inode
);
230 if (size
> PAGE_CACHE_SIZE
||
231 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
232 ocfs2_error(inode
->i_sb
,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
235 (unsigned long long)size
);
239 kaddr
= kmap_atomic(page
, KM_USER0
);
241 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
242 /* Clear the remaining part of the page */
243 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
244 flush_dcache_page(page
);
245 kunmap_atomic(kaddr
, KM_USER0
);
247 SetPageUptodate(page
);
252 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
255 struct buffer_head
*di_bh
= NULL
;
257 BUG_ON(!PageLocked(page
));
258 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
260 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
266 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
274 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
276 struct inode
*inode
= page
->mapping
->host
;
277 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
278 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
281 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
282 (page
? page
->index
: 0));
284 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
286 if (ret
== AOP_TRUNCATED_PAGE
)
292 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
293 ret
= AOP_TRUNCATED_PAGE
;
294 goto out_inode_unlock
;
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
305 * XXX sys_readahead() seems to get that wrong?
307 if (start
>= i_size_read(inode
)) {
308 zero_user(page
, 0, PAGE_SIZE
);
309 SetPageUptodate(page
);
314 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
315 ret
= ocfs2_readpage_inline(inode
, page
);
317 ret
= block_read_full_page(page
, ocfs2_get_block
);
321 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
323 ocfs2_inode_unlock(inode
, 0);
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
339 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
340 struct list_head
*pages
, unsigned nr_pages
)
343 struct inode
*inode
= mapping
->host
;
344 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
352 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
356 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
357 ocfs2_inode_unlock(inode
, 0);
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
365 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
372 last
= list_entry(pages
->prev
, struct page
, lru
);
373 start
= (loff_t
)last
->index
<< PAGE_CACHE_SHIFT
;
374 if (start
>= i_size_read(inode
))
377 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
380 up_read(&oi
->ip_alloc_sem
);
381 ocfs2_inode_unlock(inode
, 0);
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
397 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
403 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
406 /* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
410 int walk_page_buffers( handle_t
*handle
,
411 struct buffer_head
*head
,
415 int (*fn
)( handle_t
*handle
,
416 struct buffer_head
*bh
))
418 struct buffer_head
*bh
;
419 unsigned block_start
, block_end
;
420 unsigned blocksize
= head
->b_size
;
422 struct buffer_head
*next
;
424 for ( bh
= head
, block_start
= 0;
425 ret
== 0 && (bh
!= head
|| !block_start
);
426 block_start
= block_end
, bh
= next
)
428 next
= bh
->b_this_page
;
429 block_end
= block_start
+ blocksize
;
430 if (block_end
<= from
|| block_start
>= to
) {
431 if (partial
&& !buffer_uptodate(bh
))
435 err
= (*fn
)(handle
, bh
);
442 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
447 struct inode
*inode
= mapping
->host
;
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
450 (unsigned long long)block
);
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
455 if (!INODE_JOURNAL(inode
)) {
456 err
= ocfs2_inode_lock(inode
, NULL
, 0);
462 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
465 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
466 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
469 if (!INODE_JOURNAL(inode
)) {
470 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
471 ocfs2_inode_unlock(inode
, 0);
475 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block
);
482 status
= err
? 0 : p_blkno
;
488 * TODO: Make this into a generic get_blocks function.
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
495 * This function is called directly from get_more_blocks in direct-io.c.
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
500 * Note that we never bother to allocate blocks here, and thus ignore the
503 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
504 struct buffer_head
*bh_result
, int create
)
507 u64 p_blkno
, inode_blocks
, contig_blocks
;
508 unsigned int ext_flags
;
509 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
510 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
516 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
520 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
521 &contig_blocks
, &ext_flags
);
523 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock
);
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create
&& (ext_flags
& OCFS2_EXT_REFCOUNTED
));
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
536 * Consider an unwritten extent as a hole.
538 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
539 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
541 clear_buffer_mapped(bh_result
);
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks
< contig_blocks
)
546 contig_blocks
= max_blocks
;
547 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
554 * particularly interested in the aio/dio case. Like the core uses
555 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
556 * truncation on another.
