ath5k: apply the synth voltage tweak only on AR5112 rev 2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath5k / phy.c
blobacf73a04211874237425d93cd699344bbc070df3
1 /*
2 * PHY functions
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 #include <linux/delay.h>
24 #include <linux/slab.h>
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
33 /******************\
34 * Helper functions *
35 \******************/
38 * Get the PHY Chip revision
40 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
42 unsigned int i;
43 u32 srev;
44 u16 ret;
47 * Set the radio chip access register
49 switch (chan) {
50 case CHANNEL_2GHZ:
51 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 break;
53 case CHANNEL_5GHZ:
54 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 break;
56 default:
57 return 0;
60 mdelay(2);
62 /* ...wait until PHY is ready and read the selected radio revision */
63 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
65 for (i = 0; i < 8; i++)
66 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
68 if (ah->ah_version == AR5K_AR5210) {
69 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 } else {
72 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 ((srev & 0x0f) << 4), 8);
77 /* Reset to the 5GHz mode */
78 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
80 return ret;
84 * Check if a channel is supported
86 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
88 /* Check if the channel is in our supported range */
89 if (flags & CHANNEL_2GHZ) {
90 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 return true;
93 } else if (flags & CHANNEL_5GHZ)
94 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 return true;
98 return false;
101 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 struct ieee80211_channel *channel)
104 u8 refclk_freq;
106 if ((ah->ah_radio == AR5K_RF5112) ||
107 (ah->ah_radio == AR5K_RF5413) ||
108 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 refclk_freq = 40;
110 else
111 refclk_freq = 32;
113 if ((channel->center_freq % refclk_freq != 0) &&
114 ((channel->center_freq % refclk_freq < 10) ||
115 (channel->center_freq % refclk_freq > 22)))
116 return true;
117 else
118 return false;
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
124 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 const struct ath5k_rf_reg *rf_regs,
126 u32 val, u8 reg_id, bool set)
128 const struct ath5k_rf_reg *rfreg = NULL;
129 u8 offset, bank, num_bits, col, position;
130 u16 entry;
131 u32 mask, data, last_bit, bits_shifted, first_bit;
132 u32 *rfb;
133 s32 bits_left;
134 int i;
136 data = 0;
137 rfb = ah->ah_rf_banks;
139 for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 if (rf_regs[i].index == reg_id) {
141 rfreg = &rf_regs[i];
142 break;
146 if (rfb == NULL || rfreg == NULL) {
147 ATH5K_PRINTF("Rf register not found!\n");
148 /* should not happen */
149 return 0;
152 bank = rfreg->bank;
153 num_bits = rfreg->field.len;
154 first_bit = rfreg->field.pos;
155 col = rfreg->field.col;
157 /* first_bit is an offset from bank's
158 * start. Since we have all banks on
159 * the same array, we use this offset
160 * to mark each bank's start */
161 offset = ah->ah_offset[bank];
163 /* Boundary check */
164 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165 ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 return 0;
169 entry = ((first_bit - 1) / 8) + offset;
170 position = (first_bit - 1) % 8;
172 if (set)
173 data = ath5k_hw_bitswap(val, num_bits);
175 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 position = 0, entry++) {
178 last_bit = (position + bits_left > 8) ? 8 :
179 position + bits_left;
181 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 (col * 8);
184 if (set) {
185 rfb[entry] &= ~mask;
186 rfb[entry] |= ((data << position) << (col * 8)) & mask;
187 data >>= (8 - position);
188 } else {
189 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 << bits_shifted;
191 bits_shifted += last_bit - position;
194 bits_left -= 8 - position;
197 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
199 return data;
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
217 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 struct ieee80211_channel *channel)
220 /* Get exponent and mantissa and set it */
221 u32 coef_scaled, coef_exp, coef_man,
222 ds_coef_exp, ds_coef_man, clock;
224 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 !(channel->hw_value & CHANNEL_OFDM));
227 /* Get coefficient
228 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 * we scale coef by shifting clock value by 24 for
230 * better precision since we use integers */
231 switch (ah->ah_bwmode) {
232 case AR5K_BWMODE_40MHZ:
233 clock = 40 * 2;
234 break;
235 case AR5K_BWMODE_10MHZ:
236 clock = 40 / 2;
237 break;
238 case AR5K_BWMODE_5MHZ:
239 clock = 40 / 4;
240 break;
241 default:
242 clock = 40;
243 break;
245 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
247 /* Get exponent
248 * ALGO: coef_exp = 14 - highest set bit position */
249 coef_exp = ilog2(coef_scaled);
251 /* Doesn't make sense if it's zero*/
252 if (!coef_scaled || !coef_exp)
253 return -EINVAL;
255 /* Note: we've shifted coef_scaled by 24 */
256 coef_exp = 14 - (coef_exp - 24);
259 /* Get mantissa (significant digits)
260 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261 coef_man = coef_scaled +
262 (1 << (24 - coef_exp - 1));
264 /* Calculate delta slope coefficient exponent
265 * and mantissa (remove scaling) and set them on hw */
266 ds_coef_man = coef_man >> (24 - coef_exp);
267 ds_coef_exp = coef_exp - 16;
269 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
274 return 0;
277 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
279 /*Just a try M.F.*/
280 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
282 return 0;
286 * Wait for synth to settle
288 static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
289 struct ieee80211_channel *channel)
292 * On 5211+ read activation -> rx delay
293 * and use it (100ns steps).
295 if (ah->ah_version != AR5K_AR5210) {
296 u32 delay;
297 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
298 AR5K_PHY_RX_DELAY_M;
299 delay = (channel->hw_value & CHANNEL_CCK) ?
300 ((delay << 2) / 22) : (delay / 10);
301 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
302 delay = delay << 1;
303 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
304 delay = delay << 2;
305 /* XXX: /2 on turbo ? Let's be safe
306 * for now */
307 udelay(100 + delay);
308 } else {
309 mdelay(1);
314 /**********************\
315 * RF Gain optimization *
316 \**********************/
319 * This code is used to optimize RF gain on different environments
320 * (temperature mostly) based on feedback from a power detector.
322 * It's only used on RF5111 and RF5112, later RF chips seem to have
323 * auto adjustment on hw -notice they have a much smaller BANK 7 and
324 * no gain optimization ladder-.
326 * For more infos check out this patent doc
327 * http://www.freepatentsonline.com/7400691.html
329 * This paper describes power drops as seen on the receiver due to
330 * probe packets
331 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
332 * %20of%20Power%20Control.pdf
334 * And this is the MadWiFi bug entry related to the above
335 * http://madwifi-project.org/ticket/1659
336 * with various measurements and diagrams
338 * TODO: Deal with power drops due to probes by setting an appropriate
339 * tx power on the probe packets ! Make this part of the calibration process.
342 /* Initialize ah_gain during attach */
343 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
345 /* Initialize the gain optimization values */
346 switch (ah->ah_radio) {
347 case AR5K_RF5111:
348 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
349 ah->ah_gain.g_low = 20;
350 ah->ah_gain.g_high = 35;
351 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
352 break;
353 case AR5K_RF5112:
354 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
355 ah->ah_gain.g_low = 20;
356 ah->ah_gain.g_high = 85;
357 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
358 break;
359 default:
360 return -EINVAL;
363 return 0;
366 /* Schedule a gain probe check on the next transmitted packet.
367 * That means our next packet is going to be sent with lower
368 * tx power and a Peak to Average Power Detector (PAPD) will try
369 * to measure the gain.
371 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
372 * just after we enable the probe so that we don't mess with
373 * standard traffic ? Maybe it's time to use sw interrupts and
374 * a probe tasklet !!!
376 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
379 /* Skip if gain calibration is inactive or
380 * we already handle a probe request */
381 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
382 return;
384 /* Send the packet with 2dB below max power as
385 * patent doc suggest */
386 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
387 AR5K_PHY_PAPD_PROBE_TXPOWER) |
388 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
390 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
394 /* Calculate gain_F measurement correction
395 * based on the current step for RF5112 rev. 2 */
396 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
398 u32 mix, step;
399 u32 *rf;
400 const struct ath5k_gain_opt *go;
401 const struct ath5k_gain_opt_step *g_step;
402 const struct ath5k_rf_reg *rf_regs;
404 /* Only RF5112 Rev. 2 supports it */
405 if ((ah->ah_radio != AR5K_RF5112) ||
406 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
407 return 0;
409 go = &rfgain_opt_5112;
410 rf_regs = rf_regs_5112a;
411 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
413 g_step = &go->go_step[ah->ah_gain.g_step_idx];
415 if (ah->ah_rf_banks == NULL)
416 return 0;
418 rf = ah->ah_rf_banks;
419 ah->ah_gain.g_f_corr = 0;
421 /* No VGA (Variable Gain Amplifier) override, skip */
422 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
423 return 0;
425 /* Mix gain stepping */
426 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
428 /* Mix gain override */
429 mix = g_step->gos_param[0];
431 switch (mix) {
432 case 3:
433 ah->ah_gain.g_f_corr = step * 2;
434 break;
435 case 2:
436 ah->ah_gain.g_f_corr = (step - 5) * 2;
437 break;
438 case 1:
439 ah->ah_gain.g_f_corr = step;
440 break;
441 default:
442 ah->ah_gain.g_f_corr = 0;
443 break;
446 return ah->ah_gain.g_f_corr;
449 /* Check if current gain_F measurement is in the range of our
450 * power detector windows. If we get a measurement outside range
451 * we know it's not accurate (detectors can't measure anything outside
452 * their detection window) so we must ignore it */
453 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
455 const struct ath5k_rf_reg *rf_regs;
456 u32 step, mix_ovr, level[4];
457 u32 *rf;
459 if (ah->ah_rf_banks == NULL)
460 return false;
462 rf = ah->ah_rf_banks;
464 if (ah->ah_radio == AR5K_RF5111) {
466 rf_regs = rf_regs_5111;
467 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
469 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
470 false);
472 level[0] = 0;
473 level[1] = (step == 63) ? 50 : step + 4;
474 level[2] = (step != 63) ? 64 : level[0];
475 level[3] = level[2] + 50;
477 ah->ah_gain.g_high = level[3] -
478 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
479 ah->ah_gain.g_low = level[0] +
480 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
481 } else {
483 rf_regs = rf_regs_5112;
484 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
486 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
487 false);
489 level[0] = level[2] = 0;
491 if (mix_ovr == 1) {
492 level[1] = level[3] = 83;
493 } else {
494 level[1] = level[3] = 107;
495 ah->ah_gain.g_high = 55;
499 return (ah->ah_gain.g_current >= level[0] &&
500 ah->ah_gain.g_current <= level[1]) ||
501 (ah->ah_gain.g_current >= level[2] &&
502 ah->ah_gain.g_current <= level[3]);
505 /* Perform gain_F adjustment by choosing the right set
506 * of parameters from RF gain optimization ladder */
507 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
509 const struct ath5k_gain_opt *go;
510 const struct ath5k_gain_opt_step *g_step;
511 int ret = 0;
513 switch (ah->ah_radio) {
514 case AR5K_RF5111:
515 go = &rfgain_opt_5111;
516 break;
517 case AR5K_RF5112:
518 go = &rfgain_opt_5112;
519 break;
520 default:
521 return 0;
524 g_step = &go->go_step[ah->ah_gain.g_step_idx];
526 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
528 /* Reached maximum */
529 if (ah->ah_gain.g_step_idx == 0)
530 return -1;
532 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
533 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
534 ah->ah_gain.g_step_idx > 0;
535 g_step = &go->go_step[ah->ah_gain.g_step_idx])
536 ah->ah_gain.g_target -= 2 *
537 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
538 g_step->gos_gain);
540 ret = 1;
541 goto done;
544 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
546 /* Reached minimum */
547 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
548 return -2;
550 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
551 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
552 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
553 g_step = &go->go_step[ah->ah_gain.g_step_idx])
554 ah->ah_gain.g_target -= 2 *
555 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
556 g_step->gos_gain);
558 ret = 2;
559 goto done;
562 done:
563 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
564 "ret %d, gain step %u, current gain %u, target gain %u\n",
565 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
566 ah->ah_gain.g_target);
568 return ret;
571 /* Main callback for thermal RF gain calibration engine
572 * Check for a new gain reading and schedule an adjustment
573 * if needed.
