KVM: Consolidate userspace memory capability reporting into common code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / virt / kvm / kvm_main.c
blobeb70ca6c7145590c1aa14edfad3379eb23dd6684
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "iodev.h"
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
73 static cpumask_var_t cpus_hardware_enabled;
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
80 struct dentry *kvm_debugfs_dir;
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
85 static bool kvm_rebooting;
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
92 int vcpu_id;
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
105 u32 deliver_bitmask;
107 BUG_ON(!ioapic);
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 dest_id, dest_mode);
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 deliver_bitmask);
116 if (vcpu != NULL)
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
118 else
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 break;
121 case IOAPIC_FIXED:
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
124 continue;
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
127 if (vcpu)
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
130 break;
131 default:
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 int assigned_dev_id)
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
148 return match;
150 return NULL;
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
155 struct kvm_assigned_dev_kernel *assigned_dev;
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 interrupt_work);
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
174 mutex_unlock(&assigned_dev->kvm->lock);
175 kvm_put_kvm(assigned_dev->kvm);
178 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
180 struct kvm_assigned_dev_kernel *assigned_dev =
181 (struct kvm_assigned_dev_kernel *) dev_id;
183 kvm_get_kvm(assigned_dev->kvm);
184 schedule_work(&assigned_dev->interrupt_work);
185 disable_irq_nosync(irq);
186 return IRQ_HANDLED;
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
192 struct kvm_assigned_dev_kernel *dev;
194 if (kian->gsi == -1)
195 return;
197 dev = container_of(kian, struct kvm_assigned_dev_kernel,
198 ack_notifier);
199 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
200 enable_irq(dev->host_irq);
203 static void kvm_free_assigned_irq(struct kvm *kvm,
204 struct kvm_assigned_dev_kernel *assigned_dev)
206 if (!irqchip_in_kernel(kvm))
207 return;
209 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
211 if (assigned_dev->irq_source_id != -1)
212 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
213 assigned_dev->irq_source_id = -1;
215 if (!assigned_dev->irq_requested_type)
216 return;
218 if (cancel_work_sync(&assigned_dev->interrupt_work))
219 /* We had pending work. That means we will have to take
220 * care of kvm_put_kvm.
222 kvm_put_kvm(kvm);
224 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
226 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
227 pci_disable_msi(assigned_dev->dev);
229 assigned_dev->irq_requested_type = 0;
233 static void kvm_free_assigned_device(struct kvm *kvm,
234 struct kvm_assigned_dev_kernel
235 *assigned_dev)
237 kvm_free_assigned_irq(kvm, assigned_dev);
239 pci_reset_function(assigned_dev->dev);
241 pci_release_regions(assigned_dev->dev);
242 pci_disable_device(assigned_dev->dev);
243 pci_dev_put(assigned_dev->dev);
245 list_del(&assigned_dev->list);
246 kfree(assigned_dev);
249 void kvm_free_all_assigned_devices(struct kvm *kvm)
251 struct list_head *ptr, *ptr2;
252 struct kvm_assigned_dev_kernel *assigned_dev;
254 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
255 assigned_dev = list_entry(ptr,
256 struct kvm_assigned_dev_kernel,
257 list);
259 kvm_free_assigned_device(kvm, assigned_dev);
263 static int assigned_device_update_intx(struct kvm *kvm,
264 struct kvm_assigned_dev_kernel *adev,
265 struct kvm_assigned_irq *airq)
267 adev->guest_irq = airq->guest_irq;
268 adev->ack_notifier.gsi = airq->guest_irq;
270 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
271 return 0;
273 if (irqchip_in_kernel(kvm)) {
274 if (!msi2intx &&
275 adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
276 free_irq(adev->host_irq, (void *)kvm);
277 pci_disable_msi(adev->dev);
280 if (!capable(CAP_SYS_RAWIO))
281 return -EPERM;
283 if (airq->host_irq)
284 adev->host_irq = airq->host_irq;
285 else
286 adev->host_irq = adev->dev->irq;
288 /* Even though this is PCI, we don't want to use shared
289 * interrupts. Sharing host devices with guest-assigned devices
290 * on the same interrupt line is not a happy situation: there
291 * are going to be long delays in accepting, acking, etc.
293 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
294 0, "kvm_assigned_intx_device", (void *)adev))
295 return -EIO;
298 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
299 KVM_ASSIGNED_DEV_HOST_INTX;
300 return 0;
303 #ifdef CONFIG_X86
304 static int assigned_device_update_msi(struct kvm *kvm,
305 struct kvm_assigned_dev_kernel *adev,
306 struct kvm_assigned_irq *airq)
308 int r;
310 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
311 /* x86 don't care upper address of guest msi message addr */
312 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
313 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
314 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
315 adev->guest_msi.data = airq->guest_msi.data;
316 adev->ack_notifier.gsi = -1;
317 } else if (msi2intx) {
318 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
319 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
320 adev->guest_irq = airq->guest_irq;
321 adev->ack_notifier.gsi = airq->guest_irq;
324 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
325 return 0;
327 if (irqchip_in_kernel(kvm)) {
328 if (!msi2intx) {
329 if (adev->irq_requested_type &
330 KVM_ASSIGNED_DEV_HOST_INTX)
331 free_irq(adev->host_irq, (void *)adev);
333 r = pci_enable_msi(adev->dev);
334 if (r)
335 return r;
338 adev->host_irq = adev->dev->irq;
339 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
340 "kvm_assigned_msi_device", (void *)adev))
341 return -EIO;
344 if (!msi2intx)
345 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
347 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
348 return 0;
350 #endif
352 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
353 struct kvm_assigned_irq
354 *assigned_irq)
356 int r = 0;
357 struct kvm_assigned_dev_kernel *match;
359 mutex_lock(&kvm->lock);
361 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
362 assigned_irq->assigned_dev_id);
363 if (!match) {
364 mutex_unlock(&kvm->lock);
365 return -EINVAL;
368 if (!match->irq_requested_type) {
369 INIT_WORK(&match->interrupt_work,
370 kvm_assigned_dev_interrupt_work_handler);
371 if (irqchip_in_kernel(kvm)) {
372 /* Register ack nofitier */
373 match->ack_notifier.gsi = -1;
374 match->ack_notifier.irq_acked =
375 kvm_assigned_dev_ack_irq;
