2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
21 #include <asm/pgalloc.h>
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
31 unsigned long transparent_hugepage_flags __read_mostly
=
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
43 static unsigned int khugepaged_pages_collapsed
;
44 static unsigned int khugepaged_full_scans
;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
48 static struct task_struct
*khugepaged_thread __read_mostly
;
49 static DEFINE_MUTEX(khugepaged_mutex
);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
57 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
59 static int khugepaged(void *none
);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head
*mm_slots_hash __read_mostly
;
66 static struct kmem_cache
*mm_slot_cache __read_mostly
;
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
75 struct hlist_node hash
;
76 struct list_head mm_node
;
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
86 * There is only the one khugepaged_scan instance of this cursor structure.
88 struct khugepaged_scan
{
89 struct list_head mm_head
;
90 struct mm_slot
*mm_slot
;
91 unsigned long address
;
93 static struct khugepaged_scan khugepaged_scan
= {
94 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
98 static int set_recommended_min_free_kbytes(void)
102 unsigned long recommended_min
;
103 extern int min_free_kbytes
;
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG
,
106 &transparent_hugepage_flags
) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
108 &transparent_hugepage_flags
))
111 for_each_populated_zone(zone
)
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
123 recommended_min
+= pageblock_nr_pages
* nr_zones
*
124 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min
= min(recommended_min
,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min
<<= (PAGE_SHIFT
-10);
131 if (recommended_min
> min_free_kbytes
)
132 min_free_kbytes
= recommended_min
;
133 setup_per_zone_wmarks();
136 late_initcall(set_recommended_min_free_kbytes
);
138 static int start_khugepaged(void)
141 if (khugepaged_enabled()) {
143 if (unlikely(!mm_slot_cache
|| !mm_slots_hash
)) {
147 mutex_lock(&khugepaged_mutex
);
148 if (!khugepaged_thread
)
149 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
151 if (unlikely(IS_ERR(khugepaged_thread
))) {
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err
= PTR_ERR(khugepaged_thread
);
155 khugepaged_thread
= NULL
;
157 wakeup
= !list_empty(&khugepaged_scan
.mm_head
);
158 mutex_unlock(&khugepaged_mutex
);
160 wake_up_interruptible(&khugepaged_wait
);
162 set_recommended_min_free_kbytes();
165 wake_up_interruptible(&khugepaged_wait
);
172 static ssize_t
double_flag_show(struct kobject
*kobj
,
173 struct kobj_attribute
*attr
, char *buf
,
174 enum transparent_hugepage_flag enabled
,
175 enum transparent_hugepage_flag req_madv
)
177 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
178 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
179 return sprintf(buf
, "[always] madvise never\n");
180 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
181 return sprintf(buf
, "always [madvise] never\n");
183 return sprintf(buf
, "always madvise [never]\n");
185 static ssize_t
double_flag_store(struct kobject
*kobj
,
186 struct kobj_attribute
*attr
,
187 const char *buf
, size_t count
,
188 enum transparent_hugepage_flag enabled
,
189 enum transparent_hugepage_flag req_madv
)
191 if (!memcmp("always", buf
,
192 min(sizeof("always")-1, count
))) {
193 set_bit(enabled
, &transparent_hugepage_flags
);
194 clear_bit(req_madv
, &transparent_hugepage_flags
);
195 } else if (!memcmp("madvise", buf
,
196 min(sizeof("madvise")-1, count
))) {
197 clear_bit(enabled
, &transparent_hugepage_flags
);
198 set_bit(req_madv
, &transparent_hugepage_flags
);
199 } else if (!memcmp("never", buf
,
200 min(sizeof("never")-1, count
))) {
201 clear_bit(enabled
, &transparent_hugepage_flags
);
202 clear_bit(req_madv
, &transparent_hugepage_flags
);
209 static ssize_t
enabled_show(struct kobject
*kobj
,
210 struct kobj_attribute
*attr
, char *buf
)
212 return double_flag_show(kobj
, attr
, buf
,
213 TRANSPARENT_HUGEPAGE_FLAG
,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
216 static ssize_t
enabled_store(struct kobject
*kobj
,
217 struct kobj_attribute
*attr
,
218 const char *buf
, size_t count
)
222 ret
= double_flag_store(kobj
, attr
, buf
, count
,
223 TRANSPARENT_HUGEPAGE_FLAG
,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
227 int err
= start_khugepaged();
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG
,
234 &transparent_hugepage_flags
) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
236 &transparent_hugepage_flags
)))
237 set_recommended_min_free_kbytes();
241 static struct kobj_attribute enabled_attr
=
242 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
244 static ssize_t
single_flag_show(struct kobject
*kobj
,
245 struct kobj_attribute
*attr
, char *buf
,
246 enum transparent_hugepage_flag flag
)
248 return sprintf(buf
, "%d\n",
249 !!test_bit(flag
, &transparent_hugepage_flags
));
252 static ssize_t
single_flag_store(struct kobject
*kobj
,
253 struct kobj_attribute
*attr
,
254 const char *buf
, size_t count
,
255 enum transparent_hugepage_flag flag
)
260 ret
= kstrtoul(buf
, 10, &value
);
267 set_bit(flag
, &transparent_hugepage_flags
);
269 clear_bit(flag
, &transparent_hugepage_flags
);
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
279 static ssize_t
defrag_show(struct kobject
*kobj
,
280 struct kobj_attribute
*attr
, char *buf
)
282 return double_flag_show(kobj
, attr
, buf
,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
286 static ssize_t
defrag_store(struct kobject
*kobj
,
287 struct kobj_attribute
*attr
,
288 const char *buf
, size_t count
)
290 return double_flag_store(kobj
, attr
, buf
, count
,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
294 static struct kobj_attribute defrag_attr
=
295 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t
debug_cow_show(struct kobject
*kobj
,
299 struct kobj_attribute
*attr
, char *buf
)
301 return single_flag_show(kobj
, attr
, buf
,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
304 static ssize_t
debug_cow_store(struct kobject
*kobj
,
305 struct kobj_attribute
*attr
,
306 const char *buf
, size_t count
)
308 return single_flag_store(kobj
, attr
, buf
, count
,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
311 static struct kobj_attribute debug_cow_attr
=
312 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
313 #endif /* CONFIG_DEBUG_VM */
315 static struct attribute
*hugepage_attr
[] = {
318 #ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr
.attr
,
324 static struct attribute_group hugepage_attr_group
= {
325 .attrs
= hugepage_attr
,
328 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
329 struct kobj_attribute
*attr
,
332 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
335 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
336 struct kobj_attribute
*attr
,
337 const char *buf
, size_t count
)
342 err
= strict_strtoul(buf
, 10, &msecs
);
343 if (err
|| msecs
> UINT_MAX
)
346 khugepaged_scan_sleep_millisecs
= msecs
;
347 wake_up_interruptible(&khugepaged_wait
);
351 static struct kobj_attribute scan_sleep_millisecs_attr
=
352 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
353 scan_sleep_millisecs_store
);
355 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
356 struct kobj_attribute
*attr
,
359 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
362 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
363 struct kobj_attribute
*attr
,
364 const char *buf
, size_t count
)
369 err
= strict_strtoul(buf
, 10, &msecs
);
370 if (err
|| msecs
> UINT_MAX
)
373 khugepaged_alloc_sleep_millisecs
= msecs
;
374 wake_up_interruptible(&khugepaged_wait
);
378 static struct kobj_attribute alloc_sleep_millisecs_attr
=
