1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #include <cluster/masklog.h>
39 #include "blockcheck.h"
41 #include "extent_map.h"
44 #include "localalloc.h"
51 #include "refcounttree.h"
52 #include "ocfs2_trace.h"
54 #include "buffer_head_io.h"
56 enum ocfs2_contig_type
{
63 static enum ocfs2_contig_type
64 ocfs2_extent_rec_contig(struct super_block
*sb
,
65 struct ocfs2_extent_rec
*ext
,
66 struct ocfs2_extent_rec
*insert_rec
);
68 * Operations for a specific extent tree type.
70 * To implement an on-disk btree (extent tree) type in ocfs2, add
71 * an ocfs2_extent_tree_operations structure and the matching
72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
73 * for the allocation portion of the extent tree.
75 struct ocfs2_extent_tree_operations
{
77 * last_eb_blk is the block number of the right most leaf extent
78 * block. Most on-disk structures containing an extent tree store
79 * this value for fast access. The ->eo_set_last_eb_blk() and
80 * ->eo_get_last_eb_blk() operations access this value. They are
83 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
85 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
88 * The on-disk structure usually keeps track of how many total
89 * clusters are stored in this extent tree. This function updates
90 * that value. new_clusters is the delta, and must be
91 * added to the total. Required.
93 void (*eo_update_clusters
)(struct ocfs2_extent_tree
*et
,
97 * If this extent tree is supported by an extent map, insert
98 * a record into the map.
100 void (*eo_extent_map_insert
)(struct ocfs2_extent_tree
*et
,
101 struct ocfs2_extent_rec
*rec
);
104 * If this extent tree is supported by an extent map, truncate the
107 void (*eo_extent_map_truncate
)(struct ocfs2_extent_tree
*et
,
111 * If ->eo_insert_check() exists, it is called before rec is
112 * inserted into the extent tree. It is optional.
114 int (*eo_insert_check
)(struct ocfs2_extent_tree
*et
,
115 struct ocfs2_extent_rec
*rec
);
116 int (*eo_sanity_check
)(struct ocfs2_extent_tree
*et
);
119 * --------------------------------------------------------------
120 * The remaining are internal to ocfs2_extent_tree and don't have
125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 * it exists. If it does not, et->et_max_leaf_clusters is set
133 * to 0 (unlimited). Optional.
135 void (*eo_fill_max_leaf_clusters
)(struct ocfs2_extent_tree
*et
);
138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 * are contiguous or not. Optional. Don't need to set it if use
140 * ocfs2_extent_rec as the tree leaf.
142 enum ocfs2_contig_type
143 (*eo_extent_contig
)(struct ocfs2_extent_tree
*et
,
144 struct ocfs2_extent_rec
*ext
,
145 struct ocfs2_extent_rec
*insert_rec
);
150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
159 struct ocfs2_extent_rec
*rec
);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
163 struct ocfs2_extent_rec
*rec
);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
167 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
168 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
169 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
170 .eo_extent_map_insert
= ocfs2_dinode_extent_map_insert
,
171 .eo_extent_map_truncate
= ocfs2_dinode_extent_map_truncate
,
172 .eo_insert_check
= ocfs2_dinode_insert_check
,
173 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
174 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
180 struct ocfs2_dinode
*di
= et
->et_object
;
182 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
183 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
186 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
188 struct ocfs2_dinode
*di
= et
->et_object
;
190 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
191 return le64_to_cpu(di
->i_last_eb_blk
);
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
197 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
198 struct ocfs2_dinode
*di
= et
->et_object
;
200 le32_add_cpu(&di
->i_clusters
, clusters
);
201 spin_lock(&oi
->ip_lock
);
202 oi
->ip_clusters
= le32_to_cpu(di
->i_clusters
);
203 spin_unlock(&oi
->ip_lock
);
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
207 struct ocfs2_extent_rec
*rec
)
209 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
211 ocfs2_extent_map_insert_rec(inode
, rec
);
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
217 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
219 ocfs2_extent_map_trunc(inode
, clusters
);
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
223 struct ocfs2_extent_rec
*rec
)
225 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
226 struct ocfs2_super
*osb
= OCFS2_SB(oi
->vfs_inode
.i_sb
);
228 BUG_ON(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
230 (oi
->ip_clusters
!= le32_to_cpu(rec
->e_cpos
)),
231 "Device %s, asking for sparse allocation: inode %llu, "
232 "cpos %u, clusters %u\n",
234 (unsigned long long)oi
->ip_blkno
,
235 rec
->e_cpos
, oi
->ip_clusters
);
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
)
242 struct ocfs2_dinode
*di
= et
->et_object
;
244 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
245 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
252 struct ocfs2_dinode
*di
= et
->et_object
;
254 et
->et_root_el
= &di
->id2
.i_list
;
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
260 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
262 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
268 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
270 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
273 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
275 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
277 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree
*et
,
283 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
285 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
289 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
290 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
291 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
292 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
297 struct ocfs2_xattr_block
*xb
= et
->et_object
;
299 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree
*et
)
304 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
305 et
->et_max_leaf_clusters
=
306 ocfs2_clusters_for_bytes(sb
, OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
312 struct ocfs2_xattr_block
*xb
= et
->et_object
;
313 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
315 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
318 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
320 struct ocfs2_xattr_block
*xb
= et
->et_object
;
321 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
323 return le64_to_cpu(xt
->xt_last_eb_blk
);
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree
*et
,
329 struct ocfs2_xattr_block
*xb
= et
->et_object
;
331 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
335 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
336 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
337 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
338 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
339 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
345 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
347 dx_root
->dr_last_eb_blk
= cpu_to_le64(blkno
);
350 static u64
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
352 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
354 return le64_to_cpu(dx_root
->dr_last_eb_blk
);
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree
*et
,
360 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
362 le32_add_cpu(&dx_root
->dr_clusters
, clusters
);
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree
*et
)
367 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root
));
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree
*et
)
376 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
378 et
->et_root_el
= &dx_root
->dr_list
;
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops
= {
382 .eo_set_last_eb_blk
= ocfs2_dx_root_set_last_eb_blk
,
383 .eo_get_last_eb_blk
= ocfs2_dx_root_get_last_eb_blk
,
384 .eo_update_clusters
= ocfs2_dx_root_update_clusters
,
385 .eo_sanity_check
= ocfs2_dx_root_sanity_check
,
386 .eo_fill_root_el
= ocfs2_dx_root_fill_root_el
,
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
391 struct ocfs2_refcount_block
*rb
= et
->et_object
;
393 et
->et_root_el
= &rb
->rf_list
;
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
399 struct ocfs2_refcount_block
*rb
= et
->et_object
;
401 rb
->rf_last_eb_blk
= cpu_to_le64(blkno
);
404 static u64
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
406 struct ocfs2_refcount_block
*rb
= et
->et_object
;
408 return le64_to_cpu(rb
->rf_last_eb_blk
);
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree
*et
,
414 struct ocfs2_refcount_block
*rb
= et
->et_object
;
416 le32_add_cpu(&rb
->rf_clusters
, clusters
);
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree
*et
,
421 struct ocfs2_extent_rec
*ext
,
422 struct ocfs2_extent_rec
*insert_rec
)
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops
= {
428 .eo_set_last_eb_blk
= ocfs2_refcount_tree_set_last_eb_blk
,
429 .eo_get_last_eb_blk
= ocfs2_refcount_tree_get_last_eb_blk
,
430 .eo_update_clusters
= ocfs2_refcount_tree_update_clusters
,
431 .eo_fill_root_el
= ocfs2_refcount_tree_fill_root_el
,
432 .eo_extent_contig
= ocfs2_refcount_tree_extent_contig
,
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
436 struct ocfs2_caching_info
*ci
,
437 struct buffer_head
*bh
,
438 ocfs2_journal_access_func access
,
440 struct ocfs2_extent_tree_operations
*ops
)
445 et
->et_root_journal_access
= access
;
447 obj
= (void *)bh
->b_data
;
450 et
->et_ops
->eo_fill_root_el(et
);
451 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
452 et
->et_max_leaf_clusters
= 0;
454 et
->et_ops
->eo_fill_max_leaf_clusters(et
);
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
458 struct ocfs2_caching_info
*ci
,
459 struct buffer_head
*bh
)
461 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_di
,
462 NULL
, &ocfs2_dinode_et_ops
);
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
466 struct ocfs2_caching_info
*ci
,
467 struct buffer_head
*bh
)
469 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_xb
,
470 NULL
, &ocfs2_xattr_tree_et_ops
);
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
474 struct ocfs2_caching_info
*ci
,
475 struct ocfs2_xattr_value_buf
*vb
)
477 __ocfs2_init_extent_tree(et
, ci
, vb
->vb_bh
, vb
->vb_access
, vb
,
478 &ocfs2_xattr_value_et_ops
);
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree
*et
,
482 struct ocfs2_caching_info
*ci
,
483 struct buffer_head
*bh
)
485 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_dr
,
486 NULL
, &ocfs2_dx_root_et_ops
);
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree
*et
,
490 struct ocfs2_caching_info
*ci
,
491 struct buffer_head
*bh
)
493 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_rb
,
494 NULL
, &ocfs2_refcount_tree_et_ops
);
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
500 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
503 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
505 return et
->et_ops
->eo_get_last_eb_blk(et
);
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree
*et
,
511 et
->et_ops
->eo_update_clusters(et
, clusters
);
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree
*et
,
515 struct ocfs2_extent_rec
*rec
)
517 if (et
->et_ops
->eo_extent_map_insert
)
518 et
->et_ops
->eo_extent_map_insert(et
, rec
);
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree
*et
,
524 if (et
->et_ops
->eo_extent_map_truncate
)
525 et
->et_ops
->eo_extent_map_truncate(et
, clusters
);
528 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
529 struct ocfs2_extent_tree
*et
,
532 return et
->et_root_journal_access(handle
, et
->et_ci
, et
->et_root_bh
,
536 static inline enum ocfs2_contig_type
537 ocfs2_et_extent_contig(struct ocfs2_extent_tree
*et
,
538 struct ocfs2_extent_rec
*rec
,
539 struct ocfs2_extent_rec
*insert_rec
)
541 if (et
->et_ops
->eo_extent_contig
)
542 return et
->et_ops
->eo_extent_contig(et
, rec
, insert_rec
);
544 return ocfs2_extent_rec_contig(
545 ocfs2_metadata_cache_get_super(et
->et_ci
),
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree
*et
,
550 struct ocfs2_extent_rec
*rec
)
554 if (et
->et_ops
->eo_insert_check
)
555 ret
= et
->et_ops
->eo_insert_check(et
, rec
);
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree
*et
)
563 if (et
->et_ops
->eo_sanity_check
)
564 ret
= et
->et_ops
->eo_sanity_check(et
);
568 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
569 struct ocfs2_extent_block
*eb
);
570 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
571 struct ocfs2_extent_tree
*et
,
572 struct ocfs2_path
*path
,
573 struct ocfs2_extent_rec
*insert_rec
);
575 * Reset the actual path elements so that we can re-use the structure
576 * to build another path. Generally, this involves freeing the buffer
579 void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
581 int i
, start
= 0, depth
= 0;
582 struct ocfs2_path_item
*node
;
587 for(i
= start
; i
< path_num_items(path
); i
++) {
588 node
= &path
->p_node
[i
];
596 * Tree depth may change during truncate, or insert. If we're
597 * keeping the root extent list, then make sure that our path
598 * structure reflects the proper depth.
601 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
603 path_root_access(path
) = NULL
;
605 path
->p_tree_depth
= depth
;
608 void ocfs2_free_path(struct ocfs2_path
*path
)
611 ocfs2_reinit_path(path
, 0);
617 * All the elements of src into dest. After this call, src could be freed
618 * without affecting dest.
620 * Both paths should have the same root. Any non-root elements of dest
623 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
627 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
628 BUG_ON(path_root_el(dest
) != path_root_el(src
));
629 BUG_ON(path_root_access(dest
) != path_root_access(src
));
631 ocfs2_reinit_path(dest
, 1);
633 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
634 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
635 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
637 if (dest
->p_node
[i
].bh
)
638 get_bh(dest
->p_node
[i
].bh
);
643 * Make the *dest path the same as src and re-initialize src path to
646 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
650 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
651 BUG_ON(path_root_access(dest
) != path_root_access(src
));
653 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
654 brelse(dest
->p_node
[i
].bh
);
656 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
657 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
659 src
->p_node
[i
].bh
= NULL
;
660 src
->p_node
[i
].el
= NULL
;
665 * Insert an extent block at given index.
667 * This will not take an additional reference on eb_bh.
669 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
670 struct buffer_head
*eb_bh
)
672 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
675 * Right now, no root bh is an extent block, so this helps
676 * catch code errors with dinode trees. The assertion can be
677 * safely removed if we ever need to insert extent block
678 * structures at the root.
682 path
->p_node
[index
].bh
= eb_bh
;
683 path
->p_node
[index
].el
= &eb
->h_list
;
686 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
687 struct ocfs2_extent_list
*root_el
,
688 ocfs2_journal_access_func access
)
690 struct ocfs2_path
*path
;
692 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
694 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
696 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
698 path_root_bh(path
) = root_bh
;
699 path_root_el(path
) = root_el
;
700 path_root_access(path
) = access
;
706 struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
708 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
709 path_root_access(path
));
712 struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
714 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
715 et
->et_root_journal_access
);
719 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
720 * otherwise it's the root_access function.
722 * I don't like the way this function's name looks next to
723 * ocfs2_journal_access_path(), but I don't have a better one.
725 int ocfs2_path_bh_journal_access(handle_t
*handle
,
726 struct ocfs2_caching_info
*ci
,
727 struct ocfs2_path
*path
,
730 ocfs2_journal_access_func access
= path_root_access(path
);
733 access
= ocfs2_journal_access
;
736 access
= ocfs2_journal_access_eb
;
738 return access(handle
, ci
, path
->p_node
[idx
].bh
,
739 OCFS2_JOURNAL_ACCESS_WRITE
);
743 * Convenience function to journal all components in a path.
745 int ocfs2_journal_access_path(struct ocfs2_caching_info
*ci
,
747 struct ocfs2_path
*path
)
754 for(i
= 0; i
< path_num_items(path
); i
++) {
755 ret
= ocfs2_path_bh_journal_access(handle
, ci
, path
, i
);
767 * Return the index of the extent record which contains cluster #v_cluster.
768 * -1 is returned if it was not found.
770 * Should work fine on interior and exterior nodes.
772 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
776 struct ocfs2_extent_rec
*rec
;
777 u32 rec_end
, rec_start
, clusters
;
779 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
780 rec
= &el
->l_recs
[i
];
782 rec_start
= le32_to_cpu(rec
->e_cpos
);
783 clusters
= ocfs2_rec_clusters(el
, rec
);
785 rec_end
= rec_start
+ clusters
;
787 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
797 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
798 * ocfs2_extent_rec_contig only work properly against leaf nodes!
800 static int ocfs2_block_extent_contig(struct super_block
*sb
,
801 struct ocfs2_extent_rec
*ext
,
804 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
806 blk_end
+= ocfs2_clusters_to_blocks(sb
,
807 le16_to_cpu(ext
->e_leaf_clusters
));
809 return blkno
== blk_end
;
812 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
813 struct ocfs2_extent_rec
*right
)
817 left_range
= le32_to_cpu(left
->e_cpos
) +
818 le16_to_cpu(left
->e_leaf_clusters
);
820 return (left_range
== le32_to_cpu(right
->e_cpos
));
823 static enum ocfs2_contig_type
824 ocfs2_extent_rec_contig(struct super_block
*sb
,
825 struct ocfs2_extent_rec
*ext
,
826 struct ocfs2_extent_rec
*insert_rec
)
828 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
831 * Refuse to coalesce extent records with different flag
832 * fields - we don't want to mix unwritten extents with user
835 if (ext
->e_flags
!= insert_rec
->e_flags
)
838 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
839 ocfs2_block_extent_contig(sb
, ext
, blkno
))
842 blkno
= le64_to_cpu(ext
->e_blkno
);
843 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
844 ocfs2_block_extent_contig(sb
, insert_rec
, blkno
))
851 * NOTE: We can have pretty much any combination of contiguousness and
854 * The usefulness of APPEND_TAIL is more in that it lets us know that
855 * we'll have to update the path to that leaf.
857 enum ocfs2_append_type
{
862 enum ocfs2_split_type
{
868 struct ocfs2_insert_type
{
869 enum ocfs2_split_type ins_split
;
870 enum ocfs2_append_type ins_appending
;
871 enum ocfs2_contig_type ins_contig
;
872 int ins_contig_index
;
876 struct ocfs2_merge_ctxt
{
877 enum ocfs2_contig_type c_contig_type
;
878 int c_has_empty_extent
;
879 int c_split_covers_rec
;
882 static int ocfs2_validate_extent_block(struct super_block
*sb
,
883 struct buffer_head
*bh
)
886 struct ocfs2_extent_block
*eb
=
887 (struct ocfs2_extent_block
*)bh
->b_data
;
889 trace_ocfs2_validate_extent_block((unsigned long long)bh
->b_blocknr
);
891 BUG_ON(!buffer_uptodate(bh
));
894 * If the ecc fails, we return the error but otherwise
895 * leave the filesystem running. We know any error is
896 * local to this block.
898 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
900 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
901 (unsigned long long)bh
->b_blocknr
);
906 * Errors after here are fatal.
909 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
911 "Extent block #%llu has bad signature %.*s",
912 (unsigned long long)bh
->b_blocknr
, 7,
917 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
919 "Extent block #%llu has an invalid h_blkno "
921 (unsigned long long)bh
->b_blocknr
,
922 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
926 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
) {
928 "Extent block #%llu has an invalid "
929 "h_fs_generation of #%u",
930 (unsigned long long)bh
->b_blocknr
,
931 le32_to_cpu(eb
->h_fs_generation
));
938 int ocfs2_read_extent_block(struct ocfs2_caching_info
*ci
, u64 eb_blkno
,
939 struct buffer_head
**bh
)
942 struct buffer_head
*tmp
= *bh
;
944 rc
= ocfs2_read_block(ci
, eb_blkno
, &tmp
,
945 ocfs2_validate_extent_block
);
947 /* If ocfs2_read_block() got us a new bh, pass it up. */
956 * How many free extents have we got before we need more meta data?