558 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
565 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
568 /* this io's submitter should not have unlocked this before we could */
569 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
571 if (ocfs2_iocb_is_sem_locked(iocb
)) {
572 up_read(&inode
->i_alloc_sem
);
573 ocfs2_iocb_clear_sem_locked(iocb
);
576 ocfs2_iocb_clear_rw_locked(iocb
);
578 level
= ocfs2_iocb_rw_locked_level(iocb
);
579 ocfs2_rw_unlock(inode
, level
);
582 aio_complete(iocb
, ret
, 0);
586 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
587 * from ext3. PageChecked() bits have been removed as OCFS2 does not
588 * do journalled data.
590 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
592 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
594 jbd2_journal_invalidatepage(journal
, page
, offset
);
597 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
599 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
601 if (!page_has_buffers(page
))
603 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
606 static ssize_t
ocfs2_direct_IO(int rw
,
608 const struct iovec
*iov
,
610 unsigned long nr_segs
)
612 struct file
*file
= iocb
->ki_filp
;
613 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
616 * Fallback to buffered I/O if we see an inode without
619 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
622 /* Fallback to buffered I/O if we are appending. */
623 if (i_size_read(inode
) <= offset
)
626 return __blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
,
627 iov
, offset
, nr_segs
,
628 ocfs2_direct_IO_get_blocks
,
629 ocfs2_dio_end_io
, NULL
, 0);
632 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
637 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
639 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
642 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
644 cluster_start
= cpos
% cpp
;
645 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
647 cluster_end
= cluster_start
+ osb
->s_clustersize
;
650 BUG_ON(cluster_start
> PAGE_SIZE
);
651 BUG_ON(cluster_end
> PAGE_SIZE
);
654 *start
= cluster_start
;
660 * 'from' and 'to' are the region in the page to avoid zeroing.
662 * If pagesize > clustersize, this function will avoid zeroing outside
663 * of the cluster boundary.
665 * from == to == 0 is code for "zero the entire cluster region"
667 static void ocfs2_clear_page_regions(struct page
*page
,
668 struct ocfs2_super
*osb
, u32 cpos
,
669 unsigned from
, unsigned to
)
672 unsigned int cluster_start
, cluster_end
;
674 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
676 kaddr
= kmap_atomic(page
, KM_USER0
);
679 if (from
> cluster_start
)
680 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
681 if (to
< cluster_end
)
682 memset(kaddr
+ to
, 0, cluster_end
- to
);
684 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
687 kunmap_atomic(kaddr
, KM_USER0
);
691 * Nonsparse file systems fully allocate before we get to the write
692 * code. This prevents ocfs2_write() from tagging the write as an
693 * allocating one, which means ocfs2_map_page_blocks() might try to
694 * read-in the blocks at the tail of our file. Avoid reading them by
695 * testing i_size against each block offset.
697 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
698 unsigned int block_start
)
700 u64 offset
= page_offset(page
) + block_start
;
702 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
705 if (i_size_read(inode
) > offset
)
712 * Some of this taken from __block_write_begin(). We already have our
713 * mapping by now though, and the entire write will be allocating or
714 * it won't, so not much need to use BH_New.
716 * This will also skip zeroing, which is handled externally.
718 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
719 struct inode
*inode
, unsigned int from
,
720 unsigned int to
, int new)
723 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
724 unsigned int block_end
, block_start
;
725 unsigned int bsize
= 1 << inode
->i_blkbits
;
727 if (!page_has_buffers(page
))
728 create_empty_buffers(page
, bsize
, 0);
730 head
= page_buffers(page
);
731 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
732 bh
= bh
->b_this_page
, block_start
+= bsize
) {
733 block_end
= block_start
+ bsize
;
735 clear_buffer_new(bh
);
738 * Ignore blocks outside of our i/o range -
739 * they may belong to unallocated clusters.
741 if (block_start
>= to
|| block_end
<= from
) {
742 if (PageUptodate(page
))
743 set_buffer_uptodate(bh
);
748 * For an allocating write with cluster size >= page
749 * size, we always write the entire page.