379 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
380 alloc_sleep_millisecs_store
);
382 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
383 struct kobj_attribute
*attr
,
386 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
388 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
389 struct kobj_attribute
*attr
,
390 const char *buf
, size_t count
)
395 err
= strict_strtoul(buf
, 10, &pages
);
396 if (err
|| !pages
|| pages
> UINT_MAX
)
399 khugepaged_pages_to_scan
= pages
;
403 static struct kobj_attribute pages_to_scan_attr
=
404 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
405 pages_to_scan_store
);
407 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
408 struct kobj_attribute
*attr
,
411 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
413 static struct kobj_attribute pages_collapsed_attr
=
414 __ATTR_RO(pages_collapsed
);
416 static ssize_t
full_scans_show(struct kobject
*kobj
,
417 struct kobj_attribute
*attr
,
420 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
422 static struct kobj_attribute full_scans_attr
=
423 __ATTR_RO(full_scans
);
425 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
426 struct kobj_attribute
*attr
, char *buf
)
428 return single_flag_show(kobj
, attr
, buf
,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
431 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
432 struct kobj_attribute
*attr
,
433 const char *buf
, size_t count
)
435 return single_flag_store(kobj
, attr
, buf
, count
,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
438 static struct kobj_attribute khugepaged_defrag_attr
=
439 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
440 khugepaged_defrag_store
);
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
450 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
451 struct kobj_attribute
*attr
,
454 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
456 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
457 struct kobj_attribute
*attr
,
458 const char *buf
, size_t count
)
461 unsigned long max_ptes_none
;
463 err
= strict_strtoul(buf
, 10, &max_ptes_none
);
464 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
467 khugepaged_max_ptes_none
= max_ptes_none
;
471 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
472 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
473 khugepaged_max_ptes_none_store
);
475 static struct attribute
*khugepaged_attr
[] = {
476 &khugepaged_defrag_attr
.attr
,
477 &khugepaged_max_ptes_none_attr
.attr
,
478 &pages_to_scan_attr
.attr
,
479 &pages_collapsed_attr
.attr
,
480 &full_scans_attr
.attr
,
481 &scan_sleep_millisecs_attr
.attr
,
482 &alloc_sleep_millisecs_attr
.attr
,
486 static struct attribute_group khugepaged_attr_group
= {
487 .attrs
= khugepaged_attr
,
488 .name
= "khugepaged",
490 #endif /* CONFIG_SYSFS */
492 static int __init
hugepage_init(void)
496 static struct kobject
*hugepage_kobj
;
500 if (!has_transparent_hugepage()) {
501 transparent_hugepage_flags
= 0;
507 hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
508 if (unlikely(!hugepage_kobj
)) {
509 printk(KERN_ERR
"hugepage: failed kobject create\n");
513 err
= sysfs_create_group(hugepage_kobj
, &hugepage_attr_group
);
515 printk(KERN_ERR
"hugepage: failed register hugeage group\n");
519 err
= sysfs_create_group(hugepage_kobj
, &khugepaged_attr_group
);
521 printk(KERN_ERR
"hugepage: failed register hugeage group\n");
526 err
= khugepaged_slab_init();
530 err
= mm_slots_hash_init();
532 khugepaged_slab_free();
537 * By default disable transparent hugepages on smaller systems,
538 * where the extra memory used could hurt more than TLB overhead
539 * is likely to save. The admin can still enable it through /sys.
541 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
542 transparent_hugepage_flags
= 0;
546 set_recommended_min_free_kbytes();
551 module_init(hugepage_init
)
553 static int __init
setup_transparent_hugepage(char *str
)
558 if (!strcmp(str
, "always")) {
559 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
560 &transparent_hugepage_flags
);
561 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
562 &transparent_hugepage_flags
);
564 } else if (!strcmp(str
, "madvise")) {
565 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
566 &transparent_hugepage_flags
);
567 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
568 &transparent_hugepage_flags
);
570 } else if (!strcmp(str
, "never")) {
571 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
572 &transparent_hugepage_flags
);
573 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
574 &transparent_hugepage_flags
);
580 "transparent_hugepage= cannot parse, ignored\n");
583 __setup("transparent_hugepage=", setup_transparent_hugepage
);
585 static void prepare_pmd_huge_pte(pgtable_t pgtable
,
586 struct mm_struct
*mm
)
588 assert_spin_locked(&mm
->page_table_lock
);
591 if (!mm
->pmd_huge_pte
)
592 INIT_LIST_HEAD(&pgtable
->lru
);
594 list_add(&pgtable
->lru
, &mm
->pmd_huge_pte
->lru
);
595 mm
->pmd_huge_pte
= pgtable
;
598 static inline pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
600 if (likely(vma
->vm_flags
& VM_WRITE
))
601 pmd
= pmd_mkwrite(pmd
);
605 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
606 struct vm_area_struct
*vma
,
607 unsigned long haddr
, pmd_t
*pmd
,
613 VM_BUG_ON(!PageCompound(page
));
614 pgtable
= pte_alloc_one(mm
, haddr
);
615 if (unlikely(!pgtable
)) {
616 mem_cgroup_uncharge_page(page
);
621 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
622 __SetPageUptodate(page
);
624 spin_lock(&mm
->page_table_lock
);
625 if (unlikely(!pmd_none(*pmd
))) {
626 spin_unlock(&mm
->page_table_lock
);
627 mem_cgroup_uncharge_page(page
);
629 pte_free(mm
, pgtable
);
632 entry
= mk_pmd(page
, vma
->vm_page_prot
);
633 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
634 entry
= pmd_mkhuge(entry
);
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
641 page_add_new_anon_rmap(page
, vma
, haddr
);
642 set_pmd_at(mm
, haddr
, pmd
, entry
);
643 prepare_pmd_huge_pte(pgtable
, mm
);
644 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
645 spin_unlock(&mm
->page_table_lock
);
651 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
653 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
656 static inline struct page
*alloc_hugepage_vma(int defrag
,
657 struct vm_area_struct
*vma
,
658 unsigned long haddr
, int nd
,
661 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
662 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
666 static inline struct page
*alloc_hugepage(int defrag
)
668 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
673 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
674 unsigned long address
, pmd_t
*pmd
,
678 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
681 if (haddr
>= vma
->vm_start
&& haddr
+ HPAGE_PMD_SIZE
<= vma
->vm_end
) {
682 if (unlikely(anon_vma_prepare(vma
)))
684 if (unlikely(khugepaged_enter(vma
)))
686 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
687 vma
, haddr
, numa_node_id(), 0);
688 if (unlikely(!page
)) {
689 count_vm_event(THP_FAULT_FALLBACK
);
692 count_vm_event(THP_FAULT_ALLOC
);
693 if (unlikely(mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))) {
698 return __do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
, page
);
702 * Use __pte_alloc instead of pte_alloc_map, because we can't
703 * run pte_offset_map on the pmd, if an huge pmd could
704 * materialize from under us from a different thread.
706 if (unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
708 /* if an huge pmd materialized from under us just retry later */
709 if (unlikely(pmd_trans_huge(*pmd
)))
712 * A regular pmd is established and it can't morph into a huge pmd
713 * from under us anymore at this point because we hold the mmap_sem
714 * read mode and khugepaged takes it in write mode. So now it's
715 * safe to run pte_offset_map().