958 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
959 struct ocfs2_extent_tree
*et
)
962 struct ocfs2_extent_list
*el
= NULL
;
963 struct ocfs2_extent_block
*eb
;
964 struct buffer_head
*eb_bh
= NULL
;
968 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
971 retval
= ocfs2_read_extent_block(et
->et_ci
, last_eb_blk
,
977 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
981 BUG_ON(el
->l_tree_depth
!= 0);
983 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
987 trace_ocfs2_num_free_extents(retval
);
991 /* expects array to already be allocated
993 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
996 static int ocfs2_create_new_meta_bhs(handle_t
*handle
,
997 struct ocfs2_extent_tree
*et
,
999 struct ocfs2_alloc_context
*meta_ac
,
1000 struct buffer_head
*bhs
[])
1002 int count
, status
, i
;
1003 u16 suballoc_bit_start
;
1005 u64 suballoc_loc
, first_blkno
;
1006 struct ocfs2_super
*osb
=
1007 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
1008 struct ocfs2_extent_block
*eb
;
1011 while (count
< wanted
) {
1012 status
= ocfs2_claim_metadata(handle
,
1016 &suballoc_bit_start
,
1024 for(i
= count
; i
< (num_got
+ count
); i
++) {
1025 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
1026 if (bhs
[i
] == NULL
) {
1031 ocfs2_set_new_buffer_uptodate(et
->et_ci
, bhs
[i
]);
1033 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
1035 OCFS2_JOURNAL_ACCESS_CREATE
);
1041 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
1042 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
1043 /* Ok, setup the minimal stuff here. */
1044 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
1045 eb
->h_blkno
= cpu_to_le64(first_blkno
);
1046 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
1047 eb
->h_suballoc_slot
=
1048 cpu_to_le16(meta_ac
->ac_alloc_slot
);
1049 eb
->h_suballoc_loc
= cpu_to_le64(suballoc_loc
);
1050 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
1051 eb
->h_list
.l_count
=
1052 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
1054 suballoc_bit_start
++;
1057 /* We'll also be dirtied by the caller, so
1058 * this isn't absolutely necessary. */
1059 ocfs2_journal_dirty(handle
, bhs
[i
]);
1068 for(i
= 0; i
< wanted
; i
++) {
1078 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1080 * Returns the sum of the rightmost extent rec logical offset and
1083 * ocfs2_add_branch() uses this to determine what logical cluster
1084 * value should be populated into the leftmost new branch records.
1086 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1087 * value for the new topmost tree record.
1089 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
1093 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1095 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
1096 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
1100 * Change range of the branches in the right most path according to the leaf
1101 * extent block's rightmost record.
1103 static int ocfs2_adjust_rightmost_branch(handle_t
*handle
,
1104 struct ocfs2_extent_tree
*et
)
1107 struct ocfs2_path
*path
= NULL
;
1108 struct ocfs2_extent_list
*el
;
1109 struct ocfs2_extent_rec
*rec
;
1111 path
= ocfs2_new_path_from_et(et
);
1117 status
= ocfs2_find_path(et
->et_ci
, path
, UINT_MAX
);
1123 status
= ocfs2_extend_trans(handle
, path_num_items(path
));
1129 status
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
1135 el
= path_leaf_el(path
);
1136 rec
= &el
->l_recs
[le32_to_cpu(el
->l_next_free_rec
) - 1];
1138 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
1141 ocfs2_free_path(path
);
1146 * Add an entire tree branch to our inode. eb_bh is the extent block
1147 * to start at, if we don't want to start the branch at the root
1150 * last_eb_bh is required as we have to update it's next_leaf pointer
1151 * for the new last extent block.
1153 * the new branch will be 'empty' in the sense that every block will
1154 * contain a single record with cluster count == 0.
1156 static int ocfs2_add_branch(handle_t
*handle
,
1157 struct ocfs2_extent_tree
*et
,
1158 struct buffer_head
*eb_bh
,
1159 struct buffer_head
**last_eb_bh
,
1160 struct ocfs2_alloc_context
*meta_ac
)
1162 int status
, new_blocks
, i
;
1163 u64 next_blkno
, new_last_eb_blk
;
1164 struct buffer_head
*bh
;
1165 struct buffer_head
**new_eb_bhs
= NULL
;
1166 struct ocfs2_extent_block
*eb
;
1167 struct ocfs2_extent_list
*eb_el
;
1168 struct ocfs2_extent_list
*el
;
1169 u32 new_cpos
, root_end
;
1171 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
1174 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
1177 el
= et
->et_root_el
;
1179 /* we never add a branch to a leaf. */
1180 BUG_ON(!el
->l_tree_depth
);
1182 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1184 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1185 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1186 root_end
= ocfs2_sum_rightmost_rec(et
->et_root_el
);
1189 * If there is a gap before the root end and the real end
1190 * of the righmost leaf block, we need to remove the gap
1191 * between new_cpos and root_end first so that the tree
1192 * is consistent after we add a new branch(it will start
1195 if (root_end
> new_cpos
) {
1196 trace_ocfs2_adjust_rightmost_branch(
1197 (unsigned long long)
1198 ocfs2_metadata_cache_owner(et
->et_ci
),
1199 root_end
, new_cpos
);
1201 status
= ocfs2_adjust_rightmost_branch(handle
, et
);
1208 /* allocate the number of new eb blocks we need */
1209 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1217 status
= ocfs2_create_new_meta_bhs(handle
, et
, new_blocks
,
1218 meta_ac
, new_eb_bhs
);
1224 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1225 * linked with the rest of the tree.
1226 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1228 * when we leave the loop, new_last_eb_blk will point to the
1229 * newest leaf, and next_blkno will point to the topmost extent
1231 next_blkno
= new_last_eb_blk
= 0;
1232 for(i
= 0; i
< new_blocks
; i
++) {
1234 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1235 /* ocfs2_create_new_meta_bhs() should create it right! */
1236 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1237 eb_el
= &eb
->h_list
;
1239 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, bh
,
1240 OCFS2_JOURNAL_ACCESS_CREATE
);
1246 eb
->h_next_leaf_blk
= 0;
1247 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1248 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1250 * This actually counts as an empty extent as
1253 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1254 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1256 * eb_el isn't always an interior node, but even leaf
1257 * nodes want a zero'd flags and reserved field so
1258 * this gets the whole 32 bits regardless of use.
1260 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1261 if (!eb_el
->l_tree_depth
)
1262 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1264 ocfs2_journal_dirty(handle
, bh
);
1265 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1268 /* This is a bit hairy. We want to update up to three blocks
1269 * here without leaving any of them in an inconsistent state
1270 * in case of error. We don't have to worry about
1271 * journal_dirty erroring as it won't unless we've aborted the
1272 * handle (in which case we would never be here) so reserving
1273 * the write with journal_access is all we need to do. */
1274 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, *last_eb_bh
,
1275 OCFS2_JOURNAL_ACCESS_WRITE
);
1280 status
= ocfs2_et_root_journal_access(handle
, et
,
1281 OCFS2_JOURNAL_ACCESS_WRITE
);
1287 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, eb_bh
,
1288 OCFS2_JOURNAL_ACCESS_WRITE
);
1295 /* Link the new branch into the rest of the tree (el will
1296 * either be on the root_bh, or the extent block passed in. */
1297 i
= le16_to_cpu(el
->l_next_free_rec
);
1298 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1299 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1300 el
->l_recs
[i
].e_int_clusters
= 0;
1301 le16_add_cpu(&el
->l_next_free_rec
, 1);
1303 /* fe needs a new last extent block pointer, as does the
1304 * next_leaf on the previously last-extent-block. */
1305 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1307 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1308 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1310 ocfs2_journal_dirty(handle
, *last_eb_bh
);
1311 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1313 ocfs2_journal_dirty(handle
, eb_bh
);
1316 * Some callers want to track the rightmost leaf so pass it
1319 brelse(*last_eb_bh
);
1320 get_bh(new_eb_bhs
[0]);
1321 *last_eb_bh
= new_eb_bhs
[0];
1326 for (i
= 0; i
< new_blocks
; i
++)
1327 brelse(new_eb_bhs
[i
]);
1335 * adds another level to the allocation tree.
1336 * returns back the new extent block so you can add a branch to it
1339 static int ocfs2_shift_tree_depth(handle_t
*handle
,
1340 struct ocfs2_extent_tree
*et
,
1341 struct ocfs2_alloc_context
*meta_ac
,
1342 struct buffer_head
**ret_new_eb_bh
)
1346 struct buffer_head
*new_eb_bh
= NULL
;
1347 struct ocfs2_extent_block
*eb
;
1348 struct ocfs2_extent_list
*root_el
;
1349 struct ocfs2_extent_list
*eb_el
;
1351 status
= ocfs2_create_new_meta_bhs(handle
, et
, 1, meta_ac
,
1358 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1359 /* ocfs2_create_new_meta_bhs() should create it right! */
1360 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1362 eb_el
= &eb
->h_list
;
1363 root_el
= et
->et_root_el
;
1365 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, new_eb_bh
,
1366 OCFS2_JOURNAL_ACCESS_CREATE
);
1372 /* copy the root extent list data into the new extent block */
1373 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1374 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1375 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1376 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1378 ocfs2_journal_dirty(handle
, new_eb_bh
);
1380 status
= ocfs2_et_root_journal_access(handle
, et
,
1381 OCFS2_JOURNAL_ACCESS_WRITE
);
1387 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1389 /* update root_bh now */
1390 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1391 root_el
->l_recs
[0].e_cpos
= 0;
1392 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1393 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1394 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1395 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1396 root_el
->l_next_free_rec
= cpu_to_le16(1);
1398 /* If this is our 1st tree depth shift, then last_eb_blk
1399 * becomes the allocated extent block */
1400 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1401 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1403 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1405 *ret_new_eb_bh
= new_eb_bh
;
1415 * Should only be called when there is no space left in any of the
1416 * leaf nodes. What we want to do is find the lowest tree depth
1417 * non-leaf extent block with room for new records. There are three
1418 * valid results of this search:
1420 * 1) a lowest extent block is found, then we pass it back in
1421 * *lowest_eb_bh and return '0'
1423 * 2) the search fails to find anything, but the root_el has room. We
1424 * pass NULL back in *lowest_eb_bh, but still return '0'
1426 * 3) the search fails to find anything AND the root_el is full, in
1427 * which case we return > 0
1429 * return status < 0 indicates an error.
1431 static int ocfs2_find_branch_target(struct ocfs2_extent_tree
*et
,
1432 struct buffer_head
**target_bh
)
1436 struct ocfs2_extent_block
*eb
;
1437 struct ocfs2_extent_list
*el
;
1438 struct buffer_head
*bh
= NULL
;
1439 struct buffer_head
*lowest_bh
= NULL
;
1443 el
= et
->et_root_el
;
1445 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1446 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1447 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1448 "Owner %llu has empty "
1449 "extent list (next_free_rec == 0)",
1450 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
1454 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1455 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1457 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1458 "Owner %llu has extent "
1459 "list where extent # %d has no physical "
1461 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
), i
);
1469 status
= ocfs2_read_extent_block(et
->et_ci
, blkno
, &bh
);
1475 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1478 if (le16_to_cpu(el
->l_next_free_rec
) <
1479 le16_to_cpu(el
->l_count
)) {
1486 /* If we didn't find one and the fe doesn't have any room,
1487 * then return '1' */
1488 el
= et
->et_root_el
;
1489 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1492 *target_bh
= lowest_bh
;
1500 * Grow a b-tree so that it has more records.
1502 * We might shift the tree depth in which case existing paths should
1503 * be considered invalid.
1505 * Tree depth after the grow is returned via *final_depth.
1507 * *last_eb_bh will be updated by ocfs2_add_branch().
1509 static int ocfs2_grow_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
1510 int *final_depth
, struct buffer_head
**last_eb_bh
,
1511 struct ocfs2_alloc_context
*meta_ac
)
1514 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1515 int depth
= le16_to_cpu(el
->l_tree_depth
);
1516 struct buffer_head
*bh
= NULL
;
1518 BUG_ON(meta_ac
== NULL
);
1520 shift
= ocfs2_find_branch_target(et
, &bh
);
1527 /* We traveled all the way to the bottom of the allocation tree
1528 * and didn't find room for any more extents - we need to add
1529 * another tree level */
1532 trace_ocfs2_grow_tree(
1533 (unsigned long long)
1534 ocfs2_metadata_cache_owner(et
->et_ci
),
1537 /* ocfs2_shift_tree_depth will return us a buffer with
1538 * the new extent block (so we can pass that to
1539 * ocfs2_add_branch). */
1540 ret
= ocfs2_shift_tree_depth(handle
, et
, meta_ac
, &bh
);
1548 * Special case: we have room now if we shifted from
1549 * tree_depth 0, so no more work needs to be done.
1551 * We won't be calling add_branch, so pass
1552 * back *last_eb_bh as the new leaf. At depth
1553 * zero, it should always be null so there's
1554 * no reason to brelse.
1556 BUG_ON(*last_eb_bh
);
1563 /* call ocfs2_add_branch to add the final part of the tree with
1565 ret
= ocfs2_add_branch(handle
, et
, bh
, last_eb_bh
,
1574 *final_depth
= depth
;
1580 * This function will discard the rightmost extent record.
1582 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1584 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1585 int count
= le16_to_cpu(el
->l_count
);
1586 unsigned int num_bytes
;
1589 /* This will cause us to go off the end of our extent list. */
1590 BUG_ON(next_free
>= count
);
1592 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1594 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1597 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1598 struct ocfs2_extent_rec
*insert_rec
)
1600 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1601 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1602 struct ocfs2_extent_rec
*rec
;
1604 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1605 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1609 /* The tree code before us didn't allow enough room in the leaf. */
1610 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1613 * The easiest way to approach this is to just remove the
1614 * empty extent and temporarily decrement next_free.
1618 * If next_free was 1 (only an empty extent), this
1619 * loop won't execute, which is fine. We still want
1620 * the decrement above to happen.
1622 for(i
= 0; i
< (next_free
- 1); i
++)
1623 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1629 * Figure out what the new record index should be.
1631 for(i
= 0; i
< next_free
; i
++) {
1632 rec
= &el
->l_recs
[i
];
1634 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1639 trace_ocfs2_rotate_leaf(insert_cpos
, insert_index
,
1640 has_empty
, next_free
,
1641 le16_to_cpu(el
->l_count
));
1643 BUG_ON(insert_index
< 0);
1644 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1645 BUG_ON(insert_index
> next_free
);
1648 * No need to memmove if we're just adding to the tail.
1650 if (insert_index
!= next_free
) {
1651 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1653 num_bytes
= next_free
- insert_index
;
1654 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1655 memmove(&el
->l_recs
[insert_index
+ 1],
1656 &el
->l_recs
[insert_index
],
1661 * Either we had an empty extent, and need to re-increment or
1662 * there was no empty extent on a non full rightmost leaf node,
1663 * in which case we still need to increment.
1666 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1668 * Make sure none of the math above just messed up our tree.
1670 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1672 el
->l_recs
[insert_index
] = *insert_rec
;
1676 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1678 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1680 BUG_ON(num_recs
== 0);
1682 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1684 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1685 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1686 memset(&el
->l_recs
[num_recs
], 0,
1687 sizeof(struct ocfs2_extent_rec
));
1688 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1693 * Create an empty extent record .
1695 * l_next_free_rec may be updated.
1697 * If an empty extent already exists do nothing.
1699 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1701 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1703 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1708 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1711 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1712 "Asked to create an empty extent in a full list:\n"
1713 "count = %u, tree depth = %u",
1714 le16_to_cpu(el
->l_count
),
1715 le16_to_cpu(el
->l_tree_depth
));
1717 ocfs2_shift_records_right(el
);
1720 le16_add_cpu(&el
->l_next_free_rec
, 1);
1721 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1725 * For a rotation which involves two leaf nodes, the "root node" is
1726 * the lowest level tree node which contains a path to both leafs. This
1727 * resulting set of information can be used to form a complete "subtree"
1729 * This function is passed two full paths from the dinode down to a
1730 * pair of adjacent leaves. It's task is to figure out which path
1731 * index contains the subtree root - this can be the root index itself
1732 * in a worst-case rotation.
1734 * The array index of the subtree root is passed back.
1736 int ocfs2_find_subtree_root(struct ocfs2_extent_tree
*et
,
1737 struct ocfs2_path
*left
,
1738 struct ocfs2_path
*right
)
1743 * Check that the caller passed in two paths from the same tree.
1745 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1751 * The caller didn't pass two adjacent paths.
1753 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1754 "Owner %llu, left depth %u, right depth %u\n"
1755 "left leaf blk %llu, right leaf blk %llu\n",
1756 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
1757 left
->p_tree_depth
, right
->p_tree_depth
,
1758 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1759 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1760 } while (left
->p_node
[i
].bh
->b_blocknr
==
1761 right
->p_node
[i
].bh
->b_blocknr
);
1766 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1769 * Traverse a btree path in search of cpos, starting at root_el.
1771 * This code can be called with a cpos larger than the tree, in which
1772 * case it will return the rightmost path.
