4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
64 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
65 unsigned int core_pipe_limit
;
66 int suid_dumpable
= 0;
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats
);
71 static DEFINE_RWLOCK(binfmt_lock
);
73 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
77 write_lock(&binfmt_lock
);
78 insert
? list_add(&fmt
->lh
, &formats
) :
79 list_add_tail(&fmt
->lh
, &formats
);
80 write_unlock(&binfmt_lock
);
84 EXPORT_SYMBOL(__register_binfmt
);
86 void unregister_binfmt(struct linux_binfmt
* fmt
)
88 write_lock(&binfmt_lock
);
90 write_unlock(&binfmt_lock
);
93 EXPORT_SYMBOL(unregister_binfmt
);
95 static inline void put_binfmt(struct linux_binfmt
* fmt
)
97 module_put(fmt
->module
);
101 * Note that a shared library must be both readable and executable due to
104 * Also note that we take the address to load from from the file itself.
106 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
109 char *tmp
= getname(library
);
110 int error
= PTR_ERR(tmp
);
115 file
= do_filp_open(AT_FDCWD
, tmp
,
116 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
117 MAY_READ
| MAY_EXEC
| MAY_OPEN
);
119 error
= PTR_ERR(file
);
124 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
128 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
135 struct linux_binfmt
* fmt
;
137 read_lock(&binfmt_lock
);
138 list_for_each_entry(fmt
, &formats
, lh
) {
139 if (!fmt
->load_shlib
)
141 if (!try_module_get(fmt
->module
))
143 read_unlock(&binfmt_lock
);
144 error
= fmt
->load_shlib(file
);
145 read_lock(&binfmt_lock
);
147 if (error
!= -ENOEXEC
)
150 read_unlock(&binfmt_lock
);
160 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
166 #ifdef CONFIG_STACK_GROWSUP
168 ret
= expand_stack_downwards(bprm
->vma
, pos
);
173 ret
= get_user_pages(current
, bprm
->mm
, pos
,
174 1, write
, 1, &page
, NULL
);
179 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
190 * Limit to 1/4-th the stack size for the argv+env strings.
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
196 rlim
= current
->signal
->rlim
;
197 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
206 static void put_arg_page(struct page
*page
)
211 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
215 static void free_arg_pages(struct linux_binprm
*bprm
)
219 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
222 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
225 static int __bprm_mm_init(struct linux_binprm
*bprm
)
228 struct vm_area_struct
*vma
= NULL
;
229 struct mm_struct
*mm
= bprm
->mm
;
231 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
235 down_write(&mm
->mmap_sem
);
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
244 BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
245 vma
->vm_end
= STACK_TOP_MAX
;
246 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
247 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
248 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
249 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
250 err
= insert_vm_struct(mm
, vma
);
254 mm
->stack_vm
= mm
->total_vm
= 1;
255 up_write(&mm
->mmap_sem
);
256 bprm
->p
= vma
->vm_end
- sizeof(void *);
259 up_write(&mm
->mmap_sem
);
261 kmem_cache_free(vm_area_cachep
, vma
);
265 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
267 return len
<= MAX_ARG_STRLEN
;
272 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
277 page
= bprm
->page
[pos
/ PAGE_SIZE
];
278 if (!page
&& write
) {
279 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
282 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
288 static void put_arg_page(struct page
*page
)
292 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
295 __free_page(bprm
->page
[i
]);
296 bprm
->page
[i
] = NULL
;
300 static void free_arg_pages(struct linux_binprm
*bprm
)
304 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
305 free_arg_page(bprm
, i
);
308 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
313 static int __bprm_mm_init(struct linux_binprm
*bprm
)
315 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
319 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
321 return len
<= bprm
->p
;
324 #endif /* CONFIG_MMU */
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
332 int bprm_mm_init(struct linux_binprm
*bprm
)
335 struct mm_struct
*mm
= NULL
;
337 bprm
->mm
= mm
= mm_alloc();
342 err
= init_new_context(current
, mm
);
346 err
= __bprm_mm_init(bprm
);
362 * count() counts the number of strings in array ARGV.
364 static int count(const char __user
* const __user
* argv
, int max
)
370 const char __user
* p
;
372 if (get_user(p
, argv
))
380 if (fatal_signal_pending(current
))
381 return -ERESTARTNOHAND
;
389 * 'copy_strings()' copies argument/environment strings from the old
390 * processes's memory to the new process's stack. The call to get_user_pages()
391 * ensures the destination page is created and not swapped out.