754 if (!buffer_mapped(bh
)) {
755 map_bh(bh
, inode
->i_sb
, *p_blkno
);
756 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
759 if (PageUptodate(page
)) {
760 if (!buffer_uptodate(bh
))
761 set_buffer_uptodate(bh
);
762 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
764 ocfs2_should_read_blk(inode
, page
, block_start
) &&
765 (block_start
< from
|| block_end
> to
)) {
766 ll_rw_block(READ
, 1, &bh
);
770 *p_blkno
= *p_blkno
+ 1;
774 * If we issued read requests - let them complete.
776 while(wait_bh
> wait
) {
777 wait_on_buffer(*--wait_bh
);
778 if (!buffer_uptodate(*wait_bh
))
782 if (ret
== 0 || !new)
786 * If we get -EIO above, zero out any newly allocated blocks
787 * to avoid exposing stale data.
792 block_end
= block_start
+ bsize
;
793 if (block_end
<= from
)
795 if (block_start
>= to
)
798 zero_user(page
, block_start
, bh
->b_size
);
799 set_buffer_uptodate(bh
);
800 mark_buffer_dirty(bh
);
803 block_start
= block_end
;
804 bh
= bh
->b_this_page
;
805 } while (bh
!= head
);
810 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
811 #define OCFS2_MAX_CTXT_PAGES 1
813 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
816 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
819 * Describe the state of a single cluster to be written to.
821 struct ocfs2_write_cluster_desc
{
825 * Give this a unique field because c_phys eventually gets
829 unsigned c_unwritten
;
830 unsigned c_needs_zero
;
833 struct ocfs2_write_ctxt
{
834 /* Logical cluster position / len of write */
838 /* First cluster allocated in a nonsparse extend */
839 u32 w_first_new_cpos
;
841 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
844 * This is true if page_size > cluster_size.
846 * It triggers a set of special cases during write which might
847 * have to deal with allocating writes to partial pages.
849 unsigned int w_large_pages
;
852 * Pages involved in this write.
854 * w_target_page is the page being written to by the user.
856 * w_pages is an array of pages which always contains
857 * w_target_page, and in the case of an allocating write with
858 * page_size < cluster size, it will contain zero'd and mapped
859 * pages adjacent to w_target_page which need to be written
860 * out in so that future reads from that region will get
863 unsigned int w_num_pages
;
864 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
865 struct page
*w_target_page
;
868 * ocfs2_write_end() uses this to know what the real range to
869 * write in the target should be.
871 unsigned int w_target_from
;
872 unsigned int w_target_to
;
875 * We could use journal_current_handle() but this is cleaner,
880 struct buffer_head
*w_di_bh
;
882 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
885 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
889 for(i
= 0; i
< num_pages
; i
++) {
891 unlock_page(pages
[i
]);
892 mark_page_accessed(pages
[i
]);
893 page_cache_release(pages
[i
]);
898 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
900 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
906 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
907 struct ocfs2_super
*osb
, loff_t pos
,
908 unsigned len
, struct buffer_head
*di_bh
)
911 struct ocfs2_write_ctxt
*wc
;
913 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
917 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
918 wc
->w_first_new_cpos
= UINT_MAX
;
919 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
920 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
924 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
925 wc
->w_large_pages
= 1;
927 wc
->w_large_pages
= 0;
929 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
937 * If a page has any new buffers, zero them out here, and mark them uptodate
938 * and dirty so they'll be written out (in order to prevent uninitialised
939 * block data from leaking). And clear the new bit.
941 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
943 unsigned int block_start
, block_end
;
944 struct buffer_head
*head
, *bh
;
946 BUG_ON(!PageLocked(page
));
947 if (!page_has_buffers(page
))
950 bh
= head
= page_buffers(page
);
953 block_end
= block_start
+ bh
->b_size
;
955 if (buffer_new(bh
)) {
956 if (block_end
> from
&& block_start
< to
) {
957 if (!PageUptodate(page
)) {
960 start
= max(from
, block_start
);
961 end
= min(to
, block_end
);
963 zero_user_segment(page
, start
, end
);
964 set_buffer_uptodate(bh
);
967 clear_buffer_new(bh
);
968 mark_buffer_dirty(bh
);
972 block_start
= block_end
;
973 bh
= bh
->b_this_page
;
974 } while (bh
!= head
);
978 * Only called when we have a failure during allocating write to write
979 * zero's to the newly allocated region.