575 * TODO: Use sw interrupt to schedule reset if gain_F needs
576 * adjustment */
577 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
579 u32 data, type;
580 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
582 if (ah->ah_rf_banks == NULL ||
583 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
584 return AR5K_RFGAIN_INACTIVE;
586 /* No check requested, either engine is inactive
587 * or an adjustment is already requested */
588 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
589 goto done;
591 /* Read the PAPD (Peak to Average Power Detector)
592 * register */
593 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
595 /* No probe is scheduled, read gain_F measurement */
596 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
597 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
598 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
600 /* If tx packet is CCK correct the gain_F measurement
601 * by cck ofdm gain delta */
602 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
603 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
604 ah->ah_gain.g_current +=
605 ee->ee_cck_ofdm_gain_delta;
606 else
607 ah->ah_gain.g_current +=
608 AR5K_GAIN_CCK_PROBE_CORR;
611 /* Further correct gain_F measurement for
612 * RF5112A radios */
613 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
614 ath5k_hw_rf_gainf_corr(ah);
615 ah->ah_gain.g_current =
616 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
617 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
621 /* Check if measurement is ok and if we need
622 * to adjust gain, schedule a gain adjustment,
623 * else switch back to the active state */
624 if (ath5k_hw_rf_check_gainf_readback(ah) &&
625 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
626 ath5k_hw_rf_gainf_adjust(ah)) {
627 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
628 } else {
629 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
633 done:
634 return ah->ah_gain.g_state;
637 /* Write initial RF gain table to set the RF sensitivity
638 * this one works on all RF chips and has nothing to do
639 * with gain_F calibration */
640 static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
642 const struct ath5k_ini_rfgain *ath5k_rfg;
643 unsigned int i, size, index;
645 switch (ah->ah_radio) {
646 case AR5K_RF5111:
647 ath5k_rfg = rfgain_5111;
648 size = ARRAY_SIZE(rfgain_5111);
649 break;
650 case AR5K_RF5112:
651 ath5k_rfg = rfgain_5112;
652 size = ARRAY_SIZE(rfgain_5112);
653 break;
654 case AR5K_RF2413:
655 ath5k_rfg = rfgain_2413;
656 size = ARRAY_SIZE(rfgain_2413);
657 break;
658 case AR5K_RF2316:
659 ath5k_rfg = rfgain_2316;
660 size = ARRAY_SIZE(rfgain_2316);
661 break;
662 case AR5K_RF5413:
663 ath5k_rfg = rfgain_5413;
664 size = ARRAY_SIZE(rfgain_5413);
665 break;
666 case AR5K_RF2317:
667 case AR5K_RF2425:
668 ath5k_rfg = rfgain_2425;
669 size = ARRAY_SIZE(rfgain_2425);
670 break;
671 default:
672 return -EINVAL;
675 index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
677 for (i = 0; i < size; i++) {
678 AR5K_REG_WAIT(i);
679 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
680 (u32)ath5k_rfg[i].rfg_register);
683 return 0;
688 /********************\
689 * RF Registers setup *
690 \********************/
693 * Setup RF registers by writing RF buffer on hw
695 static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
696 struct ieee80211_channel *channel, unsigned int mode)
698 const struct ath5k_rf_reg *rf_regs;
699 const struct ath5k_ini_rfbuffer *ini_rfb;
700 const struct ath5k_gain_opt *go = NULL;
701 const struct ath5k_gain_opt_step *g_step;
702 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
703 u8 ee_mode = 0;
704 u32 *rfb;
705 int i, obdb = -1, bank = -1;
707 switch (ah->ah_radio) {
708 case AR5K_RF5111:
709 rf_regs = rf_regs_5111;
710 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
711 ini_rfb = rfb_5111;
712 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
713 go = &rfgain_opt_5111;
714 break;
715 case AR5K_RF5112:
716 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
717 rf_regs = rf_regs_5112a;
718 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
719 ini_rfb = rfb_5112a;
720 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
721 } else {
722 rf_regs = rf_regs_5112;
723 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
724 ini_rfb = rfb_5112;
725 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
727 go = &rfgain_opt_5112;
728 break;
729 case AR5K_RF2413:
730 rf_regs = rf_regs_2413;
731 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
732 ini_rfb = rfb_2413;
733 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
734 break;
735 case AR5K_RF2316:
736 rf_regs = rf_regs_2316;
737 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
738 ini_rfb = rfb_2316;
739 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
740 break;
741 case AR5K_RF5413:
742 rf_regs = rf_regs_5413;
743 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
744 ini_rfb = rfb_5413;
745 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
746 break;
747 case AR5K_RF2317:
748 rf_regs = rf_regs_2425;
749 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
750 ini_rfb = rfb_2317;
751 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
752 break;
753 case AR5K_RF2425:
754 rf_regs = rf_regs_2425;
755 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
756 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
757 ini_rfb = rfb_2425;
758 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
759 } else {
760 ini_rfb = rfb_2417;
761 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
763 break;
764 default:
765 return -EINVAL;
768 /* If it's the first time we set RF buffer, allocate
769 * ah->ah_rf_banks based on ah->ah_rf_banks_size
770 * we set above */
771 if (ah->ah_rf_banks == NULL) {
772 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
773 GFP_KERNEL);
774 if (ah->ah_rf_banks == NULL) {
775 ATH5K_ERR(ah->ah_sc, "out of memory\n");
776 return -ENOMEM;
780 /* Copy values to modify them */
781 rfb = ah->ah_rf_banks;
783 for (i = 0; i < ah->ah_rf_banks_size; i++) {
784 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
785 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
786 return -EINVAL;
789 /* Bank changed, write down the offset */
790 if (bank != ini_rfb[i].rfb_bank) {
791 bank = ini_rfb[i].rfb_bank;
792 ah->ah_offset[bank] = i;
795 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
798 /* Set Output and Driver bias current (OB/DB) */
799 if (channel->hw_value & CHANNEL_2GHZ) {
801 if (channel->hw_value & CHANNEL_CCK)
802 ee_mode = AR5K_EEPROM_MODE_11B;
803 else
804 ee_mode = AR5K_EEPROM_MODE_11G;
806 /* For RF511X/RF211X combination we
807 * use b_OB and b_DB parameters stored
808 * in eeprom on ee->ee_ob[ee_mode][0]
810 * For all other chips we use OB/DB for 2GHz
811 * stored in the b/g modal section just like
812 * 802.11a on ee->ee_ob[ee_mode][1] */
813 if ((ah->ah_radio == AR5K_RF5111) ||
814 (ah->ah_radio == AR5K_RF5112))
815 obdb = 0;
816 else
817 obdb = 1;
819 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
820 AR5K_RF_OB_2GHZ, true);
822 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
823 AR5K_RF_DB_2GHZ, true);
825 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
826 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
827 (ah->ah_radio == AR5K_RF5111)) {
829 /* For 11a, Turbo and XR we need to choose
830 * OB/DB based on frequency range */
831 ee_mode = AR5K_EEPROM_MODE_11A;
832 obdb = channel->center_freq >= 5725 ? 3 :
833 (channel->center_freq >= 5500 ? 2 :
834 (channel->center_freq >= 5260 ? 1 :
835 (channel->center_freq > 4000 ? 0 : -1)));
837 if (obdb < 0)
838 return -EINVAL;
840 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
841 AR5K_RF_OB_5GHZ, true);
843 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
844 AR5K_RF_DB_5GHZ, true);
847 g_step = &go->go_step[ah->ah_gain.g_step_idx];
849 /* Set turbo mode (N/A on RF5413) */
850 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
851 (ah->ah_radio != AR5K_RF5413))
852 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
854 /* Bank Modifications (chip-specific) */
855 if (ah->ah_radio == AR5K_RF5111) {
857 /* Set gain_F settings according to current step */
858 if (channel->hw_value & CHANNEL_OFDM) {
860 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
861 AR5K_PHY_FRAME_CTL_TX_CLIP,
862 g_step->gos_param[0]);
864 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
865 AR5K_RF_PWD_90, true);
867 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
868 AR5K_RF_PWD_84, true);
870 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
871 AR5K_RF_RFGAIN_SEL, true);
873 /* We programmed gain_F parameters, switch back
874 * to active state */
875 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
879 /* Bank 6/7 setup */
881 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
882 AR5K_RF_PWD_XPD, true);
884 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
885 AR5K_RF_XPD_GAIN, true);
887 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
888 AR5K_RF_GAIN_I, true);
890 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
891 AR5K_RF_PLO_SEL, true);
893 /* Tweak power detectors for half/quarter rate support */
894 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
895 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
896 u8 wait_i;
898 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
899 AR5K_RF_WAIT_S, true);
901 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
902 0x1f : 0x10;
904 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
905 AR5K_RF_WAIT_I, true);
906 ath5k_hw_rfb_op(ah, rf_regs, 3,
907 AR5K_RF_MAX_TIME, true);
912 if (ah->ah_radio == AR5K_RF5112) {
914 /* Set gain_F settings according to current step */
915 if (channel->hw_value & CHANNEL_OFDM) {
917 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
918 AR5K_RF_MIXGAIN_OVR, true);
920 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
921 AR5K_RF_PWD_138, true);
923 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
924 AR5K_RF_PWD_137, true);
926 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
927 AR5K_RF_PWD_136, true);
929 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
930 AR5K_RF_PWD_132, true);
932 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
933 AR5K_RF_PWD_131, true);
935 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
936 AR5K_RF_PWD_130, true);
938 /* We programmed gain_F parameters, switch back
939 * to active state */
940 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
943 /* Bank 6/7 setup */
945 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
946 AR5K_RF_XPD_SEL, true);