1774 static int __ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1775 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1776 path_insert_t
*func
, void *data
)
1781 struct buffer_head
*bh
= NULL
;
1782 struct ocfs2_extent_block
*eb
;
1783 struct ocfs2_extent_list
*el
;
1784 struct ocfs2_extent_rec
*rec
;
1787 while (el
->l_tree_depth
) {
1788 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1789 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1790 "Owner %llu has empty extent list at "
1792 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1793 le16_to_cpu(el
->l_tree_depth
));
1799 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1800 rec
= &el
->l_recs
[i
];
1803 * In the case that cpos is off the allocation
1804 * tree, this should just wind up returning the
1807 range
= le32_to_cpu(rec
->e_cpos
) +
1808 ocfs2_rec_clusters(el
, rec
);
1809 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1813 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1815 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1816 "Owner %llu has bad blkno in extent list "
1817 "at depth %u (index %d)\n",
1818 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1819 le16_to_cpu(el
->l_tree_depth
), i
);
1826 ret
= ocfs2_read_extent_block(ci
, blkno
, &bh
);
1832 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1835 if (le16_to_cpu(el
->l_next_free_rec
) >
1836 le16_to_cpu(el
->l_count
)) {
1837 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1838 "Owner %llu has bad count in extent list "
1839 "at block %llu (next free=%u, count=%u)\n",
1840 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1841 (unsigned long long)bh
->b_blocknr
,
1842 le16_to_cpu(el
->l_next_free_rec
),
1843 le16_to_cpu(el
->l_count
));
1854 * Catch any trailing bh that the loop didn't handle.
1862 * Given an initialized path (that is, it has a valid root extent
1863 * list), this function will traverse the btree in search of the path
1864 * which would contain cpos.
1866 * The path traveled is recorded in the path structure.
1868 * Note that this will not do any comparisons on leaf node extent
1869 * records, so it will work fine in the case that we just added a tree
1872 struct find_path_data
{
1874 struct ocfs2_path
*path
;
1876 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1878 struct find_path_data
*fp
= data
;
1881 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1884 int ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1885 struct ocfs2_path
*path
, u32 cpos
)
1887 struct find_path_data data
;
1891 return __ocfs2_find_path(ci
, path_root_el(path
), cpos
,
1892 find_path_ins
, &data
);
1895 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1897 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1898 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1899 struct buffer_head
**ret
= data
;
1901 /* We want to retain only the leaf block. */
1902 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1908 * Find the leaf block in the tree which would contain cpos. No
1909 * checking of the actual leaf is done.
1911 * Some paths want to call this instead of allocating a path structure
1912 * and calling ocfs2_find_path().
1914 * This function doesn't handle non btree extent lists.
1916 int ocfs2_find_leaf(struct ocfs2_caching_info
*ci
,
1917 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1918 struct buffer_head
**leaf_bh
)
1921 struct buffer_head
*bh
= NULL
;
1923 ret
= __ocfs2_find_path(ci
, root_el
, cpos
, find_leaf_ins
, &bh
);
1935 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1937 * Basically, we've moved stuff around at the bottom of the tree and
1938 * we need to fix up the extent records above the changes to reflect
1941 * left_rec: the record on the left.
1942 * left_child_el: is the child list pointed to by left_rec
1943 * right_rec: the record to the right of left_rec
1944 * right_child_el: is the child list pointed to by right_rec
1946 * By definition, this only works on interior nodes.
1948 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1949 struct ocfs2_extent_list
*left_child_el
,
1950 struct ocfs2_extent_rec
*right_rec
,
1951 struct ocfs2_extent_list
*right_child_el
)
1953 u32 left_clusters
, right_end
;
1956 * Interior nodes never have holes. Their cpos is the cpos of
1957 * the leftmost record in their child list. Their cluster
1958 * count covers the full theoretical range of their child list
1959 * - the range between their cpos and the cpos of the record
1960 * immediately to their right.
1962 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1963 if (!ocfs2_rec_clusters(right_child_el
, &right_child_el
->l_recs
[0])) {
1964 BUG_ON(right_child_el
->l_tree_depth
);
1965 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1966 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1968 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1969 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1972 * Calculate the rightmost cluster count boundary before
1973 * moving cpos - we will need to adjust clusters after
1974 * updating e_cpos to keep the same highest cluster count.
1976 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1977 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1979 right_rec
->e_cpos
= left_rec
->e_cpos
;
1980 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1982 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1983 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1987 * Adjust the adjacent root node records involved in a
1988 * rotation. left_el_blkno is passed in as a key so that we can easily
1989 * find it's index in the root list.
1991 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1992 struct ocfs2_extent_list
*left_el
,
1993 struct ocfs2_extent_list
*right_el
,
1998 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1999 le16_to_cpu(left_el
->l_tree_depth
));
2001 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
2002 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
2007 * The path walking code should have never returned a root and
2008 * two paths which are not adjacent.
2010 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
2012 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
2013 &root_el
->l_recs
[i
+ 1], right_el
);
2017 * We've changed a leaf block (in right_path) and need to reflect that
2018 * change back up the subtree.
2020 * This happens in multiple places:
2021 * - When we've moved an extent record from the left path leaf to the right
2022 * path leaf to make room for an empty extent in the left path leaf.
2023 * - When our insert into the right path leaf is at the leftmost edge
2024 * and requires an update of the path immediately to it's left. This
2025 * can occur at the end of some types of rotation and appending inserts.
2026 * - When we've adjusted the last extent record in the left path leaf and the
2027 * 1st extent record in the right path leaf during cross extent block merge.
2029 static void ocfs2_complete_edge_insert(handle_t
*handle
,
2030 struct ocfs2_path
*left_path
,
2031 struct ocfs2_path
*right_path
,
2035 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
2036 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
2037 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2040 * Update the counts and position values within all the
2041 * interior nodes to reflect the leaf rotation we just did.
2043 * The root node is handled below the loop.
2045 * We begin the loop with right_el and left_el pointing to the
2046 * leaf lists and work our way up.
2048 * NOTE: within this loop, left_el and right_el always refer
2049 * to the *child* lists.
2051 left_el
= path_leaf_el(left_path
);
2052 right_el
= path_leaf_el(right_path
);
2053 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
2054 trace_ocfs2_complete_edge_insert(i
);
2057 * One nice property of knowing that all of these
2058 * nodes are below the root is that we only deal with
2059 * the leftmost right node record and the rightmost
2062 el
= left_path
->p_node
[i
].el
;
2063 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2064 left_rec
= &el
->l_recs
[idx
];
2066 el
= right_path
->p_node
[i
].el
;
2067 right_rec
= &el
->l_recs
[0];
2069 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
2072 ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
2073 ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
2076 * Setup our list pointers now so that the current
2077 * parents become children in the next iteration.
2079 left_el
= left_path
->p_node
[i
].el
;
2080 right_el
= right_path
->p_node
[i
].el
;
2084 * At the root node, adjust the two adjacent records which
2085 * begin our path to the leaves.
2088 el
= left_path
->p_node
[subtree_index
].el
;
2089 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
2090 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
2092 ocfs2_adjust_root_records(el
, left_el
, right_el
,
2093 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
2095 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2097 ocfs2_journal_dirty(handle
, root_bh
);
2100 static int ocfs2_rotate_subtree_right(handle_t
*handle
,
2101 struct ocfs2_extent_tree
*et
,
2102 struct ocfs2_path
*left_path
,
2103 struct ocfs2_path
*right_path
,
2107 struct buffer_head
*right_leaf_bh
;
2108 struct buffer_head
*left_leaf_bh
= NULL
;
2109 struct buffer_head
*root_bh
;
2110 struct ocfs2_extent_list
*right_el
, *left_el
;
2111 struct ocfs2_extent_rec move_rec
;
2113 left_leaf_bh
= path_leaf_bh(left_path
);
2114 left_el
= path_leaf_el(left_path
);
2116 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
2117 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
2118 "Inode %llu has non-full interior leaf node %llu"
2120 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2121 (unsigned long long)left_leaf_bh
->b_blocknr
,
2122 le16_to_cpu(left_el
->l_next_free_rec
));
2127 * This extent block may already have an empty record, so we
2128 * return early if so.
2130 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
2133 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2134 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2136 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2143 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2144 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2151 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2159 right_leaf_bh
= path_leaf_bh(right_path
);
2160 right_el
= path_leaf_el(right_path
);
2162 /* This is a code error, not a disk corruption. */
2163 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
2164 "because rightmost leaf block %llu is empty\n",
2165 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2166 (unsigned long long)right_leaf_bh
->b_blocknr
);
2168 ocfs2_create_empty_extent(right_el
);
2170 ocfs2_journal_dirty(handle
, right_leaf_bh
);
2172 /* Do the copy now. */
2173 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2174 move_rec
= left_el
->l_recs
[i
];
2175 right_el
->l_recs
[0] = move_rec
;
2178 * Clear out the record we just copied and shift everything
2179 * over, leaving an empty extent in the left leaf.
2181 * We temporarily subtract from next_free_rec so that the
2182 * shift will lose the tail record (which is now defunct).
2184 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2185 ocfs2_shift_records_right(left_el
);
2186 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2187 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2189 ocfs2_journal_dirty(handle
, left_leaf_bh
);
2191 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2199 * Given a full path, determine what cpos value would return us a path
2200 * containing the leaf immediately to the left of the current one.
2202 * Will return zero if the path passed in is already the leftmost path.
2204 int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2205 struct ocfs2_path
*path
, u32
*cpos
)
2209 struct ocfs2_extent_list
*el
;
2211 BUG_ON(path
->p_tree_depth
== 0);
2215 blkno
= path_leaf_bh(path
)->b_blocknr
;
2217 /* Start at the tree node just above the leaf and work our way up. */
2218 i
= path
->p_tree_depth
- 1;
2220 el
= path
->p_node
[i
].el
;
2223 * Find the extent record just before the one in our
2226 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2227 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2231 * We've determined that the
2232 * path specified is already
2233 * the leftmost one - return a
2239 * The leftmost record points to our
2240 * leaf - we need to travel up the
2246 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2247 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2248 &el
->l_recs
[j
- 1]);
2255 * If we got here, we never found a valid node where
2256 * the tree indicated one should be.
2259 "Invalid extent tree at extent block %llu\n",
2260 (unsigned long long)blkno
);
2265 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2274 * Extend the transaction by enough credits to complete the rotation,
2275 * and still leave at least the original number of credits allocated
2276 * to this transaction.
2278 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2280 struct ocfs2_path
*path
)
2283 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2285 if (handle
->h_buffer_credits
< credits
)
2286 ret
= ocfs2_extend_trans(handle
,
2287 credits
- handle
->h_buffer_credits
);
2293 * Trap the case where we're inserting into the theoretical range past
2294 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2295 * whose cpos is less than ours into the right leaf.
2297 * It's only necessary to look at the rightmost record of the left
2298 * leaf because the logic that calls us should ensure that the
2299 * theoretical ranges in the path components above the leaves are
2302 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2305 struct ocfs2_extent_list
*left_el
;
2306 struct ocfs2_extent_rec
*rec
;
2309 left_el
= path_leaf_el(left_path
);
2310 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2311 rec
= &left_el
->l_recs
[next_free
- 1];
2313 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2318 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2320 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2322 struct ocfs2_extent_rec
*rec
;
2327 rec
= &el
->l_recs
[0];
2328 if (ocfs2_is_empty_extent(rec
)) {
2332 rec
= &el
->l_recs
[1];
2335 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2336 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2342 * Rotate all the records in a btree right one record, starting at insert_cpos.
2344 * The path to the rightmost leaf should be passed in.
2346 * The array is assumed to be large enough to hold an entire path (tree depth).
2348 * Upon successful return from this function:
2350 * - The 'right_path' array will contain a path to the leaf block
2351 * whose range contains e_cpos.
2352 * - That leaf block will have a single empty extent in list index 0.
2353 * - In the case that the rotation requires a post-insert update,
2354 * *ret_left_path will contain a valid path which can be passed to
2355 * ocfs2_insert_path().
2357 static int ocfs2_rotate_tree_right(handle_t
*handle
,
2358 struct ocfs2_extent_tree
*et
,
2359 enum ocfs2_split_type split
,
2361 struct ocfs2_path
*right_path
,
2362 struct ocfs2_path
**ret_left_path
)
2364 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
2366 struct ocfs2_path
*left_path
= NULL
;
2367 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2369 *ret_left_path
= NULL
;
2371 left_path
= ocfs2_new_path_from_path(right_path
);
2378 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2384 trace_ocfs2_rotate_tree_right(
2385 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2389 * What we want to do here is:
2391 * 1) Start with the rightmost path.
2393 * 2) Determine a path to the leaf block directly to the left
2396 * 3) Determine the 'subtree root' - the lowest level tree node
2397 * which contains a path to both leaves.
2399 * 4) Rotate the subtree.
2401 * 5) Find the next subtree by considering the left path to be
2402 * the new right path.
2404 * The check at the top of this while loop also accepts
2405 * insert_cpos == cpos because cpos is only a _theoretical_
2406 * value to get us the left path - insert_cpos might very well
2407 * be filling that hole.
2409 * Stop at a cpos of '0' because we either started at the
2410 * leftmost branch (i.e., a tree with one branch and a
2411 * rotation inside of it), or we've gone as far as we can in
2412 * rotating subtrees.
2414 while (cpos
&& insert_cpos
<= cpos
) {
2415 trace_ocfs2_rotate_tree_right(
2416 (unsigned long long)
2417 ocfs2_metadata_cache_owner(et
->et_ci
),
2420 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
2426 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2427 path_leaf_bh(right_path
),
2428 "Owner %llu: error during insert of %u "
2429 "(left path cpos %u) results in two identical "
2430 "paths ending at %llu\n",
2431 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2433 (unsigned long long)
2434 path_leaf_bh(left_path
)->b_blocknr
);
2436 if (split
== SPLIT_NONE
&&
2437 ocfs2_rotate_requires_path_adjustment(left_path
,
2441 * We've rotated the tree as much as we
2442 * should. The rest is up to
2443 * ocfs2_insert_path() to complete, after the
2444 * record insertion. We indicate this
2445 * situation by returning the left path.
2447 * The reason we don't adjust the records here
2448 * before the record insert is that an error
2449 * later might break the rule where a parent
2450 * record e_cpos will reflect the actual
2451 * e_cpos of the 1st nonempty record of the
2454 *ret_left_path
= left_path
;
2458 start
= ocfs2_find_subtree_root(et
, left_path
, right_path
);
2460 trace_ocfs2_rotate_subtree(start
,
2461 (unsigned long long)
2462 right_path
->p_node
[start
].bh
->b_blocknr
,
2463 right_path
->p_tree_depth
);
2465 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2466 orig_credits
, right_path
);
2472 ret
= ocfs2_rotate_subtree_right(handle
, et
, left_path
,
2479 if (split
!= SPLIT_NONE
&&
2480 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2483 * A rotate moves the rightmost left leaf
2484 * record over to the leftmost right leaf
2485 * slot. If we're doing an extent split
2486 * instead of a real insert, then we have to
2487 * check that the extent to be split wasn't
2488 * just moved over. If it was, then we can
2489 * exit here, passing left_path back -
2490 * ocfs2_split_extent() is smart enough to
2491 * search both leaves.
2493 *ret_left_path
= left_path
;
2498 * There is no need to re-read the next right path
2499 * as we know that it'll be our current left
2500 * path. Optimize by copying values instead.
2502 ocfs2_mv_path(right_path
, left_path
);
2504 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2512 ocfs2_free_path(left_path
);
2518 static int ocfs2_update_edge_lengths(handle_t
*handle
,
2519 struct ocfs2_extent_tree
*et
,
2520 int subtree_index
, struct ocfs2_path
*path
)
2523 struct ocfs2_extent_rec
*rec
;
2524 struct ocfs2_extent_list
*el
;
2525 struct ocfs2_extent_block
*eb
;
2529 * In normal tree rotation process, we will never touch the
2530 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2531 * doesn't reserve the credits for them either.
2533 * But we do have a special case here which will update the rightmost
2534 * records for all the bh in the path.
2535 * So we have to allocate extra credits and access them.
2537 ret
= ocfs2_extend_trans(handle
, subtree_index
);
2543 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
2549 /* Path should always be rightmost. */
2550 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2551 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2554 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2555 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2556 rec
= &el
->l_recs
[idx
];
2557 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2559 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2560 el
= path
->p_node
[i
].el
;
2561 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2562 rec
= &el
->l_recs
[idx
];
2564 rec
->e_int_clusters
= cpu_to_le32(range
);
2565 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2567 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2573 static void ocfs2_unlink_path(handle_t
*handle
,
2574 struct ocfs2_extent_tree
*et
,
2575 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2576 struct ocfs2_path
*path
, int unlink_start
)
2579 struct ocfs2_extent_block
*eb
;
2580 struct ocfs2_extent_list
*el
;
2581 struct buffer_head
*bh
;
2583 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2584 bh
= path
->p_node
[i
].bh
;
2586 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2588 * Not all nodes might have had their final count
2589 * decremented by the caller - handle this here.
2592 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2594 "Inode %llu, attempted to remove extent block "
2595 "%llu with %u records\n",
2596 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2597 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2598 le16_to_cpu(el
->l_next_free_rec
));
2600 ocfs2_journal_dirty(handle
, bh
);
2601 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2605 el
->l_next_free_rec
= 0;
2606 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2608 ocfs2_journal_dirty(handle
, bh
);
2610 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2614 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2618 static void ocfs2_unlink_subtree(handle_t
*handle
,
2619 struct ocfs2_extent_tree
*et
,
2620 struct ocfs2_path
*left_path
,
2621 struct ocfs2_path
*right_path
,
2623 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2626 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2627 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2628 struct ocfs2_extent_list
*el
;
2629 struct ocfs2_extent_block
*eb
;
2631 el
= path_leaf_el(left_path
);
2633 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2635 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2636 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2639 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2641 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2642 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2644 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2645 eb
->h_next_leaf_blk
= 0;
2647 ocfs2_journal_dirty(handle
, root_bh
);
2648 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2650 ocfs2_unlink_path(handle
, et
, dealloc
, right_path
,
2654 static int ocfs2_rotate_subtree_left(handle_t
*handle
,
2655 struct ocfs2_extent_tree
*et
,
2656 struct ocfs2_path
*left_path
,
2657 struct ocfs2_path
*right_path
,
2659 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2662 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2663 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2664 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2665 struct ocfs2_extent_block
*eb
;
2669 right_leaf_el
= path_leaf_el(right_path
);
2670 left_leaf_el
= path_leaf_el(left_path
);
2671 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2672 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2674 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2677 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2678 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2680 * It's legal for us to proceed if the right leaf is
2681 * the rightmost one and it has an empty extent. There
2682 * are two cases to handle - whether the leaf will be
2683 * empty after removal or not. If the leaf isn't empty
2684 * then just remove the empty extent up front. The
2685 * next block will handle empty leaves by flagging
2688 * Non rightmost leaves will throw -EAGAIN and the
2689 * caller can manually move the subtree and retry.