981 static void ocfs2_write_failure(struct inode
*inode
,
982 struct ocfs2_write_ctxt
*wc
,
983 loff_t user_pos
, unsigned user_len
)
986 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
987 to
= user_pos
+ user_len
;
988 struct page
*tmppage
;
990 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
992 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
993 tmppage
= wc
->w_pages
[i
];
995 if (page_has_buffers(tmppage
)) {
996 if (ocfs2_should_order_data(inode
))
997 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
999 block_commit_write(tmppage
, from
, to
);
1004 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1005 struct ocfs2_write_ctxt
*wc
,
1006 struct page
*page
, u32 cpos
,
1007 loff_t user_pos
, unsigned user_len
,
1011 unsigned int map_from
= 0, map_to
= 0;
1012 unsigned int cluster_start
, cluster_end
;
1013 unsigned int user_data_from
= 0, user_data_to
= 0;
1015 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1016 &cluster_start
, &cluster_end
);
1018 /* treat the write as new if the a hole/lseek spanned across
1019 * the page boundary.
1021 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
1022 (page_offset(page
) <= user_pos
));
1024 if (page
== wc
->w_target_page
) {
1025 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1026 map_to
= map_from
+ user_len
;
1029 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1030 cluster_start
, cluster_end
,
1033 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1034 map_from
, map_to
, new);
1040 user_data_from
= map_from
;
1041 user_data_to
= map_to
;
1043 map_from
= cluster_start
;
1044 map_to
= cluster_end
;
1048 * If we haven't allocated the new page yet, we
1049 * shouldn't be writing it out without copying user
1050 * data. This is likely a math error from the caller.
1054 map_from
= cluster_start
;
1055 map_to
= cluster_end
;
1057 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1058 cluster_start
, cluster_end
, new);
1066 * Parts of newly allocated pages need to be zero'd.
1068 * Above, we have also rewritten 'to' and 'from' - as far as
1069 * the rest of the function is concerned, the entire cluster
1070 * range inside of a page needs to be written.
1072 * We can skip this if the page is up to date - it's already
1073 * been zero'd from being read in as a hole.
1075 if (new && !PageUptodate(page
))
1076 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1077 cpos
, user_data_from
, user_data_to
);
1079 flush_dcache_page(page
);
1086 * This function will only grab one clusters worth of pages.
1088 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1089 struct ocfs2_write_ctxt
*wc
,
1090 u32 cpos
, loff_t user_pos
,
1091 unsigned user_len
, int new,
1092 struct page
*mmap_page
)
1095 unsigned long start
, target_index
, end_index
, index
;
1096 struct inode
*inode
= mapping
->host
;
1099 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1102 * Figure out how many pages we'll be manipulating here. For
1103 * non allocating write, we just change the one
1104 * page. Otherwise, we'll need a whole clusters worth. If we're
1105 * writing past i_size, we only need enough pages to cover the
1106 * last page of the write.
1109 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1110 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1112 * We need the index *past* the last page we could possibly
1113 * touch. This is the page past the end of the write or
1114 * i_size, whichever is greater.
1116 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1117 BUG_ON(last_byte
< 1);
1118 end_index
= ((last_byte
- 1) >> PAGE_CACHE_SHIFT
) + 1;
1119 if ((start
+ wc
->w_num_pages
) > end_index
)
1120 wc
->w_num_pages
= end_index
- start
;
1122 wc
->w_num_pages
= 1;
1123 start
= target_index
;
1126 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1129 if (index
== target_index
&& mmap_page
) {
1131 * ocfs2_pagemkwrite() is a little different
1132 * and wants us to directly use the page
1135 lock_page(mmap_page
);
1137 if (mmap_page
->mapping
!= mapping
) {
1138 unlock_page(mmap_page
);
1140 * Sanity check - the locking in
1141 * ocfs2_pagemkwrite() should ensure
1142 * that this code doesn't trigger.
1149 page_cache_get(mmap_page
);
1150 wc
->w_pages
[i
] = mmap_page
;
1152 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1154 if (!wc
->w_pages
[i
]) {
1161 if (index
== target_index
)
1162 wc
->w_target_page
= wc
->w_pages
[i
];
1169 * Prepare a single cluster for write one cluster into the file.