948 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
949 /* Rev. 1 supports only one xpd */
950 ath5k_hw_rfb_op(ah, rf_regs,
951 ee->ee_x_gain[ee_mode],
952 AR5K_RF_XPD_GAIN, true);
954 } else {
955 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
956 if (ee->ee_pd_gains[ee_mode] > 1) {
957 ath5k_hw_rfb_op(ah, rf_regs,
958 pdg_curve_to_idx[0],
959 AR5K_RF_PD_GAIN_LO, true);
960 ath5k_hw_rfb_op(ah, rf_regs,
961 pdg_curve_to_idx[1],
962 AR5K_RF_PD_GAIN_HI, true);
963 } else {
964 ath5k_hw_rfb_op(ah, rf_regs,
965 pdg_curve_to_idx[0],
966 AR5K_RF_PD_GAIN_LO, true);
967 ath5k_hw_rfb_op(ah, rf_regs,
968 pdg_curve_to_idx[0],
969 AR5K_RF_PD_GAIN_HI, true);
972 /* Lower synth voltage on Rev 2 */
973 if (ah->ah_radio == AR5K_RF5112 &&
974 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
975 ath5k_hw_rfb_op(ah, rf_regs, 2,
976 AR5K_RF_HIGH_VC_CP, true);
978 ath5k_hw_rfb_op(ah, rf_regs, 2,
979 AR5K_RF_MID_VC_CP, true);
981 ath5k_hw_rfb_op(ah, rf_regs, 2,
982 AR5K_RF_LOW_VC_CP, true);
984 ath5k_hw_rfb_op(ah, rf_regs, 2,
985 AR5K_RF_PUSH_UP, true);
988 /* Decrease power consumption on 5213+ BaseBand */
989 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
990 ath5k_hw_rfb_op(ah, rf_regs, 1,
991 AR5K_RF_PAD2GND, true);
993 ath5k_hw_rfb_op(ah, rf_regs, 1,
994 AR5K_RF_XB2_LVL, true);
996 ath5k_hw_rfb_op(ah, rf_regs, 1,
997 AR5K_RF_XB5_LVL, true);
999 ath5k_hw_rfb_op(ah, rf_regs, 1,
1000 AR5K_RF_PWD_167, true);
1002 ath5k_hw_rfb_op(ah, rf_regs, 1,
1003 AR5K_RF_PWD_166, true);
1007 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1008 AR5K_RF_GAIN_I, true);
1010 /* Tweak power detector for half/quarter rates */
1011 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013 u8 pd_delay;
1015 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1016 0xf : 0x8;
1018 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1019 AR5K_RF_PD_PERIOD_A, true);
1020 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1021 AR5K_RF_PD_DELAY_A, true);
1026 if (ah->ah_radio == AR5K_RF5413 &&
1027 channel->hw_value & CHANNEL_2GHZ) {
1029 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1030 true);
1032 /* Set optimum value for early revisions (on pci-e chips) */
1033 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1034 ah->ah_mac_srev < AR5K_SREV_AR5413)
1035 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1036 AR5K_RF_PWD_ICLOBUF_2G, true);
1040 /* Write RF banks on hw */
1041 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1042 AR5K_REG_WAIT(i);
1043 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1046 return 0;
1050 /**************************\
1051 PHY/RF channel functions
1052 \**************************/
1055 * Conversion needed for RF5110
1057 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1059 u32 athchan;
1062 * Convert IEEE channel/MHz to an internal channel value used
1063 * by the AR5210 chipset. This has not been verified with
1064 * newer chipsets like the AR5212A who have a completely
1065 * different RF/PHY part.
1067 athchan = (ath5k_hw_bitswap(
1068 (ieee80211_frequency_to_channel(
1069 channel->center_freq) - 24) / 2, 5)
1070 << 1) | (1 << 6) | 0x1;
1071 return athchan;
1075 * Set channel on RF5110
1077 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1078 struct ieee80211_channel *channel)
1080 u32 data;
1083 * Set the channel and wait
1085 data = ath5k_hw_rf5110_chan2athchan(channel);
1086 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1087 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1088 mdelay(1);
1090 return 0;
1094 * Conversion needed for 5111
1096 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1097 struct ath5k_athchan_2ghz *athchan)
1099 int channel;
1101 /* Cast this value to catch negative channel numbers (>= -19) */
1102 channel = (int)ieee;
1105 * Map 2GHz IEEE channel to 5GHz Atheros channel
1107 if (channel <= 13) {
1108 athchan->a2_athchan = 115 + channel;
1109 athchan->a2_flags = 0x46;
1110 } else if (channel == 14) {
1111 athchan->a2_athchan = 124;
1112 athchan->a2_flags = 0x44;
1113 } else if (channel >= 15 && channel <= 26) {
1114 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1115 athchan->a2_flags = 0x46;
1116 } else
1117 return -EINVAL;
1119 return 0;
1123 * Set channel on 5111
1125 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1126 struct ieee80211_channel *channel)
1128 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1129 unsigned int ath5k_channel =
1130 ieee80211_frequency_to_channel(channel->center_freq);
1131 u32 data0, data1, clock;
1132 int ret;
1135 * Set the channel on the RF5111 radio
1137 data0 = data1 = 0;
1139 if (channel->hw_value & CHANNEL_2GHZ) {
1140 /* Map 2GHz channel to 5GHz Atheros channel ID */
1141 ret = ath5k_hw_rf5111_chan2athchan(
1142 ieee80211_frequency_to_channel(channel->center_freq),
1143 &ath5k_channel_2ghz);
1144 if (ret)
1145 return ret;
1147 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1148 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1149 << 5) | (1 << 4);
1152 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1153 clock = 1;
1154 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1155 (clock << 1) | (1 << 10) | 1;
1156 } else {
1157 clock = 0;
1158 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1159 << 2) | (clock << 1) | (1 << 10) | 1;
1162 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1163 AR5K_RF_BUFFER);
1164 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1165 AR5K_RF_BUFFER_CONTROL_3);
1167 return 0;
1171 * Set channel on 5112 and newer
1173 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1174 struct ieee80211_channel *channel)
1176 u32 data, data0, data1, data2;
1177 u16 c;
1179 data = data0 = data1 = data2 = 0;
1180 c = channel->center_freq;
1182 if (c < 4800) {
1183 if (!((c - 2224) % 5)) {
1184 data0 = ((2 * (c - 704)) - 3040) / 10;
1185 data1 = 1;
1186 } else if (!((c - 2192) % 5)) {
1187 data0 = ((2 * (c - 672)) - 3040) / 10;
1188 data1 = 0;
1189 } else
1190 return -EINVAL;
1192 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1193 } else if ((c % 5) != 2 || c > 5435) {
1194 if (!(c % 20) && c >= 5120) {
1195 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1196 data2 = ath5k_hw_bitswap(3, 2);
1197 } else if (!(c % 10)) {
1198 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1199 data2 = ath5k_hw_bitswap(2, 2);
1200 } else if (!(c % 5)) {
1201 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1202 data2 = ath5k_hw_bitswap(1, 2);
1203 } else
1204 return -EINVAL;
1205 } else {
1206 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1207 data2 = ath5k_hw_bitswap(0, 2);
1210 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1212 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1213 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1215 return 0;
1219 * Set the channel on the RF2425
1221 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1222 struct ieee80211_channel *channel)
1224 u32 data, data0, data2;
1225 u16 c;
1227 data = data0 = data2 = 0;
1228 c = channel->center_freq;
1230 if (c < 4800) {
1231 data0 = ath5k_hw_bitswap((c - 2272), 8);
1232 data2 = 0;
1233 /* ? 5GHz ? */
1234 } else if ((c % 5) != 2 || c > 5435) {
1235 if (!(c % 20) && c < 5120)
1236 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1237 else if (!(c % 10))
1238 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1239 else if (!(c % 5))
1240 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1241 else
1242 return -EINVAL;
1243 data2 = ath5k_hw_bitswap(1, 2);
1244 } else {
1245 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1246 data2 = ath5k_hw_bitswap(0, 2);
1249 data = (data0 << 4) | data2 << 2 | 0x1001;
1251 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1252 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1254 return 0;
1258 * Set a channel on the radio chip
1260 static int ath5k_hw_channel(struct ath5k_hw *ah,
1261 struct ieee80211_channel *channel)
1263 int ret;
1265 * Check bounds supported by the PHY (we don't care about regulatory
1266 * restrictions at this point). Note: hw_value already has the band
1267 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1268 * of the band by that */
1269 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1270 ATH5K_ERR(ah->ah_sc,
1271 "channel frequency (%u MHz) out of supported "
1272 "band range\n",
1273 channel->center_freq);
1274 return -EINVAL;
1278 * Set the channel and wait
1280 switch (ah->ah_radio) {
1281 case AR5K_RF5110:
1282 ret = ath5k_hw_rf5110_channel(ah, channel);
1283 break;
1284 case AR5K_RF5111:
1285 ret = ath5k_hw_rf5111_channel(ah, channel);
1286 break;
1287 case AR5K_RF2317:
1288 case AR5K_RF2425:
1289 ret = ath5k_hw_rf2425_channel(ah, channel);
1290 break;
1291 default:
1292 ret = ath5k_hw_rf5112_channel(ah, channel);
1293 break;
1296 if (ret)
1297 return ret;
1299 /* Set JAPAN setting for channel 14 */
1300 if (channel->center_freq == 2484) {
1301 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1302 AR5K_PHY_CCKTXCTL_JAPAN);
1303 } else {
1304 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1305 AR5K_PHY_CCKTXCTL_WORLD);
1308 ah->ah_current_channel = channel;
1310 return 0;
1313 /*****************\
1314 PHY calibration
1315 \*****************/
1317 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1319 s32 val;
1321 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1322 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1325 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1327 int i;
1329 ah->ah_nfcal_hist.index = 0;
1330 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1331 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1334 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1336 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1337 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1338 hist->nfval[hist->index] = noise_floor;
1341 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1343 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1344 s16 tmp;
1345 int i, j;
1347 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1348 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1349 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1350 if (sort[j] > sort[j - 1]) {
1351 tmp = sort[j];
1352 sort[j] = sort[j - 1];
1353 sort[j - 1] = tmp;
1357 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1358 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1359 "cal %d:%d\n", i, sort[i]);
1361 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1365 * When we tell the hardware to perform a noise floor calibration
1366 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1367 * sample-and-hold the minimum noise level seen at the antennas.