393 static int copy_strings(int argc
, const char __user
*const __user
*argv
,
394 struct linux_binprm
*bprm
)
396 struct page
*kmapped_page
= NULL
;
398 unsigned long kpos
= 0;
402 const char __user
*str
;
406 if (get_user(str
, argv
+argc
) ||
407 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
412 if (!valid_arg_len(bprm
, len
)) {
417 /* We're going to work our way backwords. */
423 int offset
, bytes_to_copy
;
425 if (fatal_signal_pending(current
)) {
426 ret
= -ERESTARTNOHAND
;
431 offset
= pos
% PAGE_SIZE
;
435 bytes_to_copy
= offset
;
436 if (bytes_to_copy
> len
)
439 offset
-= bytes_to_copy
;
440 pos
-= bytes_to_copy
;
441 str
-= bytes_to_copy
;
442 len
-= bytes_to_copy
;
444 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
447 page
= get_arg_page(bprm
, pos
, 1);
454 flush_kernel_dcache_page(kmapped_page
);
455 kunmap(kmapped_page
);
456 put_arg_page(kmapped_page
);
459 kaddr
= kmap(kmapped_page
);
460 kpos
= pos
& PAGE_MASK
;
461 flush_arg_page(bprm
, kpos
, kmapped_page
);
463 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
472 flush_kernel_dcache_page(kmapped_page
);
473 kunmap(kmapped_page
);
474 put_arg_page(kmapped_page
);
480 * Like copy_strings, but get argv and its values from kernel memory.
482 int copy_strings_kernel(int argc
, const char *const *argv
,
483 struct linux_binprm
*bprm
)
486 mm_segment_t oldfs
= get_fs();
488 r
= copy_strings(argc
, (const char __user
*const __user
*)argv
, bprm
);
492 EXPORT_SYMBOL(copy_strings_kernel
);
497 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
498 * the binfmt code determines where the new stack should reside, we shift it to
499 * its final location. The process proceeds as follows:
501 * 1) Use shift to calculate the new vma endpoints.
502 * 2) Extend vma to cover both the old and new ranges. This ensures the
503 * arguments passed to subsequent functions are consistent.
504 * 3) Move vma's page tables to the new range.
505 * 4) Free up any cleared pgd range.
506 * 5) Shrink the vma to cover only the new range.
508 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
510 struct mm_struct
*mm
= vma
->vm_mm
;
511 unsigned long old_start
= vma
->vm_start
;
512 unsigned long old_end
= vma
->vm_end
;
513 unsigned long length
= old_end
- old_start
;
514 unsigned long new_start
= old_start
- shift
;
515 unsigned long new_end
= old_end
- shift
;
516 struct mmu_gather
*tlb
;
518 BUG_ON(new_start
> new_end
);
521 * ensure there are no vmas between where we want to go
524 if (vma
!= find_vma(mm
, new_start
))
528 * cover the whole range: [new_start, old_end)
530 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
534 * move the page tables downwards, on failure we rely on
535 * process cleanup to remove whatever mess we made.
537 if (length
!= move_page_tables(vma
, old_start
,
538 vma
, new_start
, length
))
542 tlb
= tlb_gather_mmu(mm
, 0);
543 if (new_end
> old_start
) {
545 * when the old and new regions overlap clear from new_end.
547 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
548 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
551 * otherwise, clean from old_start; this is done to not touch
552 * the address space in [new_end, old_start) some architectures
553 * have constraints on va-space that make this illegal (IA64) -
554 * for the others its just a little faster.
556 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
557 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
559 tlb_finish_mmu(tlb
, new_end
, old_end
);
562 * Shrink the vma to just the new range. Always succeeds.
564 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
570 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
571 * the stack is optionally relocated, and some extra space is added.
573 int setup_arg_pages(struct linux_binprm
*bprm
,
574 unsigned long stack_top
,
575 int executable_stack
)
578 unsigned long stack_shift
;
579 struct mm_struct
*mm
= current
->mm
;
580 struct vm_area_struct
*vma
= bprm
->vma
;
581 struct vm_area_struct
*prev
= NULL
;
582 unsigned long vm_flags
;
583 unsigned long stack_base
;
584 unsigned long stack_size
;
585 unsigned long stack_expand
;
586 unsigned long rlim_stack
;
588 #ifdef CONFIG_STACK_GROWSUP
589 /* Limit stack size to 1GB */
590 stack_base
= rlimit_max(RLIMIT_STACK
);
591 if (stack_base
> (1 << 30))
592 stack_base
= 1 << 30;
594 /* Make sure we didn't let the argument array grow too large. */
595 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
598 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
600 stack_shift
= vma
->vm_start
- stack_base
;
601 mm
->arg_start
= bprm
->p
- stack_shift
;
602 bprm
->p
= vma
->vm_end
- stack_shift
;
604 stack_top
= arch_align_stack(stack_top
);
605 stack_top
= PAGE_ALIGN(stack_top
);
607 if (unlikely(stack_top
< mmap_min_addr
) ||
608 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
611 stack_shift
= vma
->vm_end
- stack_top
;
613 bprm
->p
-= stack_shift
;
614 mm
->arg_start
= bprm
->p
;
618 bprm
->loader
-= stack_shift
;
619 bprm
->exec
-= stack_shift
;
621 down_write(&mm
->mmap_sem
);
622 vm_flags
= VM_STACK_FLAGS
;
625 * Adjust stack execute permissions; explicitly enable for
626 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
627 * (arch default) otherwise.