1171 static int ocfs2_write_cluster(struct address_space
*mapping
,
1172 u32 phys
, unsigned int unwritten
,
1173 unsigned int should_zero
,
1174 struct ocfs2_alloc_context
*data_ac
,
1175 struct ocfs2_alloc_context
*meta_ac
,
1176 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1177 loff_t user_pos
, unsigned user_len
)
1180 u64 v_blkno
, p_blkno
;
1181 struct inode
*inode
= mapping
->host
;
1182 struct ocfs2_extent_tree et
;
1184 new = phys
== 0 ? 1 : 0;
1189 * This is safe to call with the page locks - it won't take
1190 * any additional semaphores or cluster locks.
1193 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1194 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1195 wc
->w_handle
, data_ac
,
1198 * This shouldn't happen because we must have already
1199 * calculated the correct meta data allocation required. The
1200 * internal tree allocation code should know how to increase
1201 * transaction credits itself.
1203 * If need be, we could handle -EAGAIN for a
1204 * RESTART_TRANS here.
1206 mlog_bug_on_msg(ret
== -EAGAIN
,
1207 "Inode %llu: EAGAIN return during allocation.\n",
1208 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1213 } else if (unwritten
) {
1214 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1216 ret
= ocfs2_mark_extent_written(inode
, &et
,
1217 wc
->w_handle
, cpos
, 1, phys
,
1218 meta_ac
, &wc
->w_dealloc
);
1226 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1228 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1231 * The only reason this should fail is due to an inability to
1232 * find the extent added.
1234 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1237 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1238 "at logical block %llu",
1239 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1240 (unsigned long long)v_blkno
);
1244 BUG_ON(p_blkno
== 0);
1246 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1249 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1250 wc
->w_pages
[i
], cpos
,
1261 * We only have cleanup to do in case of allocating write.
1264 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1271 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1272 struct ocfs2_alloc_context
*data_ac
,
1273 struct ocfs2_alloc_context
*meta_ac
,
1274 struct ocfs2_write_ctxt
*wc
,
1275 loff_t pos
, unsigned len
)
1279 unsigned int local_len
= len
;
1280 struct ocfs2_write_cluster_desc
*desc
;
1281 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1283 for (i
= 0; i
< wc
->w_clen
; i
++) {
1284 desc
= &wc
->w_desc
[i
];
1287 * We have to make sure that the total write passed in
1288 * doesn't extend past a single cluster.
1291 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1292 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1293 local_len
= osb
->s_clustersize
- cluster_off
;
1295 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1299 wc
, desc
->c_cpos
, pos
, local_len
);
1315 * ocfs2_write_end() wants to know which parts of the target page it
1316 * should complete the write on. It's easiest to compute them ahead of
1317 * time when a more complete view of the write is available.
1319 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1320 struct ocfs2_write_ctxt
*wc
,
1321 loff_t pos
, unsigned len
, int alloc
)
1323 struct ocfs2_write_cluster_desc
*desc
;
1325 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1326 wc
->w_target_to
= wc
->w_target_from
+ len
;
1332 * Allocating write - we may have different boundaries based
1333 * on page size and cluster size.
1335 * NOTE: We can no longer compute one value from the other as
1336 * the actual write length and user provided length may be
1340 if (wc
->w_large_pages
) {
1342 * We only care about the 1st and last cluster within
1343 * our range and whether they should be zero'd or not. Either
1344 * value may be extended out to the start/end of a
1345 * newly allocated cluster.
1347 desc
= &wc
->w_desc
[0];
1348 if (desc
->c_needs_zero
)
1349 ocfs2_figure_cluster_boundaries(osb
,
1354 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1355 if (desc
->c_needs_zero
)
1356 ocfs2_figure_cluster_boundaries(osb
,
1361 wc
->w_target_from
= 0;
1362 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1367 * Populate each single-cluster write descriptor in the write context
1368 * with information about the i/o to be done.
1370 * Returns the number of clusters that will have to be allocated, as
1371 * well as a worst case estimate of the number of extent records that
1372 * would have to be created during a write to an unwritten region.