1368 * This value is then stored in a ring buffer of recently measured
1369 * noise floor values so we have a moving window of the last few
1370 * samples.
1372 * The median of the values in the history is then loaded into the
1373 * hardware for its own use for RSSI and CCA measurements.
1375 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1377 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1378 u32 val;
1379 s16 nf, threshold;
1380 u8 ee_mode;
1382 /* keep last value if calibration hasn't completed */
1383 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1384 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1385 "NF did not complete in calibration window\n");
1387 return;
1390 ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1392 /* completed NF calibration, test threshold */
1393 nf = ath5k_hw_read_measured_noise_floor(ah);
1394 threshold = ee->ee_noise_floor_thr[ee_mode];
1396 if (nf > threshold) {
1397 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1398 "noise floor failure detected; "
1399 "read %d, threshold %d\n",
1400 nf, threshold);
1402 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1405 ath5k_hw_update_nfcal_hist(ah, nf);
1406 nf = ath5k_hw_get_median_noise_floor(ah);
1408 /* load noise floor (in .5 dBm) so the hardware will use it */
1409 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1410 val |= (nf * 2) & AR5K_PHY_NF_M;
1411 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1413 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1414 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1416 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1417 0, false);
1420 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1421 * so that we're not capped by the median we just loaded.
1422 * This will be used as the initial value for the next noise
1423 * floor calibration.
1425 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1426 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1427 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1428 AR5K_PHY_AGCCTL_NF_EN |
1429 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1430 AR5K_PHY_AGCCTL_NF);
1432 ah->ah_noise_floor = nf;
1434 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1435 "noise floor calibrated: %d\n", nf);
1439 * Perform a PHY calibration on RF5110
1440 * -Fix BPSK/QAM Constellation (I/Q correction)
1442 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1443 struct ieee80211_channel *channel)
1445 u32 phy_sig, phy_agc, phy_sat, beacon;
1446 int ret;
1449 * Disable beacons and RX/TX queues, wait
1451 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1452 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1453 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1454 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1456 mdelay(2);
1459 * Set the channel (with AGC turned off)
1461 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1462 udelay(10);
1463 ret = ath5k_hw_channel(ah, channel);
1466 * Activate PHY and wait
1468 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1469 mdelay(1);
1471 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1473 if (ret)
1474 return ret;
1477 * Calibrate the radio chip
1480 /* Remember normal state */
1481 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1482 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1483 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1485 /* Update radio registers */
1486 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1487 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1489 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1490 AR5K_PHY_AGCCOARSE_LO)) |
1491 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1492 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1494 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1495 AR5K_PHY_ADCSAT_THR)) |
1496 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1497 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1499 udelay(20);
1501 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1502 udelay(10);
1503 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1504 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1506 mdelay(1);
1509 * Enable calibration and wait until completion
1511 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1513 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1514 AR5K_PHY_AGCCTL_CAL, 0, false);
1516 /* Reset to normal state */
1517 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1518 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1519 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1521 if (ret) {
1522 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1523 channel->center_freq);
1524 return ret;
1528 * Re-enable RX/TX and beacons
1530 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1531 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1532 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1534 return 0;
1538 * Perform I/Q calibration on RF5111/5112 and newer chips
1540 static int
1541 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1543 u32 i_pwr, q_pwr;
1544 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1545 int i;
1547 if (!ah->ah_calibration ||
1548 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1549 return 0;
1551 /* Calibration has finished, get the results and re-run */
1552 /* work around empty results which can apparently happen on 5212 */
1553 for (i = 0; i <= 10; i++) {
1554 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1555 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1556 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1557 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1558 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1559 if (i_pwr && q_pwr)
1560 break;
1563 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1565 if (ah->ah_version == AR5K_AR5211)
1566 q_coffd = q_pwr >> 6;
1567 else
1568 q_coffd = q_pwr >> 7;
1570 /* protect against divide by 0 and loss of sign bits */
1571 if (i_coffd == 0 || q_coffd < 2)
1572 return 0;
1574 i_coff = (-iq_corr) / i_coffd;
1575 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1577 if (ah->ah_version == AR5K_AR5211)
1578 q_coff = (i_pwr / q_coffd) - 64;
1579 else
1580 q_coff = (i_pwr / q_coffd) - 128;
1581 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1583 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1584 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1585 i_coff, q_coff, i_coffd, q_coffd);
1587 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1588 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1589 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1590 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1592 /* Re-enable calibration -if we don't we'll commit
1593 * the same values again and again */
1594 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1595 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1596 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1598 return 0;
1602 * Perform a PHY calibration
1604 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1605 struct ieee80211_channel *channel)
1607 int ret;
1609 if (ah->ah_radio == AR5K_RF5110)
1610 return ath5k_hw_rf5110_calibrate(ah, channel);
1612 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1614 if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) &&
1615 (channel->hw_value & CHANNEL_OFDM))
1616 ath5k_hw_request_rfgain_probe(ah);
1618 return ret;
1622 /***************************\
1623 * Spur mitigation functions *
1624 \***************************/
1626 static void
1627 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1628 struct ieee80211_channel *channel)
1630 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1631 u32 mag_mask[4] = {0, 0, 0, 0};
1632 u32 pilot_mask[2] = {0, 0};
1633 /* Note: fbin values are scaled up by 2 */
1634 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1635 s32 spur_delta_phase, spur_freq_sigma_delta;
1636 s32 spur_offset, num_symbols_x16;
1637 u8 num_symbol_offsets, i, freq_band;
1639 /* Convert current frequency to fbin value (the same way channels
1640 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1641 * up by 2 so we can compare it later */
1642 if (channel->hw_value & CHANNEL_2GHZ) {
1643 chan_fbin = (channel->center_freq - 2300) * 10;
1644 freq_band = AR5K_EEPROM_BAND_2GHZ;
1645 } else {
1646 chan_fbin = (channel->center_freq - 4900) * 10;
1647 freq_band = AR5K_EEPROM_BAND_5GHZ;
1650 /* Check if any spur_chan_fbin from EEPROM is
1651 * within our current channel's spur detection range */
1652 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1653 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1654 /* XXX: Half/Quarter channels ?*/
1655 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1656 spur_detection_window *= 2;
1658 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1659 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1661 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1662 * so it's zero if we got nothing from EEPROM */
1663 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1664 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1665 break;
1668 if ((chan_fbin - spur_detection_window <=
1669 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1670 (chan_fbin + spur_detection_window >=
1671 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1672 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1673 break;
1677 /* We need to enable spur filter for this channel */
1678 if (spur_chan_fbin) {
1679 spur_offset = spur_chan_fbin - chan_fbin;
1681 * Calculate deltas:
1682 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1683 * spur_delta_phase -> spur_offset / chip_freq << 11
1684 * Note: Both values have 100Hz resolution
1686 switch (ah->ah_bwmode) {
1687 case AR5K_BWMODE_40MHZ:
1688 /* Both sample_freq and chip_freq are 80MHz */
1689 spur_delta_phase = (spur_offset << 16) / 25;
1690 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1691 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1692 break;
1693 case AR5K_BWMODE_10MHZ:
1694 /* Both sample_freq and chip_freq are 20MHz (?) */
1695 spur_delta_phase = (spur_offset << 18) / 25;
1696 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1697 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1698 case AR5K_BWMODE_5MHZ:
1699 /* Both sample_freq and chip_freq are 10MHz (?) */
1700 spur_delta_phase = (spur_offset << 19) / 25;
1701 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1702 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1703 default:
1704 if (channel->hw_value == CHANNEL_A) {
1705 /* Both sample_freq and chip_freq are 40MHz */
1706 spur_delta_phase = (spur_offset << 17) / 25;
1707 spur_freq_sigma_delta =
1708 (spur_delta_phase >> 10);
1709 symbol_width =
1710 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1711 } else {
1712 /* sample_freq -> 40MHz chip_freq -> 44MHz
1713 * (for b compatibility) */
1714 spur_delta_phase = (spur_offset << 17) / 25;
1715 spur_freq_sigma_delta =
1716 (spur_offset << 8) / 55;
1717 symbol_width =
1718 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1720 break;
1723 /* Calculate pilot and magnitude masks */
1725 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1726 * and divide by symbol_width to find how many symbols we have
1727 * Note: number of symbols is scaled up by 16 */
1728 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1730 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1731 if (!(num_symbols_x16 & 0xF))
1732 /* _X_ */
1733 num_symbol_offsets = 3;
1734 else
1735 /* _xx_ */
1736 num_symbol_offsets = 4;
1738 for (i = 0; i < num_symbol_offsets; i++) {
1740 /* Calculate pilot mask */
1741 s32 curr_sym_off =
1742 (num_symbols_x16 / 16) + i + 25;
1744 /* Pilot magnitude mask seems to be a way to
1745 * declare the boundaries for our detection
1746 * window or something, it's 2 for the middle
1747 * value(s) where the symbol is expected to be
1748 * and 1 on the boundary values */
1749 u8 plt_mag_map =
1750 (i == 0 || i == (num_symbol_offsets - 1))
1751 ? 1 : 2;
1753 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1754 if (curr_sym_off <= 25)
1755 pilot_mask[0] |= 1 << curr_sym_off;
1756 else if (curr_sym_off >= 27)
1757 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1758 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1759 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1761 /* Calculate magnitude mask (for viterbi decoder) */
1762 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1763 mag_mask[0] |=
1764 plt_mag_map << (curr_sym_off + 1) * 2;
1765 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1766 mag_mask[1] |=
1767 plt_mag_map << (curr_sym_off - 15) * 2;
1768 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1769 mag_mask[2] |=
1770 plt_mag_map << (curr_sym_off - 31) * 2;
1771 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1772 mag_mask[3] |=
1773 plt_mag_map << (curr_sym_off - 47) * 2;
1777 /* Write settings on hw to enable spur filter */
1778 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1779 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1780 /* XXX: Self correlator also ? */
1781 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1782 AR5K_PHY_IQ_PILOT_MASK_EN |
1783 AR5K_PHY_IQ_CHAN_MASK_EN |
1784 AR5K_PHY_IQ_SPUR_FILT_EN);
1786 /* Set delta phase and freq sigma delta */
1787 ath5k_hw_reg_write(ah,
1788 AR5K_REG_SM(spur_delta_phase,
1789 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1790 AR5K_REG_SM(spur_freq_sigma_delta,
1791 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1792 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1793 AR5K_PHY_TIMING_11);
1795 /* Write pilot masks */
1796 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1797 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1798 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1799 pilot_mask[1]);
1801 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1802 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1803 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1804 pilot_mask[1]);
1806 /* Write magnitude masks */
1807 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1808 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1809 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1810 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1811 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1812 mag_mask[3]);
1814 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1815 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1816 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1817 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1818 AR5K_PHY_BIN_MASK2_4_MASK_4,
1819 mag_mask[3]);
1821 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1822 AR5K_PHY_IQ_SPUR_FILT_EN) {
1823 /* Clean up spur mitigation settings and disable filter */
1824 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1825 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1826 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1827 AR5K_PHY_IQ_PILOT_MASK_EN |
1828 AR5K_PHY_IQ_CHAN_MASK_EN |
1829 AR5K_PHY_IQ_SPUR_FILT_EN);
1830 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1832 /* Clear pilot masks */
1833 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1834 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1835 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1838 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1839 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1840 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1843 /* Clear magnitude masks */
1844 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1845 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1846 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1847 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1848 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1851 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1852 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1853 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1854 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1855 AR5K_PHY_BIN_MASK2_4_MASK_4,
1861 /*****************\
1862 * Antenna control *
1863 \*****************/
1865 static void /*TODO:Boundary check*/
1866 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1868 if (ah->ah_version != AR5K_AR5210)
1869 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1873 * Enable/disable fast rx antenna diversity
1875 static void
1876 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1878 switch (ee_mode) {
1879 case AR5K_EEPROM_MODE_11G:
1880 /* XXX: This is set to
1881 * disabled on initvals !!! */
1882 case AR5K_EEPROM_MODE_11A:
1883 if (enable)
1884 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1885 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1886 else
1887 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1888 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1889 break;
1890 case AR5K_EEPROM_MODE_11B:
1891 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1892 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1893 break;
1894 default:
1895 return;
1898 if (enable) {
1899 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1900 AR5K_PHY_RESTART_DIV_GC, 4);
1902 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1903 AR5K_PHY_FAST_ANT_DIV_EN);
1904 } else {
1905 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1906 AR5K_PHY_RESTART_DIV_GC, 0);
1908 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1909 AR5K_PHY_FAST_ANT_DIV_EN);
1913 void
1914 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1916 u8 ant0, ant1;
1919 * In case a fixed antenna was set as default
1920 * use the same switch table twice.