717 pte
= pte_offset_map(pmd
, address
);
718 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
721 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
722 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
723 struct vm_area_struct
*vma
)
725 struct page
*src_page
;
731 pgtable
= pte_alloc_one(dst_mm
, addr
);
732 if (unlikely(!pgtable
))
735 spin_lock(&dst_mm
->page_table_lock
);
736 spin_lock_nested(&src_mm
->page_table_lock
, SINGLE_DEPTH_NESTING
);
740 if (unlikely(!pmd_trans_huge(pmd
))) {
741 pte_free(dst_mm
, pgtable
);
744 if (unlikely(pmd_trans_splitting(pmd
))) {
745 /* split huge page running from under us */
746 spin_unlock(&src_mm
->page_table_lock
);
747 spin_unlock(&dst_mm
->page_table_lock
);
748 pte_free(dst_mm
, pgtable
);
750 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
753 src_page
= pmd_page(pmd
);
754 VM_BUG_ON(!PageHead(src_page
));
756 page_dup_rmap(src_page
);
757 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
759 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
760 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
761 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
762 prepare_pmd_huge_pte(pgtable
, dst_mm
);
766 spin_unlock(&src_mm
->page_table_lock
);
767 spin_unlock(&dst_mm
->page_table_lock
);
772 /* no "address" argument so destroys page coloring of some arch */
773 pgtable_t
get_pmd_huge_pte(struct mm_struct
*mm
)
777 assert_spin_locked(&mm
->page_table_lock
);
780 pgtable
= mm
->pmd_huge_pte
;
781 if (list_empty(&pgtable
->lru
))
782 mm
->pmd_huge_pte
= NULL
;
784 mm
->pmd_huge_pte
= list_entry(pgtable
->lru
.next
,
786 list_del(&pgtable
->lru
);
791 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
792 struct vm_area_struct
*vma
,
793 unsigned long address
,
794 pmd_t
*pmd
, pmd_t orig_pmd
,
803 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
805 if (unlikely(!pages
)) {
810 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
811 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
813 vma
, address
, page_to_nid(page
));
814 if (unlikely(!pages
[i
] ||
815 mem_cgroup_newpage_charge(pages
[i
], mm
,
819 mem_cgroup_uncharge_start();
821 mem_cgroup_uncharge_page(pages
[i
]);
824 mem_cgroup_uncharge_end();
831 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
832 copy_user_highpage(pages
[i
], page
+ i
,
833 haddr
+ PAGE_SIZE
* i
, vma
);
834 __SetPageUptodate(pages
[i
]);
838 spin_lock(&mm
->page_table_lock
);
839 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
841 VM_BUG_ON(!PageHead(page
));
843 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
844 /* leave pmd empty until pte is filled */
846 pgtable
= get_pmd_huge_pte(mm
);
847 pmd_populate(mm
, &_pmd
, pgtable
);
849 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
851 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
852 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
853 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
854 pte
= pte_offset_map(&_pmd
, haddr
);
855 VM_BUG_ON(!pte_none(*pte
));
856 set_pte_at(mm
, haddr
, pte
, entry
);
862 smp_wmb(); /* make pte visible before pmd */
863 pmd_populate(mm
, pmd
, pgtable
);
864 page_remove_rmap(page
);
865 spin_unlock(&mm
->page_table_lock
);
867 ret
|= VM_FAULT_WRITE
;
874 spin_unlock(&mm
->page_table_lock
);
875 mem_cgroup_uncharge_start();
876 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
877 mem_cgroup_uncharge_page(pages
[i
]);
880 mem_cgroup_uncharge_end();
885 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
886 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
889 struct page
*page
, *new_page
;
892 VM_BUG_ON(!vma
->anon_vma
);
893 spin_lock(&mm
->page_table_lock
);
894 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
897 page
= pmd_page(orig_pmd
);
898 VM_BUG_ON(!PageCompound(page
) || !PageHead(page
));
899 haddr
= address
& HPAGE_PMD_MASK
;
900 if (page_mapcount(page
) == 1) {
902 entry
= pmd_mkyoung(orig_pmd
);
903 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
904 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
905 update_mmu_cache(vma
, address
, entry
);
906 ret
|= VM_FAULT_WRITE
;
910 spin_unlock(&mm
->page_table_lock
);
912 if (transparent_hugepage_enabled(vma
) &&
913 !transparent_hugepage_debug_cow())
914 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
915 vma
, haddr
, numa_node_id(), 0);
919 if (unlikely(!new_page
)) {
920 count_vm_event(THP_FAULT_FALLBACK
);
921 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
922 pmd
, orig_pmd
, page
, haddr
);
926 count_vm_event(THP_FAULT_ALLOC
);
928 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
935 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
936 __SetPageUptodate(new_page
);
938 spin_lock(&mm
->page_table_lock
);
940 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
941 mem_cgroup_uncharge_page(new_page
);
945 VM_BUG_ON(!PageHead(page
));
946 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
947 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
948 entry
= pmd_mkhuge(entry
);
949 pmdp_clear_flush_notify(vma
, haddr
, pmd
);
950 page_add_new_anon_rmap(new_page
, vma
, haddr
);
951 set_pmd_at(mm
, haddr
, pmd
, entry
);
952 update_mmu_cache(vma
, address
, entry
);
953 page_remove_rmap(page
);
955 ret
|= VM_FAULT_WRITE
;
958 spin_unlock(&mm
->page_table_lock
);
963 struct page
*follow_trans_huge_pmd(struct mm_struct
*mm
,
968 struct page
*page
= NULL
;
970 assert_spin_locked(&mm
->page_table_lock
);
972 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
975 page
= pmd_page(*pmd
);
976 VM_BUG_ON(!PageHead(page
));
977 if (flags
& FOLL_TOUCH
) {
980 * We should set the dirty bit only for FOLL_WRITE but
981 * for now the dirty bit in the pmd is meaningless.
982 * And if the dirty bit will become meaningful and
983 * we'll only set it with FOLL_WRITE, an atomic
984 * set_bit will be required on the pmd to set the
985 * young bit, instead of the current set_pmd_at.
987 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
988 set_pmd_at(mm
, addr
& HPAGE_PMD_MASK
, pmd
, _pmd
);
990 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
991 VM_BUG_ON(!PageCompound(page
));
992 if (flags
& FOLL_GET
)
999 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1004 spin_lock(&tlb
->mm
->page_table_lock
);
1005 if (likely(pmd_trans_huge(*pmd
))) {
1006 if (unlikely(pmd_trans_splitting(*pmd
))) {
1007 spin_unlock(&tlb
->mm
->page_table_lock
);
1008 wait_split_huge_page(vma
->anon_vma
,
1013 pgtable
= get_pmd_huge_pte(tlb
->mm
);
1014 page
= pmd_page(*pmd
);
1016 page_remove_rmap(page
);
1017 VM_BUG_ON(page_mapcount(page
) < 0);
1018 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1019 VM_BUG_ON(!PageHead(page
));
1020 spin_unlock(&tlb
->mm
->page_table_lock
);
1021 tlb_remove_page(tlb
, page
);
1022 pte_free(tlb
->mm
, pgtable
);
1026 spin_unlock(&tlb
->mm
->page_table_lock
);
1031 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1032 unsigned long addr
, unsigned long end
,
1037 spin_lock(&vma
->vm_mm
->page_table_lock
);
1038 if (likely(pmd_trans_huge(*pmd
))) {
1039 ret
= !pmd_trans_splitting(*pmd
);
1040 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1042 wait_split_huge_page(vma
->anon_vma
, pmd
);
1045 * All logical pages in the range are present
1046 * if backed by a huge page.