1374 static int ocfs2_populate_write_desc(struct inode
*inode
,
1375 struct ocfs2_write_ctxt
*wc
,
1376 unsigned int *clusters_to_alloc
,
1377 unsigned int *extents_to_split
)
1380 struct ocfs2_write_cluster_desc
*desc
;
1381 unsigned int num_clusters
= 0;
1382 unsigned int ext_flags
= 0;
1386 *clusters_to_alloc
= 0;
1387 *extents_to_split
= 0;
1389 for (i
= 0; i
< wc
->w_clen
; i
++) {
1390 desc
= &wc
->w_desc
[i
];
1391 desc
->c_cpos
= wc
->w_cpos
+ i
;
1393 if (num_clusters
== 0) {
1395 * Need to look up the next extent record.
1397 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1398 &num_clusters
, &ext_flags
);
1404 /* We should already CoW the refcountd extent. */
1405 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1408 * Assume worst case - that we're writing in
1409 * the middle of the extent.
1411 * We can assume that the write proceeds from
1412 * left to right, in which case the extent
1413 * insert code is smart enough to coalesce the
1414 * next splits into the previous records created.
1416 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1417 *extents_to_split
= *extents_to_split
+ 2;
1420 * Only increment phys if it doesn't describe
1427 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1428 * file that got extended. w_first_new_cpos tells us
1429 * where the newly allocated clusters are so we can
1432 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1434 desc
->c_needs_zero
= 1;
1437 desc
->c_phys
= phys
;
1440 desc
->c_needs_zero
= 1;
1441 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1444 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1445 desc
->c_unwritten
= 1;
1446 desc
->c_needs_zero
= 1;
1457 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1458 struct inode
*inode
,
1459 struct ocfs2_write_ctxt
*wc
)
1462 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1465 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1467 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1474 * If we don't set w_num_pages then this page won't get unlocked
1475 * and freed on cleanup of the write context.
1477 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1478 wc
->w_num_pages
= 1;
1480 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1481 if (IS_ERR(handle
)) {
1482 ret
= PTR_ERR(handle
);
1487 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1488 OCFS2_JOURNAL_ACCESS_WRITE
);
1490 ocfs2_commit_trans(osb
, handle
);
1496 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1497 ocfs2_set_inode_data_inline(inode
, di
);
1499 if (!PageUptodate(page
)) {
1500 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1502 ocfs2_commit_trans(osb
, handle
);
1508 wc
->w_handle
= handle
;
1513 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1515 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1517 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1522 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1523 struct inode
*inode
, loff_t pos
,
1524 unsigned len
, struct page
*mmap_page
,
1525 struct ocfs2_write_ctxt
*wc
)
1527 int ret
, written
= 0;
1528 loff_t end
= pos
+ len
;
1529 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1530 struct ocfs2_dinode
*di
= NULL
;
1532 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1533 len
, (unsigned long long)pos
,
1534 oi
->ip_dyn_features
);
1537 * Handle inodes which already have inline data 1st.
1539 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1540 if (mmap_page
== NULL
&&
1541 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1542 goto do_inline_write
;
1545 * The write won't fit - we have to give this inode an
1546 * inline extent list now.
1548 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1555 * Check whether the inode can accept inline data.
1557 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1561 * Check whether the write can fit.
1563 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1565 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1569 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1576 * This signals to the caller that the data can be written
1581 return written
? written
: ret
;
1585 * This function only does anything for file systems which can't
1586 * handle sparse files.
1588 * What we want to do here is fill in any hole between the current end
1589 * of allocation and the end of our write. That way the rest of the
1590 * write path can treat it as an non-allocating write, which has no
1591 * special case code for sparse/nonsparse files.
1593 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1594 struct buffer_head
*di_bh
,
1595 loff_t pos
, unsigned len
,
1596 struct ocfs2_write_ctxt
*wc
)
1599 loff_t newsize
= pos
+ len
;
1601 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1603 if (newsize
<= i_size_read(inode
))
1606 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1610 wc
->w_first_new_cpos
=
1611 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1616 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1621 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1622 if (pos
> i_size_read(inode
))
1623 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1629 * Try to flush truncate logs if we can free enough clusters from it.
1630 * As for return value, "< 0" means error, "0" no space and "1" means
1631 * we have freed enough spaces and let the caller try to allocate again.