1922 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1923 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1924 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1925 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1926 else {
1927 ant0 = AR5K_ANT_SWTABLE_A;
1928 ant1 = AR5K_ANT_SWTABLE_B;
1931 /* Set antenna idle switch table */
1932 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1933 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1934 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1935 AR5K_PHY_ANT_CTL_TXRX_EN));
1937 /* Set antenna switch tables */
1938 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1939 AR5K_PHY_ANT_SWITCH_TABLE_0);
1940 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1941 AR5K_PHY_ANT_SWITCH_TABLE_1);
1945 * Set antenna operating mode
1947 void
1948 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1950 struct ieee80211_channel *channel = ah->ah_current_channel;
1951 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1952 bool use_def_for_sg;
1953 int ee_mode;
1954 u8 def_ant, tx_ant;
1955 u32 sta_id1 = 0;
1957 /* if channel is not initialized yet we can't set the antennas
1958 * so just store the mode. it will be set on the next reset */
1959 if (channel == NULL) {
1960 ah->ah_ant_mode = ant_mode;
1961 return;
1964 def_ant = ah->ah_def_ant;
1966 ee_mode = ath5k_eeprom_mode_from_channel(channel);
1967 if (ee_mode < 0) {
1968 ATH5K_ERR(ah->ah_sc,
1969 "invalid channel: %d\n", channel->center_freq);
1970 return;
1973 switch (ant_mode) {
1974 case AR5K_ANTMODE_DEFAULT:
1975 tx_ant = 0;
1976 use_def_for_tx = false;
1977 update_def_on_tx = false;
1978 use_def_for_rts = false;
1979 use_def_for_sg = false;
1980 fast_div = true;
1981 break;
1982 case AR5K_ANTMODE_FIXED_A:
1983 def_ant = 1;
1984 tx_ant = 1;
1985 use_def_for_tx = true;
1986 update_def_on_tx = false;
1987 use_def_for_rts = true;
1988 use_def_for_sg = true;
1989 fast_div = false;
1990 break;
1991 case AR5K_ANTMODE_FIXED_B:
1992 def_ant = 2;
1993 tx_ant = 2;
1994 use_def_for_tx = true;
1995 update_def_on_tx = false;
1996 use_def_for_rts = true;
1997 use_def_for_sg = true;
1998 fast_div = false;
1999 break;
2000 case AR5K_ANTMODE_SINGLE_AP:
2001 def_ant = 1; /* updated on tx */
2002 tx_ant = 0;
2003 use_def_for_tx = true;
2004 update_def_on_tx = true;
2005 use_def_for_rts = true;
2006 use_def_for_sg = true;
2007 fast_div = true;
2008 break;
2009 case AR5K_ANTMODE_SECTOR_AP:
2010 tx_ant = 1; /* variable */
2011 use_def_for_tx = false;
2012 update_def_on_tx = false;
2013 use_def_for_rts = true;
2014 use_def_for_sg = false;
2015 fast_div = false;
2016 break;
2017 case AR5K_ANTMODE_SECTOR_STA:
2018 tx_ant = 1; /* variable */
2019 use_def_for_tx = true;
2020 update_def_on_tx = false;
2021 use_def_for_rts = true;
2022 use_def_for_sg = false;
2023 fast_div = true;
2024 break;
2025 case AR5K_ANTMODE_DEBUG:
2026 def_ant = 1;
2027 tx_ant = 2;
2028 use_def_for_tx = false;
2029 update_def_on_tx = false;
2030 use_def_for_rts = false;
2031 use_def_for_sg = false;
2032 fast_div = false;
2033 break;
2034 default:
2035 return;
2038 ah->ah_tx_ant = tx_ant;
2039 ah->ah_ant_mode = ant_mode;
2040 ah->ah_def_ant = def_ant;
2042 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2043 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2044 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2045 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2047 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2049 if (sta_id1)
2050 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2052 ath5k_hw_set_antenna_switch(ah, ee_mode);
2053 /* Note: set diversity before default antenna
2054 * because it won't work correctly */
2055 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2056 ath5k_hw_set_def_antenna(ah, def_ant);
2060 /****************\
2061 * TX power setup *
2062 \****************/
2065 * Helper functions
2069 * Do linear interpolation between two given (x, y) points
2071 static s16
2072 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2073 s16 y_left, s16 y_right)
2075 s16 ratio, result;
2077 /* Avoid divide by zero and skip interpolation
2078 * if we have the same point */
2079 if ((x_left == x_right) || (y_left == y_right))
2080 return y_left;
2083 * Since we use ints and not fps, we need to scale up in
2084 * order to get a sane ratio value (or else we 'll eg. get
2085 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2086 * to have some accuracy both for 0.5 and 0.25 steps.
2088 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2090 /* Now scale down to be in range */
2091 result = y_left + (ratio * (target - x_left) / 100);
2093 return result;
2097 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2099 * Since we have the top of the curve and we draw the line below
2100 * until we reach 1 (1 pcdac step) we need to know which point
2101 * (x value) that is so that we don't go below y axis and have negative
2102 * pcdac values when creating the curve, or fill the table with zeroes.
2104 static s16
2105 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2106 const s16 *pwrL, const s16 *pwrR)
2108 s8 tmp;
2109 s16 min_pwrL, min_pwrR;
2110 s16 pwr_i;
2112 /* Some vendors write the same pcdac value twice !!! */
2113 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2114 return max(pwrL[0], pwrR[0]);
2116 if (pwrL[0] == pwrL[1])
2117 min_pwrL = pwrL[0];
2118 else {
2119 pwr_i = pwrL[0];
2120 do {
2121 pwr_i--;
2122 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2123 pwrL[0], pwrL[1],
2124 stepL[0], stepL[1]);
2125 } while (tmp > 1);
2127 min_pwrL = pwr_i;
2130 if (pwrR[0] == pwrR[1])
2131 min_pwrR = pwrR[0];
2132 else {
2133 pwr_i = pwrR[0];
2134 do {
2135 pwr_i--;
2136 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2137 pwrR[0], pwrR[1],
2138 stepR[0], stepR[1]);
2139 } while (tmp > 1);
2141 min_pwrR = pwr_i;
2144 /* Keep the right boundary so that it works for both curves */
2145 return max(min_pwrL, min_pwrR);
2149 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2150 * Power to PCDAC curve.
2152 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2153 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2154 * PCDAC/PDADC step for each curve is 64 but we can write more than
2155 * one curves on hw so we can go up to 128 (which is the max step we
2156 * can write on the final table).
2158 * We write y values (PCDAC/PDADC steps) on hw.
2160 static void
2161 ath5k_create_power_curve(s16 pmin, s16 pmax,
2162 const s16 *pwr, const u8 *vpd,
2163 u8 num_points,
2164 u8 *vpd_table, u8 type)
2166 u8 idx[2] = { 0, 1 };
2167 s16 pwr_i = 2 * pmin;
2168 int i;
2170 if (num_points < 2)
2171 return;
2173 /* We want the whole line, so adjust boundaries
2174 * to cover the entire power range. Note that
2175 * power values are already 0.25dB so no need
2176 * to multiply pwr_i by 2 */
2177 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2178 pwr_i = pmin;
2179 pmin = 0;
2180 pmax = 63;
2183 /* Find surrounding turning points (TPs)
2184 * and interpolate between them */
2185 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2186 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2188 /* We passed the right TP, move to the next set of TPs
2189 * if we pass the last TP, extrapolate above using the last
2190 * two TPs for ratio */
2191 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2192 idx[0]++;
2193 idx[1]++;
2196 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2197 pwr[idx[0]], pwr[idx[1]],
2198 vpd[idx[0]], vpd[idx[1]]);
2200 /* Increase by 0.5dB
2201 * (0.25 dB units) */
2202 pwr_i += 2;
2207 * Get the surrounding per-channel power calibration piers
2208 * for a given frequency so that we can interpolate between
2209 * them and come up with an appropriate dataset for our current
2210 * channel.