376 kvm_register_irq_ack_notifier(kvm,
377 &match->ack_notifier);
379 /* Request IRQ source ID */
380 r = kvm_request_irq_source_id(kvm);
381 if (r < 0)
382 goto out_release;
383 else
384 match->irq_source_id = r;
386 #ifdef CONFIG_X86
387 /* Determine host device irq type, we can know the
388 * result from dev->msi_enabled */
389 if (msi2intx)
390 pci_enable_msi(match->dev);
391 #endif
395 if ((!msi2intx &&
396 (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
397 (msi2intx && match->dev->msi_enabled)) {
398 #ifdef CONFIG_X86
399 r = assigned_device_update_msi(kvm, match, assigned_irq);
400 if (r) {
401 printk(KERN_WARNING "kvm: failed to enable "
402 "MSI device!\n");
403 goto out_release;
405 #else
406 r = -ENOTTY;
407 #endif
408 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
409 /* Host device IRQ 0 means don't support INTx */
410 if (!msi2intx) {
411 printk(KERN_WARNING
412 "kvm: wait device to enable MSI!\n");
413 r = 0;
414 } else {
415 printk(KERN_WARNING
416 "kvm: failed to enable MSI device!\n");
417 r = -ENOTTY;
418 goto out_release;
420 } else {
421 /* Non-sharing INTx mode */
422 r = assigned_device_update_intx(kvm, match, assigned_irq);
423 if (r) {
424 printk(KERN_WARNING "kvm: failed to enable "
425 "INTx device!\n");
426 goto out_release;
430 mutex_unlock(&kvm->lock);
431 return r;
432 out_release:
433 mutex_unlock(&kvm->lock);
434 kvm_free_assigned_device(kvm, match);
435 return r;
438 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
439 struct kvm_assigned_pci_dev *assigned_dev)
441 int r = 0;
442 struct kvm_assigned_dev_kernel *match;
443 struct pci_dev *dev;
445 mutex_lock(&kvm->lock);
447 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
448 assigned_dev->assigned_dev_id);
449 if (match) {
450 /* device already assigned */
451 r = -EINVAL;
452 goto out;
455 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
456 if (match == NULL) {
457 printk(KERN_INFO "%s: Couldn't allocate memory\n",
458 __func__);
459 r = -ENOMEM;
460 goto out;
462 dev = pci_get_bus_and_slot(assigned_dev->busnr,
463 assigned_dev->devfn);
464 if (!dev) {
465 printk(KERN_INFO "%s: host device not found\n", __func__);
466 r = -EINVAL;
467 goto out_free;
469 if (pci_enable_device(dev)) {
470 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
471 r = -EBUSY;
472 goto out_put;
474 r = pci_request_regions(dev, "kvm_assigned_device");
475 if (r) {
476 printk(KERN_INFO "%s: Could not get access to device regions\n",
477 __func__);
478 goto out_disable;
481 pci_reset_function(dev);
483 match->assigned_dev_id = assigned_dev->assigned_dev_id;
484 match->host_busnr = assigned_dev->busnr;
485 match->host_devfn = assigned_dev->devfn;
486 match->dev = dev;
487 match->irq_source_id = -1;
488 match->kvm = kvm;
490 list_add(&match->list, &kvm->arch.assigned_dev_head);
492 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
493 r = kvm_iommu_map_guest(kvm, match);
494 if (r)
495 goto out_list_del;
498 out:
499 mutex_unlock(&kvm->lock);
500 return r;
501 out_list_del:
502 list_del(&match->list);
503 pci_release_regions(dev);
504 out_disable:
505 pci_disable_device(dev);
506 out_put:
507 pci_dev_put(dev);
508 out_free:
509 kfree(match);
510 mutex_unlock(&kvm->lock);
511 return r;
513 #endif
515 static inline int valid_vcpu(int n)
517 return likely(n >= 0 && n < KVM_MAX_VCPUS);
520 inline int kvm_is_mmio_pfn(pfn_t pfn)
522 if (pfn_valid(pfn))
523 return PageReserved(pfn_to_page(pfn));
525 return true;
529 * Switches to specified vcpu, until a matching vcpu_put()
531 void vcpu_load(struct kvm_vcpu *vcpu)
533 int cpu;
535 mutex_lock(&vcpu->mutex);
536 cpu = get_cpu();
537 preempt_notifier_register(&vcpu->preempt_notifier);
538 kvm_arch_vcpu_load(vcpu, cpu);
539 put_cpu();
542 void vcpu_put(struct kvm_vcpu *vcpu)
544 preempt_disable();
545 kvm_arch_vcpu_put(vcpu);
546 preempt_notifier_unregister(&vcpu->preempt_notifier);
547 preempt_enable();
548 mutex_unlock(&vcpu->mutex);
551 static void ack_flush(void *_completed)
555 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
557 int i, cpu, me;
558 cpumask_var_t cpus;
559 bool called = true;
560 struct kvm_vcpu *vcpu;
562 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
563 cpumask_clear(cpus);
565 me = get_cpu();
566 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
567 vcpu = kvm->vcpus[i];
568 if (!vcpu)
569 continue;
570 if (test_and_set_bit(req, &vcpu->requests))
571 continue;
572 cpu = vcpu->cpu;
573 if (cpus != NULL && cpu != -1 && cpu != me)
574 cpumask_set_cpu(cpu, cpus);
576 if (unlikely(cpus == NULL))
577 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
578 else if (!cpumask_empty(cpus))
579 smp_call_function_many(cpus, ack_flush, NULL, 1);
580 else
581 called = false;
582 put_cpu();
583 free_cpumask_var(cpus);
584 return called;
587 void kvm_flush_remote_tlbs(struct kvm *kvm)
589 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
590 ++kvm->stat.remote_tlb_flush;
593 void kvm_reload_remote_mmus(struct kvm *kvm)
595 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
598 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
600 struct page *page;
601 int r;
603 mutex_init(&vcpu->mutex);
604 vcpu->cpu = -1;
605 vcpu->kvm = kvm;
606 vcpu->vcpu_id = id;
607 init_waitqueue_head(&vcpu->wq);
609 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
610 if (!page) {
611 r = -ENOMEM;
612 goto fail;
614 vcpu->run = page_address(page);
616 r = kvm_arch_vcpu_init(vcpu);
617 if (r < 0)
618 goto fail_free_run;
619 return 0;
621 fail_free_run:
622 free_page((unsigned long)vcpu->run);
623 fail:
624 return r;
626 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
628 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
630 kvm_arch_vcpu_uninit(vcpu);
631 free_page((unsigned long)vcpu->run);
633 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
635 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
636 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
638 return container_of(mn, struct kvm, mmu_notifier);
641 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
642 struct mm_struct *mm,
643 unsigned long address)
645 struct kvm *kvm = mmu_notifier_to_kvm(mn);
646 int need_tlb_flush;
649 * When ->invalidate_page runs, the linux pte has been zapped
650 * already but the page is still allocated until
651 * ->invalidate_page returns. So if we increase the sequence
652 * here the kvm page fault will notice if the spte can't be
653 * established because the page is going to be freed. If
654 * instead the kvm page fault establishes the spte before
655 * ->invalidate_page runs, kvm_unmap_hva will release it
656 * before returning.
658 * The sequence increase only need to be seen at spin_unlock
659 * time, and not at spin_lock time.
661 * Increasing the sequence after the spin_unlock would be
662 * unsafe because the kvm page fault could then establish the
663 * pte after kvm_unmap_hva returned, without noticing the page
664 * is going to be freed.