629 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
631 else if (executable_stack
== EXSTACK_DISABLE_X
)
632 vm_flags
&= ~VM_EXEC
;
633 vm_flags
|= mm
->def_flags
;
634 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
636 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
642 /* Move stack pages down in memory. */
644 ret
= shift_arg_pages(vma
, stack_shift
);
649 /* mprotect_fixup is overkill to remove the temporary stack flags */
650 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
652 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
653 stack_size
= vma
->vm_end
- vma
->vm_start
;
655 * Align this down to a page boundary as expand_stack
658 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
659 #ifdef CONFIG_STACK_GROWSUP
660 if (stack_size
+ stack_expand
> rlim_stack
)
661 stack_base
= vma
->vm_start
+ rlim_stack
;
663 stack_base
= vma
->vm_end
+ stack_expand
;
665 if (stack_size
+ stack_expand
> rlim_stack
)
666 stack_base
= vma
->vm_end
- rlim_stack
;
668 stack_base
= vma
->vm_start
- stack_expand
;
670 current
->mm
->start_stack
= bprm
->p
;
671 ret
= expand_stack(vma
, stack_base
);
676 up_write(&mm
->mmap_sem
);
679 EXPORT_SYMBOL(setup_arg_pages
);
681 #endif /* CONFIG_MMU */
683 struct file
*open_exec(const char *name
)
688 file
= do_filp_open(AT_FDCWD
, name
,
689 O_LARGEFILE
| O_RDONLY
| FMODE_EXEC
, 0,
690 MAY_EXEC
| MAY_OPEN
);
695 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
698 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
703 err
= deny_write_access(file
);
714 EXPORT_SYMBOL(open_exec
);
716 int kernel_read(struct file
*file
, loff_t offset
,
717 char *addr
, unsigned long count
)
725 /* The cast to a user pointer is valid due to the set_fs() */
726 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
731 EXPORT_SYMBOL(kernel_read
);
733 static int exec_mmap(struct mm_struct
*mm
)
735 struct task_struct
*tsk
;
736 struct mm_struct
* old_mm
, *active_mm
;
738 /* Notify parent that we're no longer interested in the old VM */
740 old_mm
= current
->mm
;
741 sync_mm_rss(tsk
, old_mm
);
742 mm_release(tsk
, old_mm
);
746 * Make sure that if there is a core dump in progress
747 * for the old mm, we get out and die instead of going
748 * through with the exec. We must hold mmap_sem around
749 * checking core_state and changing tsk->mm.
751 down_read(&old_mm
->mmap_sem
);
752 if (unlikely(old_mm
->core_state
)) {
753 up_read(&old_mm
->mmap_sem
);
758 active_mm
= tsk
->active_mm
;
761 activate_mm(active_mm
, mm
);
763 arch_pick_mmap_layout(mm
);
765 up_read(&old_mm
->mmap_sem
);
766 BUG_ON(active_mm
!= old_mm
);
767 mm_update_next_owner(old_mm
);
776 * This function makes sure the current process has its own signal table,
777 * so that flush_signal_handlers can later reset the handlers without
778 * disturbing other processes. (Other processes might share the signal
779 * table via the CLONE_SIGHAND option to clone().)
781 static int de_thread(struct task_struct
*tsk
)
783 struct signal_struct
*sig
= tsk
->signal
;
784 struct sighand_struct
*oldsighand
= tsk
->sighand
;
785 spinlock_t
*lock
= &oldsighand
->siglock
;
787 if (thread_group_empty(tsk
))
788 goto no_thread_group
;
791 * Kill all other threads in the thread group.
794 if (signal_group_exit(sig
)) {
796 * Another group action in progress, just
797 * return so that the signal is processed.
799 spin_unlock_irq(lock
);
803 sig
->group_exit_task
= tsk
;
804 sig
->notify_count
= zap_other_threads(tsk
);
805 if (!thread_group_leader(tsk
))
808 while (sig
->notify_count
) {
809 __set_current_state(TASK_UNINTERRUPTIBLE
);
810 spin_unlock_irq(lock
);
814 spin_unlock_irq(lock
);
817 * At this point all other threads have exited, all we have to
818 * do is to wait for the thread group leader to become inactive,
819 * and to assume its PID:
821 if (!thread_group_leader(tsk
)) {
822 struct task_struct
*leader
= tsk
->group_leader
;
824 sig
->notify_count
= -1; /* for exit_notify() */
826 write_lock_irq(&tasklist_lock
);
827 if (likely(leader
->exit_state
))
829 __set_current_state(TASK_UNINTERRUPTIBLE
);
830 write_unlock_irq(&tasklist_lock
);
835 * The only record we have of the real-time age of a
836 * process, regardless of execs it's done, is start_time.
837 * All the past CPU time is accumulated in signal_struct
838 * from sister threads now dead. But in this non-leader
839 * exec, nothing survives from the original leader thread,
840 * whose birth marks the true age of this process now.
841 * When we take on its identity by switching to its PID, we
842 * also take its birthdate (always earlier than our own).