2212 static void
2213 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2214 struct ieee80211_channel *channel,
2215 struct ath5k_chan_pcal_info **pcinfo_l,
2216 struct ath5k_chan_pcal_info **pcinfo_r)
2218 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2219 struct ath5k_chan_pcal_info *pcinfo;
2220 u8 idx_l, idx_r;
2221 u8 mode, max, i;
2222 u32 target = channel->center_freq;
2224 idx_l = 0;
2225 idx_r = 0;
2227 if (!(channel->hw_value & CHANNEL_OFDM)) {
2228 pcinfo = ee->ee_pwr_cal_b;
2229 mode = AR5K_EEPROM_MODE_11B;
2230 } else if (channel->hw_value & CHANNEL_2GHZ) {
2231 pcinfo = ee->ee_pwr_cal_g;
2232 mode = AR5K_EEPROM_MODE_11G;
2233 } else {
2234 pcinfo = ee->ee_pwr_cal_a;
2235 mode = AR5K_EEPROM_MODE_11A;
2237 max = ee->ee_n_piers[mode] - 1;
2239 /* Frequency is below our calibrated
2240 * range. Use the lowest power curve
2241 * we have */
2242 if (target < pcinfo[0].freq) {
2243 idx_l = idx_r = 0;
2244 goto done;
2247 /* Frequency is above our calibrated
2248 * range. Use the highest power curve
2249 * we have */
2250 if (target > pcinfo[max].freq) {
2251 idx_l = idx_r = max;
2252 goto done;
2255 /* Frequency is inside our calibrated
2256 * channel range. Pick the surrounding
2257 * calibration piers so that we can
2258 * interpolate */
2259 for (i = 0; i <= max; i++) {
2261 /* Frequency matches one of our calibration
2262 * piers, no need to interpolate, just use
2263 * that calibration pier */
2264 if (pcinfo[i].freq == target) {
2265 idx_l = idx_r = i;
2266 goto done;
2269 /* We found a calibration pier that's above
2270 * frequency, use this pier and the previous
2271 * one to interpolate */
2272 if (target < pcinfo[i].freq) {
2273 idx_r = i;
2274 idx_l = idx_r - 1;
2275 goto done;
2279 done:
2280 *pcinfo_l = &pcinfo[idx_l];
2281 *pcinfo_r = &pcinfo[idx_r];
2285 * Get the surrounding per-rate power calibration data
2286 * for a given frequency and interpolate between power
2287 * values to set max target power supported by hw for
2288 * each rate.
2290 static void
2291 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2292 struct ieee80211_channel *channel,
2293 struct ath5k_rate_pcal_info *rates)
2295 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2296 struct ath5k_rate_pcal_info *rpinfo;
2297 u8 idx_l, idx_r;
2298 u8 mode, max, i;
2299 u32 target = channel->center_freq;
2301 idx_l = 0;
2302 idx_r = 0;
2304 if (!(channel->hw_value & CHANNEL_OFDM)) {
2305 rpinfo = ee->ee_rate_tpwr_b;
2306 mode = AR5K_EEPROM_MODE_11B;
2307 } else if (channel->hw_value & CHANNEL_2GHZ) {
2308 rpinfo = ee->ee_rate_tpwr_g;
2309 mode = AR5K_EEPROM_MODE_11G;
2310 } else {
2311 rpinfo = ee->ee_rate_tpwr_a;
2312 mode = AR5K_EEPROM_MODE_11A;
2314 max = ee->ee_rate_target_pwr_num[mode] - 1;
2316 /* Get the surrounding calibration
2317 * piers - same as above */
2318 if (target < rpinfo[0].freq) {
2319 idx_l = idx_r = 0;
2320 goto done;
2323 if (target > rpinfo[max].freq) {
2324 idx_l = idx_r = max;
2325 goto done;
2328 for (i = 0; i <= max; i++) {
2330 if (rpinfo[i].freq == target) {
2331 idx_l = idx_r = i;
2332 goto done;
2335 if (target < rpinfo[i].freq) {
2336 idx_r = i;
2337 idx_l = idx_r - 1;
2338 goto done;
2342 done:
2343 /* Now interpolate power value, based on the frequency */
2344 rates->freq = target;
2346 rates->target_power_6to24 =
2347 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2348 rpinfo[idx_r].freq,
2349 rpinfo[idx_l].target_power_6to24,
2350 rpinfo[idx_r].target_power_6to24);
2352 rates->target_power_36 =
2353 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2354 rpinfo[idx_r].freq,
2355 rpinfo[idx_l].target_power_36,
2356 rpinfo[idx_r].target_power_36);
2358 rates->target_power_48 =
2359 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2360 rpinfo[idx_r].freq,
2361 rpinfo[idx_l].target_power_48,
2362 rpinfo[idx_r].target_power_48);
2364 rates->target_power_54 =
2365 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2366 rpinfo[idx_r].freq,
2367 rpinfo[idx_l].target_power_54,
2368 rpinfo[idx_r].target_power_54);
2372 * Get the max edge power for this channel if
2373 * we have such data from EEPROM's Conformance Test
2374 * Limits (CTL), and limit max power if needed.
2376 static void
2377 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2378 struct ieee80211_channel *channel)
2380 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2381 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2382 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2383 u8 *ctl_val = ee->ee_ctl;
2384 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2385 s16 edge_pwr = 0;
2386 u8 rep_idx;
2387 u8 i, ctl_mode;
2388 u8 ctl_idx = 0xFF;
2389 u32 target = channel->center_freq;
2391 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2393 switch (channel->hw_value & CHANNEL_MODES) {
2394 case CHANNEL_A:
2395 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2396 ctl_mode |= AR5K_CTL_TURBO;
2397 else
2398 ctl_mode |= AR5K_CTL_11A;
2399 break;
2400 case CHANNEL_G:
2401 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2402 ctl_mode |= AR5K_CTL_TURBOG;
2403 else
2404 ctl_mode |= AR5K_CTL_11G;
2405 break;
2406 case CHANNEL_B:
2407 ctl_mode |= AR5K_CTL_11B;
2408 break;
2409 case CHANNEL_XR:
2410 /* Fall through */
2411 default:
2412 return;
2415 for (i = 0; i < ee->ee_ctls; i++) {
2416 if (ctl_val[i] == ctl_mode) {
2417 ctl_idx = i;
2418 break;
2422 /* If we have a CTL dataset available grab it and find the
2423 * edge power for our frequency */
2424 if (ctl_idx == 0xFF)
2425 return;
2427 /* Edge powers are sorted by frequency from lower
2428 * to higher. Each CTL corresponds to 8 edge power
2429 * measurements. */
2430 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2432 /* Don't do boundaries check because we
2433 * might have more that one bands defined
2434 * for this mode */
2436 /* Get the edge power that's closer to our
2437 * frequency */
2438 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2439 rep_idx += i;
2440 if (target <= rep[rep_idx].freq)
2441 edge_pwr = (s16) rep[rep_idx].edge;
2444 if (edge_pwr)
2445 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2450 * Power to PCDAC table functions
2454 * Fill Power to PCDAC table on RF5111
2456 * No further processing is needed for RF5111, the only thing we have to
2457 * do is fill the values below and above calibration range since eeprom data
2458 * may not cover the entire PCDAC table.
2460 static void
2461 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2462 s16 *table_max)
2464 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2465 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2466 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2467 s16 min_pwr, max_pwr;
2469 /* Get table boundaries */
2470 min_pwr = table_min[0];
2471 pcdac_0 = pcdac_tmp[0];
2473 max_pwr = table_max[0];
2474 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2476 /* Extrapolate below minimum using pcdac_0 */
2477 pcdac_i = 0;
2478 for (i = 0; i < min_pwr; i++)
2479 pcdac_out[pcdac_i++] = pcdac_0;
2481 /* Copy values from pcdac_tmp */
2482 pwr_idx = min_pwr;
2483 for (i = 0; pwr_idx <= max_pwr &&
2484 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2485 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2486 pwr_idx++;
2489 /* Extrapolate above maximum */
2490 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2491 pcdac_out[pcdac_i++] = pcdac_n;
2496 * Combine available XPD Curves and fill Linear Power to PCDAC table
2497 * on RF5112
2499 * RFX112 can have up to 2 curves (one for low txpower range and one for
2500 * higher txpower range). We need to put them both on pcdac_out and place
2501 * them in the correct location. In case we only have one curve available
2502 * just fit it on pcdac_out (it's supposed to cover the entire range of
2503 * available pwr levels since it's always the higher power curve). Extrapolate
2504 * below and above final table if needed.
2506 static void
2507 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2508 s16 *table_max, u8 pdcurves)
2510 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2511 u8 *pcdac_low_pwr;
2512 u8 *pcdac_high_pwr;
2513 u8 *pcdac_tmp;
2514 u8 pwr;
2515 s16 max_pwr_idx;
2516 s16 min_pwr_idx;
2517 s16 mid_pwr_idx = 0;
2518 /* Edge flag turns on the 7nth bit on the PCDAC
2519 * to declare the higher power curve (force values
2520 * to be greater than 64). If we only have one curve
2521 * we don't need to set this, if we have 2 curves and
2522 * fill the table backwards this can also be used to
2523 * switch from higher power curve to lower power curve */
2524 u8 edge_flag;
2525 int i;
2527 /* When we have only one curve available
2528 * that's the higher power curve. If we have
2529 * two curves the first is the high power curve
2530 * and the next is the low power curve. */
2531 if (pdcurves > 1) {
2532 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2533 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2534 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2535 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2537 /* If table size goes beyond 31.5dB, keep the
2538 * upper 31.5dB range when setting tx power.
2539 * Note: 126 = 31.5 dB in quarter dB steps */
2540 if (table_max[0] - table_min[1] > 126)
2541 min_pwr_idx = table_max[0] - 126;
2542 else
2543 min_pwr_idx = table_min[1];
2545 /* Since we fill table backwards
2546 * start from high power curve */
2547 pcdac_tmp = pcdac_high_pwr;
2549 edge_flag = 0x40;
2550 } else {
2551 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2552 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2553 min_pwr_idx = table_min[0];
2554 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2555 pcdac_tmp = pcdac_high_pwr;
2556 edge_flag = 0;
2559 /* This is used when setting tx power*/
2560 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2562 /* Fill Power to PCDAC table backwards */
2563 pwr = max_pwr_idx;
2564 for (i = 63; i >= 0; i--) {
2565 /* Entering lower power range, reset
2566 * edge flag and set pcdac_tmp to lower
2567 * power curve.*/
2568 if (edge_flag == 0x40 &&
2569 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2570 edge_flag = 0x00;
2571 pcdac_tmp = pcdac_low_pwr;
2572 pwr = mid_pwr_idx / 2;
2575 /* Don't go below 1, extrapolate below if we have
2576 * already switched to the lower power curve -or
2577 * we only have one curve and edge_flag is zero
2578 * anyway */
2579 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2580 while (i >= 0) {
2581 pcdac_out[i] = pcdac_out[i + 1];
2582 i--;
2584 break;
2587 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2589 /* Extrapolate above if pcdac is greater than
2590 * 126 -this can happen because we OR pcdac_out
2591 * value with edge_flag on high power curve */
2592 if (pcdac_out[i] > 126)
2593 pcdac_out[i] = 126;
2595 /* Decrease by a 0.5dB step */
2596 pwr--;
2600 /* Write PCDAC values on hw */
2601 static void
2602 ath5k_write_pcdac_table(struct ath5k_hw *ah)
2604 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2605 int i;
2608 * Write TX power values
2610 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2611 ath5k_hw_reg_write(ah,
2612 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2613 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2614 AR5K_PHY_PCDAC_TXPOWER(i));
2620 * Power to PDADC table functions
2624 * Set the gain boundaries and create final Power to PDADC table
2626 * We can have up to 4 pd curves, we need to do a similar process
2627 * as we do for RF5112. This time we don't have an edge_flag but we
2628 * set the gain boundaries on a separate register.