666 spin_lock(&kvm->mmu_lock);
667 kvm->mmu_notifier_seq++;
668 need_tlb_flush = kvm_unmap_hva(kvm, address);
669 spin_unlock(&kvm->mmu_lock);
671 /* we've to flush the tlb before the pages can be freed */
672 if (need_tlb_flush)
673 kvm_flush_remote_tlbs(kvm);
677 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
678 struct mm_struct *mm,
679 unsigned long start,
680 unsigned long end)
682 struct kvm *kvm = mmu_notifier_to_kvm(mn);
683 int need_tlb_flush = 0;
685 spin_lock(&kvm->mmu_lock);
687 * The count increase must become visible at unlock time as no
688 * spte can be established without taking the mmu_lock and
689 * count is also read inside the mmu_lock critical section.
691 kvm->mmu_notifier_count++;
692 for (; start < end; start += PAGE_SIZE)
693 need_tlb_flush |= kvm_unmap_hva(kvm, start);
694 spin_unlock(&kvm->mmu_lock);
696 /* we've to flush the tlb before the pages can be freed */
697 if (need_tlb_flush)
698 kvm_flush_remote_tlbs(kvm);
701 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
702 struct mm_struct *mm,
703 unsigned long start,
704 unsigned long end)
706 struct kvm *kvm = mmu_notifier_to_kvm(mn);
708 spin_lock(&kvm->mmu_lock);
710 * This sequence increase will notify the kvm page fault that
711 * the page that is going to be mapped in the spte could have
712 * been freed.
714 kvm->mmu_notifier_seq++;
716 * The above sequence increase must be visible before the
717 * below count decrease but both values are read by the kvm
718 * page fault under mmu_lock spinlock so we don't need to add
719 * a smb_wmb() here in between the two.
721 kvm->mmu_notifier_count--;
722 spin_unlock(&kvm->mmu_lock);
724 BUG_ON(kvm->mmu_notifier_count < 0);
727 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
728 struct mm_struct *mm,
729 unsigned long address)
731 struct kvm *kvm = mmu_notifier_to_kvm(mn);
732 int young;
734 spin_lock(&kvm->mmu_lock);
735 young = kvm_age_hva(kvm, address);
736 spin_unlock(&kvm->mmu_lock);
738 if (young)
739 kvm_flush_remote_tlbs(kvm);
741 return young;
744 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
745 .invalidate_page = kvm_mmu_notifier_invalidate_page,
746 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
747 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
748 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
750 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
752 static struct kvm *kvm_create_vm(void)
754 struct kvm *kvm = kvm_arch_create_vm();
755 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
756 struct page *page;
757 #endif
759 if (IS_ERR(kvm))
760 goto out;
762 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
763 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
764 if (!page) {
765 kfree(kvm);
766 return ERR_PTR(-ENOMEM);
768 kvm->coalesced_mmio_ring =
769 (struct kvm_coalesced_mmio_ring *)page_address(page);
770 #endif
772 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
774 int err;
775 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
776 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
777 if (err) {
778 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
779 put_page(page);
780 #endif
781 kfree(kvm);
782 return ERR_PTR(err);
785 #endif
787 kvm->mm = current->mm;
788 atomic_inc(&kvm->mm->mm_count);
789 spin_lock_init(&kvm->mmu_lock);
790 kvm_io_bus_init(&kvm->pio_bus);
791 mutex_init(&kvm->lock);
792 kvm_io_bus_init(&kvm->mmio_bus);
793 init_rwsem(&kvm->slots_lock);
794 atomic_set(&kvm->users_count, 1);
795 spin_lock(&kvm_lock);
796 list_add(&kvm->vm_list, &vm_list);
797 spin_unlock(&kvm_lock);
798 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
799 kvm_coalesced_mmio_init(kvm);
800 #endif
801 out:
802 return kvm;
806 * Free any memory in @free but not in @dont.
808 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
809 struct kvm_memory_slot *dont)
811 if (!dont || free->rmap != dont->rmap)
812 vfree(free->rmap);
814 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
815 vfree(free->dirty_bitmap);
817 if (!dont || free->lpage_info != dont->lpage_info)
818 vfree(free->lpage_info);
820 free->npages = 0;
821 free->dirty_bitmap = NULL;
822 free->rmap = NULL;
823 free->lpage_info = NULL;
826 void kvm_free_physmem(struct kvm *kvm)
828 int i;
830 for (i = 0; i < kvm->nmemslots; ++i)
831 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
834 static void kvm_destroy_vm(struct kvm *kvm)
836 struct mm_struct *mm = kvm->mm;
838 spin_lock(&kvm_lock);
839 list_del(&kvm->vm_list);
840 spin_unlock(&kvm_lock);
841 kvm_io_bus_destroy(&kvm->pio_bus);
842 kvm_io_bus_destroy(&kvm->mmio_bus);
843 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
844 if (kvm->coalesced_mmio_ring != NULL)
845 free_page((unsigned long)kvm->coalesced_mmio_ring);
846 #endif
847 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
848 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
849 #endif
850 kvm_arch_destroy_vm(kvm);
851 mmdrop(mm);
854 void kvm_get_kvm(struct kvm *kvm)
856 atomic_inc(&kvm->users_count);
858 EXPORT_SYMBOL_GPL(kvm_get_kvm);
860 void kvm_put_kvm(struct kvm *kvm)
862 if (atomic_dec_and_test(&kvm->users_count))
863 kvm_destroy_vm(kvm);
865 EXPORT_SYMBOL_GPL(kvm_put_kvm);
868 static int kvm_vm_release(struct inode *inode, struct file *filp)
870 struct kvm *kvm = filp->private_data;
872 kvm_put_kvm(kvm);
873 return 0;
877 * Allocate some memory and give it an address in the guest physical address
878 * space.
880 * Discontiguous memory is allowed, mostly for framebuffers.
882 * Must be called holding mmap_sem for write.
884 int __kvm_set_memory_region(struct kvm *kvm,
885 struct kvm_userspace_memory_region *mem,
886 int user_alloc)
888 int r;
889 gfn_t base_gfn;
890 unsigned long npages;
891 unsigned long i;
892 struct kvm_memory_slot *memslot;
893 struct kvm_memory_slot old, new;
895 r = -EINVAL;
896 /* General sanity checks */
897 if (mem->memory_size & (PAGE_SIZE - 1))
898 goto out;
899 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
900 goto out;
901 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
902 goto out;
903 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
904 goto out;
905 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
906 goto out;
908 memslot = &kvm->memslots[mem->slot];
909 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
910 npages = mem->memory_size >> PAGE_SHIFT;
912 if (!npages)
913 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
915 new = old = *memslot;
917 new.base_gfn = base_gfn;
918 new.npages = npages;
919 new.flags = mem->flags;
921 /* Disallow changing a memory slot's size. */
922 r = -EINVAL;
923 if (npages && old.npages && npages != old.npages)
924 goto out_free;
926 /* Check for overlaps */
927 r = -EEXIST;
928 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
929 struct kvm_memory_slot *s = &kvm->memslots[i];
931 if (s == memslot)
932 continue;
933 if (!((base_gfn + npages <= s->base_gfn) ||
934 (base_gfn >= s->base_gfn + s->npages)))
935 goto out_free;
938 /* Free page dirty bitmap if unneeded */
939 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
940 new.dirty_bitmap = NULL;
942 r = -ENOMEM;
944 /* Allocate if a slot is being created */
945 #ifndef CONFIG_S390
946 if (npages && !new.rmap) {
947 new.rmap = vmalloc(npages * sizeof(struct page *));
949 if (!new.rmap)
950 goto out_free;
952 memset(new.rmap, 0, npages * sizeof(*new.rmap));
954 new.user_alloc = user_alloc;
956 * hva_to_rmmap() serialzies with the mmu_lock and to be
957 * safe it has to ignore memslots with !user_alloc &&
958 * !userspace_addr.