844 tsk
->start_time
= leader
->start_time
;
846 BUG_ON(!same_thread_group(leader
, tsk
));
847 BUG_ON(has_group_leader_pid(tsk
));
849 * An exec() starts a new thread group with the
850 * TGID of the previous thread group. Rehash the
851 * two threads with a switched PID, and release
852 * the former thread group leader:
855 /* Become a process group leader with the old leader's pid.
856 * The old leader becomes a thread of the this thread group.
857 * Note: The old leader also uses this pid until release_task
858 * is called. Odd but simple and correct.
860 detach_pid(tsk
, PIDTYPE_PID
);
861 tsk
->pid
= leader
->pid
;
862 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
863 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
864 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
866 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
867 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
869 tsk
->group_leader
= tsk
;
870 leader
->group_leader
= tsk
;
872 tsk
->exit_signal
= SIGCHLD
;
874 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
875 leader
->exit_state
= EXIT_DEAD
;
876 write_unlock_irq(&tasklist_lock
);
878 release_task(leader
);
881 sig
->group_exit_task
= NULL
;
882 sig
->notify_count
= 0;
886 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
889 flush_itimer_signals();
891 if (atomic_read(&oldsighand
->count
) != 1) {
892 struct sighand_struct
*newsighand
;
894 * This ->sighand is shared with the CLONE_SIGHAND
895 * but not CLONE_THREAD task, switch to the new one.
897 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
901 atomic_set(&newsighand
->count
, 1);
902 memcpy(newsighand
->action
, oldsighand
->action
,
903 sizeof(newsighand
->action
));
905 write_lock_irq(&tasklist_lock
);
906 spin_lock(&oldsighand
->siglock
);
907 rcu_assign_pointer(tsk
->sighand
, newsighand
);
908 spin_unlock(&oldsighand
->siglock
);
909 write_unlock_irq(&tasklist_lock
);
911 __cleanup_sighand(oldsighand
);
914 BUG_ON(!thread_group_leader(tsk
));
919 * These functions flushes out all traces of the currently running executable
920 * so that a new one can be started
922 static void flush_old_files(struct files_struct
* files
)
927 spin_lock(&files
->file_lock
);
929 unsigned long set
, i
;
933 fdt
= files_fdtable(files
);
934 if (i
>= fdt
->max_fds
)
936 set
= fdt
->close_on_exec
->fds_bits
[j
];
939 fdt
->close_on_exec
->fds_bits
[j
] = 0;
940 spin_unlock(&files
->file_lock
);
941 for ( ; set
; i
++,set
>>= 1) {
946 spin_lock(&files
->file_lock
);
949 spin_unlock(&files
->file_lock
);
952 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
954 /* buf must be at least sizeof(tsk->comm) in size */
956 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
961 void set_task_comm(struct task_struct
*tsk
, char *buf
)
966 * Threads may access current->comm without holding
967 * the task lock, so write the string carefully.
968 * Readers without a lock may see incomplete new
969 * names but are safe from non-terminating string reads.
971 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
973 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
975 perf_event_comm(tsk
);
978 int flush_old_exec(struct linux_binprm
* bprm
)
983 * Make sure we have a private signal table and that
984 * we are unassociated from the previous thread group.
986 retval
= de_thread(current
);
990 set_mm_exe_file(bprm
->mm
, bprm
->file
);
993 * Release all of the old mmap stuff
995 retval
= exec_mmap(bprm
->mm
);
999 bprm
->mm
= NULL
; /* We're using it now */
1001 current
->flags
&= ~PF_RANDOMIZE
;
1003 current
->personality
&= ~bprm
->per_clear
;
1010 EXPORT_SYMBOL(flush_old_exec
);
1012 void setup_new_exec(struct linux_binprm
* bprm
)
1016 char tcomm
[sizeof(current
->comm
)];
1018 arch_pick_mmap_layout(current
->mm
);
1020 /* This is the point of no return */
1021 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1023 if (current_euid() == current_uid() && current_egid() == current_gid())
1024 set_dumpable(current
->mm
, 1);
1026 set_dumpable(current
->mm
, suid_dumpable
);
1028 name
= bprm
->filename
;
1030 /* Copies the binary name from after last slash */
1031 for (i
=0; (ch
= *(name
++)) != '\0';) {
1033 i
= 0; /* overwrite what we wrote */
1035 if (i
< (sizeof(tcomm
) - 1))
1039 set_task_comm(current
, tcomm
);
1041 /* Set the new mm task size. We have to do that late because it may
1042 * depend on TIF_32BIT which is only updated in flush_thread() on
1043 * some architectures like powerpc
1045 current
->mm
->task_size
= TASK_SIZE
;
1047 /* install the new credentials */
1048 if (bprm
->cred
->uid
!= current_euid() ||
1049 bprm
->cred
->gid
!= current_egid()) {
1050 current
->pdeath_signal
= 0;
1051 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1052 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1053 set_dumpable(current
->mm
, suid_dumpable
);
1057 * Flush performance counters when crossing a
1060 if (!get_dumpable(current
->mm
))
1061 perf_event_exit_task(current
);
1063 /* An exec changes our domain. We are no longer part of the thread
1066 current
->self_exec_id
++;
1068 flush_signal_handlers(current
, 0);
1069 flush_old_files(current
->files
);
1071 EXPORT_SYMBOL(setup_new_exec
);
1074 * Prepare credentials and lock ->cred_guard_mutex.