1048 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1051 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1056 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1057 unsigned long old_addr
,
1058 unsigned long new_addr
, unsigned long old_end
,
1059 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1064 struct mm_struct
*mm
= vma
->vm_mm
;
1066 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1067 (new_addr
& ~HPAGE_PMD_MASK
) ||
1068 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1069 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1073 * The destination pmd shouldn't be established, free_pgtables()
1074 * should have release it.
1076 if (WARN_ON(!pmd_none(*new_pmd
))) {
1077 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1081 spin_lock(&mm
->page_table_lock
);
1082 if (likely(pmd_trans_huge(*old_pmd
))) {
1083 if (pmd_trans_splitting(*old_pmd
)) {
1084 spin_unlock(&mm
->page_table_lock
);
1085 wait_split_huge_page(vma
->anon_vma
, old_pmd
);
1088 pmd
= pmdp_get_and_clear(mm
, old_addr
, old_pmd
);
1089 VM_BUG_ON(!pmd_none(*new_pmd
));
1090 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1091 spin_unlock(&mm
->page_table_lock
);
1095 spin_unlock(&mm
->page_table_lock
);
1101 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1102 unsigned long addr
, pgprot_t newprot
)
1104 struct mm_struct
*mm
= vma
->vm_mm
;
1107 spin_lock(&mm
->page_table_lock
);
1108 if (likely(pmd_trans_huge(*pmd
))) {
1109 if (unlikely(pmd_trans_splitting(*pmd
))) {
1110 spin_unlock(&mm
->page_table_lock
);
1111 wait_split_huge_page(vma
->anon_vma
, pmd
);
1115 entry
= pmdp_get_and_clear(mm
, addr
, pmd
);
1116 entry
= pmd_modify(entry
, newprot
);
1117 set_pmd_at(mm
, addr
, pmd
, entry
);
1118 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1119 flush_tlb_range(vma
, addr
, addr
+ HPAGE_PMD_SIZE
);
1123 spin_unlock(&vma
->vm_mm
->page_table_lock
);
1128 pmd_t
*page_check_address_pmd(struct page
*page
,
1129 struct mm_struct
*mm
,
1130 unsigned long address
,
1131 enum page_check_address_pmd_flag flag
)
1135 pmd_t
*pmd
, *ret
= NULL
;
1137 if (address
& ~HPAGE_PMD_MASK
)
1140 pgd
= pgd_offset(mm
, address
);
1141 if (!pgd_present(*pgd
))
1144 pud
= pud_offset(pgd
, address
);
1145 if (!pud_present(*pud
))
1148 pmd
= pmd_offset(pud
, address
);
1151 if (pmd_page(*pmd
) != page
)
1154 * split_vma() may create temporary aliased mappings. There is
1155 * no risk as long as all huge pmd are found and have their
1156 * splitting bit set before __split_huge_page_refcount
1157 * runs. Finding the same huge pmd more than once during the
1158 * same rmap walk is not a problem.
1160 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1161 pmd_trans_splitting(*pmd
))
1163 if (pmd_trans_huge(*pmd
)) {
1164 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1165 !pmd_trans_splitting(*pmd
));
1172 static int __split_huge_page_splitting(struct page
*page
,
1173 struct vm_area_struct
*vma
,
1174 unsigned long address
)
1176 struct mm_struct
*mm
= vma
->vm_mm
;
1180 spin_lock(&mm
->page_table_lock
);
1181 pmd
= page_check_address_pmd(page
, mm
, address
,
1182 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
);
1185 * We can't temporarily set the pmd to null in order
1186 * to split it, the pmd must remain marked huge at all
1187 * times or the VM won't take the pmd_trans_huge paths
1188 * and it won't wait on the anon_vma->root->mutex to
1189 * serialize against split_huge_page*.
1191 pmdp_splitting_flush_notify(vma
, address
, pmd
);
1194 spin_unlock(&mm
->page_table_lock
);
1199 static void __split_huge_page_refcount(struct page
*page
)
1202 unsigned long head_index
= page
->index
;
1203 struct zone
*zone
= page_zone(page
);
1207 /* prevent PageLRU to go away from under us, and freeze lru stats */
1208 spin_lock_irq(&zone
->lru_lock
);
1209 compound_lock(page
);
1211 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1212 struct page
*page_tail
= page
+ i
;
1214 /* tail_page->_mapcount cannot change */
1215 BUG_ON(page_mapcount(page_tail
) < 0);
1216 tail_count
+= page_mapcount(page_tail
);
1217 /* check for overflow */
1218 BUG_ON(tail_count
< 0);
1219 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1221 * tail_page->_count is zero and not changing from
1222 * under us. But get_page_unless_zero() may be running
1223 * from under us on the tail_page. If we used
1224 * atomic_set() below instead of atomic_add(), we
1225 * would then run atomic_set() concurrently with
1226 * get_page_unless_zero(), and atomic_set() is
1227 * implemented in C not using locked ops. spin_unlock
1228 * on x86 sometime uses locked ops because of PPro
1229 * errata 66, 92, so unless somebody can guarantee
1230 * atomic_set() here would be safe on all archs (and
1231 * not only on x86), it's safer to use atomic_add().
1233 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1234 &page_tail
->_count
);
1236 /* after clearing PageTail the gup refcount can be released */
1240 * retain hwpoison flag of the poisoned tail page:
1241 * fix for the unsuitable process killed on Guest Machine(KVM)
1242 * by the memory-failure.
1244 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1245 page_tail
->flags
|= (page
->flags
&
1246 ((1L << PG_referenced
) |
1247 (1L << PG_swapbacked
) |
1248 (1L << PG_mlocked
) |
1249 (1L << PG_uptodate
)));
1250 page_tail
->flags
|= (1L << PG_dirty
);
1252 /* clear PageTail before overwriting first_page */
1256 * __split_huge_page_splitting() already set the
1257 * splitting bit in all pmd that could map this
1258 * hugepage, that will ensure no CPU can alter the
1259 * mapcount on the head page. The mapcount is only
1260 * accounted in the head page and it has to be
1261 * transferred to all tail pages in the below code. So
1262 * for this code to be safe, the split the mapcount
1263 * can't change. But that doesn't mean userland can't
1264 * keep changing and reading the page contents while
1265 * we transfer the mapcount, so the pmd splitting
1266 * status is achieved setting a reserved bit in the
1267 * pmd, not by clearing the present bit.
1269 page_tail
->_mapcount
= page
->_mapcount
;
1271 BUG_ON(page_tail
->mapping
);
1272 page_tail
->mapping
= page
->mapping
;
1274 page_tail
->index
= ++head_index
;
1276 BUG_ON(!PageAnon(page_tail
));
1277 BUG_ON(!PageUptodate(page_tail
));
1278 BUG_ON(!PageDirty(page_tail
));
1279 BUG_ON(!PageSwapBacked(page_tail
));
1281 mem_cgroup_split_huge_fixup(page
, page_tail
);
1283 lru_add_page_tail(zone
, page
, page_tail
);
1285 atomic_sub(tail_count
, &page
->_count
);
1286 BUG_ON(atomic_read(&page
->_count
) <= 0);
1288 __dec_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1289 __mod_zone_page_state(zone
, NR_ANON_PAGES
, HPAGE_PMD_NR
);
1292 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1293 * so adjust those appropriately if this page is on the LRU.