960 if (user_alloc)
961 new.userspace_addr = mem->userspace_addr;
962 else
963 new.userspace_addr = 0;
965 if (npages && !new.lpage_info) {
966 int largepages = npages / KVM_PAGES_PER_HPAGE;
967 if (npages % KVM_PAGES_PER_HPAGE)
968 largepages++;
969 if (base_gfn % KVM_PAGES_PER_HPAGE)
970 largepages++;
972 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
974 if (!new.lpage_info)
975 goto out_free;
977 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
979 if (base_gfn % KVM_PAGES_PER_HPAGE)
980 new.lpage_info[0].write_count = 1;
981 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
982 new.lpage_info[largepages-1].write_count = 1;
985 /* Allocate page dirty bitmap if needed */
986 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
987 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
989 new.dirty_bitmap = vmalloc(dirty_bytes);
990 if (!new.dirty_bitmap)
991 goto out_free;
992 memset(new.dirty_bitmap, 0, dirty_bytes);
994 #endif /* not defined CONFIG_S390 */
996 if (!npages)
997 kvm_arch_flush_shadow(kvm);
999 spin_lock(&kvm->mmu_lock);
1000 if (mem->slot >= kvm->nmemslots)
1001 kvm->nmemslots = mem->slot + 1;
1003 *memslot = new;
1004 spin_unlock(&kvm->mmu_lock);
1006 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1007 if (r) {
1008 spin_lock(&kvm->mmu_lock);
1009 *memslot = old;
1010 spin_unlock(&kvm->mmu_lock);
1011 goto out_free;
1014 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1015 /* Slot deletion case: we have to update the current slot */
1016 if (!npages)
1017 *memslot = old;
1018 #ifdef CONFIG_DMAR
1019 /* map the pages in iommu page table */
1020 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1021 if (r)
1022 goto out;
1023 #endif
1024 return 0;
1026 out_free:
1027 kvm_free_physmem_slot(&new, &old);
1028 out:
1029 return r;
1032 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1034 int kvm_set_memory_region(struct kvm *kvm,
1035 struct kvm_userspace_memory_region *mem,
1036 int user_alloc)
1038 int r;
1040 down_write(&kvm->slots_lock);
1041 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1042 up_write(&kvm->slots_lock);
1043 return r;
1045 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1047 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1048 struct
1049 kvm_userspace_memory_region *mem,
1050 int user_alloc)
1052 if (mem->slot >= KVM_MEMORY_SLOTS)
1053 return -EINVAL;
1054 return kvm_set_memory_region(kvm, mem, user_alloc);
1057 int kvm_get_dirty_log(struct kvm *kvm,
1058 struct kvm_dirty_log *log, int *is_dirty)
1060 struct kvm_memory_slot *memslot;
1061 int r, i;
1062 int n;
1063 unsigned long any = 0;
1065 r = -EINVAL;
1066 if (log->slot >= KVM_MEMORY_SLOTS)
1067 goto out;
1069 memslot = &kvm->memslots[log->slot];
1070 r = -ENOENT;
1071 if (!memslot->dirty_bitmap)
1072 goto out;
1074 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1076 for (i = 0; !any && i < n/sizeof(long); ++i)
1077 any = memslot->dirty_bitmap[i];
1079 r = -EFAULT;
1080 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1081 goto out;
1083 if (any)
1084 *is_dirty = 1;
1086 r = 0;
1087 out:
1088 return r;
1091 int is_error_page(struct page *page)
1093 return page == bad_page;
1095 EXPORT_SYMBOL_GPL(is_error_page);
1097 int is_error_pfn(pfn_t pfn)
1099 return pfn == bad_pfn;
1101 EXPORT_SYMBOL_GPL(is_error_pfn);
1103 static inline unsigned long bad_hva(void)
1105 return PAGE_OFFSET;
1108 int kvm_is_error_hva(unsigned long addr)
1110 return addr == bad_hva();
1112 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1114 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1116 int i;
1118 for (i = 0; i < kvm->nmemslots; ++i) {
1119 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1121 if (gfn >= memslot->base_gfn
1122 && gfn < memslot->base_gfn + memslot->npages)
1123 return memslot;
1125 return NULL;
1127 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1129 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1131 gfn = unalias_gfn(kvm, gfn);
1132 return gfn_to_memslot_unaliased(kvm, gfn);
1135 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1137 int i;
1139 gfn = unalias_gfn(kvm, gfn);
1140 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1141 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1143 if (gfn >= memslot->base_gfn
1144 && gfn < memslot->base_gfn + memslot->npages)
1145 return 1;
1147 return 0;
1149 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1151 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1153 struct kvm_memory_slot *slot;
1155 gfn = unalias_gfn(kvm, gfn);
1156 slot = gfn_to_memslot_unaliased(kvm, gfn);
1157 if (!slot)
1158 return bad_hva();
1159 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1161 EXPORT_SYMBOL_GPL(gfn_to_hva);
1163 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1165 struct page *page[1];
1166 unsigned long addr;
1167 int npages;
1168 pfn_t pfn;
1170 might_sleep();
1172 addr = gfn_to_hva(kvm, gfn);
1173 if (kvm_is_error_hva(addr)) {
1174 get_page(bad_page);
1175 return page_to_pfn(bad_page);
1178 npages = get_user_pages_fast(addr, 1, 1, page);
1180 if (unlikely(npages != 1)) {
1181 struct vm_area_struct *vma;
1183 down_read(&current->mm->mmap_sem);
1184 vma = find_vma(current->mm, addr);
1186 if (vma == NULL || addr < vma->vm_start ||
1187 !(vma->vm_flags & VM_PFNMAP)) {
1188 up_read(&current->mm->mmap_sem);
1189 get_page(bad_page);
1190 return page_to_pfn(bad_page);
1193 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1194 up_read(&current->mm->mmap_sem);
1195 BUG_ON(!kvm_is_mmio_pfn(pfn));
1196 } else
1197 pfn = page_to_pfn(page[0]);
1199 return pfn;
1202 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1204 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1206 pfn_t pfn;
1208 pfn = gfn_to_pfn(kvm, gfn);
1209 if (!kvm_is_mmio_pfn(pfn))
1210 return pfn_to_page(pfn);
1212 WARN_ON(kvm_is_mmio_pfn(pfn));
1214 get_page(bad_page);
1215 return bad_page;
1218 EXPORT_SYMBOL_GPL(gfn_to_page);
1220 void kvm_release_page_clean(struct page *page)
1222 kvm_release_pfn_clean(page_to_pfn(page));
1224 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1226 void kvm_release_pfn_clean(pfn_t pfn)
1228 if (!kvm_is_mmio_pfn(pfn))
1229 put_page(pfn_to_page(pfn));
1231 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1233 void kvm_release_page_dirty(struct page *page)
1235 kvm_release_pfn_dirty(page_to_pfn(page));