1075 * install_exec_creds() commits the new creds and drops the lock.
1076 * Or, if exec fails before, free_bprm() should release ->cred and
1079 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1081 if (mutex_lock_interruptible(¤t
->cred_guard_mutex
))
1082 return -ERESTARTNOINTR
;
1084 bprm
->cred
= prepare_exec_creds();
1085 if (likely(bprm
->cred
))
1088 mutex_unlock(¤t
->cred_guard_mutex
);
1092 void free_bprm(struct linux_binprm
*bprm
)
1094 free_arg_pages(bprm
);
1096 mutex_unlock(¤t
->cred_guard_mutex
);
1097 abort_creds(bprm
->cred
);
1103 * install the new credentials for this executable
1105 void install_exec_creds(struct linux_binprm
*bprm
)
1107 security_bprm_committing_creds(bprm
);
1109 commit_creds(bprm
->cred
);
1112 * cred_guard_mutex must be held at least to this point to prevent
1113 * ptrace_attach() from altering our determination of the task's
1114 * credentials; any time after this it may be unlocked.
1116 security_bprm_committed_creds(bprm
);
1117 mutex_unlock(¤t
->cred_guard_mutex
);
1119 EXPORT_SYMBOL(install_exec_creds
);
1122 * determine how safe it is to execute the proposed program
1123 * - the caller must hold current->cred_guard_mutex to protect against
1126 int check_unsafe_exec(struct linux_binprm
*bprm
)
1128 struct task_struct
*p
= current
, *t
;
1132 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1135 spin_lock(&p
->fs
->lock
);
1137 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1143 if (p
->fs
->users
> n_fs
) {
1144 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1147 if (!p
->fs
->in_exec
) {
1152 spin_unlock(&p
->fs
->lock
);
1158 * Fill the binprm structure from the inode.
1159 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1161 * This may be called multiple times for binary chains (scripts for example).
1163 int prepare_binprm(struct linux_binprm
*bprm
)
1166 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1169 mode
= inode
->i_mode
;
1170 if (bprm
->file
->f_op
== NULL
)
1173 /* clear any previous set[ug]id data from a previous binary */
1174 bprm
->cred
->euid
= current_euid();
1175 bprm
->cred
->egid
= current_egid();
1177 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1179 if (mode
& S_ISUID
) {
1180 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1181 bprm
->cred
->euid
= inode
->i_uid
;
1186 * If setgid is set but no group execute bit then this
1187 * is a candidate for mandatory locking, not a setgid
1190 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1191 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1192 bprm
->cred
->egid
= inode
->i_gid
;
1196 /* fill in binprm security blob */
1197 retval
= security_bprm_set_creds(bprm
);
1200 bprm
->cred_prepared
= 1;
1202 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1203 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1206 EXPORT_SYMBOL(prepare_binprm
);
1209 * Arguments are '\0' separated strings found at the location bprm->p
1210 * points to; chop off the first by relocating brpm->p to right after
1211 * the first '\0' encountered.
1213 int remove_arg_zero(struct linux_binprm
*bprm
)
1216 unsigned long offset
;
1224 offset
= bprm
->p
& ~PAGE_MASK
;
1225 page
= get_arg_page(bprm
, bprm
->p
, 0);
1230 kaddr
= kmap_atomic(page
, KM_USER0
);
1232 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1233 offset
++, bprm
->p
++)
1236 kunmap_atomic(kaddr
, KM_USER0
);
1239 if (offset
== PAGE_SIZE
)
1240 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1241 } while (offset
== PAGE_SIZE
);
1250 EXPORT_SYMBOL(remove_arg_zero
);
1253 * cycle the list of binary formats handler, until one recognizes the image
1255 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1257 unsigned int depth
= bprm
->recursion_depth
;
1259 struct linux_binfmt
*fmt
;
1261 retval
= security_bprm_check(bprm
);
1265 /* kernel module loader fixup */
1266 /* so we don't try to load run modprobe in kernel space. */
1269 retval
= audit_bprm(bprm
);
1274 for (try=0; try<2; try++) {
1275 read_lock(&binfmt_lock
);
1276 list_for_each_entry(fmt
, &formats
, lh
) {
1277 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1280 if (!try_module_get(fmt
->module
))
1282 read_unlock(&binfmt_lock
);
1283 retval
= fn(bprm
, regs
);
1285 * Restore the depth counter to its starting value
1286 * in this call, so we don't have to rely on every
1287 * load_binary function to restore it on return.