1633 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super
*osb
,
1634 unsigned int needed
)
1638 unsigned int truncated_clusters
;
1640 mutex_lock(&osb
->osb_tl_inode
->i_mutex
);
1641 truncated_clusters
= osb
->truncated_clusters
;
1642 mutex_unlock(&osb
->osb_tl_inode
->i_mutex
);
1645 * Check whether we can succeed in allocating if we free
1648 if (truncated_clusters
< needed
)
1651 ret
= ocfs2_flush_truncate_log(osb
);
1657 if (jbd2_journal_start_commit(osb
->journal
->j_journal
, &target
)) {
1658 jbd2_log_wait_commit(osb
->journal
->j_journal
, target
);
1665 int ocfs2_write_begin_nolock(struct file
*filp
,
1666 struct address_space
*mapping
,
1667 loff_t pos
, unsigned len
, unsigned flags
,
1668 struct page
**pagep
, void **fsdata
,
1669 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1671 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1672 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1673 struct ocfs2_write_ctxt
*wc
;
1674 struct inode
*inode
= mapping
->host
;
1675 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1676 struct ocfs2_dinode
*di
;
1677 struct ocfs2_alloc_context
*data_ac
= NULL
;
1678 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1680 struct ocfs2_extent_tree et
;
1681 int try_free
= 1, ret1
;
1684 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1690 if (ocfs2_supports_inline_data(osb
)) {
1691 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1703 if (ocfs2_sparse_alloc(osb
))
1704 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1706 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
, len
,
1713 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1717 } else if (ret
== 1) {
1718 clusters_need
= wc
->w_clen
;
1719 ret
= ocfs2_refcount_cow(inode
, filp
, di_bh
,
1720 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1727 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1733 clusters_need
+= clusters_to_alloc
;
1735 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1737 trace_ocfs2_write_begin_nolock(
1738 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1739 (long long)i_size_read(inode
),
1740 le32_to_cpu(di
->i_clusters
),
1741 pos
, len
, flags
, mmap_page
,
1742 clusters_to_alloc
, extents_to_split
);
1745 * We set w_target_from, w_target_to here so that
1746 * ocfs2_write_end() knows which range in the target page to
1747 * write out. An allocation requires that we write the entire
1750 if (clusters_to_alloc
|| extents_to_split
) {
1752 * XXX: We are stretching the limits of
1753 * ocfs2_lock_allocators(). It greatly over-estimates
1754 * the work to be done.
1756 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1758 ret
= ocfs2_lock_allocators(inode
, &et
,
1759 clusters_to_alloc
, extents_to_split
,
1760 &data_ac
, &meta_ac
);
1767 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1769 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1776 * We have to zero sparse allocated clusters, unwritten extent clusters,
1777 * and non-sparse clusters we just extended. For non-sparse writes,
1778 * we know zeros will only be needed in the first and/or last cluster.
1780 if (clusters_to_alloc
|| extents_to_split
||
1781 (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1782 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
)))
1783 cluster_of_pages
= 1;
1785 cluster_of_pages
= 0;
1787 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1789 handle
= ocfs2_start_trans(osb
, credits
);
1790 if (IS_ERR(handle
)) {
1791 ret
= PTR_ERR(handle
);
1796 wc
->w_handle
= handle
;
1798 if (clusters_to_alloc
) {
1799 ret
= dquot_alloc_space_nodirty(inode
,
1800 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1805 * We don't want this to fail in ocfs2_write_end(), so do it
1808 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1809 OCFS2_JOURNAL_ACCESS_WRITE
);
1816 * Fill our page array first. That way we've grabbed enough so
1817 * that we can zero and flush if we error after adding the
1820 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1821 cluster_of_pages
, mmap_page
);
1827 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1835 ocfs2_free_alloc_context(data_ac
);
1837 ocfs2_free_alloc_context(meta_ac
);
1840 *pagep
= wc
->w_target_page
;
1844 if (clusters_to_alloc
)
1845 dquot_free_space(inode
,
1846 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1848 ocfs2_commit_trans(osb
, handle
);
1851 ocfs2_free_write_ctxt(wc
);
1854 ocfs2_free_alloc_context(data_ac
);
1856 ocfs2_free_alloc_context(meta_ac
);
1858 if (ret
== -ENOSPC
&& try_free
) {
1860 * Try to free some truncate log so that we can have enough
1861 * clusters to allocate.