2692 if (eb
->h_next_leaf_blk
!= 0ULL)
2695 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2696 ret
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
2697 path_leaf_bh(right_path
),
2698 OCFS2_JOURNAL_ACCESS_WRITE
);
2704 ocfs2_remove_empty_extent(right_leaf_el
);
2706 right_has_empty
= 1;
2709 if (eb
->h_next_leaf_blk
== 0ULL &&
2710 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2712 * We have to update i_last_eb_blk during the meta
2715 ret
= ocfs2_et_root_journal_access(handle
, et
,
2716 OCFS2_JOURNAL_ACCESS_WRITE
);
2722 del_right_subtree
= 1;
2726 * Getting here with an empty extent in the right path implies
2727 * that it's the rightmost path and will be deleted.
2729 BUG_ON(right_has_empty
&& !del_right_subtree
);
2731 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2738 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2739 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2746 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2754 if (!right_has_empty
) {
2756 * Only do this if we're moving a real
2757 * record. Otherwise, the action is delayed until
2758 * after removal of the right path in which case we
2759 * can do a simple shift to remove the empty extent.
2761 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2762 memset(&right_leaf_el
->l_recs
[0], 0,
2763 sizeof(struct ocfs2_extent_rec
));
2765 if (eb
->h_next_leaf_blk
== 0ULL) {
2767 * Move recs over to get rid of empty extent, decrease
2768 * next_free. This is allowed to remove the last
2769 * extent in our leaf (setting l_next_free_rec to
2770 * zero) - the delete code below won't care.
2772 ocfs2_remove_empty_extent(right_leaf_el
);
2775 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2776 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2778 if (del_right_subtree
) {
2779 ocfs2_unlink_subtree(handle
, et
, left_path
, right_path
,
2780 subtree_index
, dealloc
);
2781 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
2788 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2789 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2792 * Removal of the extent in the left leaf was skipped
2793 * above so we could delete the right path
2796 if (right_has_empty
)
2797 ocfs2_remove_empty_extent(left_leaf_el
);
2799 ocfs2_journal_dirty(handle
, et_root_bh
);
2803 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2811 * Given a full path, determine what cpos value would return us a path
2812 * containing the leaf immediately to the right of the current one.
2814 * Will return zero if the path passed in is already the rightmost path.
2816 * This looks similar, but is subtly different to
2817 * ocfs2_find_cpos_for_left_leaf().
2819 int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2820 struct ocfs2_path
*path
, u32
*cpos
)
2824 struct ocfs2_extent_list
*el
;
2828 if (path
->p_tree_depth
== 0)
2831 blkno
= path_leaf_bh(path
)->b_blocknr
;
2833 /* Start at the tree node just above the leaf and work our way up. */
2834 i
= path
->p_tree_depth
- 1;
2838 el
= path
->p_node
[i
].el
;
2841 * Find the extent record just after the one in our
2844 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2845 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2846 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2847 if (j
== (next_free
- 1)) {
2850 * We've determined that the
2851 * path specified is already
2852 * the rightmost one - return a
2858 * The rightmost record points to our
2859 * leaf - we need to travel up the
2865 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2871 * If we got here, we never found a valid node where
2872 * the tree indicated one should be.
2875 "Invalid extent tree at extent block %llu\n",
2876 (unsigned long long)blkno
);
2881 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2889 static int ocfs2_rotate_rightmost_leaf_left(handle_t
*handle
,
2890 struct ocfs2_extent_tree
*et
,
2891 struct ocfs2_path
*path
)
2894 struct buffer_head
*bh
= path_leaf_bh(path
);
2895 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2897 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2900 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
2901 path_num_items(path
) - 1);
2907 ocfs2_remove_empty_extent(el
);
2908 ocfs2_journal_dirty(handle
, bh
);
2914 static int __ocfs2_rotate_tree_left(handle_t
*handle
,
2915 struct ocfs2_extent_tree
*et
,
2917 struct ocfs2_path
*path
,
2918 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2919 struct ocfs2_path
**empty_extent_path
)
2921 int ret
, subtree_root
, deleted
;
2923 struct ocfs2_path
*left_path
= NULL
;
2924 struct ocfs2_path
*right_path
= NULL
;
2925 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2927 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2929 *empty_extent_path
= NULL
;
2931 ret
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
2937 left_path
= ocfs2_new_path_from_path(path
);
2944 ocfs2_cp_path(left_path
, path
);
2946 right_path
= ocfs2_new_path_from_path(path
);
2953 while (right_cpos
) {
2954 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
2960 subtree_root
= ocfs2_find_subtree_root(et
, left_path
,
2963 trace_ocfs2_rotate_subtree(subtree_root
,
2964 (unsigned long long)
2965 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2966 right_path
->p_tree_depth
);
2968 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2969 orig_credits
, left_path
);
2976 * Caller might still want to make changes to the
2977 * tree root, so re-add it to the journal here.
2979 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2986 ret
= ocfs2_rotate_subtree_left(handle
, et
, left_path
,
2987 right_path
, subtree_root
,
2989 if (ret
== -EAGAIN
) {
2991 * The rotation has to temporarily stop due to
2992 * the right subtree having an empty
2993 * extent. Pass it back to the caller for a
2996 *empty_extent_path
= right_path
;
3006 * The subtree rotate might have removed records on
3007 * the rightmost edge. If so, then rotation is
3013 ocfs2_mv_path(left_path
, right_path
);
3015 ret
= ocfs2_find_cpos_for_right_leaf(sb
, left_path
,
3024 ocfs2_free_path(right_path
);
3025 ocfs2_free_path(left_path
);
3030 static int ocfs2_remove_rightmost_path(handle_t
*handle
,
3031 struct ocfs2_extent_tree
*et
,
3032 struct ocfs2_path
*path
,
3033 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3035 int ret
, subtree_index
;
3037 struct ocfs2_path
*left_path
= NULL
;
3038 struct ocfs2_extent_block
*eb
;
3039 struct ocfs2_extent_list
*el
;
3042 ret
= ocfs2_et_sanity_check(et
);
3046 * There's two ways we handle this depending on
3047 * whether path is the only existing one.
3049 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3050 handle
->h_buffer_credits
,
3057 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
3063 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3072 * We have a path to the left of this one - it needs
3075 left_path
= ocfs2_new_path_from_path(path
);
3082 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
3088 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
3094 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
3096 ocfs2_unlink_subtree(handle
, et
, left_path
, path
,
3097 subtree_index
, dealloc
);
3098 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
3105 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
3106 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
3109 * 'path' is also the leftmost path which
3110 * means it must be the only one. This gets
3111 * handled differently because we want to
3112 * revert the root back to having extents
3115 ocfs2_unlink_path(handle
, et
, dealloc
, path
, 1);
3117 el
= et
->et_root_el
;
3118 el
->l_tree_depth
= 0;
3119 el
->l_next_free_rec
= 0;
3120 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3122 ocfs2_et_set_last_eb_blk(et
, 0);
3125 ocfs2_journal_dirty(handle
, path_root_bh(path
));
3128 ocfs2_free_path(left_path
);
3133 * Left rotation of btree records.
3135 * In many ways, this is (unsurprisingly) the opposite of right
3136 * rotation. We start at some non-rightmost path containing an empty
3137 * extent in the leaf block. The code works its way to the rightmost
3138 * path by rotating records to the left in every subtree.
3140 * This is used by any code which reduces the number of extent records
3141 * in a leaf. After removal, an empty record should be placed in the
3142 * leftmost list position.
3144 * This won't handle a length update of the rightmost path records if
3145 * the rightmost tree leaf record is removed so the caller is
3146 * responsible for detecting and correcting that.
3148 static int ocfs2_rotate_tree_left(handle_t
*handle
,
3149 struct ocfs2_extent_tree
*et
,
3150 struct ocfs2_path
*path
,
3151 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3153 int ret
, orig_credits
= handle
->h_buffer_credits
;
3154 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
3155 struct ocfs2_extent_block
*eb
;
3156 struct ocfs2_extent_list
*el
;
3158 el
= path_leaf_el(path
);
3159 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
3162 if (path
->p_tree_depth
== 0) {
3163 rightmost_no_delete
:
3165 * Inline extents. This is trivially handled, so do
3168 ret
= ocfs2_rotate_rightmost_leaf_left(handle
, et
, path
);
3175 * Handle rightmost branch now. There's several cases:
3176 * 1) simple rotation leaving records in there. That's trivial.
3177 * 2) rotation requiring a branch delete - there's no more
3178 * records left. Two cases of this:
3179 * a) There are branches to the left.
3180 * b) This is also the leftmost (the only) branch.
3182 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3183 * 2a) we need the left branch so that we can update it with the unlink
3184 * 2b) we need to bring the root back to inline extents.
3187 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
3189 if (eb
->h_next_leaf_blk
== 0) {
3191 * This gets a bit tricky if we're going to delete the
3192 * rightmost path. Get the other cases out of the way
3195 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3196 goto rightmost_no_delete
;
3198 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3200 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3201 "Owner %llu has empty extent block at %llu",
3202 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
3203 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3208 * XXX: The caller can not trust "path" any more after
3209 * this as it will have been deleted. What do we do?
3211 * In theory the rotate-for-merge code will never get
3212 * here because it'll always ask for a rotate in a
3216 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
,
3224 * Now we can loop, remembering the path we get from -EAGAIN
3225 * and restarting from there.
3228 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
, path
,
3229 dealloc
, &restart_path
);
3230 if (ret
&& ret
!= -EAGAIN
) {
3235 while (ret
== -EAGAIN
) {
3236 tmp_path
= restart_path
;
3237 restart_path
= NULL
;
3239 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
,
3242 if (ret
&& ret
!= -EAGAIN
) {
3247 ocfs2_free_path(tmp_path
);
3255 ocfs2_free_path(tmp_path
);
3256 ocfs2_free_path(restart_path
);
3260 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3263 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3266 if (rec
->e_leaf_clusters
== 0) {
3268 * We consumed all of the merged-from record. An empty
3269 * extent cannot exist anywhere but the 1st array
3270 * position, so move things over if the merged-from
3271 * record doesn't occupy that position.
3273 * This creates a new empty extent so the caller
3274 * should be smart enough to have removed any existing
3278 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3279 size
= index
* sizeof(struct ocfs2_extent_rec
);
3280 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3284 * Always memset - the caller doesn't check whether it
3285 * created an empty extent, so there could be junk in
3288 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3292 static int ocfs2_get_right_path(struct ocfs2_extent_tree
*et
,
3293 struct ocfs2_path
*left_path
,
3294 struct ocfs2_path
**ret_right_path
)
3298 struct ocfs2_path
*right_path
= NULL
;
3299 struct ocfs2_extent_list
*left_el
;
3301 *ret_right_path
= NULL
;
3303 /* This function shouldn't be called for non-trees. */
3304 BUG_ON(left_path
->p_tree_depth
== 0);
3306 left_el
= path_leaf_el(left_path
);
3307 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3309 ret
= ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3310 left_path
, &right_cpos
);
3316 /* This function shouldn't be called for the rightmost leaf. */
3317 BUG_ON(right_cpos
== 0);
3319 right_path
= ocfs2_new_path_from_path(left_path
);
3326 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
3332 *ret_right_path
= right_path
;
3335 ocfs2_free_path(right_path
);
3340 * Remove split_rec clusters from the record at index and merge them
3341 * onto the beginning of the record "next" to it.
3342 * For index < l_count - 1, the next means the extent rec at index + 1.
3343 * For index == l_count - 1, the "next" means the 1st extent rec of the
3344 * next extent block.
3346 static int ocfs2_merge_rec_right(struct ocfs2_path
*left_path
,
3348 struct ocfs2_extent_tree
*et
,
3349 struct ocfs2_extent_rec
*split_rec
,
3352 int ret
, next_free
, i
;
3353 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3354 struct ocfs2_extent_rec
*left_rec
;
3355 struct ocfs2_extent_rec
*right_rec
;
3356 struct ocfs2_extent_list
*right_el
;
3357 struct ocfs2_path
*right_path
= NULL
;
3358 int subtree_index
= 0;
3359 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3360 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3361 struct buffer_head
*root_bh
= NULL
;
3363 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3364 left_rec
= &el
->l_recs
[index
];
3366 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3367 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3368 /* we meet with a cross extent block merge. */
3369 ret
= ocfs2_get_right_path(et
, left_path
, &right_path
);
3375 right_el
= path_leaf_el(right_path
);
3376 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3377 BUG_ON(next_free
<= 0);
3378 right_rec
= &right_el
->l_recs
[0];
3379 if (ocfs2_is_empty_extent(right_rec
)) {
3380 BUG_ON(next_free
<= 1);
3381 right_rec
= &right_el
->l_recs
[1];
3384 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3385 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3386 le32_to_cpu(right_rec
->e_cpos
));
3388 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3391 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3392 handle
->h_buffer_credits
,
3399 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3400 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3402 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3409 for (i
= subtree_index
+ 1;
3410 i
< path_num_items(right_path
); i
++) {
3411 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3418 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3427 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3428 right_rec
= &el
->l_recs
[index
+ 1];
3431 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, left_path
,
3432 path_num_items(left_path
) - 1);
3438 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3440 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3441 le64_add_cpu(&right_rec
->e_blkno
,
3442 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3444 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3446 ocfs2_cleanup_merge(el
, index
);
3448 ocfs2_journal_dirty(handle
, bh
);
3450 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3451 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
3456 ocfs2_free_path(right_path
);
3460 static int ocfs2_get_left_path(struct ocfs2_extent_tree
*et
,
3461 struct ocfs2_path
*right_path
,
3462 struct ocfs2_path
**ret_left_path
)
3466 struct ocfs2_path
*left_path
= NULL
;
3468 *ret_left_path
= NULL
;
3470 /* This function shouldn't be called for non-trees. */
3471 BUG_ON(right_path
->p_tree_depth
== 0);
3473 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3474 right_path
, &left_cpos
);
3480 /* This function shouldn't be called for the leftmost leaf. */
3481 BUG_ON(left_cpos
== 0);
3483 left_path
= ocfs2_new_path_from_path(right_path
);
3490 ret
= ocfs2_find_path(et
->et_ci
, left_path
, left_cpos
);
3496 *ret_left_path
= left_path
;
3499 ocfs2_free_path(left_path
);
3504 * Remove split_rec clusters from the record at index and merge them
3505 * onto the tail of the record "before" it.
3506 * For index > 0, the "before" means the extent rec at index - 1.
3508 * For index == 0, the "before" means the last record of the previous
3509 * extent block. And there is also a situation that we may need to
3510 * remove the rightmost leaf extent block in the right_path and change
3511 * the right path to indicate the new rightmost path.
3513 static int ocfs2_merge_rec_left(struct ocfs2_path
*right_path
,
3515 struct ocfs2_extent_tree
*et
,
3516 struct ocfs2_extent_rec
*split_rec
,
3517 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3520 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3521 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3522 struct ocfs2_extent_rec
*left_rec
;
3523 struct ocfs2_extent_rec
*right_rec
;
3524 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3525 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3526 struct buffer_head
*root_bh
= NULL
;
3527 struct ocfs2_path
*left_path
= NULL
;
3528 struct ocfs2_extent_list
*left_el
;
3532 right_rec
= &el
->l_recs
[index
];
3534 /* we meet with a cross extent block merge. */
3535 ret
= ocfs2_get_left_path(et
, right_path
, &left_path
);
3541 left_el
= path_leaf_el(left_path
);
3542 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3543 le16_to_cpu(left_el
->l_count
));
3545 left_rec
= &left_el
->l_recs
[
3546 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3547 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3548 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3549 le32_to_cpu(split_rec
->e_cpos
));
3551 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3554 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3555 handle
->h_buffer_credits
,
3562 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3563 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3565 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3572 for (i
= subtree_index
+ 1;
3573 i
< path_num_items(right_path
); i
++) {
3574 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3581 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3589 left_rec
= &el
->l_recs
[index
- 1];
3590 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3591 has_empty_extent
= 1;
3594 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3595 path_num_items(right_path
) - 1);
3601 if (has_empty_extent
&& index
== 1) {
3603 * The easy case - we can just plop the record right in.
3605 *left_rec
= *split_rec
;
3607 has_empty_extent
= 0;
3609 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3611 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3612 le64_add_cpu(&right_rec
->e_blkno
,
3613 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3615 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3617 ocfs2_cleanup_merge(el
, index
);
3619 ocfs2_journal_dirty(handle
, bh
);
3621 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3624 * In the situation that the right_rec is empty and the extent
3625 * block is empty also, ocfs2_complete_edge_insert can't handle
3626 * it and we need to delete the right extent block.
3628 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3629 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3631 ret
= ocfs2_remove_rightmost_path(handle
, et
,
3639 /* Now the rightmost extent block has been deleted.
3640 * So we use the new rightmost path.
3642 ocfs2_mv_path(right_path
, left_path
);
3645 ocfs2_complete_edge_insert(handle
, left_path
,
3646 right_path
, subtree_index
);
3650 ocfs2_free_path(left_path
);
3654 static int ocfs2_try_to_merge_extent(handle_t
*handle
,
3655 struct ocfs2_extent_tree
*et
,
3656 struct ocfs2_path
*path
,
3658 struct ocfs2_extent_rec
*split_rec
,
3659 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3660 struct ocfs2_merge_ctxt
*ctxt
)
3663 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3664 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3666 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3668 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3670 * The merge code will need to create an empty
3671 * extent to take the place of the newly
3672 * emptied slot. Remove any pre-existing empty
3673 * extents - having more than one in a leaf is
3676 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3682 rec
= &el
->l_recs
[split_index
];
3685 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3687 * Left-right contig implies this.