1295 if (PageLRU(page
)) {
1296 zonestat
= NR_LRU_BASE
+ page_lru(page
);
1297 __mod_zone_page_state(zone
, zonestat
, -(HPAGE_PMD_NR
-1));
1300 ClearPageCompound(page
);
1301 compound_unlock(page
);
1302 spin_unlock_irq(&zone
->lru_lock
);
1304 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1305 struct page
*page_tail
= page
+ i
;
1306 BUG_ON(page_count(page_tail
) <= 0);
1308 * Tail pages may be freed if there wasn't any mapping
1309 * like if add_to_swap() is running on a lru page that
1310 * had its mapping zapped. And freeing these pages
1311 * requires taking the lru_lock so we do the put_page
1312 * of the tail pages after the split is complete.
1314 put_page(page_tail
);
1318 * Only the head page (now become a regular page) is required
1319 * to be pinned by the caller.
1321 BUG_ON(page_count(page
) <= 0);
1324 static int __split_huge_page_map(struct page
*page
,
1325 struct vm_area_struct
*vma
,
1326 unsigned long address
)
1328 struct mm_struct
*mm
= vma
->vm_mm
;
1332 unsigned long haddr
;
1334 spin_lock(&mm
->page_table_lock
);
1335 pmd
= page_check_address_pmd(page
, mm
, address
,
1336 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
);
1338 pgtable
= get_pmd_huge_pte(mm
);
1339 pmd_populate(mm
, &_pmd
, pgtable
);
1341 for (i
= 0, haddr
= address
; i
< HPAGE_PMD_NR
;
1342 i
++, haddr
+= PAGE_SIZE
) {
1344 BUG_ON(PageCompound(page
+i
));
1345 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1346 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1347 if (!pmd_write(*pmd
))
1348 entry
= pte_wrprotect(entry
);
1350 BUG_ON(page_mapcount(page
) != 1);
1351 if (!pmd_young(*pmd
))
1352 entry
= pte_mkold(entry
);
1353 pte
= pte_offset_map(&_pmd
, haddr
);
1354 BUG_ON(!pte_none(*pte
));
1355 set_pte_at(mm
, haddr
, pte
, entry
);
1360 smp_wmb(); /* make pte visible before pmd */
1362 * Up to this point the pmd is present and huge and
1363 * userland has the whole access to the hugepage
1364 * during the split (which happens in place). If we
1365 * overwrite the pmd with the not-huge version
1366 * pointing to the pte here (which of course we could
1367 * if all CPUs were bug free), userland could trigger
1368 * a small page size TLB miss on the small sized TLB
1369 * while the hugepage TLB entry is still established
1370 * in the huge TLB. Some CPU doesn't like that. See
1371 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1372 * Erratum 383 on page 93. Intel should be safe but is
1373 * also warns that it's only safe if the permission
1374 * and cache attributes of the two entries loaded in
1375 * the two TLB is identical (which should be the case
1376 * here). But it is generally safer to never allow
1377 * small and huge TLB entries for the same virtual
1378 * address to be loaded simultaneously. So instead of
1379 * doing "pmd_populate(); flush_tlb_range();" we first
1380 * mark the current pmd notpresent (atomically because
1381 * here the pmd_trans_huge and pmd_trans_splitting
1382 * must remain set at all times on the pmd until the
1383 * split is complete for this pmd), then we flush the
1384 * SMP TLB and finally we write the non-huge version
1385 * of the pmd entry with pmd_populate.
1387 set_pmd_at(mm
, address
, pmd
, pmd_mknotpresent(*pmd
));
1388 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
1389 pmd_populate(mm
, pmd
, pgtable
);
1392 spin_unlock(&mm
->page_table_lock
);
1397 /* must be called with anon_vma->root->mutex hold */
1398 static void __split_huge_page(struct page
*page
,
1399 struct anon_vma
*anon_vma
)
1401 int mapcount
, mapcount2
;
1402 struct anon_vma_chain
*avc
;
1404 BUG_ON(!PageHead(page
));
1405 BUG_ON(PageTail(page
));
1408 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1409 struct vm_area_struct
*vma
= avc
->vma
;
1410 unsigned long addr
= vma_address(page
, vma
);
1411 BUG_ON(is_vma_temporary_stack(vma
));
1412 if (addr
== -EFAULT
)
1414 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1417 * It is critical that new vmas are added to the tail of the
1418 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1419 * and establishes a child pmd before
1420 * __split_huge_page_splitting() freezes the parent pmd (so if
1421 * we fail to prevent copy_huge_pmd() from running until the
1422 * whole __split_huge_page() is complete), we will still see
1423 * the newly established pmd of the child later during the
1424 * walk, to be able to set it as pmd_trans_splitting too.
1426 if (mapcount
!= page_mapcount(page
))
1427 printk(KERN_ERR
"mapcount %d page_mapcount %d\n",
1428 mapcount
, page_mapcount(page
));
1429 BUG_ON(mapcount
!= page_mapcount(page
));
1431 __split_huge_page_refcount(page
);
1434 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1435 struct vm_area_struct
*vma
= avc
->vma
;
1436 unsigned long addr
= vma_address(page
, vma
);
1437 BUG_ON(is_vma_temporary_stack(vma
));
1438 if (addr
== -EFAULT
)
1440 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1442 if (mapcount
!= mapcount2
)
1443 printk(KERN_ERR
"mapcount %d mapcount2 %d page_mapcount %d\n",
1444 mapcount
, mapcount2
, page_mapcount(page
));
1445 BUG_ON(mapcount
!= mapcount2
);
1448 int split_huge_page(struct page
*page
)
1450 struct anon_vma
*anon_vma
;
1453 BUG_ON(!PageAnon(page
));
1454 anon_vma
= page_lock_anon_vma(page
);
1458 if (!PageCompound(page
))
1461 BUG_ON(!PageSwapBacked(page
));
1462 __split_huge_page(page
, anon_vma
);
1463 count_vm_event(THP_SPLIT
);
1465 BUG_ON(PageCompound(page
));
1467 page_unlock_anon_vma(anon_vma
);
1472 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1473 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1475 int hugepage_madvise(struct vm_area_struct
*vma
,
1476 unsigned long *vm_flags
, int advice
)
1481 * Be somewhat over-protective like KSM for now!
1483 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1485 *vm_flags
&= ~VM_NOHUGEPAGE
;
1486 *vm_flags
|= VM_HUGEPAGE
;
1488 * If the vma become good for khugepaged to scan,
1489 * register it here without waiting a page fault that
1490 * may not happen any time soon.
1492 if (unlikely(khugepaged_enter_vma_merge(vma
)))
1495 case MADV_NOHUGEPAGE
:
1497 * Be somewhat over-protective like KSM for now!
1499 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1501 *vm_flags
&= ~VM_HUGEPAGE
;
1502 *vm_flags
|= VM_NOHUGEPAGE
;
1504 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1505 * this vma even if we leave the mm registered in khugepaged if
1506 * it got registered before VM_NOHUGEPAGE was set.