1289 bprm
->recursion_depth
= depth
;
1292 tracehook_report_exec(fmt
, bprm
, regs
);
1294 allow_write_access(bprm
->file
);
1298 current
->did_exec
= 1;
1299 proc_exec_connector(current
);
1302 read_lock(&binfmt_lock
);
1304 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1307 read_unlock(&binfmt_lock
);
1311 read_unlock(&binfmt_lock
);
1312 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1314 #ifdef CONFIG_MODULES
1316 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1317 if (printable(bprm
->buf
[0]) &&
1318 printable(bprm
->buf
[1]) &&
1319 printable(bprm
->buf
[2]) &&
1320 printable(bprm
->buf
[3]))
1321 break; /* -ENOEXEC */
1322 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1329 EXPORT_SYMBOL(search_binary_handler
);
1332 * sys_execve() executes a new program.
1334 int do_execve(const char * filename
,
1335 const char __user
*const __user
*argv
,
1336 const char __user
*const __user
*envp
,
1337 struct pt_regs
* regs
)
1339 struct linux_binprm
*bprm
;
1341 struct files_struct
*displaced
;
1345 retval
= unshare_files(&displaced
);
1350 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1354 retval
= prepare_bprm_creds(bprm
);
1358 retval
= check_unsafe_exec(bprm
);
1361 clear_in_exec
= retval
;
1362 current
->in_execve
= 1;
1364 file
= open_exec(filename
);
1365 retval
= PTR_ERR(file
);
1372 bprm
->filename
= filename
;
1373 bprm
->interp
= filename
;
1375 retval
= bprm_mm_init(bprm
);
1379 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1380 if ((retval
= bprm
->argc
) < 0)
1383 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1384 if ((retval
= bprm
->envc
) < 0)
1387 retval
= prepare_binprm(bprm
);
1391 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1395 bprm
->exec
= bprm
->p
;
1396 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1400 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1404 current
->flags
&= ~PF_KTHREAD
;
1405 retval
= search_binary_handler(bprm
,regs
);
1409 /* execve succeeded */
1410 current
->fs
->in_exec
= 0;
1411 current
->in_execve
= 0;
1412 acct_update_integrals(current
);
1415 put_files_struct(displaced
);
1424 allow_write_access(bprm
->file
);
1430 current
->fs
->in_exec
= 0;
1431 current
->in_execve
= 0;
1438 reset_files_struct(displaced
);
1443 void set_binfmt(struct linux_binfmt
*new)
1445 struct mm_struct
*mm
= current
->mm
;
1448 module_put(mm
->binfmt
->module
);
1452 __module_get(new->module
);
1455 EXPORT_SYMBOL(set_binfmt
);
1457 /* format_corename will inspect the pattern parameter, and output a
1458 * name into corename, which must have space for at least
1459 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1461 static int format_corename(char *corename
, long signr
)
1463 const struct cred
*cred
= current_cred();
1464 const char *pat_ptr
= core_pattern
;
1465 int ispipe
= (*pat_ptr
== '|');
1466 char *out_ptr
= corename
;
1467 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1469 int pid_in_pattern
= 0;
1471 /* Repeat as long as we have more pattern to process and more output
1474 if (*pat_ptr
!= '%') {
1475 if (out_ptr
== out_end
)
1477 *out_ptr
++ = *pat_ptr
++;
1479 switch (*++pat_ptr
) {
1482 /* Double percent, output one percent */
1484 if (out_ptr
== out_end
)
1491 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1492 "%d", task_tgid_vnr(current
));
1493 if (rc
> out_end
- out_ptr
)
1499 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1501 if (rc
> out_end
- out_ptr
)
1507 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1509 if (rc
> out_end
- out_ptr
)
1513 /* signal that caused the coredump */
1515 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1517 if (rc
> out_end
- out_ptr
)
1521 /* UNIX time of coredump */
1524 do_gettimeofday(&tv
);
1525 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1527 if (rc
> out_end
- out_ptr
)
1534 down_read(&uts_sem
);
1535 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1536 "%s", utsname()->nodename
);
1538 if (rc
> out_end
- out_ptr
)
1544 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1545 "%s", current
->comm
);
1546 if (rc
> out_end
- out_ptr
)
1550 /* core limit size */
1552 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1553 "%lu", rlimit(RLIMIT_CORE
));
1554 if (rc
> out_end
- out_ptr
)
1564 /* Backward compatibility with core_uses_pid:
1566 * If core_pattern does not include a %p (as is the default)
1567 * and core_uses_pid is set, then .%pid will be appended to
1568 * the filename. Do not do this for piped commands. */
1569 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1570 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1571 ".%d", task_tgid_vnr(current
));
1572 if (rc
> out_end
- out_ptr
)
1581 static int zap_process(struct task_struct
*start
, int exit_code
)
1583 struct task_struct
*t
;
1586 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1587 start
->signal
->group_exit_code
= exit_code
;
1588 start
->signal
->group_stop_count
= 0;
1592 if (t
!= current
&& t
->mm
) {
1593 sigaddset(&t
->pending
.signal
, SIGKILL
);
1594 signal_wake_up(t
, 1);
1597 } while_each_thread(start
, t
);
1602 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1603 struct core_state
*core_state
, int exit_code
)
1605 struct task_struct
*g
, *p
;
1606 unsigned long flags
;
1609 spin_lock_irq(&tsk
->sighand
->siglock
);
1610 if (!signal_group_exit(tsk
->signal
)) {
1611 mm
->core_state
= core_state
;
1612 nr
= zap_process(tsk
, exit_code
);
1614 spin_unlock_irq(&tsk
->sighand
->siglock
);
1615 if (unlikely(nr
< 0))
1618 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1621 * We should find and kill all tasks which use this mm, and we should
1622 * count them correctly into ->nr_threads. We don't take tasklist
1623 * lock, but this is safe wrt:
1626 * None of sub-threads can fork after zap_process(leader). All
1627 * processes which were created before this point should be
1628 * visible to zap_threads() because copy_process() adds the new
1629 * process to the tail of init_task.tasks list, and lock/unlock
1630 * of ->siglock provides a memory barrier.