1237 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1239 void kvm_release_pfn_dirty(pfn_t pfn)
1241 kvm_set_pfn_dirty(pfn);
1242 kvm_release_pfn_clean(pfn);
1244 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1246 void kvm_set_page_dirty(struct page *page)
1248 kvm_set_pfn_dirty(page_to_pfn(page));
1250 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1252 void kvm_set_pfn_dirty(pfn_t pfn)
1254 if (!kvm_is_mmio_pfn(pfn)) {
1255 struct page *page = pfn_to_page(pfn);
1256 if (!PageReserved(page))
1257 SetPageDirty(page);
1260 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1262 void kvm_set_pfn_accessed(pfn_t pfn)
1264 if (!kvm_is_mmio_pfn(pfn))
1265 mark_page_accessed(pfn_to_page(pfn));
1267 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1269 void kvm_get_pfn(pfn_t pfn)
1271 if (!kvm_is_mmio_pfn(pfn))
1272 get_page(pfn_to_page(pfn));
1274 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1276 static int next_segment(unsigned long len, int offset)
1278 if (len > PAGE_SIZE - offset)
1279 return PAGE_SIZE - offset;
1280 else
1281 return len;
1284 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1285 int len)
1287 int r;
1288 unsigned long addr;
1290 addr = gfn_to_hva(kvm, gfn);
1291 if (kvm_is_error_hva(addr))
1292 return -EFAULT;
1293 r = copy_from_user(data, (void __user *)addr + offset, len);
1294 if (r)
1295 return -EFAULT;
1296 return 0;
1298 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1300 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1302 gfn_t gfn = gpa >> PAGE_SHIFT;
1303 int seg;
1304 int offset = offset_in_page(gpa);
1305 int ret;
1307 while ((seg = next_segment(len, offset)) != 0) {
1308 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1309 if (ret < 0)
1310 return ret;
1311 offset = 0;
1312 len -= seg;
1313 data += seg;
1314 ++gfn;
1316 return 0;
1318 EXPORT_SYMBOL_GPL(kvm_read_guest);
1320 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1321 unsigned long len)
1323 int r;
1324 unsigned long addr;
1325 gfn_t gfn = gpa >> PAGE_SHIFT;
1326 int offset = offset_in_page(gpa);
1328 addr = gfn_to_hva(kvm, gfn);
1329 if (kvm_is_error_hva(addr))
1330 return -EFAULT;
1331 pagefault_disable();
1332 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1333 pagefault_enable();
1334 if (r)
1335 return -EFAULT;
1336 return 0;
1338 EXPORT_SYMBOL(kvm_read_guest_atomic);
1340 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1341 int offset, int len)
1343 int r;
1344 unsigned long addr;
1346 addr = gfn_to_hva(kvm, gfn);
1347 if (kvm_is_error_hva(addr))
1348 return -EFAULT;
1349 r = copy_to_user((void __user *)addr + offset, data, len);
1350 if (r)
1351 return -EFAULT;
1352 mark_page_dirty(kvm, gfn);
1353 return 0;
1355 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1357 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1358 unsigned long len)
1360 gfn_t gfn = gpa >> PAGE_SHIFT;
1361 int seg;
1362 int offset = offset_in_page(gpa);
1363 int ret;
1365 while ((seg = next_segment(len, offset)) != 0) {
1366 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1367 if (ret < 0)
1368 return ret;
1369 offset = 0;
1370 len -= seg;
1371 data += seg;
1372 ++gfn;
1374 return 0;
1377 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1379 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1381 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1383 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1385 gfn_t gfn = gpa >> PAGE_SHIFT;
1386 int seg;
1387 int offset = offset_in_page(gpa);
1388 int ret;
1390 while ((seg = next_segment(len, offset)) != 0) {
1391 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1392 if (ret < 0)
1393 return ret;
1394 offset = 0;
1395 len -= seg;
1396 ++gfn;
1398 return 0;
1400 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1402 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1404 struct kvm_memory_slot *memslot;
1406 gfn = unalias_gfn(kvm, gfn);
1407 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1408 if (memslot && memslot->dirty_bitmap) {
1409 unsigned long rel_gfn = gfn - memslot->base_gfn;
1411 /* avoid RMW */
1412 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1413 set_bit(rel_gfn, memslot->dirty_bitmap);
1418 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1420 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1422 DEFINE_WAIT(wait);
1424 for (;;) {
1425 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1427 if (kvm_cpu_has_interrupt(vcpu) ||
1428 kvm_cpu_has_pending_timer(vcpu) ||
1429 kvm_arch_vcpu_runnable(vcpu)) {
1430 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1431 break;
1433 if (signal_pending(current))
1434 break;
1436 vcpu_put(vcpu);
1437 schedule();
1438 vcpu_load(vcpu);
1441 finish_wait(&vcpu->wq, &wait);
1444 void kvm_resched(struct kvm_vcpu *vcpu)
1446 if (!need_resched())
1447 return;
1448 cond_resched();
1450 EXPORT_SYMBOL_GPL(kvm_resched);
1452 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1454 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1455 struct page *page;
1457 if (vmf->pgoff == 0)
1458 page = virt_to_page(vcpu->run);
1459 #ifdef CONFIG_X86
1460 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1461 page = virt_to_page(vcpu->arch.pio_data);
1462 #endif
1463 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1464 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1465 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1466 #endif
1467 else
1468 return VM_FAULT_SIGBUS;
1469 get_page(page);
1470 vmf->page = page;
1471 return 0;
1474 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1475 .fault = kvm_vcpu_fault,
1478 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1480 vma->vm_ops = &kvm_vcpu_vm_ops;
1481 return 0;
1484 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1486 struct kvm_vcpu *vcpu = filp->private_data;
1488 kvm_put_kvm(vcpu->kvm);
1489 return 0;
1492 static struct file_operations kvm_vcpu_fops = {
1493 .release = kvm_vcpu_release,
1494 .unlocked_ioctl = kvm_vcpu_ioctl,
1495 .compat_ioctl = kvm_vcpu_ioctl,
1496 .mmap = kvm_vcpu_mmap,
1500 * Allocates an inode for the vcpu.
1502 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1504 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1505 if (fd < 0)
1506 kvm_put_kvm(vcpu->kvm);
1507 return fd;
1511 * Creates some virtual cpus. Good luck creating more than one.