1514 static int __init
khugepaged_slab_init(void)
1516 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1517 sizeof(struct mm_slot
),
1518 __alignof__(struct mm_slot
), 0, NULL
);
1525 static void __init
khugepaged_slab_free(void)
1527 kmem_cache_destroy(mm_slot_cache
);
1528 mm_slot_cache
= NULL
;
1531 static inline struct mm_slot
*alloc_mm_slot(void)
1533 if (!mm_slot_cache
) /* initialization failed */
1535 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1538 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
1540 kmem_cache_free(mm_slot_cache
, mm_slot
);
1543 static int __init
mm_slots_hash_init(void)
1545 mm_slots_hash
= kzalloc(MM_SLOTS_HASH_HEADS
* sizeof(struct hlist_head
),
1553 static void __init
mm_slots_hash_free(void)
1555 kfree(mm_slots_hash
);
1556 mm_slots_hash
= NULL
;
1560 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
1562 struct mm_slot
*mm_slot
;
1563 struct hlist_head
*bucket
;
1564 struct hlist_node
*node
;
1566 bucket
= &mm_slots_hash
[((unsigned long)mm
/ sizeof(struct mm_struct
))
1567 % MM_SLOTS_HASH_HEADS
];
1568 hlist_for_each_entry(mm_slot
, node
, bucket
, hash
) {
1569 if (mm
== mm_slot
->mm
)
1575 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
1576 struct mm_slot
*mm_slot
)
1578 struct hlist_head
*bucket
;
1580 bucket
= &mm_slots_hash
[((unsigned long)mm
/ sizeof(struct mm_struct
))
1581 % MM_SLOTS_HASH_HEADS
];
1583 hlist_add_head(&mm_slot
->hash
, bucket
);
1586 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
1588 return atomic_read(&mm
->mm_users
) == 0;
1591 int __khugepaged_enter(struct mm_struct
*mm
)
1593 struct mm_slot
*mm_slot
;
1596 mm_slot
= alloc_mm_slot();
1600 /* __khugepaged_exit() must not run from under us */
1601 VM_BUG_ON(khugepaged_test_exit(mm
));
1602 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
1603 free_mm_slot(mm_slot
);
1607 spin_lock(&khugepaged_mm_lock
);
1608 insert_to_mm_slots_hash(mm
, mm_slot
);
1610 * Insert just behind the scanning cursor, to let the area settle
1613 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
1614 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
1615 spin_unlock(&khugepaged_mm_lock
);
1617 atomic_inc(&mm
->mm_count
);
1619 wake_up_interruptible(&khugepaged_wait
);
1624 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
)
1626 unsigned long hstart
, hend
;
1629 * Not yet faulted in so we will register later in the
1630 * page fault if needed.
1634 /* khugepaged not yet working on file or special mappings */
1637 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1638 * true too, verify it here.
1640 VM_BUG_ON(is_linear_pfn_mapping(vma
) || vma
->vm_flags
& VM_NO_THP
);
1641 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1642 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1644 return khugepaged_enter(vma
);
1648 void __khugepaged_exit(struct mm_struct
*mm
)
1650 struct mm_slot
*mm_slot
;
1653 spin_lock(&khugepaged_mm_lock
);
1654 mm_slot
= get_mm_slot(mm
);
1655 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
1656 hlist_del(&mm_slot
->hash
);
1657 list_del(&mm_slot
->mm_node
);
1660 spin_unlock(&khugepaged_mm_lock
);
1663 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
1664 free_mm_slot(mm_slot
);
1666 } else if (mm_slot
) {
1668 * This is required to serialize against
1669 * khugepaged_test_exit() (which is guaranteed to run
1670 * under mmap sem read mode). Stop here (after we
1671 * return all pagetables will be destroyed) until
1672 * khugepaged has finished working on the pagetables
1673 * under the mmap_sem.
1675 down_write(&mm
->mmap_sem
);
1676 up_write(&mm
->mmap_sem
);
1680 static void release_pte_page(struct page
*page
)
1682 /* 0 stands for page_is_file_cache(page) == false */
1683 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
1685 putback_lru_page(page
);
1688 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
1690 while (--_pte
>= pte
) {
1691 pte_t pteval
= *_pte
;
1692 if (!pte_none(pteval
))
1693 release_pte_page(pte_page(pteval
));
1697 static void release_all_pte_pages(pte_t
*pte
)
1699 release_pte_pages(pte
, pte
+ HPAGE_PMD_NR
);
1702 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
1703 unsigned long address
,
1708 int referenced
= 0, isolated
= 0, none
= 0;
1709 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1710 _pte
++, address
+= PAGE_SIZE
) {
1711 pte_t pteval
= *_pte
;
1712 if (pte_none(pteval
)) {
1713 if (++none
<= khugepaged_max_ptes_none
)
1716 release_pte_pages(pte
, _pte
);
1720 if (!pte_present(pteval
) || !pte_write(pteval
)) {
1721 release_pte_pages(pte
, _pte
);
1724 page
= vm_normal_page(vma
, address
, pteval
);
1725 if (unlikely(!page
)) {
1726 release_pte_pages(pte
, _pte
);
1729 VM_BUG_ON(PageCompound(page
));
1730 BUG_ON(!PageAnon(page
));
1731 VM_BUG_ON(!PageSwapBacked(page
));
1733 /* cannot use mapcount: can't collapse if there's a gup pin */
1734 if (page_count(page
) != 1) {
1735 release_pte_pages(pte
, _pte
);
1739 * We can do it before isolate_lru_page because the
1740 * page can't be freed from under us. NOTE: PG_lock
1741 * is needed to serialize against split_huge_page
1742 * when invoked from the VM.
1744 if (!trylock_page(page
)) {
1745 release_pte_pages(pte
, _pte
);
1749 * Isolate the page to avoid collapsing an hugepage
1750 * currently in use by the VM.
1752 if (isolate_lru_page(page
)) {
1754 release_pte_pages(pte
, _pte
);
1757 /* 0 stands for page_is_file_cache(page) == false */
1758 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
1759 VM_BUG_ON(!PageLocked(page
));
1760 VM_BUG_ON(PageLRU(page
));
1762 /* If there is no mapped pte young don't collapse the page */
1763 if (pte_young(pteval
) || PageReferenced(page
) ||
1764 mmu_notifier_test_young(vma
->vm_mm
, address
))
1767 if (unlikely(!referenced
))
1768 release_all_pte_pages(pte
);
1775 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
1776 struct vm_area_struct
*vma
,
1777 unsigned long address
,
1781 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
1782 pte_t pteval
= *_pte
;
1783 struct page
*src_page
;
1785 if (pte_none(pteval
)) {
1786 clear_user_highpage(page
, address
);
1787 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
1789 src_page
= pte_page(pteval
);
1790 copy_user_highpage(page
, src_page
, address
, vma
);
1791 VM_BUG_ON(page_mapcount(src_page
) != 1);
1792 VM_BUG_ON(page_count(src_page
) != 2);
1793 release_pte_page(src_page
);
1795 * ptl mostly unnecessary, but preempt has to
1796 * be disabled to update the per-cpu stats
1797 * inside page_remove_rmap().
1801 * paravirt calls inside pte_clear here are
1804 pte_clear(vma
->vm_mm
, address
, _pte
);
1805 page_remove_rmap(src_page
);
1807 free_page_and_swap_cache(src_page
);
1810 address
+= PAGE_SIZE
;
1815 static void collapse_huge_page(struct mm_struct
*mm
,
1816 unsigned long address
,
1817 struct page
**hpage
,
1818 struct vm_area_struct
*vma
,
1826 struct page
*new_page
;
1829 unsigned long hstart
, hend
;
1831 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1833 up_read(&mm
->mmap_sem
);
1839 * Allocate the page while the vma is still valid and under
1840 * the mmap_sem read mode so there is no memory allocation
1841 * later when we take the mmap_sem in write mode. This is more
1842 * friendly behavior (OTOH it may actually hide bugs) to
1843 * filesystems in userland with daemons allocating memory in
1844 * the userland I/O paths. Allocating memory with the
1845 * mmap_sem in read mode is good idea also to allow greater
1848 new_page
= alloc_hugepage_vma(khugepaged_defrag(), vma
, address
,
1849 node
, __GFP_OTHER_NODE
);
1852 * After allocating the hugepage, release the mmap_sem read lock in
1853 * preparation for taking it in write mode.