1865 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1876 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1877 loff_t pos
, unsigned len
, unsigned flags
,
1878 struct page
**pagep
, void **fsdata
)
1881 struct buffer_head
*di_bh
= NULL
;
1882 struct inode
*inode
= mapping
->host
;
1884 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1891 * Take alloc sem here to prevent concurrent lookups. That way
1892 * the mapping, zeroing and tree manipulation within
1893 * ocfs2_write() will be safe against ->readpage(). This
1894 * should also serve to lock out allocation from a shared
1897 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1899 ret
= ocfs2_write_begin_nolock(file
, mapping
, pos
, len
, flags
, pagep
,
1900 fsdata
, di_bh
, NULL
);
1911 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1914 ocfs2_inode_unlock(inode
, 1);
1919 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1920 unsigned len
, unsigned *copied
,
1921 struct ocfs2_dinode
*di
,
1922 struct ocfs2_write_ctxt
*wc
)
1926 if (unlikely(*copied
< len
)) {
1927 if (!PageUptodate(wc
->w_target_page
)) {
1933 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1934 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1935 kunmap_atomic(kaddr
, KM_USER0
);
1937 trace_ocfs2_write_end_inline(
1938 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1939 (unsigned long long)pos
, *copied
,
1940 le16_to_cpu(di
->id2
.i_data
.id_count
),
1941 le16_to_cpu(di
->i_dyn_features
));
1944 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1945 loff_t pos
, unsigned len
, unsigned copied
,
1946 struct page
*page
, void *fsdata
)
1949 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1950 struct inode
*inode
= mapping
->host
;
1951 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1952 struct ocfs2_write_ctxt
*wc
= fsdata
;
1953 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1954 handle_t
*handle
= wc
->w_handle
;
1955 struct page
*tmppage
;
1957 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1958 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1959 goto out_write_size
;
1962 if (unlikely(copied
< len
)) {
1963 if (!PageUptodate(wc
->w_target_page
))
1966 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1969 flush_dcache_page(wc
->w_target_page
);
1971 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1972 tmppage
= wc
->w_pages
[i
];
1974 if (tmppage
== wc
->w_target_page
) {
1975 from
= wc
->w_target_from
;
1976 to
= wc
->w_target_to
;
1978 BUG_ON(from
> PAGE_CACHE_SIZE
||
1979 to
> PAGE_CACHE_SIZE
||
1983 * Pages adjacent to the target (if any) imply
1984 * a hole-filling write in which case we want
1985 * to flush their entire range.
1988 to
= PAGE_CACHE_SIZE
;
1991 if (page_has_buffers(tmppage
)) {
1992 if (ocfs2_should_order_data(inode
))
1993 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1994 block_commit_write(tmppage
, from
, to
);
2000 if (pos
> inode
->i_size
) {
2001 i_size_write(inode
, pos
);
2002 mark_inode_dirty(inode
);
2004 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2005 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2006 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2007 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2008 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2009 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2011 ocfs2_commit_trans(osb
, handle
);
2013 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2015 ocfs2_free_write_ctxt(wc
);
2020 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2021 loff_t pos
, unsigned len
, unsigned copied
,
2022 struct page
*page
, void *fsdata
)
2025 struct inode
*inode
= mapping
->host
;
2027 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
2029 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2030 ocfs2_inode_unlock(inode
, 1);
2035 const struct address_space_operations ocfs2_aops
= {
2036 .readpage
= ocfs2_readpage
,
2037 .readpages
= ocfs2_readpages
,
2038 .writepage
= ocfs2_writepage
,
2039 .write_begin
= ocfs2_write_begin
,
2040 .write_end
= ocfs2_write_end
,
2042 .direct_IO
= ocfs2_direct_IO
,
2043 .invalidatepage
= ocfs2_invalidatepage
,
2044 .releasepage
= ocfs2_releasepage
,
2045 .migratepage
= buffer_migrate_page
,
2046 .is_partially_uptodate
= block_is_partially_uptodate
,
2047 .error_remove_page
= generic_error_remove_page
,