1513 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1515 int r;
1516 struct kvm_vcpu *vcpu;
1518 if (!valid_vcpu(n))
1519 return -EINVAL;
1521 vcpu = kvm_arch_vcpu_create(kvm, n);
1522 if (IS_ERR(vcpu))
1523 return PTR_ERR(vcpu);
1525 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1527 r = kvm_arch_vcpu_setup(vcpu);
1528 if (r)
1529 return r;
1531 mutex_lock(&kvm->lock);
1532 if (kvm->vcpus[n]) {
1533 r = -EEXIST;
1534 goto vcpu_destroy;
1536 kvm->vcpus[n] = vcpu;
1537 mutex_unlock(&kvm->lock);
1539 /* Now it's all set up, let userspace reach it */
1540 kvm_get_kvm(kvm);
1541 r = create_vcpu_fd(vcpu);
1542 if (r < 0)
1543 goto unlink;
1544 return r;
1546 unlink:
1547 mutex_lock(&kvm->lock);
1548 kvm->vcpus[n] = NULL;
1549 vcpu_destroy:
1550 mutex_unlock(&kvm->lock);
1551 kvm_arch_vcpu_destroy(vcpu);
1552 return r;
1555 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1557 if (sigset) {
1558 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1559 vcpu->sigset_active = 1;
1560 vcpu->sigset = *sigset;
1561 } else
1562 vcpu->sigset_active = 0;
1563 return 0;
1566 static long kvm_vcpu_ioctl(struct file *filp,
1567 unsigned int ioctl, unsigned long arg)
1569 struct kvm_vcpu *vcpu = filp->private_data;
1570 void __user *argp = (void __user *)arg;
1571 int r;
1572 struct kvm_fpu *fpu = NULL;
1573 struct kvm_sregs *kvm_sregs = NULL;
1575 if (vcpu->kvm->mm != current->mm)
1576 return -EIO;
1577 switch (ioctl) {
1578 case KVM_RUN:
1579 r = -EINVAL;
1580 if (arg)
1581 goto out;
1582 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1583 break;
1584 case KVM_GET_REGS: {
1585 struct kvm_regs *kvm_regs;
1587 r = -ENOMEM;
1588 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1589 if (!kvm_regs)
1590 goto out;
1591 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1592 if (r)
1593 goto out_free1;
1594 r = -EFAULT;
1595 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1596 goto out_free1;
1597 r = 0;
1598 out_free1:
1599 kfree(kvm_regs);
1600 break;
1602 case KVM_SET_REGS: {
1603 struct kvm_regs *kvm_regs;
1605 r = -ENOMEM;
1606 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1607 if (!kvm_regs)
1608 goto out;
1609 r = -EFAULT;
1610 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1611 goto out_free2;
1612 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1613 if (r)
1614 goto out_free2;
1615 r = 0;
1616 out_free2:
1617 kfree(kvm_regs);
1618 break;
1620 case KVM_GET_SREGS: {
1621 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1622 r = -ENOMEM;
1623 if (!kvm_sregs)
1624 goto out;
1625 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1626 if (r)
1627 goto out;
1628 r = -EFAULT;
1629 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1630 goto out;
1631 r = 0;
1632 break;
1634 case KVM_SET_SREGS: {
1635 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1636 r = -ENOMEM;
1637 if (!kvm_sregs)
1638 goto out;
1639 r = -EFAULT;
1640 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1641 goto out;
1642 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1643 if (r)
1644 goto out;
1645 r = 0;
1646 break;
1648 case KVM_GET_MP_STATE: {
1649 struct kvm_mp_state mp_state;
1651 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1652 if (r)
1653 goto out;
1654 r = -EFAULT;
1655 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1656 goto out;
1657 r = 0;
1658 break;
1660 case KVM_SET_MP_STATE: {
1661 struct kvm_mp_state mp_state;
1663 r = -EFAULT;
1664 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1665 goto out;
1666 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1667 if (r)
1668 goto out;
1669 r = 0;
1670 break;
1672 case KVM_TRANSLATE: {
1673 struct kvm_translation tr;
1675 r = -EFAULT;
1676 if (copy_from_user(&tr, argp, sizeof tr))
1677 goto out;
1678 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1679 if (r)
1680 goto out;
1681 r = -EFAULT;
1682 if (copy_to_user(argp, &tr, sizeof tr))
1683 goto out;
1684 r = 0;
1685 break;
1687 case KVM_DEBUG_GUEST: {
1688 struct kvm_debug_guest dbg;
1690 r = -EFAULT;
1691 if (copy_from_user(&dbg, argp, sizeof dbg))
1692 goto out;
1693 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1694 if (r)
1695 goto out;
1696 r = 0;
1697 break;
1699 case KVM_SET_SIGNAL_MASK: {
1700 struct kvm_signal_mask __user *sigmask_arg = argp;
1701 struct kvm_signal_mask kvm_sigmask;
1702 sigset_t sigset, *p;
1704 p = NULL;
1705 if (argp) {
1706 r = -EFAULT;
1707 if (copy_from_user(&kvm_sigmask, argp,
1708 sizeof kvm_sigmask))
1709 goto out;
1710 r = -EINVAL;
1711 if (kvm_sigmask.len != sizeof sigset)
1712 goto out;
1713 r = -EFAULT;
1714 if (copy_from_user(&sigset, sigmask_arg->sigset,
1715 sizeof sigset))
1716 goto out;
1717 p = &sigset;
1719 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1720 break;
1722 case KVM_GET_FPU: {
1723 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1724 r = -ENOMEM;
1725 if (!fpu)
1726 goto out;
1727 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1728 if (r)
1729 goto out;
1730 r = -EFAULT;
1731 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1732 goto out;
1733 r = 0;
1734 break;
1736 case KVM_SET_FPU: {
1737 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1738 r = -ENOMEM;
1739 if (!fpu)
1740 goto out;
1741 r = -EFAULT;
1742 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1743 goto out;
1744 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1745 if (r)
1746 goto out;
1747 r = 0;
1748 break;
1750 default:
1751 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1753 out:
1754 kfree(fpu);
1755 kfree(kvm_sregs);
1756 return r;
1759 static long kvm_vm_ioctl(struct file *filp,
1760 unsigned int ioctl, unsigned long arg)
1762 struct kvm *kvm = filp->private_data;
1763 void __user *argp = (void __user *)arg;
1764 int r;
1766 if (kvm->mm != current->mm)
1767 return -EIO;
1768 switch (ioctl) {
1769 case KVM_CREATE_VCPU:
1770 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1771 if (r < 0)
1772 goto out;
1773 break;
1774 case KVM_SET_USER_MEMORY_REGION: {
1775 struct kvm_userspace_memory_region kvm_userspace_mem;