1855 up_read(&mm
->mmap_sem
);
1856 if (unlikely(!new_page
)) {
1857 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
1858 *hpage
= ERR_PTR(-ENOMEM
);
1863 count_vm_event(THP_COLLAPSE_ALLOC
);
1864 if (unlikely(mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))) {
1872 * Prevent all access to pagetables with the exception of
1873 * gup_fast later hanlded by the ptep_clear_flush and the VM
1874 * handled by the anon_vma lock + PG_lock.
1876 down_write(&mm
->mmap_sem
);
1877 if (unlikely(khugepaged_test_exit(mm
)))
1880 vma
= find_vma(mm
, address
);
1881 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1882 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1883 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
1886 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
1887 (vma
->vm_flags
& VM_NOHUGEPAGE
))
1890 if (!vma
->anon_vma
|| vma
->vm_ops
)
1892 if (is_vma_temporary_stack(vma
))
1895 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1896 * true too, verify it here.
1898 VM_BUG_ON(is_linear_pfn_mapping(vma
) || vma
->vm_flags
& VM_NO_THP
);
1900 pgd
= pgd_offset(mm
, address
);
1901 if (!pgd_present(*pgd
))
1904 pud
= pud_offset(pgd
, address
);
1905 if (!pud_present(*pud
))
1908 pmd
= pmd_offset(pud
, address
);
1909 /* pmd can't go away or become huge under us */
1910 if (!pmd_present(*pmd
) || pmd_trans_huge(*pmd
))
1913 anon_vma_lock(vma
->anon_vma
);
1915 pte
= pte_offset_map(pmd
, address
);
1916 ptl
= pte_lockptr(mm
, pmd
);
1918 spin_lock(&mm
->page_table_lock
); /* probably unnecessary */
1920 * After this gup_fast can't run anymore. This also removes
1921 * any huge TLB entry from the CPU so we won't allow
1922 * huge and small TLB entries for the same virtual address
1923 * to avoid the risk of CPU bugs in that area.
1925 _pmd
= pmdp_clear_flush_notify(vma
, address
, pmd
);
1926 spin_unlock(&mm
->page_table_lock
);
1929 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1932 if (unlikely(!isolated
)) {
1934 spin_lock(&mm
->page_table_lock
);
1935 BUG_ON(!pmd_none(*pmd
));
1936 set_pmd_at(mm
, address
, pmd
, _pmd
);
1937 spin_unlock(&mm
->page_table_lock
);
1938 anon_vma_unlock(vma
->anon_vma
);
1943 * All pages are isolated and locked so anon_vma rmap
1944 * can't run anymore.
1946 anon_vma_unlock(vma
->anon_vma
);
1948 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, ptl
);
1950 __SetPageUptodate(new_page
);
1951 pgtable
= pmd_pgtable(_pmd
);
1952 VM_BUG_ON(page_count(pgtable
) != 1);
1953 VM_BUG_ON(page_mapcount(pgtable
) != 0);
1955 _pmd
= mk_pmd(new_page
, vma
->vm_page_prot
);
1956 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1957 _pmd
= pmd_mkhuge(_pmd
);
1960 * spin_lock() below is not the equivalent of smp_wmb(), so
1961 * this is needed to avoid the copy_huge_page writes to become
1962 * visible after the set_pmd_at() write.
1966 spin_lock(&mm
->page_table_lock
);
1967 BUG_ON(!pmd_none(*pmd
));
1968 page_add_new_anon_rmap(new_page
, vma
, address
);
1969 set_pmd_at(mm
, address
, pmd
, _pmd
);
1970 update_mmu_cache(vma
, address
, _pmd
);
1971 prepare_pmd_huge_pte(pgtable
, mm
);
1973 spin_unlock(&mm
->page_table_lock
);
1978 khugepaged_pages_collapsed
++;
1980 up_write(&mm
->mmap_sem
);
1984 mem_cgroup_uncharge_page(new_page
);
1991 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1992 struct vm_area_struct
*vma
,
1993 unsigned long address
,
1994 struct page
**hpage
)
2000 int ret
= 0, referenced
= 0, none
= 0;
2002 unsigned long _address
;
2006 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2008 pgd
= pgd_offset(mm
, address
);
2009 if (!pgd_present(*pgd
))
2012 pud
= pud_offset(pgd
, address
);
2013 if (!pud_present(*pud
))
2016 pmd
= pmd_offset(pud
, address
);
2017 if (!pmd_present(*pmd
) || pmd_trans_huge(*pmd
))
2020 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2021 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2022 _pte
++, _address
+= PAGE_SIZE
) {
2023 pte_t pteval
= *_pte
;
2024 if (pte_none(pteval
)) {
2025 if (++none
<= khugepaged_max_ptes_none
)
2030 if (!pte_present(pteval
) || !pte_write(pteval
))
2032 page
= vm_normal_page(vma
, _address
, pteval
);
2033 if (unlikely(!page
))
2036 * Chose the node of the first page. This could
2037 * be more sophisticated and look at more pages,
2038 * but isn't for now.
2041 node
= page_to_nid(page
);
2042 VM_BUG_ON(PageCompound(page
));
2043 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2045 /* cannot use mapcount: can't collapse if there's a gup pin */
2046 if (page_count(page
) != 1)
2048 if (pte_young(pteval
) || PageReferenced(page
) ||
2049 mmu_notifier_test_young(vma
->vm_mm
, address
))
2055 pte_unmap_unlock(pte
, ptl
);
2057 /* collapse_huge_page will return with the mmap_sem released */
2058 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2063 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2065 struct mm_struct
*mm
= mm_slot
->mm
;
2067 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock
));
2069 if (khugepaged_test_exit(mm
)) {
2071 hlist_del(&mm_slot
->hash
);
2072 list_del(&mm_slot
->mm_node
);
2075 * Not strictly needed because the mm exited already.
2077 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2080 /* khugepaged_mm_lock actually not necessary for the below */
2081 free_mm_slot(mm_slot
);
2086 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2087 struct page
**hpage
)
2088 __releases(&khugepaged_mm_lock
)
2089 __acquires(&khugepaged_mm_lock
)
2091 struct mm_slot
*mm_slot
;
2092 struct mm_struct
*mm
;
2093 struct vm_area_struct
*vma
;
2097 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock
));
2099 if (khugepaged_scan
.mm_slot
)
2100 mm_slot
= khugepaged_scan
.mm_slot
;
2102 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2103 struct mm_slot
, mm_node
);
2104 khugepaged_scan
.address
= 0;
2105 khugepaged_scan
.mm_slot
= mm_slot
;
2107 spin_unlock(&khugepaged_mm_lock
);
2110 down_read(&mm
->mmap_sem
);
2111 if (unlikely(khugepaged_test_exit(mm
)))
2114 vma
= find_vma(mm
, khugepaged_scan
.address
);
2117 for (; vma
; vma
= vma
->vm_next
) {
2118 unsigned long hstart
, hend
;
2121 if (unlikely(khugepaged_test_exit(mm
))) {
2126 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) &&
2127 !khugepaged_always()) ||
2128 (vma
->vm_flags
& VM_NOHUGEPAGE
)) {
2133 if (!vma
->anon_vma
|| vma
->vm_ops
)
2135 if (is_vma_temporary_stack(vma
))
2138 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2139 * must be true too, verify it here.