2630 static void
2631 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2632 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2634 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2635 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2636 u8 *pdadc_tmp;
2637 s16 pdadc_0;
2638 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2639 u8 pd_gain_overlap;
2641 /* Note: Register value is initialized on initvals
2642 * there is no feedback from hw.
2643 * XXX: What about pd_gain_overlap from EEPROM ? */
2644 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2645 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2647 /* Create final PDADC table */
2648 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2649 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2651 if (pdg == pdcurves - 1)
2652 /* 2 dB boundary stretch for last
2653 * (higher power) curve */
2654 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2655 else
2656 /* Set gain boundary in the middle
2657 * between this curve and the next one */
2658 gain_boundaries[pdg] =
2659 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2661 /* Sanity check in case our 2 db stretch got out of
2662 * range. */
2663 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2664 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2666 /* For the first curve (lower power)
2667 * start from 0 dB */
2668 if (pdg == 0)
2669 pdadc_0 = 0;
2670 else
2671 /* For the other curves use the gain overlap */
2672 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2673 pd_gain_overlap;
2675 /* Force each power step to be at least 0.5 dB */
2676 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2677 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2678 else
2679 pwr_step = 1;
2681 /* If pdadc_0 is negative, we need to extrapolate
2682 * below this pdgain by a number of pwr_steps */
2683 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2684 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2685 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2686 pdadc_0++;
2689 /* Set last pwr level, using gain boundaries */
2690 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2691 /* Limit it to be inside pwr range */
2692 table_size = pwr_max[pdg] - pwr_min[pdg];
2693 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2695 /* Fill pdadc_out table */
2696 while (pdadc_0 < max_idx && pdadc_i < 128)
2697 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2699 /* Need to extrapolate above this pdgain? */
2700 if (pdadc_n <= max_idx)
2701 continue;
2703 /* Force each power step to be at least 0.5 dB */
2704 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2705 pwr_step = pdadc_tmp[table_size - 1] -
2706 pdadc_tmp[table_size - 2];
2707 else
2708 pwr_step = 1;
2710 /* Extrapolate above */
2711 while ((pdadc_0 < (s16) pdadc_n) &&
2712 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2713 s16 tmp = pdadc_tmp[table_size - 1] +
2714 (pdadc_0 - max_idx) * pwr_step;
2715 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2716 pdadc_0++;
2720 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2721 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2722 pdg++;
2725 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2726 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2727 pdadc_i++;
2730 /* Set gain boundaries */
2731 ath5k_hw_reg_write(ah,
2732 AR5K_REG_SM(pd_gain_overlap,
2733 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2734 AR5K_REG_SM(gain_boundaries[0],
2735 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2736 AR5K_REG_SM(gain_boundaries[1],
2737 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2738 AR5K_REG_SM(gain_boundaries[2],
2739 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2740 AR5K_REG_SM(gain_boundaries[3],
2741 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2742 AR5K_PHY_TPC_RG5);
2744 /* Used for setting rate power table */
2745 ah->ah_txpower.txp_min_idx = pwr_min[0];
2749 /* Write PDADC values on hw */
2750 static void
2751 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2753 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2754 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2755 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2756 u8 pdcurves = ee->ee_pd_gains[ee_mode];
2757 u32 reg;
2758 u8 i;
2760 /* Select the right pdgain curves */
2762 /* Clear current settings */
2763 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2764 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2765 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2766 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2767 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2770 * Use pd_gains curve from eeprom
2772 * This overrides the default setting from initvals
2773 * in case some vendors (e.g. Zcomax) don't use the default
2774 * curves. If we don't honor their settings we 'll get a
2775 * 5dB (1 * gain overlap ?) drop.
2777 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2779 switch (pdcurves) {
2780 case 3:
2781 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2782 /* Fall through */
2783 case 2:
2784 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2785 /* Fall through */
2786 case 1:
2787 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2788 break;
2790 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2793 * Write TX power values
2795 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2796 ath5k_hw_reg_write(ah,
2797 ((pdadc_out[4 * i + 0] & 0xff) << 0) |
2798 ((pdadc_out[4 * i + 1] & 0xff) << 8) |
2799 ((pdadc_out[4 * i + 2] & 0xff) << 16) |
2800 ((pdadc_out[4 * i + 3] & 0xff) << 24),
2801 AR5K_PHY_PDADC_TXPOWER(i));
2807 * Common code for PCDAC/PDADC tables
2811 * This is the main function that uses all of the above
2812 * to set PCDAC/PDADC table on hw for the current channel.
2813 * This table is used for tx power calibration on the baseband,
2814 * without it we get weird tx power levels and in some cases
2815 * distorted spectral mask
2817 static int
2818 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2819 struct ieee80211_channel *channel,
2820 u8 ee_mode, u8 type)
2822 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2823 struct ath5k_chan_pcal_info *pcinfo_L;
2824 struct ath5k_chan_pcal_info *pcinfo_R;
2825 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2826 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2827 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2828 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2829 u8 *tmpL;
2830 u8 *tmpR;
2831 u32 target = channel->center_freq;
2832 int pdg, i;
2834 /* Get surrounding freq piers for this channel */
2835 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2836 &pcinfo_L,
2837 &pcinfo_R);
2839 /* Loop over pd gain curves on
2840 * surrounding freq piers by index */
2841 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2843 /* Fill curves in reverse order
2844 * from lower power (max gain)
2845 * to higher power. Use curve -> idx
2846 * backmapping we did on eeprom init */
2847 u8 idx = pdg_curve_to_idx[pdg];
2849 /* Grab the needed curves by index */
2850 pdg_L = &pcinfo_L->pd_curves[idx];
2851 pdg_R = &pcinfo_R->pd_curves[idx];
2853 /* Initialize the temp tables */
2854 tmpL = ah->ah_txpower.tmpL[pdg];
2855 tmpR = ah->ah_txpower.tmpR[pdg];
2857 /* Set curve's x boundaries and create
2858 * curves so that they cover the same
2859 * range (if we don't do that one table
2860 * will have values on some range and the
2861 * other one won't have any so interpolation
2862 * will fail) */
2863 table_min[pdg] = min(pdg_L->pd_pwr[0],
2864 pdg_R->pd_pwr[0]) / 2;
2866 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2867 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2869 /* Now create the curves on surrounding channels
2870 * and interpolate if needed to get the final
2871 * curve for this gain on this channel */
2872 switch (type) {
2873 case AR5K_PWRTABLE_LINEAR_PCDAC:
2874 /* Override min/max so that we don't loose
2875 * accuracy (don't divide by 2) */
2876 table_min[pdg] = min(pdg_L->pd_pwr[0],
2877 pdg_R->pd_pwr[0]);
2879 table_max[pdg] =
2880 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2881 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2883 /* Override minimum so that we don't get
2884 * out of bounds while extrapolating
2885 * below. Don't do this when we have 2
2886 * curves and we are on the high power curve
2887 * because table_min is ok in this case */
2888 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2890 table_min[pdg] =
2891 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2892 pdg_R->pd_step,
2893 pdg_L->pd_pwr,
2894 pdg_R->pd_pwr);
2896 /* Don't go too low because we will
2897 * miss the upper part of the curve.
2898 * Note: 126 = 31.5dB (max power supported)
2899 * in 0.25dB units */
2900 if (table_max[pdg] - table_min[pdg] > 126)
2901 table_min[pdg] = table_max[pdg] - 126;
2904 /* Fall through */
2905 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2906 case AR5K_PWRTABLE_PWR_TO_PDADC:
2908 ath5k_create_power_curve(table_min[pdg],
2909 table_max[pdg],
2910 pdg_L->pd_pwr,
2911 pdg_L->pd_step,
2912 pdg_L->pd_points, tmpL, type);
2914 /* We are in a calibration
2915 * pier, no need to interpolate
2916 * between freq piers */
2917 if (pcinfo_L == pcinfo_R)
2918 continue;
2920 ath5k_create_power_curve(table_min[pdg],
2921 table_max[pdg],
2922 pdg_R->pd_pwr,
2923 pdg_R->pd_step,
2924 pdg_R->pd_points, tmpR, type);
2925 break;
2926 default:
2927 return -EINVAL;
2930 /* Interpolate between curves
2931 * of surrounding freq piers to
2932 * get the final curve for this
2933 * pd gain. Re-use tmpL for interpolation
2934 * output */
2935 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2936 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2937 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2938 (s16) pcinfo_L->freq,
2939 (s16) pcinfo_R->freq,
2940 (s16) tmpL[i],
2941 (s16) tmpR[i]);
2945 /* Now we have a set of curves for this
2946 * channel on tmpL (x range is table_max - table_min
2947 * and y values are tmpL[pdg][]) sorted in the same
2948 * order as EEPROM (because we've used the backmapping).
2949 * So for RF5112 it's from higher power to lower power
2950 * and for RF2413 it's from lower power to higher power.
2951 * For RF5111 we only have one curve. */
2953 /* Fill min and max power levels for this
2954 * channel by interpolating the values on
2955 * surrounding channels to complete the dataset */
2956 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2957 (s16) pcinfo_L->freq,
2958 (s16) pcinfo_R->freq,
2959 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2961 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2962 (s16) pcinfo_L->freq,
2963 (s16) pcinfo_R->freq,
2964 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2966 /* Fill PCDAC/PDADC table */
2967 switch (type) {
2968 case AR5K_PWRTABLE_LINEAR_PCDAC:
2969 /* For RF5112 we can have one or two curves
2970 * and each curve covers a certain power lvl
2971 * range so we need to do some more processing */
2972 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2973 ee->ee_pd_gains[ee_mode]);
2975 /* Set txp.offset so that we can
2976 * match max power value with max
2977 * table index */
2978 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2979 break;
2980 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2981 /* We are done for RF5111 since it has only
2982 * one curve, just fit the curve on the table */
2983 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2985 /* No rate powertable adjustment for RF5111 */
2986 ah->ah_txpower.txp_min_idx = 0;
2987 ah->ah_txpower.txp_offset = 0;
2988 break;
2989 case AR5K_PWRTABLE_PWR_TO_PDADC:
2990 /* Set PDADC boundaries and fill
2991 * final PDADC table */
2992 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2993 ee->ee_pd_gains[ee_mode]);
2995 /* Set txp.offset, note that table_min
2996 * can be negative */
2997 ah->ah_txpower.txp_offset = table_min[0];
2998 break;
2999 default:
3000 return -EINVAL;
3003 ah->ah_txpower.txp_setup = true;
3005 return 0;
3008 /* Write power table for current channel to hw */
3009 static void
3010 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3012 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3013 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3014 else
3015 ath5k_write_pcdac_table(ah);
3019 * Per-rate tx power setting
3021 * This is the code that sets the desired tx power (below
3022 * maximum) on hw for each rate (we also have TPC that sets
3023 * power per packet). We do that by providing an index on the
3024 * PCDAC/PDADC table we set up.