1777 r = -EFAULT;
1778 if (copy_from_user(&kvm_userspace_mem, argp,
1779 sizeof kvm_userspace_mem))
1780 goto out;
1782 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1783 if (r)
1784 goto out;
1785 break;
1787 case KVM_GET_DIRTY_LOG: {
1788 struct kvm_dirty_log log;
1790 r = -EFAULT;
1791 if (copy_from_user(&log, argp, sizeof log))
1792 goto out;
1793 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1794 if (r)
1795 goto out;
1796 break;
1798 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1799 case KVM_REGISTER_COALESCED_MMIO: {
1800 struct kvm_coalesced_mmio_zone zone;
1801 r = -EFAULT;
1802 if (copy_from_user(&zone, argp, sizeof zone))
1803 goto out;
1804 r = -ENXIO;
1805 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1806 if (r)
1807 goto out;
1808 r = 0;
1809 break;
1811 case KVM_UNREGISTER_COALESCED_MMIO: {
1812 struct kvm_coalesced_mmio_zone zone;
1813 r = -EFAULT;
1814 if (copy_from_user(&zone, argp, sizeof zone))
1815 goto out;
1816 r = -ENXIO;
1817 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1818 if (r)
1819 goto out;
1820 r = 0;
1821 break;
1823 #endif
1824 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1825 case KVM_ASSIGN_PCI_DEVICE: {
1826 struct kvm_assigned_pci_dev assigned_dev;
1828 r = -EFAULT;
1829 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1830 goto out;
1831 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1832 if (r)
1833 goto out;
1834 break;
1836 case KVM_ASSIGN_IRQ: {
1837 struct kvm_assigned_irq assigned_irq;
1839 r = -EFAULT;
1840 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1841 goto out;
1842 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1843 if (r)
1844 goto out;
1845 break;
1847 #endif
1848 default:
1849 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1851 out:
1852 return r;
1855 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1857 struct page *page[1];
1858 unsigned long addr;
1859 int npages;
1860 gfn_t gfn = vmf->pgoff;
1861 struct kvm *kvm = vma->vm_file->private_data;
1863 addr = gfn_to_hva(kvm, gfn);
1864 if (kvm_is_error_hva(addr))
1865 return VM_FAULT_SIGBUS;
1867 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1868 NULL);
1869 if (unlikely(npages != 1))
1870 return VM_FAULT_SIGBUS;
1872 vmf->page = page[0];
1873 return 0;
1876 static struct vm_operations_struct kvm_vm_vm_ops = {
1877 .fault = kvm_vm_fault,
1880 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1882 vma->vm_ops = &kvm_vm_vm_ops;
1883 return 0;
1886 static struct file_operations kvm_vm_fops = {
1887 .release = kvm_vm_release,
1888 .unlocked_ioctl = kvm_vm_ioctl,
1889 .compat_ioctl = kvm_vm_ioctl,
1890 .mmap = kvm_vm_mmap,
1893 static int kvm_dev_ioctl_create_vm(void)
1895 int fd;
1896 struct kvm *kvm;
1898 kvm = kvm_create_vm();
1899 if (IS_ERR(kvm))
1900 return PTR_ERR(kvm);
1901 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1902 if (fd < 0)
1903 kvm_put_kvm(kvm);
1905 return fd;
1908 static long kvm_dev_ioctl_check_extension_generic(long arg)
1910 switch (arg) {
1911 case KVM_CAP_USER_MEMORY:
1912 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1913 return 1;
1914 default:
1915 break;
1917 return kvm_dev_ioctl_check_extension(arg);
1920 static long kvm_dev_ioctl(struct file *filp,
1921 unsigned int ioctl, unsigned long arg)
1923 long r = -EINVAL;
1925 switch (ioctl) {
1926 case KVM_GET_API_VERSION:
1927 r = -EINVAL;
1928 if (arg)
1929 goto out;
1930 r = KVM_API_VERSION;
1931 break;
1932 case KVM_CREATE_VM:
1933 r = -EINVAL;
1934 if (arg)
1935 goto out;
1936 r = kvm_dev_ioctl_create_vm();
1937 break;
1938 case KVM_CHECK_EXTENSION:
1939 r = kvm_dev_ioctl_check_extension_generic(arg);
1940 break;
1941 case KVM_GET_VCPU_MMAP_SIZE:
1942 r = -EINVAL;
1943 if (arg)
1944 goto out;
1945 r = PAGE_SIZE; /* struct kvm_run */
1946 #ifdef CONFIG_X86
1947 r += PAGE_SIZE; /* pio data page */
1948 #endif
1949 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1950 r += PAGE_SIZE; /* coalesced mmio ring page */
1951 #endif
1952 break;
1953 case KVM_TRACE_ENABLE:
1954 case KVM_TRACE_PAUSE:
1955 case KVM_TRACE_DISABLE:
1956 r = kvm_trace_ioctl(ioctl, arg);
1957 break;
1958 default:
1959 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1961 out:
1962 return r;
1965 static struct file_operations kvm_chardev_ops = {
1966 .unlocked_ioctl = kvm_dev_ioctl,
1967 .compat_ioctl = kvm_dev_ioctl,
1970 static struct miscdevice kvm_dev = {
1971 KVM_MINOR,
1972 "kvm",
1973 &kvm_chardev_ops,
1976 static void hardware_enable(void *junk)
1978 int cpu = raw_smp_processor_id();
1980 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1981 return;
1982 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1983 kvm_arch_hardware_enable(NULL);
1986 static void hardware_disable(void *junk)
1988 int cpu = raw_smp_processor_id();
1990 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1991 return;
1992 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1993 kvm_arch_hardware_disable(NULL);
1996 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1997 void *v)
1999 int cpu = (long)v;
2001 val &= ~CPU_TASKS_FROZEN;
2002 switch (val) {
2003 case CPU_DYING:
2004 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2005 cpu);
2006 hardware_disable(NULL);
2007 break;
2008 case CPU_UP_CANCELED:
2009 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2010 cpu);
2011 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2012 break;
2013 case CPU_ONLINE:
2014 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2015 cpu);
2016 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2017 break;
2019 return NOTIFY_OK;
2023 asmlinkage void kvm_handle_fault_on_reboot(void)
2025 if (kvm_rebooting)
2026 /* spin while reset goes on */
2027 while (true)
2029 /* Fault while not rebooting. We want the trace. */
2030 BUG();
2032 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2034 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2035 void *v)
2037 if (val == SYS_RESTART) {
2039 * Some (well, at least mine) BIOSes hang on reboot if
2040 * in vmx root mode.