2141 VM_BUG_ON(is_linear_pfn_mapping(vma
) ||
2142 vma
->vm_flags
& VM_NO_THP
);
2144 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2145 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2148 if (khugepaged_scan
.address
> hend
)
2150 if (khugepaged_scan
.address
< hstart
)
2151 khugepaged_scan
.address
= hstart
;
2152 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2154 while (khugepaged_scan
.address
< hend
) {
2157 if (unlikely(khugepaged_test_exit(mm
)))
2158 goto breakouterloop
;
2160 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2161 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2163 ret
= khugepaged_scan_pmd(mm
, vma
,
2164 khugepaged_scan
.address
,
2166 /* move to next address */
2167 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2168 progress
+= HPAGE_PMD_NR
;
2170 /* we released mmap_sem so break loop */
2171 goto breakouterloop_mmap_sem
;
2172 if (progress
>= pages
)
2173 goto breakouterloop
;
2177 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2178 breakouterloop_mmap_sem
:
2180 spin_lock(&khugepaged_mm_lock
);
2181 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2183 * Release the current mm_slot if this mm is about to die, or
2184 * if we scanned all vmas of this mm.
2186 if (khugepaged_test_exit(mm
) || !vma
) {
2188 * Make sure that if mm_users is reaching zero while
2189 * khugepaged runs here, khugepaged_exit will find
2190 * mm_slot not pointing to the exiting mm.
2192 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2193 khugepaged_scan
.mm_slot
= list_entry(
2194 mm_slot
->mm_node
.next
,
2195 struct mm_slot
, mm_node
);
2196 khugepaged_scan
.address
= 0;
2198 khugepaged_scan
.mm_slot
= NULL
;
2199 khugepaged_full_scans
++;
2202 collect_mm_slot(mm_slot
);
2208 static int khugepaged_has_work(void)
2210 return !list_empty(&khugepaged_scan
.mm_head
) &&
2211 khugepaged_enabled();
2214 static int khugepaged_wait_event(void)
2216 return !list_empty(&khugepaged_scan
.mm_head
) ||
2217 !khugepaged_enabled();
2220 static void khugepaged_do_scan(struct page
**hpage
)
2222 unsigned int progress
= 0, pass_through_head
= 0;
2223 unsigned int pages
= khugepaged_pages_to_scan
;
2225 barrier(); /* write khugepaged_pages_to_scan to local stack */
2227 while (progress
< pages
) {
2232 *hpage
= alloc_hugepage(khugepaged_defrag());
2233 if (unlikely(!*hpage
)) {
2234 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2237 count_vm_event(THP_COLLAPSE_ALLOC
);
2244 if (unlikely(kthread_should_stop() || freezing(current
)))
2247 spin_lock(&khugepaged_mm_lock
);
2248 if (!khugepaged_scan
.mm_slot
)
2249 pass_through_head
++;
2250 if (khugepaged_has_work() &&
2251 pass_through_head
< 2)
2252 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2256 spin_unlock(&khugepaged_mm_lock
);
2260 static void khugepaged_alloc_sleep(void)
2263 add_wait_queue(&khugepaged_wait
, &wait
);
2264 schedule_timeout_interruptible(
2266 khugepaged_alloc_sleep_millisecs
));
2267 remove_wait_queue(&khugepaged_wait
, &wait
);
2271 static struct page
*khugepaged_alloc_hugepage(void)
2276 hpage
= alloc_hugepage(khugepaged_defrag());
2278 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2279 khugepaged_alloc_sleep();
2281 count_vm_event(THP_COLLAPSE_ALLOC
);
2282 } while (unlikely(!hpage
) &&
2283 likely(khugepaged_enabled()));
2288 static void khugepaged_loop(void)
2295 while (likely(khugepaged_enabled())) {
2297 hpage
= khugepaged_alloc_hugepage();
2298 if (unlikely(!hpage
))
2301 if (IS_ERR(hpage
)) {
2302 khugepaged_alloc_sleep();
2307 khugepaged_do_scan(&hpage
);
2313 if (unlikely(kthread_should_stop()))
2315 if (khugepaged_has_work()) {
2317 if (!khugepaged_scan_sleep_millisecs
)
2319 add_wait_queue(&khugepaged_wait
, &wait
);
2320 schedule_timeout_interruptible(
2322 khugepaged_scan_sleep_millisecs
));
2323 remove_wait_queue(&khugepaged_wait
, &wait
);
2324 } else if (khugepaged_enabled())
2325 wait_event_freezable(khugepaged_wait
,
2326 khugepaged_wait_event());
2330 static int khugepaged(void *none
)
2332 struct mm_slot
*mm_slot
;
2335 set_user_nice(current
, 19);
2337 /* serialize with start_khugepaged() */
2338 mutex_lock(&khugepaged_mutex
);
2341 mutex_unlock(&khugepaged_mutex
);
2342 VM_BUG_ON(khugepaged_thread
!= current
);
2344 VM_BUG_ON(khugepaged_thread
!= current
);
2346 mutex_lock(&khugepaged_mutex
);
2347 if (!khugepaged_enabled())
2349 if (unlikely(kthread_should_stop()))
2353 spin_lock(&khugepaged_mm_lock
);
2354 mm_slot
= khugepaged_scan
.mm_slot
;
2355 khugepaged_scan
.mm_slot
= NULL
;
2357 collect_mm_slot(mm_slot
);
2358 spin_unlock(&khugepaged_mm_lock
);
2360 khugepaged_thread
= NULL
;
2361 mutex_unlock(&khugepaged_mutex
);
2366 void __split_huge_page_pmd(struct mm_struct
*mm
, pmd_t
*pmd
)
2370 spin_lock(&mm
->page_table_lock
);
2371 if (unlikely(!pmd_trans_huge(*pmd
))) {
2372 spin_unlock(&mm
->page_table_lock
);
2375 page
= pmd_page(*pmd
);
2376 VM_BUG_ON(!page_count(page
));
2378 spin_unlock(&mm
->page_table_lock
);
2380 split_huge_page(page
);
2383 BUG_ON(pmd_trans_huge(*pmd
));
2386 static void split_huge_page_address(struct mm_struct
*mm
,
2387 unsigned long address
)
2393 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2395 pgd
= pgd_offset(mm
, address
);
2396 if (!pgd_present(*pgd
))
2399 pud
= pud_offset(pgd
, address
);
2400 if (!pud_present(*pud
))
2403 pmd
= pmd_offset(pud
, address
);
2404 if (!pmd_present(*pmd
))
2407 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2408 * materialize from under us.
2410 split_huge_page_pmd(mm
, pmd
);
2413 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2414 unsigned long start
,
2419 * If the new start address isn't hpage aligned and it could
2420 * previously contain an hugepage: check if we need to split
2423 if (start
& ~HPAGE_PMD_MASK
&&
2424 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2425 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2426 split_huge_page_address(vma
->vm_mm
, start
);
2429 * If the new end address isn't hpage aligned and it could
2430 * previously contain an hugepage: check if we need to split
2433 if (end
& ~HPAGE_PMD_MASK
&&
2434 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2435 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2436 split_huge_page_address(vma
->vm_mm
, end
);
2439 * If we're also updating the vma->vm_next->vm_start, if the new
2440 * vm_next->vm_start isn't page aligned and it could previously
2441 * contain an hugepage: check if we need to split an huge pmd.
2443 if (adjust_next
> 0) {
2444 struct vm_area_struct
*next
= vma
->vm_next
;
2445 unsigned long nstart
= next
->vm_start
;
2446 nstart
+= adjust_next
<< PAGE_SHIFT
;
2447 if (nstart
& ~HPAGE_PMD_MASK
&&
2448 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2449 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2450 split_huge_page_address(next
->vm_mm
, nstart
);