3689 BUG_ON(!ctxt
->c_split_covers_rec
);
3692 * Since the leftright insert always covers the entire
3693 * extent, this call will delete the insert record
3694 * entirely, resulting in an empty extent record added to
3697 * Since the adding of an empty extent shifts
3698 * everything back to the right, there's no need to
3699 * update split_index here.
3701 * When the split_index is zero, we need to merge it to the
3702 * prevoius extent block. It is more efficient and easier
3703 * if we do merge_right first and merge_left later.
3705 ret
= ocfs2_merge_rec_right(path
, handle
, et
, split_rec
,
3713 * We can only get this from logic error above.
3715 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3717 /* The merge left us with an empty extent, remove it. */
3718 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3724 rec
= &el
->l_recs
[split_index
];
3727 * Note that we don't pass split_rec here on purpose -
3728 * we've merged it into the rec already.
3730 ret
= ocfs2_merge_rec_left(path
, handle
, et
, rec
,
3731 dealloc
, split_index
);
3738 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3740 * Error from this last rotate is not critical, so
3741 * print but don't bubble it up.
3748 * Merge a record to the left or right.
3750 * 'contig_type' is relative to the existing record,
3751 * so for example, if we're "right contig", it's to
3752 * the record on the left (hence the left merge).
3754 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3755 ret
= ocfs2_merge_rec_left(path
, handle
, et
,
3763 ret
= ocfs2_merge_rec_right(path
, handle
,
3772 if (ctxt
->c_split_covers_rec
) {
3774 * The merge may have left an empty extent in
3775 * our leaf. Try to rotate it away.
3777 ret
= ocfs2_rotate_tree_left(handle
, et
, path
,
3789 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3790 enum ocfs2_split_type split
,
3791 struct ocfs2_extent_rec
*rec
,
3792 struct ocfs2_extent_rec
*split_rec
)
3796 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3797 le16_to_cpu(split_rec
->e_leaf_clusters
));
3799 if (split
== SPLIT_LEFT
) {
3801 * Region is on the left edge of the existing
3804 le32_add_cpu(&rec
->e_cpos
,
3805 le16_to_cpu(split_rec
->e_leaf_clusters
));
3806 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3807 le16_add_cpu(&rec
->e_leaf_clusters
,
3808 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3811 * Region is on the right edge of the existing
3814 le16_add_cpu(&rec
->e_leaf_clusters
,
3815 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3820 * Do the final bits of extent record insertion at the target leaf
3821 * list. If this leaf is part of an allocation tree, it is assumed
3822 * that the tree above has been prepared.
3824 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree
*et
,
3825 struct ocfs2_extent_rec
*insert_rec
,
3826 struct ocfs2_extent_list
*el
,
3827 struct ocfs2_insert_type
*insert
)
3829 int i
= insert
->ins_contig_index
;
3831 struct ocfs2_extent_rec
*rec
;
3833 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3835 if (insert
->ins_split
!= SPLIT_NONE
) {
3836 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3838 rec
= &el
->l_recs
[i
];
3839 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
3840 insert
->ins_split
, rec
,
3846 * Contiguous insert - either left or right.
3848 if (insert
->ins_contig
!= CONTIG_NONE
) {
3849 rec
= &el
->l_recs
[i
];
3850 if (insert
->ins_contig
== CONTIG_LEFT
) {
3851 rec
->e_blkno
= insert_rec
->e_blkno
;
3852 rec
->e_cpos
= insert_rec
->e_cpos
;
3854 le16_add_cpu(&rec
->e_leaf_clusters
,
3855 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3860 * Handle insert into an empty leaf.
3862 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3863 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3864 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3865 el
->l_recs
[0] = *insert_rec
;
3866 el
->l_next_free_rec
= cpu_to_le16(1);
3873 if (insert
->ins_appending
== APPEND_TAIL
) {
3874 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3875 rec
= &el
->l_recs
[i
];
3876 range
= le32_to_cpu(rec
->e_cpos
)
3877 + le16_to_cpu(rec
->e_leaf_clusters
);
3878 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3880 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3881 le16_to_cpu(el
->l_count
),
3882 "owner %llu, depth %u, count %u, next free %u, "
3883 "rec.cpos %u, rec.clusters %u, "
3884 "insert.cpos %u, insert.clusters %u\n",
3885 ocfs2_metadata_cache_owner(et
->et_ci
),
3886 le16_to_cpu(el
->l_tree_depth
),
3887 le16_to_cpu(el
->l_count
),
3888 le16_to_cpu(el
->l_next_free_rec
),
3889 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3890 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3891 le32_to_cpu(insert_rec
->e_cpos
),
3892 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3894 el
->l_recs
[i
] = *insert_rec
;
3895 le16_add_cpu(&el
->l_next_free_rec
, 1);
3901 * Ok, we have to rotate.
3903 * At this point, it is safe to assume that inserting into an
3904 * empty leaf and appending to a leaf have both been handled
3907 * This leaf needs to have space, either by the empty 1st
3908 * extent record, or by virtue of an l_next_rec < l_count.
3910 ocfs2_rotate_leaf(el
, insert_rec
);
3913 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
3914 struct ocfs2_extent_tree
*et
,
3915 struct ocfs2_path
*path
,
3916 struct ocfs2_extent_rec
*insert_rec
)
3918 int ret
, i
, next_free
;
3919 struct buffer_head
*bh
;
3920 struct ocfs2_extent_list
*el
;
3921 struct ocfs2_extent_rec
*rec
;
3924 * Update everything except the leaf block.
3926 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3927 bh
= path
->p_node
[i
].bh
;
3928 el
= path
->p_node
[i
].el
;
3930 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3931 if (next_free
== 0) {
3932 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3933 "Owner %llu has a bad extent list",
3934 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
3939 rec
= &el
->l_recs
[next_free
- 1];
3941 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3942 le32_add_cpu(&rec
->e_int_clusters
,
3943 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3944 le32_add_cpu(&rec
->e_int_clusters
,
3945 -le32_to_cpu(rec
->e_cpos
));
3947 ocfs2_journal_dirty(handle
, bh
);
3951 static int ocfs2_append_rec_to_path(handle_t
*handle
,
3952 struct ocfs2_extent_tree
*et
,
3953 struct ocfs2_extent_rec
*insert_rec
,
3954 struct ocfs2_path
*right_path
,
3955 struct ocfs2_path
**ret_left_path
)
3958 struct ocfs2_extent_list
*el
;
3959 struct ocfs2_path
*left_path
= NULL
;
3961 *ret_left_path
= NULL
;
3964 * This shouldn't happen for non-trees. The extent rec cluster
3965 * count manipulation below only works for interior nodes.
3967 BUG_ON(right_path
->p_tree_depth
== 0);
3970 * If our appending insert is at the leftmost edge of a leaf,
3971 * then we might need to update the rightmost records of the
3974 el
= path_leaf_el(right_path
);
3975 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3976 if (next_free
== 0 ||
3977 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3980 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3981 right_path
, &left_cpos
);
3987 trace_ocfs2_append_rec_to_path(
3988 (unsigned long long)
3989 ocfs2_metadata_cache_owner(et
->et_ci
),
3990 le32_to_cpu(insert_rec
->e_cpos
),
3994 * No need to worry if the append is already in the
3998 left_path
= ocfs2_new_path_from_path(right_path
);
4005 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
4013 * ocfs2_insert_path() will pass the left_path to the
4019 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4025 ocfs2_adjust_rightmost_records(handle
, et
, right_path
, insert_rec
);
4027 *ret_left_path
= left_path
;
4031 ocfs2_free_path(left_path
);
4036 static void ocfs2_split_record(struct ocfs2_extent_tree
*et
,
4037 struct ocfs2_path
*left_path
,
4038 struct ocfs2_path
*right_path
,
4039 struct ocfs2_extent_rec
*split_rec
,
4040 enum ocfs2_split_type split
)
4043 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
4044 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
4045 struct ocfs2_extent_rec
*rec
, *tmprec
;
4047 right_el
= path_leaf_el(right_path
);
4049 left_el
= path_leaf_el(left_path
);
4052 insert_el
= right_el
;
4053 index
= ocfs2_search_extent_list(el
, cpos
);
4055 if (index
== 0 && left_path
) {
4056 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
4059 * This typically means that the record
4060 * started in the left path but moved to the
4061 * right as a result of rotation. We either
4062 * move the existing record to the left, or we
4063 * do the later insert there.
4065 * In this case, the left path should always
4066 * exist as the rotate code will have passed
4067 * it back for a post-insert update.
4070 if (split
== SPLIT_LEFT
) {
4072 * It's a left split. Since we know
4073 * that the rotate code gave us an
4074 * empty extent in the left path, we
4075 * can just do the insert there.
4077 insert_el
= left_el
;
4080 * Right split - we have to move the
4081 * existing record over to the left
4082 * leaf. The insert will be into the
4083 * newly created empty extent in the
4086 tmprec
= &right_el
->l_recs
[index
];
4087 ocfs2_rotate_leaf(left_el
, tmprec
);
4090 memset(tmprec
, 0, sizeof(*tmprec
));
4091 index
= ocfs2_search_extent_list(left_el
, cpos
);
4092 BUG_ON(index
== -1);
4097 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
4099 * Left path is easy - we can just allow the insert to
4103 insert_el
= left_el
;
4104 index
= ocfs2_search_extent_list(el
, cpos
);
4105 BUG_ON(index
== -1);
4108 rec
= &el
->l_recs
[index
];
4109 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4110 split
, rec
, split_rec
);
4111 ocfs2_rotate_leaf(insert_el
, split_rec
);
4115 * This function only does inserts on an allocation b-tree. For tree
4116 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4118 * right_path is the path we want to do the actual insert
4119 * in. left_path should only be passed in if we need to update that
4120 * portion of the tree after an edge insert.
4122 static int ocfs2_insert_path(handle_t
*handle
,
4123 struct ocfs2_extent_tree
*et
,
4124 struct ocfs2_path
*left_path
,
4125 struct ocfs2_path
*right_path
,
4126 struct ocfs2_extent_rec
*insert_rec
,
4127 struct ocfs2_insert_type
*insert
)
4129 int ret
, subtree_index
;
4130 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
4134 * There's a chance that left_path got passed back to
4135 * us without being accounted for in the
4136 * journal. Extend our transaction here to be sure we
4137 * can change those blocks.
4139 ret
= ocfs2_extend_trans(handle
, left_path
->p_tree_depth
);
4145 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
4153 * Pass both paths to the journal. The majority of inserts
4154 * will be touching all components anyway.
4156 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4162 if (insert
->ins_split
!= SPLIT_NONE
) {
4164 * We could call ocfs2_insert_at_leaf() for some types
4165 * of splits, but it's easier to just let one separate
4166 * function sort it all out.
4168 ocfs2_split_record(et
, left_path
, right_path
,
4169 insert_rec
, insert
->ins_split
);
4172 * Split might have modified either leaf and we don't
4173 * have a guarantee that the later edge insert will
4174 * dirty this for us.
4177 ocfs2_journal_dirty(handle
,
4178 path_leaf_bh(left_path
));
4180 ocfs2_insert_at_leaf(et
, insert_rec
, path_leaf_el(right_path
),
4183 ocfs2_journal_dirty(handle
, leaf_bh
);
4187 * The rotate code has indicated that we need to fix
4188 * up portions of the tree after the insert.
4190 * XXX: Should we extend the transaction here?
4192 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
4194 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
4203 static int ocfs2_do_insert_extent(handle_t
*handle
,
4204 struct ocfs2_extent_tree
*et
,
4205 struct ocfs2_extent_rec
*insert_rec
,
4206 struct ocfs2_insert_type
*type
)
4208 int ret
, rotate
= 0;
4210 struct ocfs2_path
*right_path
= NULL
;
4211 struct ocfs2_path
*left_path
= NULL
;
4212 struct ocfs2_extent_list
*el
;
4214 el
= et
->et_root_el
;
4216 ret
= ocfs2_et_root_journal_access(handle
, et
,
4217 OCFS2_JOURNAL_ACCESS_WRITE
);
4223 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4224 ocfs2_insert_at_leaf(et
, insert_rec
, el
, type
);
4225 goto out_update_clusters
;
4228 right_path
= ocfs2_new_path_from_et(et
);
4236 * Determine the path to start with. Rotations need the
4237 * rightmost path, everything else can go directly to the
4240 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4241 if (type
->ins_appending
== APPEND_NONE
&&
4242 type
->ins_contig
== CONTIG_NONE
) {
4247 ret
= ocfs2_find_path(et
->et_ci
, right_path
, cpos
);
4254 * Rotations and appends need special treatment - they modify
4255 * parts of the tree's above them.
4257 * Both might pass back a path immediate to the left of the
4258 * one being inserted to. This will be cause
4259 * ocfs2_insert_path() to modify the rightmost records of
4260 * left_path to account for an edge insert.
4262 * XXX: When modifying this code, keep in mind that an insert
4263 * can wind up skipping both of these two special cases...
4266 ret
= ocfs2_rotate_tree_right(handle
, et
, type
->ins_split
,
4267 le32_to_cpu(insert_rec
->e_cpos
),
4268 right_path
, &left_path
);
4275 * ocfs2_rotate_tree_right() might have extended the
4276 * transaction without re-journaling our tree root.
4278 ret
= ocfs2_et_root_journal_access(handle
, et
,
4279 OCFS2_JOURNAL_ACCESS_WRITE
);
4284 } else if (type
->ins_appending
== APPEND_TAIL
4285 && type
->ins_contig
!= CONTIG_LEFT
) {
4286 ret
= ocfs2_append_rec_to_path(handle
, et
, insert_rec
,
4287 right_path
, &left_path
);
4294 ret
= ocfs2_insert_path(handle
, et
, left_path
, right_path
,
4301 out_update_clusters
:
4302 if (type
->ins_split
== SPLIT_NONE
)
4303 ocfs2_et_update_clusters(et
,
4304 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4306 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4309 ocfs2_free_path(left_path
);
4310 ocfs2_free_path(right_path
);
4315 static enum ocfs2_contig_type
4316 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree
*et
,
4317 struct ocfs2_path
*path
,
4318 struct ocfs2_extent_list
*el
, int index
,
4319 struct ocfs2_extent_rec
*split_rec
)
4322 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4323 u32 left_cpos
, right_cpos
;
4324 struct ocfs2_extent_rec
*rec
= NULL
;
4325 struct ocfs2_extent_list
*new_el
;
4326 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4327 struct buffer_head
*bh
;
4328 struct ocfs2_extent_block
*eb
;
4329 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
4332 rec
= &el
->l_recs
[index
- 1];
4333 } else if (path
->p_tree_depth
> 0) {
4334 status
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
4338 if (left_cpos
!= 0) {
4339 left_path
= ocfs2_new_path_from_path(path
);
4343 status
= ocfs2_find_path(et
->et_ci
, left_path
,
4348 new_el
= path_leaf_el(left_path
);
4350 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4351 le16_to_cpu(new_el
->l_count
)) {
4352 bh
= path_leaf_bh(left_path
);
4353 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4355 "Extent block #%llu has an "
4356 "invalid l_next_free_rec of "
4357 "%d. It should have "
4358 "matched the l_count of %d",
4359 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4360 le16_to_cpu(new_el
->l_next_free_rec
),
4361 le16_to_cpu(new_el
->l_count
));
4365 rec
= &new_el
->l_recs
[
4366 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4371 * We're careful to check for an empty extent record here -
4372 * the merge code will know what to do if it sees one.
4375 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4376 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4379 ret
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4384 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4385 rec
= &el
->l_recs
[index
+ 1];
4386 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4387 path
->p_tree_depth
> 0) {
4388 status
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
4392 if (right_cpos
== 0)
4395 right_path
= ocfs2_new_path_from_path(path
);
4399 status
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
4403 new_el
= path_leaf_el(right_path
);
4404 rec
= &new_el
->l_recs
[0];
4405 if (ocfs2_is_empty_extent(rec
)) {
4406 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4407 bh
= path_leaf_bh(right_path
);
4408 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4410 "Extent block #%llu has an "
4411 "invalid l_next_free_rec of %d",
4412 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4413 le16_to_cpu(new_el
->l_next_free_rec
));
4417 rec
= &new_el
->l_recs
[1];
4422 enum ocfs2_contig_type contig_type
;
4424 contig_type
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4426 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4427 ret
= CONTIG_LEFTRIGHT
;
4428 else if (ret
== CONTIG_NONE
)
4434 ocfs2_free_path(left_path
);
4436 ocfs2_free_path(right_path
);
4441 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree
*et
,
4442 struct ocfs2_insert_type
*insert
,
4443 struct ocfs2_extent_list
*el
,
4444 struct ocfs2_extent_rec
*insert_rec
)
4447 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4449 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4451 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4452 contig_type
= ocfs2_et_extent_contig(et
, &el
->l_recs
[i
],
4454 if (contig_type
!= CONTIG_NONE
) {
4455 insert
->ins_contig_index
= i
;
4459 insert
->ins_contig
= contig_type
;
4461 if (insert
->ins_contig
!= CONTIG_NONE
) {
4462 struct ocfs2_extent_rec
*rec
=
4463 &el
->l_recs
[insert
->ins_contig_index
];
4464 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4465 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4468 * Caller might want us to limit the size of extents, don't
4469 * calculate contiguousness if we might exceed that limit.
4471 if (et
->et_max_leaf_clusters
&&
4472 (len
> et
->et_max_leaf_clusters
))
4473 insert
->ins_contig
= CONTIG_NONE
;
4478 * This should only be called against the righmost leaf extent list.