2042 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2043 kvm_rebooting = true;
2044 on_each_cpu(hardware_disable, NULL, 1);
2046 return NOTIFY_OK;
2049 static struct notifier_block kvm_reboot_notifier = {
2050 .notifier_call = kvm_reboot,
2051 .priority = 0,
2054 void kvm_io_bus_init(struct kvm_io_bus *bus)
2056 memset(bus, 0, sizeof(*bus));
2059 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2061 int i;
2063 for (i = 0; i < bus->dev_count; i++) {
2064 struct kvm_io_device *pos = bus->devs[i];
2066 kvm_iodevice_destructor(pos);
2070 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2071 gpa_t addr, int len, int is_write)
2073 int i;
2075 for (i = 0; i < bus->dev_count; i++) {
2076 struct kvm_io_device *pos = bus->devs[i];
2078 if (pos->in_range(pos, addr, len, is_write))
2079 return pos;
2082 return NULL;
2085 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2087 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2089 bus->devs[bus->dev_count++] = dev;
2092 static struct notifier_block kvm_cpu_notifier = {
2093 .notifier_call = kvm_cpu_hotplug,
2094 .priority = 20, /* must be > scheduler priority */
2097 static int vm_stat_get(void *_offset, u64 *val)
2099 unsigned offset = (long)_offset;
2100 struct kvm *kvm;
2102 *val = 0;
2103 spin_lock(&kvm_lock);
2104 list_for_each_entry(kvm, &vm_list, vm_list)
2105 *val += *(u32 *)((void *)kvm + offset);
2106 spin_unlock(&kvm_lock);
2107 return 0;
2110 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2112 static int vcpu_stat_get(void *_offset, u64 *val)
2114 unsigned offset = (long)_offset;
2115 struct kvm *kvm;
2116 struct kvm_vcpu *vcpu;
2117 int i;
2119 *val = 0;
2120 spin_lock(&kvm_lock);
2121 list_for_each_entry(kvm, &vm_list, vm_list)
2122 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2123 vcpu = kvm->vcpus[i];
2124 if (vcpu)
2125 *val += *(u32 *)((void *)vcpu + offset);
2127 spin_unlock(&kvm_lock);
2128 return 0;
2131 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2133 static struct file_operations *stat_fops[] = {
2134 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2135 [KVM_STAT_VM] = &vm_stat_fops,
2138 static void kvm_init_debug(void)
2140 struct kvm_stats_debugfs_item *p;
2142 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2143 for (p = debugfs_entries; p->name; ++p)
2144 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2145 (void *)(long)p->offset,
2146 stat_fops[p->kind]);
2149 static void kvm_exit_debug(void)
2151 struct kvm_stats_debugfs_item *p;
2153 for (p = debugfs_entries; p->name; ++p)
2154 debugfs_remove(p->dentry);
2155 debugfs_remove(kvm_debugfs_dir);
2158 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2160 hardware_disable(NULL);
2161 return 0;
2164 static int kvm_resume(struct sys_device *dev)
2166 hardware_enable(NULL);
2167 return 0;
2170 static struct sysdev_class kvm_sysdev_class = {
2171 .name = "kvm",
2172 .suspend = kvm_suspend,
2173 .resume = kvm_resume,
2176 static struct sys_device kvm_sysdev = {
2177 .id = 0,
2178 .cls = &kvm_sysdev_class,
2181 struct page *bad_page;
2182 pfn_t bad_pfn;
2184 static inline
2185 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2187 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2190 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2192 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2194 kvm_arch_vcpu_load(vcpu, cpu);
2197 static void kvm_sched_out(struct preempt_notifier *pn,
2198 struct task_struct *next)
2200 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2202 kvm_arch_vcpu_put(vcpu);
2205 int kvm_init(void *opaque, unsigned int vcpu_size,
2206 struct module *module)
2208 int r;
2209 int cpu;
2211 kvm_init_debug();
2213 r = kvm_arch_init(opaque);
2214 if (r)
2215 goto out_fail;
2217 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2219 if (bad_page == NULL) {
2220 r = -ENOMEM;
2221 goto out;
2224 bad_pfn = page_to_pfn(bad_page);
2226 if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2227 r = -ENOMEM;
2228 goto out_free_0;
2231 r = kvm_arch_hardware_setup();
2232 if (r < 0)
2233 goto out_free_0a;
2235 for_each_online_cpu(cpu) {
2236 smp_call_function_single(cpu,
2237 kvm_arch_check_processor_compat,
2238 &r, 1);
2239 if (r < 0)
2240 goto out_free_1;
2243 on_each_cpu(hardware_enable, NULL, 1);
2244 r = register_cpu_notifier(&kvm_cpu_notifier);
2245 if (r)
2246 goto out_free_2;
2247 register_reboot_notifier(&kvm_reboot_notifier);
2249 r = sysdev_class_register(&kvm_sysdev_class);
2250 if (r)
2251 goto out_free_3;
2253 r = sysdev_register(&kvm_sysdev);
2254 if (r)
2255 goto out_free_4;
2257 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2258 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2259 __alignof__(struct kvm_vcpu),
2260 0, NULL);
2261 if (!kvm_vcpu_cache) {
2262 r = -ENOMEM;
2263 goto out_free_5;
2266 kvm_chardev_ops.owner = module;
2267 kvm_vm_fops.owner = module;
2268 kvm_vcpu_fops.owner = module;
2270 r = misc_register(&kvm_dev);
2271 if (r) {
2272 printk(KERN_ERR "kvm: misc device register failed\n");
2273 goto out_free;
2276 kvm_preempt_ops.sched_in = kvm_sched_in;
2277 kvm_preempt_ops.sched_out = kvm_sched_out;
2278 #ifndef CONFIG_X86
2279 msi2intx = 0;
2280 #endif
2282 return 0;
2284 out_free:
2285 kmem_cache_destroy(kvm_vcpu_cache);
2286 out_free_5:
2287 sysdev_unregister(&kvm_sysdev);
2288 out_free_4:
2289 sysdev_class_unregister(&kvm_sysdev_class);
2290 out_free_3:
2291 unregister_reboot_notifier(&kvm_reboot_notifier);
2292 unregister_cpu_notifier(&kvm_cpu_notifier);
2293 out_free_2:
2294 on_each_cpu(hardware_disable, NULL, 1);
2295 out_free_1:
2296 kvm_arch_hardware_unsetup();
2297 out_free_0a:
2298 free_cpumask_var(cpus_hardware_enabled);
2299 out_free_0:
2300 __free_page(bad_page);
2301 out:
2302 kvm_arch_exit();
2303 kvm_exit_debug();
2304 out_fail:
2305 return r;
2307 EXPORT_SYMBOL_GPL(kvm_init);
2309 void kvm_exit(void)
2311 kvm_trace_cleanup();
2312 misc_deregister(&kvm_dev);
2313 kmem_cache_destroy(kvm_vcpu_cache);
2314 sysdev_unregister(&kvm_sysdev);
2315 sysdev_class_unregister(&kvm_sysdev_class);
2316 unregister_reboot_notifier(&kvm_reboot_notifier);
2317 unregister_cpu_notifier(&kvm_cpu_notifier);
2318 on_each_cpu(hardware_disable, NULL, 1);
2319 kvm_arch_hardware_unsetup();
2320 kvm_arch_exit();
2321 kvm_exit_debug();
2322 free_cpumask_var(cpus_hardware_enabled);
2323 __free_page(bad_page);
2325 EXPORT_SYMBOL_GPL(kvm_exit);