3028 * Set rate power table
3030 * For now we only limit txpower based on maximum tx power
3031 * supported by hw (what's inside rate_info). We need to limit
3032 * this even more, based on regulatory domain etc.
3034 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3035 * and is indexed as follows:
3036 * rates[0] - rates[7] -> OFDM rates
3037 * rates[8] - rates[14] -> CCK rates
3038 * rates[15] -> XR rates (they all have the same power)
3040 static void
3041 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3042 struct ath5k_rate_pcal_info *rate_info,
3043 u8 ee_mode)
3045 unsigned int i;
3046 u16 *rates;
3048 /* max_pwr is power level we got from driver/user in 0.5dB
3049 * units, switch to 0.25dB units so we can compare */
3050 max_pwr *= 2;
3051 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3053 /* apply rate limits */
3054 rates = ah->ah_txpower.txp_rates_power_table;
3056 /* OFDM rates 6 to 24Mb/s */
3057 for (i = 0; i < 5; i++)
3058 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3060 /* Rest OFDM rates */
3061 rates[5] = min(rates[0], rate_info->target_power_36);
3062 rates[6] = min(rates[0], rate_info->target_power_48);
3063 rates[7] = min(rates[0], rate_info->target_power_54);
3065 /* CCK rates */
3066 /* 1L */
3067 rates[8] = min(rates[0], rate_info->target_power_6to24);
3068 /* 2L */
3069 rates[9] = min(rates[0], rate_info->target_power_36);
3070 /* 2S */
3071 rates[10] = min(rates[0], rate_info->target_power_36);
3072 /* 5L */
3073 rates[11] = min(rates[0], rate_info->target_power_48);
3074 /* 5S */
3075 rates[12] = min(rates[0], rate_info->target_power_48);
3076 /* 11L */
3077 rates[13] = min(rates[0], rate_info->target_power_54);
3078 /* 11S */
3079 rates[14] = min(rates[0], rate_info->target_power_54);
3081 /* XR rates */
3082 rates[15] = min(rates[0], rate_info->target_power_6to24);
3084 /* CCK rates have different peak to average ratio
3085 * so we have to tweak their power so that gainf
3086 * correction works ok. For this we use OFDM to
3087 * CCK delta from eeprom */
3088 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3089 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3090 for (i = 8; i <= 15; i++)
3091 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3093 /* Now that we have all rates setup use table offset to
3094 * match the power range set by user with the power indices
3095 * on PCDAC/PDADC table */
3096 for (i = 0; i < 16; i++) {
3097 rates[i] += ah->ah_txpower.txp_offset;
3098 /* Don't get out of bounds */
3099 if (rates[i] > 63)
3100 rates[i] = 63;
3103 /* Min/max in 0.25dB units */
3104 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3105 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3106 ah->ah_txpower.txp_ofdm = rates[7];
3111 * Set transmission power
3113 static int
3114 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3115 u8 txpower)
3117 struct ath5k_rate_pcal_info rate_info;
3118 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3119 int ee_mode;
3120 u8 type;
3121 int ret;
3123 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3124 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3125 return -EINVAL;
3128 ee_mode = ath5k_eeprom_mode_from_channel(channel);
3129 if (ee_mode < 0) {
3130 ATH5K_ERR(ah->ah_sc,
3131 "invalid channel: %d\n", channel->center_freq);
3132 return -EINVAL;
3135 /* Initialize TX power table */
3136 switch (ah->ah_radio) {
3137 case AR5K_RF5110:
3138 /* TODO */
3139 return 0;
3140 case AR5K_RF5111:
3141 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3142 break;
3143 case AR5K_RF5112:
3144 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3145 break;
3146 case AR5K_RF2413:
3147 case AR5K_RF5413:
3148 case AR5K_RF2316:
3149 case AR5K_RF2317:
3150 case AR5K_RF2425:
3151 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3152 break;
3153 default:
3154 return -EINVAL;
3158 * If we don't change channel/mode skip tx powertable calculation
3159 * and use the cached one.
3161 if (!ah->ah_txpower.txp_setup ||
3162 (channel->hw_value != curr_channel->hw_value) ||
3163 (channel->center_freq != curr_channel->center_freq)) {
3164 /* Reset TX power values */
3165 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3166 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3168 /* Calculate the powertable */
3169 ret = ath5k_setup_channel_powertable(ah, channel,
3170 ee_mode, type);
3171 if (ret)
3172 return ret;
3175 /* Write table on hw */
3176 ath5k_write_channel_powertable(ah, ee_mode, type);
3178 /* Limit max power if we have a CTL available */
3179 ath5k_get_max_ctl_power(ah, channel);
3181 /* FIXME: Antenna reduction stuff */
3183 /* FIXME: Limit power on turbo modes */
3185 /* FIXME: TPC scale reduction */
3187 /* Get surrounding channels for per-rate power table
3188 * calibration */
3189 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3191 /* Setup rate power table */
3192 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3194 /* Write rate power table on hw */
3195 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3196 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3197 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3199 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3200 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3201 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3203 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3204 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3205 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3207 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3208 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3209 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3211 /* FIXME: TPC support */
3212 if (ah->ah_txpower.txp_tpc) {
3213 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3214 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3216 ath5k_hw_reg_write(ah,
3217 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3218 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3219 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3220 AR5K_TPC);
3221 } else {
3222 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3223 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3226 return 0;
3229 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3231 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3232 "changing txpower to %d\n", txpower);
3234 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3237 /*************\
3238 Init function
3239 \*************/
3241 int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3242 u8 mode, bool fast)
3244 struct ieee80211_channel *curr_channel;
3245 int ret, i;
3246 u32 phy_tst1;
3247 ret = 0;
3250 * Sanity check for fast flag
3251 * Don't try fast channel change when changing modulation
3252 * mode/band. We check for chip compatibility on
3253 * ath5k_hw_reset.
3255 curr_channel = ah->ah_current_channel;
3256 if (fast && (channel->hw_value != curr_channel->hw_value))
3257 return -EINVAL;
3260 * On fast channel change we only set the synth parameters
3261 * while PHY is running, enable calibration and skip the rest.
3263 if (fast) {
3264 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3265 AR5K_PHY_RFBUS_REQ_REQUEST);
3266 for (i = 0; i < 100; i++) {
3267 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3268 break;
3269 udelay(5);
3271 /* Failed */
3272 if (i >= 100)
3273 return -EIO;
3275 /* Set channel and wait for synth */
3276 ret = ath5k_hw_channel(ah, channel);
3277 if (ret)
3278 return ret;
3280 ath5k_hw_wait_for_synth(ah, channel);
3284 * Set TX power
3286 * Note: We need to do that before we set
3287 * RF buffer settings on 5211/5212+ so that we
3288 * properly set curve indices.
3290 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3291 ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3292 if (ret)
3293 return ret;
3295 /* Write OFDM timings on 5212*/
3296 if (ah->ah_version == AR5K_AR5212 &&
3297 channel->hw_value & CHANNEL_OFDM) {
3299 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3300 if (ret)
3301 return ret;
3303 /* Spur info is available only from EEPROM versions
3304 * greater than 5.3, but the EEPROM routines will use
3305 * static values for older versions */
3306 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3307 ath5k_hw_set_spur_mitigation_filter(ah,
3308 channel);
3311 /* If we used fast channel switching
3312 * we are done, release RF bus and
3313 * fire up NF calibration.
3315 * Note: Only NF calibration due to
3316 * channel change, not AGC calibration
3317 * since AGC is still running !
3319 if (fast) {
3321 * Release RF Bus grant
3323 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3324 AR5K_PHY_RFBUS_REQ_REQUEST);
3327 * Start NF calibration
3329 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3330 AR5K_PHY_AGCCTL_NF);
3332 return ret;
3336 * For 5210 we do all initialization using
3337 * initvals, so we don't have to modify
3338 * any settings (5210 also only supports
3339 * a/aturbo modes)
3341 if (ah->ah_version != AR5K_AR5210) {
3344 * Write initial RF gain settings
3345 * This should work for both 5111/5112
3347 ret = ath5k_hw_rfgain_init(ah, channel->band);
3348 if (ret)
3349 return ret;
3351 mdelay(1);
3354 * Write RF buffer
3356 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3357 if (ret)
3358 return ret;
3360 /*Enable/disable 802.11b mode on 5111
3361 (enable 2111 frequency converter + CCK)*/
3362 if (ah->ah_radio == AR5K_RF5111) {
3363 if (mode == AR5K_MODE_11B)
3364 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3365 AR5K_TXCFG_B_MODE);
3366 else
3367 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3368 AR5K_TXCFG_B_MODE);
3371 } else if (ah->ah_version == AR5K_AR5210) {
3372 mdelay(1);
3373 /* Disable phy and wait */
3374 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3375 mdelay(1);
3378 /* Set channel on PHY */
3379 ret = ath5k_hw_channel(ah, channel);
3380 if (ret)
3381 return ret;
3384 * Enable the PHY and wait until completion
3385 * This includes BaseBand and Synthesizer
3386 * activation.
3388 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3390 ath5k_hw_wait_for_synth(ah, channel);
3393 * Perform ADC test to see if baseband is ready
3394 * Set tx hold and check adc test register
3396 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3397 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3398 for (i = 0; i <= 20; i++) {
3399 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3400 break;
3401 udelay(200);
3403 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3406 * Start automatic gain control calibration
3408 * During AGC calibration RX path is re-routed to
3409 * a power detector so we don't receive anything.
3411 * This method is used to calibrate some static offsets
3412 * used together with on-the fly I/Q calibration (the
3413 * one performed via ath5k_hw_phy_calibrate), which doesn't
3414 * interrupt rx path.
3416 * While rx path is re-routed to the power detector we also
3417 * start a noise floor calibration to measure the
3418 * card's noise floor (the noise we measure when we are not
3419 * transmitting or receiving anything).
3421 * If we are in a noisy environment, AGC calibration may time
3422 * out and/or noise floor calibration might timeout.
3424 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3425 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3427 /* At the same time start I/Q calibration for QAM constellation
3428 * -no need for CCK- */
3429 ah->ah_calibration = false;
3430 if (!(mode == AR5K_MODE_11B)) {
3431 ah->ah_calibration = true;
3432 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3433 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3434 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3435 AR5K_PHY_IQ_RUN);
3438 /* Wait for gain calibration to finish (we check for I/Q calibration
3439 * during ath5k_phy_calibrate) */
3440 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3441 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3442 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3443 channel->center_freq);
3446 /* Restore antenna mode */
3447 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3449 return ret;