4480 * ocfs2_figure_appending_type() will figure out whether we'll have to
4481 * insert at the tail of the rightmost leaf.
4483 * This should also work against the root extent list for tree's with 0
4484 * depth. If we consider the root extent list to be the rightmost leaf node
4485 * then the logic here makes sense.
4487 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4488 struct ocfs2_extent_list
*el
,
4489 struct ocfs2_extent_rec
*insert_rec
)
4492 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4493 struct ocfs2_extent_rec
*rec
;
4495 insert
->ins_appending
= APPEND_NONE
;
4497 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4499 if (!el
->l_next_free_rec
)
4500 goto set_tail_append
;
4502 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4503 /* Were all records empty? */
4504 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4505 goto set_tail_append
;
4508 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4509 rec
= &el
->l_recs
[i
];
4512 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4513 goto set_tail_append
;
4518 insert
->ins_appending
= APPEND_TAIL
;
4522 * Helper function called at the begining of an insert.
4524 * This computes a few things that are commonly used in the process of
4525 * inserting into the btree:
4526 * - Whether the new extent is contiguous with an existing one.
4527 * - The current tree depth.
4528 * - Whether the insert is an appending one.
4529 * - The total # of free records in the tree.
4531 * All of the information is stored on the ocfs2_insert_type
4534 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree
*et
,
4535 struct buffer_head
**last_eb_bh
,
4536 struct ocfs2_extent_rec
*insert_rec
,
4538 struct ocfs2_insert_type
*insert
)
4541 struct ocfs2_extent_block
*eb
;
4542 struct ocfs2_extent_list
*el
;
4543 struct ocfs2_path
*path
= NULL
;
4544 struct buffer_head
*bh
= NULL
;
4546 insert
->ins_split
= SPLIT_NONE
;
4548 el
= et
->et_root_el
;
4549 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4551 if (el
->l_tree_depth
) {
4553 * If we have tree depth, we read in the
4554 * rightmost extent block ahead of time as
4555 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4556 * may want it later.
4558 ret
= ocfs2_read_extent_block(et
->et_ci
,
4559 ocfs2_et_get_last_eb_blk(et
),
4565 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4570 * Unless we have a contiguous insert, we'll need to know if
4571 * there is room left in our allocation tree for another
4574 * XXX: This test is simplistic, we can search for empty
4575 * extent records too.
4577 *free_records
= le16_to_cpu(el
->l_count
) -
4578 le16_to_cpu(el
->l_next_free_rec
);
4580 if (!insert
->ins_tree_depth
) {
4581 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4582 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4586 path
= ocfs2_new_path_from_et(et
);
4594 * In the case that we're inserting past what the tree
4595 * currently accounts for, ocfs2_find_path() will return for
4596 * us the rightmost tree path. This is accounted for below in
4597 * the appending code.
4599 ret
= ocfs2_find_path(et
->et_ci
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4605 el
= path_leaf_el(path
);
4608 * Now that we have the path, there's two things we want to determine:
4609 * 1) Contiguousness (also set contig_index if this is so)
4611 * 2) Are we doing an append? We can trivially break this up
4612 * into two types of appends: simple record append, or a
4613 * rotate inside the tail leaf.
4615 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4618 * The insert code isn't quite ready to deal with all cases of
4619 * left contiguousness. Specifically, if it's an insert into
4620 * the 1st record in a leaf, it will require the adjustment of
4621 * cluster count on the last record of the path directly to it's
4622 * left. For now, just catch that case and fool the layers
4623 * above us. This works just fine for tree_depth == 0, which
4624 * is why we allow that above.
4626 if (insert
->ins_contig
== CONTIG_LEFT
&&
4627 insert
->ins_contig_index
== 0)
4628 insert
->ins_contig
= CONTIG_NONE
;
4631 * Ok, so we can simply compare against last_eb to figure out
4632 * whether the path doesn't exist. This will only happen in
4633 * the case that we're doing a tail append, so maybe we can
4634 * take advantage of that information somehow.
4636 if (ocfs2_et_get_last_eb_blk(et
) ==
4637 path_leaf_bh(path
)->b_blocknr
) {
4639 * Ok, ocfs2_find_path() returned us the rightmost
4640 * tree path. This might be an appending insert. There are
4642 * 1) We're doing a true append at the tail:
4643 * -This might even be off the end of the leaf
4644 * 2) We're "appending" by rotating in the tail
4646 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4650 ocfs2_free_path(path
);
4660 * Insert an extent into a btree.
4662 * The caller needs to update the owning btree's cluster count.
4664 int ocfs2_insert_extent(handle_t
*handle
,
4665 struct ocfs2_extent_tree
*et
,
4670 struct ocfs2_alloc_context
*meta_ac
)
4673 int uninitialized_var(free_records
);
4674 struct buffer_head
*last_eb_bh
= NULL
;
4675 struct ocfs2_insert_type insert
= {0, };
4676 struct ocfs2_extent_rec rec
;
4678 trace_ocfs2_insert_extent_start(
4679 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4680 cpos
, new_clusters
);
4682 memset(&rec
, 0, sizeof(rec
));
4683 rec
.e_cpos
= cpu_to_le32(cpos
);
4684 rec
.e_blkno
= cpu_to_le64(start_blk
);
4685 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4686 rec
.e_flags
= flags
;
4687 status
= ocfs2_et_insert_check(et
, &rec
);
4693 status
= ocfs2_figure_insert_type(et
, &last_eb_bh
, &rec
,
4694 &free_records
, &insert
);
4700 trace_ocfs2_insert_extent(insert
.ins_appending
, insert
.ins_contig
,
4701 insert
.ins_contig_index
, free_records
,
4702 insert
.ins_tree_depth
);
4704 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4705 status
= ocfs2_grow_tree(handle
, et
,
4706 &insert
.ins_tree_depth
, &last_eb_bh
,
4714 /* Finally, we can add clusters. This might rotate the tree for us. */
4715 status
= ocfs2_do_insert_extent(handle
, et
, &rec
, &insert
);
4719 ocfs2_et_extent_map_insert(et
, &rec
);
4728 * Allcate and add clusters into the extent b-tree.
4729 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4730 * The extent b-tree's root is specified by et, and
4731 * it is not limited to the file storage. Any extent tree can use this
4732 * function if it implements the proper ocfs2_extent_tree.
4734 int ocfs2_add_clusters_in_btree(handle_t
*handle
,
4735 struct ocfs2_extent_tree
*et
,
4736 u32
*logical_offset
,
4737 u32 clusters_to_add
,
4739 struct ocfs2_alloc_context
*data_ac
,
4740 struct ocfs2_alloc_context
*meta_ac
,
4741 enum ocfs2_alloc_restarted
*reason_ret
)
4743 int status
= 0, err
= 0;
4745 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4746 u32 bit_off
, num_bits
;
4749 struct ocfs2_super
*osb
=
4750 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
4752 BUG_ON(!clusters_to_add
);
4755 flags
= OCFS2_EXT_UNWRITTEN
;
4757 free_extents
= ocfs2_num_free_extents(osb
, et
);
4758 if (free_extents
< 0) {
4759 status
= free_extents
;
4764 /* there are two cases which could cause us to EAGAIN in the
4765 * we-need-more-metadata case:
4766 * 1) we haven't reserved *any*
4767 * 2) we are so fragmented, we've needed to add metadata too
4769 if (!free_extents
&& !meta_ac
) {
4772 reason
= RESTART_META
;
4774 } else if ((!free_extents
)
4775 && (ocfs2_alloc_context_bits_left(meta_ac
)
4776 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4779 reason
= RESTART_META
;
4783 status
= __ocfs2_claim_clusters(handle
, data_ac
, 1,
4784 clusters_to_add
, &bit_off
, &num_bits
);
4786 if (status
!= -ENOSPC
)
4791 BUG_ON(num_bits
> clusters_to_add
);
4793 /* reserve our write early -- insert_extent may update the tree root */
4794 status
= ocfs2_et_root_journal_access(handle
, et
,
4795 OCFS2_JOURNAL_ACCESS_WRITE
);
4801 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4802 trace_ocfs2_add_clusters_in_btree(
4803 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4805 status
= ocfs2_insert_extent(handle
, et
, *logical_offset
, block
,
4806 num_bits
, flags
, meta_ac
);
4812 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4814 clusters_to_add
-= num_bits
;
4815 *logical_offset
+= num_bits
;
4817 if (clusters_to_add
) {
4818 err
= clusters_to_add
;
4820 reason
= RESTART_TRANS
;
4825 *reason_ret
= reason
;
4826 trace_ocfs2_add_clusters_in_btree_ret(status
, reason
, err
);
4830 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4831 struct ocfs2_extent_rec
*split_rec
,
4833 struct ocfs2_extent_rec
*rec
)
4835 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4836 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4838 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4840 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4841 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4843 split_rec
->e_blkno
= rec
->e_blkno
;
4844 le64_add_cpu(&split_rec
->e_blkno
,
4845 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4847 split_rec
->e_flags
= rec
->e_flags
;
4850 static int ocfs2_split_and_insert(handle_t
*handle
,
4851 struct ocfs2_extent_tree
*et
,
4852 struct ocfs2_path
*path
,
4853 struct buffer_head
**last_eb_bh
,
4855 struct ocfs2_extent_rec
*orig_split_rec
,
4856 struct ocfs2_alloc_context
*meta_ac
)
4859 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4860 struct ocfs2_extent_rec tmprec
;
4861 struct ocfs2_extent_list
*rightmost_el
;
4862 struct ocfs2_extent_rec rec
;
4863 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4864 struct ocfs2_insert_type insert
;
4865 struct ocfs2_extent_block
*eb
;
4869 * Store a copy of the record on the stack - it might move
4870 * around as the tree is manipulated below.
4872 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4874 rightmost_el
= et
->et_root_el
;
4876 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4878 BUG_ON(!(*last_eb_bh
));
4879 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4880 rightmost_el
= &eb
->h_list
;
4883 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4884 le16_to_cpu(rightmost_el
->l_count
)) {
4885 ret
= ocfs2_grow_tree(handle
, et
,
4886 &depth
, last_eb_bh
, meta_ac
);
4893 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4894 insert
.ins_appending
= APPEND_NONE
;
4895 insert
.ins_contig
= CONTIG_NONE
;
4896 insert
.ins_tree_depth
= depth
;
4898 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4899 le16_to_cpu(split_rec
.e_leaf_clusters
);
4900 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4901 le16_to_cpu(rec
.e_leaf_clusters
);
4903 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4904 insert
.ins_split
= SPLIT_LEFT
;
4905 } else if (insert_range
== rec_range
) {
4906 insert
.ins_split
= SPLIT_RIGHT
;
4909 * Left/right split. We fake this as a right split
4910 * first and then make a second pass as a left split.
4912 insert
.ins_split
= SPLIT_RIGHT
;
4914 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4915 &tmprec
, insert_range
, &rec
);
4919 BUG_ON(do_leftright
);
4923 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
4929 if (do_leftright
== 1) {
4931 struct ocfs2_extent_list
*el
;
4934 split_rec
= *orig_split_rec
;
4936 ocfs2_reinit_path(path
, 1);
4938 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4939 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
4945 el
= path_leaf_el(path
);
4946 split_index
= ocfs2_search_extent_list(el
, cpos
);
4954 static int ocfs2_replace_extent_rec(handle_t
*handle
,
4955 struct ocfs2_extent_tree
*et
,
4956 struct ocfs2_path
*path
,
4957 struct ocfs2_extent_list
*el
,
4959 struct ocfs2_extent_rec
*split_rec
)
4963 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
4964 path_num_items(path
) - 1);
4970 el
->l_recs
[split_index
] = *split_rec
;
4972 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
4978 * Split part or all of the extent record at split_index in the leaf
4979 * pointed to by path. Merge with the contiguous extent record if needed.
4981 * Care is taken to handle contiguousness so as to not grow the tree.
4983 * meta_ac is not strictly necessary - we only truly need it if growth
4984 * of the tree is required. All other cases will degrade into a less
4985 * optimal tree layout.
4987 * last_eb_bh should be the rightmost leaf block for any extent
4988 * btree. Since a split may grow the tree or a merge might shrink it,
4989 * the caller cannot trust the contents of that buffer after this call.
4991 * This code is optimized for readability - several passes might be
4992 * made over certain portions of the tree. All of those blocks will
4993 * have been brought into cache (and pinned via the journal), so the
4994 * extra overhead is not expressed in terms of disk reads.
4996 int ocfs2_split_extent(handle_t
*handle
,
4997 struct ocfs2_extent_tree
*et
,
4998 struct ocfs2_path
*path
,
5000 struct ocfs2_extent_rec
*split_rec
,
5001 struct ocfs2_alloc_context
*meta_ac
,
5002 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5005 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5006 struct buffer_head
*last_eb_bh
= NULL
;
5007 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
5008 struct ocfs2_merge_ctxt ctxt
;
5009 struct ocfs2_extent_list
*rightmost_el
;
5011 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
5012 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
5013 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
5019 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(et
, path
, el
,
5024 * The core merge / split code wants to know how much room is
5025 * left in this allocation tree, so we pass the
5026 * rightmost extent list.
5028 if (path
->p_tree_depth
) {
5029 struct ocfs2_extent_block
*eb
;
5031 ret
= ocfs2_read_extent_block(et
->et_ci
,
5032 ocfs2_et_get_last_eb_blk(et
),
5039 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5040 rightmost_el
= &eb
->h_list
;
5042 rightmost_el
= path_root_el(path
);
5044 if (rec
->e_cpos
== split_rec
->e_cpos
&&
5045 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
5046 ctxt
.c_split_covers_rec
= 1;
5048 ctxt
.c_split_covers_rec
= 0;
5050 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
5052 trace_ocfs2_split_extent(split_index
, ctxt
.c_contig_type
,
5053 ctxt
.c_has_empty_extent
,
5054 ctxt
.c_split_covers_rec
);
5056 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
5057 if (ctxt
.c_split_covers_rec
)
5058 ret
= ocfs2_replace_extent_rec(handle
, et
, path
, el
,
5059 split_index
, split_rec
);
5061 ret
= ocfs2_split_and_insert(handle
, et
, path
,
5062 &last_eb_bh
, split_index
,
5063 split_rec
, meta_ac
);
5067 ret
= ocfs2_try_to_merge_extent(handle
, et
, path
,
5068 split_index
, split_rec
,
5080 * Change the flags of the already-existing extent at cpos for len clusters.
5082 * new_flags: the flags we want to set.
5083 * clear_flags: the flags we want to clear.
5084 * phys: the new physical offset we want this new extent starts from.
5086 * If the existing extent is larger than the request, initiate a
5087 * split. An attempt will be made at merging with adjacent extents.
5089 * The caller is responsible for passing down meta_ac if we'll need it.
5091 int ocfs2_change_extent_flag(handle_t
*handle
,
5092 struct ocfs2_extent_tree
*et
,
5093 u32 cpos
, u32 len
, u32 phys
,
5094 struct ocfs2_alloc_context
*meta_ac
,
5095 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5096 int new_flags
, int clear_flags
)
5099 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5100 u64 start_blkno
= ocfs2_clusters_to_blocks(sb
, phys
);
5101 struct ocfs2_extent_rec split_rec
;
5102 struct ocfs2_path
*left_path
= NULL
;
5103 struct ocfs2_extent_list
*el
;
5104 struct ocfs2_extent_rec
*rec
;
5106 left_path
= ocfs2_new_path_from_et(et
);
5113 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
5118 el
= path_leaf_el(left_path
);
5120 index
= ocfs2_search_extent_list(el
, cpos
);
5121 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5123 "Owner %llu has an extent at cpos %u which can no "
5124 "longer be found.\n",
5125 (unsigned long long)
5126 ocfs2_metadata_cache_owner(et
->et_ci
), cpos
);
5132 rec
= &el
->l_recs
[index
];
5133 if (new_flags
&& (rec
->e_flags
& new_flags
)) {
5134 mlog(ML_ERROR
, "Owner %llu tried to set %d flags on an "
5135 "extent that already had them",
5136 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5141 if (clear_flags
&& !(rec
->e_flags
& clear_flags
)) {
5142 mlog(ML_ERROR
, "Owner %llu tried to clear %d flags on an "
5143 "extent that didn't have them",
5144 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5149 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5150 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5151 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5152 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5153 split_rec
.e_flags
= rec
->e_flags
;
5155 split_rec
.e_flags
|= new_flags
;
5157 split_rec
.e_flags
&= ~clear_flags
;
5159 ret
= ocfs2_split_extent(handle
, et
, left_path
,
5160 index
, &split_rec
, meta_ac
,
5166 ocfs2_free_path(left_path
);
5172 * Mark the already-existing extent at cpos as written for len clusters.
5173 * This removes the unwritten extent flag.
5175 * If the existing extent is larger than the request, initiate a
5176 * split. An attempt will be made at merging with adjacent extents.
5178 * The caller is responsible for passing down meta_ac if we'll need it.
5180 int ocfs2_mark_extent_written(struct inode
*inode
,
5181 struct ocfs2_extent_tree
*et
,
5182 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
5183 struct ocfs2_alloc_context
*meta_ac
,
5184 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5188 trace_ocfs2_mark_extent_written(
5189 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5192 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
5193 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
5194 "that are being written to, but the feature bit "
5195 "is not set in the super block.",
5196 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
5202 * XXX: This should be fixed up so that we just re-insert the
5203 * next extent records.
5205 ocfs2_et_extent_map_truncate(et
, 0);
5207 ret
= ocfs2_change_extent_flag(handle
, et
, cpos
,
5208 len
, phys
, meta_ac
, dealloc
,
5209 0, OCFS2_EXT_UNWRITTEN
);
5217 static int ocfs2_split_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
5218 struct ocfs2_path
*path
,
5219 int index
, u32 new_range
,
5220 struct ocfs2_alloc_context
*meta_ac
)
5222 int ret
, depth
, credits
;
5223 struct buffer_head
*last_eb_bh
= NULL
;
5224 struct ocfs2_extent_block
*eb
;
5225 struct ocfs2_extent_list
*rightmost_el
, *el
;
5226 struct ocfs2_extent_rec split_rec
;
5227 struct ocfs2_extent_rec
*rec
;
5228 struct ocfs2_insert_type insert
;
5231 * Setup the record to split before we grow the tree.