1633 * The caller holds mm->mmap_sem. This means that the task which
1634 * uses this mm can't pass exit_mm(), so it can't exit or clear
1638 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1639 * we must see either old or new leader, this does not matter.
1640 * However, it can change p->sighand, so lock_task_sighand(p)
1641 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1644 * Note also that "g" can be the old leader with ->mm == NULL
1645 * and already unhashed and thus removed from ->thread_group.
1646 * This is OK, __unhash_process()->list_del_rcu() does not
1647 * clear the ->next pointer, we will find the new leader via
1651 for_each_process(g
) {
1652 if (g
== tsk
->group_leader
)
1654 if (g
->flags
& PF_KTHREAD
)
1659 if (unlikely(p
->mm
== mm
)) {
1660 lock_task_sighand(p
, &flags
);
1661 nr
+= zap_process(p
, exit_code
);
1662 unlock_task_sighand(p
, &flags
);
1666 } while_each_thread(g
, p
);
1670 atomic_set(&core_state
->nr_threads
, nr
);
1674 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1676 struct task_struct
*tsk
= current
;
1677 struct mm_struct
*mm
= tsk
->mm
;
1678 struct completion
*vfork_done
;
1679 int core_waiters
= -EBUSY
;
1681 init_completion(&core_state
->startup
);
1682 core_state
->dumper
.task
= tsk
;
1683 core_state
->dumper
.next
= NULL
;
1685 down_write(&mm
->mmap_sem
);
1686 if (!mm
->core_state
)
1687 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1688 up_write(&mm
->mmap_sem
);
1690 if (unlikely(core_waiters
< 0))
1694 * Make sure nobody is waiting for us to release the VM,
1695 * otherwise we can deadlock when we wait on each other
1697 vfork_done
= tsk
->vfork_done
;
1699 tsk
->vfork_done
= NULL
;
1700 complete(vfork_done
);
1704 wait_for_completion(&core_state
->startup
);
1706 return core_waiters
;
1709 static void coredump_finish(struct mm_struct
*mm
)
1711 struct core_thread
*curr
, *next
;
1712 struct task_struct
*task
;
1714 next
= mm
->core_state
->dumper
.next
;
1715 while ((curr
= next
) != NULL
) {
1719 * see exit_mm(), curr->task must not see
1720 * ->task == NULL before we read ->next.
1724 wake_up_process(task
);
1727 mm
->core_state
= NULL
;
1731 * set_dumpable converts traditional three-value dumpable to two flags and
1732 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1733 * these bits are not changed atomically. So get_dumpable can observe the
1734 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1735 * return either old dumpable or new one by paying attention to the order of
1736 * modifying the bits.
1738 * dumpable | mm->flags (binary)
1739 * old new | initial interim final
1740 * ---------+-----------------------
1748 * (*) get_dumpable regards interim value of 10 as 11.
1750 void set_dumpable(struct mm_struct
*mm
, int value
)
1754 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1756 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1759 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1761 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1764 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1766 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1771 static int __get_dumpable(unsigned long mm_flags
)
1775 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
1776 return (ret
>= 2) ? 2 : ret
;
1779 int get_dumpable(struct mm_struct
*mm
)
1781 return __get_dumpable(mm
->flags
);
1784 static void wait_for_dump_helpers(struct file
*file
)
1786 struct pipe_inode_info
*pipe
;
1788 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
1794 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
1795 wake_up_interruptible_sync(&pipe
->wait
);
1796 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
1809 * helper function to customize the process used
1810 * to collect the core in userspace. Specifically
1811 * it sets up a pipe and installs it as fd 0 (stdin)
1812 * for the process. Returns 0 on success, or
1813 * PTR_ERR on failure.