5233 el
= path_leaf_el(path
);
5234 rec
= &el
->l_recs
[index
];
5235 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
5236 &split_rec
, new_range
, rec
);
5238 depth
= path
->p_tree_depth
;
5240 ret
= ocfs2_read_extent_block(et
->et_ci
,
5241 ocfs2_et_get_last_eb_blk(et
),
5248 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5249 rightmost_el
= &eb
->h_list
;
5251 rightmost_el
= path_leaf_el(path
);
5253 credits
= path
->p_tree_depth
+
5254 ocfs2_extend_meta_needed(et
->et_root_el
);
5255 ret
= ocfs2_extend_trans(handle
, credits
);
5261 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5262 le16_to_cpu(rightmost_el
->l_count
)) {
5263 ret
= ocfs2_grow_tree(handle
, et
, &depth
, &last_eb_bh
,
5271 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5272 insert
.ins_appending
= APPEND_NONE
;
5273 insert
.ins_contig
= CONTIG_NONE
;
5274 insert
.ins_split
= SPLIT_RIGHT
;
5275 insert
.ins_tree_depth
= depth
;
5277 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
5286 static int ocfs2_truncate_rec(handle_t
*handle
,
5287 struct ocfs2_extent_tree
*et
,
5288 struct ocfs2_path
*path
, int index
,
5289 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5293 u32 left_cpos
, rec_range
, trunc_range
;
5294 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
5295 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5296 struct ocfs2_path
*left_path
= NULL
;
5297 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5298 struct ocfs2_extent_rec
*rec
;
5299 struct ocfs2_extent_block
*eb
;
5301 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5302 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5311 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5312 path
->p_tree_depth
) {
5314 * Check whether this is the rightmost tree record. If
5315 * we remove all of this record or part of its right
5316 * edge then an update of the record lengths above it
5319 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5320 if (eb
->h_next_leaf_blk
== 0)
5321 is_rightmost_tree_rec
= 1;
5324 rec
= &el
->l_recs
[index
];
5325 if (index
== 0 && path
->p_tree_depth
&&
5326 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5328 * Changing the leftmost offset (via partial or whole
5329 * record truncate) of an interior (or rightmost) path
5330 * means we have to update the subtree that is formed
5331 * by this leaf and the one to it's left.
5333 * There are two cases we can skip:
5334 * 1) Path is the leftmost one in our btree.
5335 * 2) The leaf is rightmost and will be empty after
5336 * we remove the extent record - the rotate code
5337 * knows how to update the newly formed edge.
5340 ret
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
5346 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5347 left_path
= ocfs2_new_path_from_path(path
);
5354 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
5363 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5364 handle
->h_buffer_credits
,
5371 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
5377 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
5383 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5384 trunc_range
= cpos
+ len
;
5386 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5389 memset(rec
, 0, sizeof(*rec
));
5390 ocfs2_cleanup_merge(el
, index
);
5393 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5394 if (is_rightmost_tree_rec
&& next_free
> 1) {
5396 * We skip the edge update if this path will
5397 * be deleted by the rotate code.
5399 rec
= &el
->l_recs
[next_free
- 1];
5400 ocfs2_adjust_rightmost_records(handle
, et
, path
,
5403 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5404 /* Remove leftmost portion of the record. */
5405 le32_add_cpu(&rec
->e_cpos
, len
);
5406 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5407 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5408 } else if (rec_range
== trunc_range
) {
5409 /* Remove rightmost portion of the record */
5410 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5411 if (is_rightmost_tree_rec
)
5412 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
5414 /* Caller should have trapped this. */
5415 mlog(ML_ERROR
, "Owner %llu: Invalid record truncate: (%u, %u) "
5417 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5418 le32_to_cpu(rec
->e_cpos
),
5419 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5426 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
5427 ocfs2_complete_edge_insert(handle
, left_path
, path
,
5431 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5433 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5440 ocfs2_free_path(left_path
);
5444 int ocfs2_remove_extent(handle_t
*handle
,
5445 struct ocfs2_extent_tree
*et
,
5447 struct ocfs2_alloc_context
*meta_ac
,
5448 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5451 u32 rec_range
, trunc_range
;
5452 struct ocfs2_extent_rec
*rec
;
5453 struct ocfs2_extent_list
*el
;
5454 struct ocfs2_path
*path
= NULL
;
5457 * XXX: Why are we truncating to 0 instead of wherever this
5460 ocfs2_et_extent_map_truncate(et
, 0);
5462 path
= ocfs2_new_path_from_et(et
);
5469 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5475 el
= path_leaf_el(path
);
5476 index
= ocfs2_search_extent_list(el
, cpos
);
5477 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5478 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5479 "Owner %llu has an extent at cpos %u which can no "
5480 "longer be found.\n",
5481 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5488 * We have 3 cases of extent removal:
5489 * 1) Range covers the entire extent rec
5490 * 2) Range begins or ends on one edge of the extent rec
5491 * 3) Range is in the middle of the extent rec (no shared edges)
5493 * For case 1 we remove the extent rec and left rotate to
5496 * For case 2 we just shrink the existing extent rec, with a
5497 * tree update if the shrinking edge is also the edge of an
5500 * For case 3 we do a right split to turn the extent rec into
5501 * something case 2 can handle.
5503 rec
= &el
->l_recs
[index
];
5504 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5505 trunc_range
= cpos
+ len
;
5507 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5509 trace_ocfs2_remove_extent(
5510 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5511 cpos
, len
, index
, le32_to_cpu(rec
->e_cpos
),
5512 ocfs2_rec_clusters(el
, rec
));
5514 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5515 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5522 ret
= ocfs2_split_tree(handle
, et
, path
, index
,
5523 trunc_range
, meta_ac
);
5530 * The split could have manipulated the tree enough to
5531 * move the record location, so we have to look for it again.
5533 ocfs2_reinit_path(path
, 1);
5535 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5541 el
= path_leaf_el(path
);
5542 index
= ocfs2_search_extent_list(el
, cpos
);
5543 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5544 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5545 "Owner %llu: split at cpos %u lost record.",
5546 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5553 * Double check our values here. If anything is fishy,
5554 * it's easier to catch it at the top level.
5556 rec
= &el
->l_recs
[index
];
5557 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5558 ocfs2_rec_clusters(el
, rec
);
5559 if (rec_range
!= trunc_range
) {
5560 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5561 "Owner %llu: error after split at cpos %u"
5562 "trunc len %u, existing record is (%u,%u)",
5563 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5564 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5565 ocfs2_rec_clusters(el
, rec
));
5570 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5579 ocfs2_free_path(path
);
5584 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5585 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5586 * number to reserve some extra blocks, and it only handles meta
5589 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5590 * and punching holes.
5592 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode
*inode
,
5593 struct ocfs2_extent_tree
*et
,
5594 u32 extents_to_split
,
5595 struct ocfs2_alloc_context
**ac
,
5598 int ret
= 0, num_free_extents
;
5599 unsigned int max_recs_needed
= 2 * extents_to_split
;
5600 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5604 num_free_extents
= ocfs2_num_free_extents(osb
, et
);
5605 if (num_free_extents
< 0) {
5606 ret
= num_free_extents
;
5611 if (!num_free_extents
||
5612 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
))
5613 extra_blocks
+= ocfs2_extend_meta_needed(et
->et_root_el
);
5616 ret
= ocfs2_reserve_new_metadata_blocks(osb
, extra_blocks
, ac
);
5627 ocfs2_free_alloc_context(*ac
);
5635 int ocfs2_remove_btree_range(struct inode
*inode
,
5636 struct ocfs2_extent_tree
*et
,
5637 u32 cpos
, u32 phys_cpos
, u32 len
, int flags
,
5638 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5641 int ret
, credits
= 0, extra_blocks
= 0;
5642 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5643 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5644 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5646 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5647 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
5649 if ((flags
& OCFS2_EXT_REFCOUNTED
) && len
) {
5650 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
&
5651 OCFS2_HAS_REFCOUNT_FL
));
5653 ret
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
5660 ret
= ocfs2_prepare_refcount_change_for_del(inode
,
5672 ret
= ocfs2_reserve_blocks_for_rec_trunc(inode
, et
, 1, &meta_ac
,
5679 mutex_lock(&tl_inode
->i_mutex
);
5681 if (ocfs2_truncate_log_needs_flush(osb
)) {
5682 ret
= __ocfs2_flush_truncate_log(osb
);
5689 handle
= ocfs2_start_trans(osb
,
5690 ocfs2_remove_extent_credits(osb
->sb
) + credits
);
5691 if (IS_ERR(handle
)) {
5692 ret
= PTR_ERR(handle
);
5697 ret
= ocfs2_et_root_journal_access(handle
, et
,
5698 OCFS2_JOURNAL_ACCESS_WRITE
);
5704 dquot_free_space_nodirty(inode
,
5705 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5707 ret
= ocfs2_remove_extent(handle
, et
, cpos
, len
, meta_ac
, dealloc
);
5713 ocfs2_et_update_clusters(et
, -len
);
5715 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5718 if (flags
& OCFS2_EXT_REFCOUNTED
)
5719 ret
= ocfs2_decrease_refcount(inode
, handle
,
5720 ocfs2_blocks_to_clusters(osb
->sb
,
5725 ret
= ocfs2_truncate_log_append(osb
, handle
,
5733 ocfs2_commit_trans(osb
, handle
);
5735 mutex_unlock(&tl_inode
->i_mutex
);
5738 ocfs2_free_alloc_context(meta_ac
);
5741 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
5746 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5748 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5749 struct ocfs2_dinode
*di
;
5750 struct ocfs2_truncate_log
*tl
;
5752 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5753 tl
= &di
->id2
.i_dealloc
;
5755 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5756 "slot %d, invalid truncate log parameters: used = "
5757 "%u, count = %u\n", osb
->slot_num
,
5758 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5759 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5762 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5763 unsigned int new_start
)
5765 unsigned int tail_index
;
5766 unsigned int current_tail
;
5768 /* No records, nothing to coalesce */
5769 if (!le16_to_cpu(tl
->tl_used
))
5772 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5773 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5774 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5776 return current_tail
== new_start
;
5779 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5782 unsigned int num_clusters
)
5785 unsigned int start_cluster
, tl_count
;
5786 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5787 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5788 struct ocfs2_dinode
*di
;
5789 struct ocfs2_truncate_log
*tl
;
5791 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5793 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5795 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5797 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5798 * by the underlying call to ocfs2_read_inode_block(), so any
5799 * corruption is a code bug */
5800 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5802 tl
= &di
->id2
.i_dealloc
;
5803 tl_count
= le16_to_cpu(tl
->tl_count
);
5804 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5806 "Truncate record count on #%llu invalid "
5807 "wanted %u, actual %u\n",
5808 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5809 ocfs2_truncate_recs_per_inode(osb
->sb
),
5810 le16_to_cpu(tl
->tl_count
));
5812 /* Caller should have known to flush before calling us. */
5813 index
= le16_to_cpu(tl
->tl_used
);
5814 if (index
>= tl_count
) {
5820 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5821 OCFS2_JOURNAL_ACCESS_WRITE
);
5827 trace_ocfs2_truncate_log_append(
5828 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
,
5829 start_cluster
, num_clusters
);
5830 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5832 * Move index back to the record we are coalescing with.
5833 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5837 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5838 trace_ocfs2_truncate_log_append(
5839 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5840 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5843 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5844 tl
->tl_used
= cpu_to_le16(index
+ 1);
5846 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5848 ocfs2_journal_dirty(handle
, tl_bh
);
5850 osb
->truncated_clusters
+= num_clusters
;
5855 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5857 struct inode
*data_alloc_inode
,
5858 struct buffer_head
*data_alloc_bh
)
5862 unsigned int num_clusters
;
5864 struct ocfs2_truncate_rec rec
;
5865 struct ocfs2_dinode
*di
;
5866 struct ocfs2_truncate_log
*tl
;
5867 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5868 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5870 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5871 tl
= &di
->id2
.i_dealloc
;
5872 i
= le16_to_cpu(tl
->tl_used
) - 1;
5874 /* Caller has given us at least enough credits to
5875 * update the truncate log dinode */
5876 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5877 OCFS2_JOURNAL_ACCESS_WRITE
);
5883 tl
->tl_used
= cpu_to_le16(i
);
5885 ocfs2_journal_dirty(handle
, tl_bh
);
5887 /* TODO: Perhaps we can calculate the bulk of the
5888 * credits up front rather than extending like
5890 status
= ocfs2_extend_trans(handle
,
5891 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5897 rec
= tl
->tl_recs
[i
];
5898 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5899 le32_to_cpu(rec
.t_start
));
5900 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5902 /* if start_blk is not set, we ignore the record as
5905 trace_ocfs2_replay_truncate_records(
5906 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5907 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5909 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5910 data_alloc_bh
, start_blk
,
5920 osb
->truncated_clusters
= 0;
5926 /* Expects you to already be holding tl_inode->i_mutex */
5927 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5930 unsigned int num_to_flush
;
5932 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5933 struct inode
*data_alloc_inode
= NULL
;
5934 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5935 struct buffer_head
*data_alloc_bh
= NULL
;
5936 struct ocfs2_dinode
*di
;
5937 struct ocfs2_truncate_log
*tl
;
5939 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5941 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5943 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5944 * by the underlying call to ocfs2_read_inode_block(), so any
5945 * corruption is a code bug */
5946 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5948 tl
= &di
->id2
.i_dealloc
;
5949 num_to_flush
= le16_to_cpu(tl
->tl_used
);
5950 trace_ocfs2_flush_truncate_log(
5951 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5953 if (!num_to_flush
) {
5958 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
5959 GLOBAL_BITMAP_SYSTEM_INODE
,
5960 OCFS2_INVALID_SLOT
);
5961 if (!data_alloc_inode
) {
5963 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
5967 mutex_lock(&data_alloc_inode
->i_mutex
);
5969 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
5975 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5976 if (IS_ERR(handle
)) {
5977 status
= PTR_ERR(handle
);
5982 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
5987 ocfs2_commit_trans(osb
, handle
);
5990 brelse(data_alloc_bh
);
5991 ocfs2_inode_unlock(data_alloc_inode
, 1);
5994 mutex_unlock(&data_alloc_inode
->i_mutex
);
5995 iput(data_alloc_inode
);
6001 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
6004 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6006 mutex_lock(&tl_inode
->i_mutex
);
6007 status
= __ocfs2_flush_truncate_log(osb
);
6008 mutex_unlock(&tl_inode
->i_mutex
);
6013 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
6016 struct ocfs2_super
*osb
=
6017 container_of(work
, struct ocfs2_super
,
6018 osb_truncate_log_wq
.work
);
6020 status
= ocfs2_flush_truncate_log(osb
);
6024 ocfs2_init_steal_slots(osb
);
6027 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6028 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
6031 if (osb
->osb_tl_inode
) {
6032 /* We want to push off log flushes while truncates are
6035 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6037 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
6038 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
6042 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
6044 struct inode
**tl_inode
,
6045 struct buffer_head
**tl_bh
)
6048 struct inode
*inode
= NULL
;
6049 struct buffer_head
*bh
= NULL
;
6051 inode
= ocfs2_get_system_file_inode(osb
,
6052 TRUNCATE_LOG_SYSTEM_INODE
,
6056 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
6060 status
= ocfs2_read_inode_block(inode
, &bh
);
6073 /* called during the 1st stage of node recovery. we stamp a clean
6074 * truncate log and pass back a copy for processing later. if the
6075 * truncate log does not require processing, a *tl_copy is set to
6077 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
6079 struct ocfs2_dinode
**tl_copy
)
6082 struct inode
*tl_inode
= NULL
;
6083 struct buffer_head
*tl_bh
= NULL
;
6084 struct ocfs2_dinode
*di
;
6085 struct ocfs2_truncate_log
*tl
;
6089 trace_ocfs2_begin_truncate_log_recovery(slot_num
);
6091 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
6097 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6099 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6100 * validated by the underlying call to ocfs2_read_inode_block(),
6101 * so any corruption is a code bug */
6102 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6104 tl
= &di
->id2
.i_dealloc
;
6105 if (le16_to_cpu(tl
->tl_used
)) {
6106 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl
->tl_used
));
6108 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
6115 /* Assuming the write-out below goes well, this copy
6116 * will be passed back to recovery for processing. */
6117 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
6119 /* All we need to do to clear the truncate log is set
6123 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
6124 status
= ocfs2_write_block(osb
, tl_bh
, INODE_CACHE(tl_inode
));
6136 if (status
< 0 && (*tl_copy
)) {
6145 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
6146 struct ocfs2_dinode
*tl_copy
)
6150 unsigned int clusters
, num_recs
, start_cluster
;
6153 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6154 struct ocfs2_truncate_log
*tl
;
6156 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
6157 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
6161 tl
= &tl_copy
->id2
.i_dealloc
;
6162 num_recs
= le16_to_cpu(tl
->tl_used
);
6163 trace_ocfs2_complete_truncate_log_recovery(
6164 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
),
6167 mutex_lock(&tl_inode
->i_mutex
);
6168 for(i
= 0; i
< num_recs
; i
++) {
6169 if (ocfs2_truncate_log_needs_flush(osb
)) {
6170 status
= __ocfs2_flush_truncate_log(osb
);
6177 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6178 if (IS_ERR(handle
)) {
6179 status
= PTR_ERR(handle
);
6184 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
6185 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
6186 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
6188 status
= ocfs2_truncate_log_append(osb
, handle
,
6189 start_blk
, clusters
);
6190 ocfs2_commit_trans(osb
, handle
);
6198 mutex_unlock(&tl_inode
->i_mutex
);
6203 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
6206 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6209 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6210 flush_workqueue(ocfs2_wq
);
6212 status
= ocfs2_flush_truncate_log(osb
);
6216 brelse(osb
->osb_tl_bh
);
6217 iput(osb
->osb_tl_inode
);
6221 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
6224 struct inode
*tl_inode
= NULL
;
6225 struct buffer_head
*tl_bh
= NULL
;
6227 status
= ocfs2_get_truncate_log_info(osb
,
6234 /* ocfs2_truncate_log_shutdown keys on the existence of
6235 * osb->osb_tl_inode so we don't set any of the osb variables
6236 * until we're sure all is well. */
6237 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
6238 ocfs2_truncate_log_worker
);
6239 osb
->osb_tl_bh
= tl_bh
;
6240 osb
->osb_tl_inode
= tl_inode
;
6246 * Delayed de-allocation of suballocator blocks.