1814 * Note that it also sets the core limit to 1. This
1815 * is a special value that we use to trap recursive
1818 static int umh_pipe_setup(struct subprocess_info
*info
)
1820 struct file
*rp
, *wp
;
1821 struct fdtable
*fdt
;
1822 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
1823 struct files_struct
*cf
= current
->files
;
1825 wp
= create_write_pipe(0);
1829 rp
= create_read_pipe(wp
, 0);
1831 free_write_pipe(wp
);
1839 spin_lock(&cf
->file_lock
);
1840 fdt
= files_fdtable(cf
);
1841 FD_SET(0, fdt
->open_fds
);
1842 FD_CLR(0, fdt
->close_on_exec
);
1843 spin_unlock(&cf
->file_lock
);
1845 /* and disallow core files too */
1846 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
1851 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
1853 struct core_state core_state
;
1854 char corename
[CORENAME_MAX_SIZE
+ 1];
1855 struct mm_struct
*mm
= current
->mm
;
1856 struct linux_binfmt
* binfmt
;
1857 const struct cred
*old_cred
;
1862 static atomic_t core_dump_count
= ATOMIC_INIT(0);
1863 struct coredump_params cprm
= {
1866 .limit
= rlimit(RLIMIT_CORE
),
1868 * We must use the same mm->flags while dumping core to avoid
1869 * inconsistency of bit flags, since this flag is not protected
1872 .mm_flags
= mm
->flags
,
1875 audit_core_dumps(signr
);
1877 binfmt
= mm
->binfmt
;
1878 if (!binfmt
|| !binfmt
->core_dump
)
1880 if (!__get_dumpable(cprm
.mm_flags
))
1883 cred
= prepare_creds();
1887 * We cannot trust fsuid as being the "true" uid of the
1888 * process nor do we know its entire history. We only know it
1889 * was tainted so we dump it as root in mode 2.
1891 if (__get_dumpable(cprm
.mm_flags
) == 2) {
1892 /* Setuid core dump mode */
1893 flag
= O_EXCL
; /* Stop rewrite attacks */
1894 cred
->fsuid
= 0; /* Dump root private */
1897 retval
= coredump_wait(exit_code
, &core_state
);
1901 old_cred
= override_creds(cred
);
1904 * Clear any false indication of pending signals that might
1905 * be seen by the filesystem code called to write the core file.
1907 clear_thread_flag(TIF_SIGPENDING
);
1909 ispipe
= format_corename(corename
, signr
);
1915 if (cprm
.limit
== 1) {
1917 * Normally core limits are irrelevant to pipes, since
1918 * we're not writing to the file system, but we use
1919 * cprm.limit of 1 here as a speacial value. Any
1920 * non-1 limit gets set to RLIM_INFINITY below, but
1921 * a limit of 0 skips the dump. This is a consistent
1922 * way to catch recursive crashes. We can still crash
1923 * if the core_pattern binary sets RLIM_CORE = !1
1924 * but it runs as root, and can do lots of stupid things
1925 * Note that we use task_tgid_vnr here to grab the pid
1926 * of the process group leader. That way we get the
1927 * right pid if a thread in a multi-threaded
1928 * core_pattern process dies.
1931 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1932 task_tgid_vnr(current
), current
->comm
);
1933 printk(KERN_WARNING
"Aborting core\n");
1936 cprm
.limit
= RLIM_INFINITY
;
1938 dump_count
= atomic_inc_return(&core_dump_count
);
1939 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
1940 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
1941 task_tgid_vnr(current
), current
->comm
);
1942 printk(KERN_WARNING
"Skipping core dump\n");
1943 goto fail_dropcount
;
1946 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, NULL
);
1948 printk(KERN_WARNING
"%s failed to allocate memory\n",
1950 goto fail_dropcount
;
1953 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
1954 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
1956 argv_free(helper_argv
);
1958 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1963 struct inode
*inode
;
1965 if (cprm
.limit
< binfmt
->min_coredump
)
1968 cprm
.file
= filp_open(corename
,
1969 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1971 if (IS_ERR(cprm
.file
))
1974 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
1975 if (inode
->i_nlink
> 1)
1977 if (d_unhashed(cprm
.file
->f_path
.dentry
))
1980 * AK: actually i see no reason to not allow this for named
1981 * pipes etc, but keep the previous behaviour for now.
1983 if (!S_ISREG(inode
->i_mode
))
1986 * Dont allow local users get cute and trick others to coredump
1987 * into their pre-created files.
1989 if (inode
->i_uid
!= current_fsuid())
1991 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
1993 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
1997 retval
= binfmt
->core_dump(&cprm
);
1999 current
->signal
->group_exit_code
|= 0x80;
2001 if (ispipe
&& core_pipe_limit
)
2002 wait_for_dump_helpers(cprm
.file
);
2005 filp_close(cprm
.file
, NULL
);
2008 atomic_dec(&core_dump_count
);
2010 coredump_finish(mm
);
2011 revert_creds(old_cred
);
2019 * Core dumping helper functions. These are the only things you should
2020 * do on a core-file: use only these functions to write out all the
2023 int dump_write(struct file
*file
, const void *addr
, int nr
)
2025 return access_ok(VERIFY_READ
, addr
, nr
) && file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
2027 EXPORT_SYMBOL(dump_write
);
2029 int dump_seek(struct file
*file
, loff_t off
)
2033 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
2034 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
2037 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
2042 unsigned long n
= off
;
2046 if (!dump_write(file
, buf
, n
)) {
2052 free_page((unsigned long)buf
);
2056 EXPORT_SYMBOL(dump_seek
);