6248 * Some sets of block de-allocations might involve multiple suballocator inodes.
6250 * The locking for this can get extremely complicated, especially when
6251 * the suballocator inodes to delete from aren't known until deep
6252 * within an unrelated codepath.
6254 * ocfs2_extent_block structures are a good example of this - an inode
6255 * btree could have been grown by any number of nodes each allocating
6256 * out of their own suballoc inode.
6258 * These structures allow the delay of block de-allocation until a
6259 * later time, when locking of multiple cluster inodes won't cause
6264 * Describe a single bit freed from a suballocator. For the block
6265 * suballocators, it represents one block. For the global cluster
6266 * allocator, it represents some clusters and free_bit indicates
6269 struct ocfs2_cached_block_free
{
6270 struct ocfs2_cached_block_free
*free_next
;
6273 unsigned int free_bit
;
6276 struct ocfs2_per_slot_free_list
{
6277 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6280 struct ocfs2_cached_block_free
*f_first
;
6283 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6286 struct ocfs2_cached_block_free
*head
)
6291 struct inode
*inode
;
6292 struct buffer_head
*di_bh
= NULL
;
6293 struct ocfs2_cached_block_free
*tmp
;
6295 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6302 mutex_lock(&inode
->i_mutex
);
6304 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6310 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6311 if (IS_ERR(handle
)) {
6312 ret
= PTR_ERR(handle
);
6319 bg_blkno
= head
->free_bg
;
6321 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6323 trace_ocfs2_free_cached_blocks(
6324 (unsigned long long)head
->free_blk
, head
->free_bit
);
6326 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6327 head
->free_bit
, bg_blkno
, 1);
6333 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
6340 head
= head
->free_next
;
6345 ocfs2_commit_trans(osb
, handle
);
6348 ocfs2_inode_unlock(inode
, 1);
6351 mutex_unlock(&inode
->i_mutex
);
6355 /* Premature exit may have left some dangling items. */
6357 head
= head
->free_next
;
6364 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6365 u64 blkno
, unsigned int bit
)
6368 struct ocfs2_cached_block_free
*item
;
6370 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6377 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno
, bit
);
6379 item
->free_blk
= blkno
;
6380 item
->free_bit
= bit
;
6381 item
->free_next
= ctxt
->c_global_allocator
;
6383 ctxt
->c_global_allocator
= item
;
6387 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6388 struct ocfs2_cached_block_free
*head
)
6390 struct ocfs2_cached_block_free
*tmp
;
6391 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6395 mutex_lock(&tl_inode
->i_mutex
);
6398 if (ocfs2_truncate_log_needs_flush(osb
)) {
6399 ret
= __ocfs2_flush_truncate_log(osb
);
6406 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6407 if (IS_ERR(handle
)) {
6408 ret
= PTR_ERR(handle
);
6413 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6416 ocfs2_commit_trans(osb
, handle
);
6418 head
= head
->free_next
;
6427 mutex_unlock(&tl_inode
->i_mutex
);
6430 /* Premature exit may have left some dangling items. */
6432 head
= head
->free_next
;
6439 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6440 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6443 struct ocfs2_per_slot_free_list
*fl
;
6448 while (ctxt
->c_first_suballocator
) {
6449 fl
= ctxt
->c_first_suballocator
;
6452 trace_ocfs2_run_deallocs(fl
->f_inode_type
,
6454 ret2
= ocfs2_free_cached_blocks(osb
,
6464 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6468 if (ctxt
->c_global_allocator
) {
6469 ret2
= ocfs2_free_cached_clusters(osb
,
6470 ctxt
->c_global_allocator
);
6476 ctxt
->c_global_allocator
= NULL
;
6482 static struct ocfs2_per_slot_free_list
*
6483 ocfs2_find_per_slot_free_list(int type
,
6485 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6487 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6490 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6493 fl
= fl
->f_next_suballocator
;
6496 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6498 fl
->f_inode_type
= type
;
6501 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6503 ctxt
->c_first_suballocator
= fl
;
6508 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6509 int type
, int slot
, u64 suballoc
,
6510 u64 blkno
, unsigned int bit
)
6513 struct ocfs2_per_slot_free_list
*fl
;
6514 struct ocfs2_cached_block_free
*item
;
6516 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6523 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6530 trace_ocfs2_cache_block_dealloc(type
, slot
,
6531 (unsigned long long)suballoc
,
6532 (unsigned long long)blkno
, bit
);
6534 item
->free_bg
= suballoc
;
6535 item
->free_blk
= blkno
;
6536 item
->free_bit
= bit
;
6537 item
->free_next
= fl
->f_first
;
6546 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6547 struct ocfs2_extent_block
*eb
)
6549 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6550 le16_to_cpu(eb
->h_suballoc_slot
),
6551 le64_to_cpu(eb
->h_suballoc_loc
),
6552 le64_to_cpu(eb
->h_blkno
),
6553 le16_to_cpu(eb
->h_suballoc_bit
));
6556 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6558 set_buffer_uptodate(bh
);
6559 mark_buffer_dirty(bh
);
6563 void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6564 unsigned int from
, unsigned int to
,
6565 struct page
*page
, int zero
, u64
*phys
)
6567 int ret
, partial
= 0;
6569 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6574 zero_user_segment(page
, from
, to
);
6577 * Need to set the buffers we zero'd into uptodate
6578 * here if they aren't - ocfs2_map_page_blocks()
6579 * might've skipped some
6581 ret
= walk_page_buffers(handle
, page_buffers(page
),
6586 else if (ocfs2_should_order_data(inode
)) {
6587 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
6593 SetPageUptodate(page
);
6595 flush_dcache_page(page
);
6598 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6599 loff_t end
, struct page
**pages
,
6600 int numpages
, u64 phys
, handle_t
*handle
)
6604 unsigned int from
, to
= PAGE_CACHE_SIZE
;
6605 struct super_block
*sb
= inode
->i_sb
;
6607 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6612 to
= PAGE_CACHE_SIZE
;
6613 for(i
= 0; i
< numpages
; i
++) {
6616 from
= start
& (PAGE_CACHE_SIZE
- 1);
6617 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
6618 to
= end
& (PAGE_CACHE_SIZE
- 1);
6620 BUG_ON(from
> PAGE_CACHE_SIZE
);
6621 BUG_ON(to
> PAGE_CACHE_SIZE
);
6623 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6626 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
6630 ocfs2_unlock_and_free_pages(pages
, numpages
);
6633 int ocfs2_grab_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6634 struct page
**pages
, int *num
)
6636 int numpages
, ret
= 0;
6637 struct address_space
*mapping
= inode
->i_mapping
;
6638 unsigned long index
;
6639 loff_t last_page_bytes
;
6641 BUG_ON(start
> end
);
6644 last_page_bytes
= PAGE_ALIGN(end
);
6645 index
= start
>> PAGE_CACHE_SHIFT
;
6647 pages
[numpages
] = find_or_create_page(mapping
, index
, GFP_NOFS
);
6648 if (!pages
[numpages
]) {
6656 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
6661 ocfs2_unlock_and_free_pages(pages
, numpages
);
6670 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6671 struct page
**pages
, int *num
)
6673 struct super_block
*sb
= inode
->i_sb
;
6675 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6676 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6678 return ocfs2_grab_pages(inode
, start
, end
, pages
, num
);
6682 * Zero the area past i_size but still within an allocated
6683 * cluster. This avoids exposing nonzero data on subsequent file
6686 * We need to call this before i_size is updated on the inode because
6687 * otherwise block_write_full_page() will skip writeout of pages past
6688 * i_size. The new_i_size parameter is passed for this reason.
6690 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6691 u64 range_start
, u64 range_end
)
6693 int ret
= 0, numpages
;
6694 struct page
**pages
= NULL
;
6696 unsigned int ext_flags
;
6697 struct super_block
*sb
= inode
->i_sb
;
6700 * File systems which don't support sparse files zero on every
6703 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6706 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6707 sizeof(struct page
*), GFP_NOFS
);
6708 if (pages
== NULL
) {
6714 if (range_start
== range_end
)
6717 ret
= ocfs2_extent_map_get_blocks(inode
,
6718 range_start
>> sb
->s_blocksize_bits
,
6719 &phys
, NULL
, &ext_flags
);
6726 * Tail is a hole, or is marked unwritten. In either case, we
6727 * can count on read and write to return/push zero's.
6729 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6732 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6739 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6740 numpages
, phys
, handle
);
6743 * Initiate writeout of the pages we zero'd here. We don't
6744 * wait on them - the truncate_inode_pages() call later will
6747 ret
= filemap_fdatawrite_range(inode
->i_mapping
, range_start
,
6759 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
6760 struct ocfs2_dinode
*di
)
6762 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6763 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
6765 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
6766 memset(&di
->id2
, 0, blocksize
-
6767 offsetof(struct ocfs2_dinode
, id2
) -
6770 memset(&di
->id2
, 0, blocksize
-
6771 offsetof(struct ocfs2_dinode
, id2
));
6774 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6775 struct ocfs2_dinode
*di
)
6777 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6778 di
->id2
.i_list
.l_tree_depth
= 0;
6779 di
->id2
.i_list
.l_next_free_rec
= 0;
6780 di
->id2
.i_list
.l_count
= cpu_to_le16(
6781 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
6784 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6786 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6787 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6789 spin_lock(&oi
->ip_lock
);
6790 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6791 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6792 spin_unlock(&oi
->ip_lock
);
6795 * We clear the entire i_data structure here so that all
6796 * fields can be properly initialized.
6798 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6800 idata
->id_count
= cpu_to_le16(
6801 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
6804 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6805 struct buffer_head
*di_bh
)
6807 int ret
, i
, has_data
, num_pages
= 0;
6809 u64
uninitialized_var(block
);
6810 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6811 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6812 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6813 struct ocfs2_alloc_context
*data_ac
= NULL
;
6814 struct page
**pages
= NULL
;
6815 loff_t end
= osb
->s_clustersize
;
6816 struct ocfs2_extent_tree et
;
6819 has_data
= i_size_read(inode
) ? 1 : 0;
6822 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6823 sizeof(struct page
*), GFP_NOFS
);
6824 if (pages
== NULL
) {
6830 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6837 handle
= ocfs2_start_trans(osb
,
6838 ocfs2_inline_to_extents_credits(osb
->sb
));
6839 if (IS_ERR(handle
)) {
6840 ret
= PTR_ERR(handle
);
6845 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
6846 OCFS2_JOURNAL_ACCESS_WRITE
);
6854 unsigned int page_end
;
6857 ret
= dquot_alloc_space_nodirty(inode
,
6858 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6863 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
6865 ret
= ocfs2_claim_clusters(handle
, data_ac
, 1, &bit_off
,
6873 * Save two copies, one for insert, and one that can
6874 * be changed by ocfs2_map_and_dirty_page() below.
6876 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
6879 * Non sparse file systems zero on extend, so no need
6882 if (!ocfs2_sparse_alloc(osb
) &&
6883 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
6884 end
= PAGE_CACHE_SIZE
;
6886 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
6893 * This should populate the 1st page for us and mark
6896 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
6902 page_end
= PAGE_CACHE_SIZE
;
6903 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
6904 page_end
= osb
->s_clustersize
;
6906 for (i
= 0; i
< num_pages
; i
++)
6907 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
6908 pages
[i
], i
> 0, &phys
);
6911 spin_lock(&oi
->ip_lock
);
6912 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
6913 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6914 spin_unlock(&oi
->ip_lock
);
6916 ocfs2_dinode_new_extent_list(inode
, di
);
6918 ocfs2_journal_dirty(handle
, di_bh
);
6922 * An error at this point should be extremely rare. If
6923 * this proves to be false, we could always re-build
6924 * the in-inode data from our pages.
6926 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
6927 ret
= ocfs2_insert_extent(handle
, &et
, 0, block
, 1, 0, NULL
);
6933 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6937 if (ret
< 0 && did_quota
)
6938 dquot_free_space_nodirty(inode
,
6939 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6941 ocfs2_commit_trans(osb
, handle
);
6945 ocfs2_free_alloc_context(data_ac
);
6949 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6957 * It is expected, that by the time you call this function,
6958 * inode->i_size and fe->i_size have been adjusted.
6960 * WARNING: This will kfree the truncate context
6962 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
6963 struct inode
*inode
,
6964 struct buffer_head
*di_bh
)
6966 int status
= 0, i
, flags
= 0;
6967 u32 new_highest_cpos
, range
, trunc_cpos
, trunc_len
, phys_cpos
, coff
;
6969 struct ocfs2_extent_list
*el
;
6970 struct ocfs2_extent_rec
*rec
;
6971 struct ocfs2_path
*path
= NULL
;
6972 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6973 struct ocfs2_extent_list
*root_el
= &(di
->id2
.i_list
);
6974 u64 refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
6975 struct ocfs2_extent_tree et
;
6976 struct ocfs2_cached_dealloc_ctxt dealloc
;
6978 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
6979 ocfs2_init_dealloc_ctxt(&dealloc
);
6981 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
6982 i_size_read(inode
));
6984 path
= ocfs2_new_path(di_bh
, &di
->id2
.i_list
,
6985 ocfs2_journal_access_di
);
6992 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
6996 * Check that we still have allocation to delete.
6998 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7004 * Truncate always works against the rightmost tree branch.
7006 status
= ocfs2_find_path(INODE_CACHE(inode
), path
, UINT_MAX
);
7012 trace_ocfs2_commit_truncate(
7013 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7015 OCFS2_I(inode
)->ip_clusters
,
7016 path
->p_tree_depth
);
7019 * By now, el will point to the extent list on the bottom most
7020 * portion of this tree. Only the tail record is considered in
7023 * We handle the following cases, in order:
7024 * - empty extent: delete the remaining branch
7025 * - remove the entire record
7026 * - remove a partial record
7027 * - no record needs to be removed (truncate has completed)
7029 el
= path_leaf_el(path
);
7030 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7031 ocfs2_error(inode
->i_sb
,
7032 "Inode %llu has empty extent block at %llu\n",
7033 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7034 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7039 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7040 rec
= &el
->l_recs
[i
];
7041 flags
= rec
->e_flags
;
7042 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
7044 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
7046 * Lower levels depend on this never happening, but it's best
7047 * to check it up here before changing the tree.
7049 if (root_el
->l_tree_depth
&& rec
->e_int_clusters
== 0) {
7050 ocfs2_error(inode
->i_sb
, "Inode %lu has an empty "
7051 "extent record, depth %u\n", inode
->i_ino
,
7052 le16_to_cpu(root_el
->l_tree_depth
));
7056 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7059 } else if (le32_to_cpu(rec
->e_cpos
) >= new_highest_cpos
) {
7061 * Truncate entire record.
7063 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7064 trunc_len
= ocfs2_rec_clusters(el
, rec
);
7065 blkno
= le64_to_cpu(rec
->e_blkno
);
7066 } else if (range
> new_highest_cpos
) {
7068 * Partial truncate. it also should be
7069 * the last truncate we're doing.
7071 trunc_cpos
= new_highest_cpos
;
7072 trunc_len
= range
- new_highest_cpos
;
7073 coff
= new_highest_cpos
- le32_to_cpu(rec
->e_cpos
);
7074 blkno
= le64_to_cpu(rec
->e_blkno
) +
7075 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
7078 * Truncate completed, leave happily.
7084 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
7086 status
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
7087 phys_cpos
, trunc_len
, flags
, &dealloc
,
7094 ocfs2_reinit_path(path
, 1);
7097 * The check above will catch the case where we've truncated
7098 * away all allocation.
7104 ocfs2_schedule_truncate_log_flush(osb
, 1);
7106 ocfs2_run_deallocs(osb
, &dealloc
);
7108 ocfs2_free_path(path
);
7114 * 'start' is inclusive, 'end' is not.
7116 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7117 unsigned int start
, unsigned int end
, int trunc
)
7120 unsigned int numbytes
;
7122 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7123 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7124 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7126 if (end
> i_size_read(inode
))
7127 end
= i_size_read(inode
);
7129 BUG_ON(start
>= end
);
7131 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7132 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7133 !ocfs2_supports_inline_data(osb
)) {
7134 ocfs2_error(inode
->i_sb
,
7135 "Inline data flags for inode %llu don't agree! "
7136 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7137 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7138 le16_to_cpu(di
->i_dyn_features
),
7139 OCFS2_I(inode
)->ip_dyn_features
,
7140 osb
->s_feature_incompat
);
7145 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7146 if (IS_ERR(handle
)) {
7147 ret
= PTR_ERR(handle
);
7152 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7153 OCFS2_JOURNAL_ACCESS_WRITE
);
7159 numbytes
= end
- start
;
7160 memset(idata
->id_data
+ start
, 0, numbytes
);
7163 * No need to worry about the data page here - it's been
7164 * truncated already and inline data doesn't need it for
7165 * pushing zero's to disk, so we'll let readpage pick it up
7169 i_size_write(inode
, start
);
7170 di
->i_size
= cpu_to_le64(start
);
7173 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7174 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
7176 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7177 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7179 ocfs2_journal_dirty(handle
, di_bh
);
7182 ocfs2_commit_trans(osb
, handle
);