Introduce CONFIG_XEN_PVHVM compile option
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / time.c
blob2aab4a2b9100c49189cbb44eac47106d11772e1b
1 /*
2 * Xen time implementation.
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
18 #include <asm/pvclock.h>
19 #include <asm/xen/hypervisor.h>
20 #include <asm/xen/hypercall.h>
22 #include <xen/events.h>
23 #include <xen/features.h>
24 #include <xen/interface/xen.h>
25 #include <xen/interface/vcpu.h>
27 #include "xen-ops.h"
29 #define XEN_SHIFT 22
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP 100000
33 #define NS_PER_TICK (1000000000LL / HZ)
35 /* runstate info updated by Xen */
36 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
38 /* snapshots of runstate info */
39 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
41 /* unused ns of stolen and blocked time */
42 static DEFINE_PER_CPU(u64, xen_residual_stolen);
43 static DEFINE_PER_CPU(u64, xen_residual_blocked);
45 /* return an consistent snapshot of 64-bit time/counter value */
46 static u64 get64(const u64 *p)
48 u64 ret;
50 if (BITS_PER_LONG < 64) {
51 u32 *p32 = (u32 *)p;
52 u32 h, l;
55 * Read high then low, and then make sure high is
56 * still the same; this will only loop if low wraps
57 * and carries into high.
58 * XXX some clean way to make this endian-proof?
60 do {
61 h = p32[1];
62 barrier();
63 l = p32[0];
64 barrier();
65 } while (p32[1] != h);
67 ret = (((u64)h) << 32) | l;
68 } else
69 ret = *p;
71 return ret;
75 * Runstate accounting
77 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
79 u64 state_time;
80 struct vcpu_runstate_info *state;
82 BUG_ON(preemptible());
84 state = &__get_cpu_var(xen_runstate);
87 * The runstate info is always updated by the hypervisor on
88 * the current CPU, so there's no need to use anything
89 * stronger than a compiler barrier when fetching it.
91 do {
92 state_time = get64(&state->state_entry_time);
93 barrier();
94 *res = *state;
95 barrier();
96 } while (get64(&state->state_entry_time) != state_time);
99 /* return true when a vcpu could run but has no real cpu to run on */
100 bool xen_vcpu_stolen(int vcpu)
102 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
105 void xen_setup_runstate_info(int cpu)
107 struct vcpu_register_runstate_memory_area area;
109 area.addr.v = &per_cpu(xen_runstate, cpu);
111 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
112 cpu, &area))
113 BUG();
116 static void do_stolen_accounting(void)
118 struct vcpu_runstate_info state;
119 struct vcpu_runstate_info *snap;
120 s64 blocked, runnable, offline, stolen;
121 cputime_t ticks;
123 get_runstate_snapshot(&state);
125 WARN_ON(state.state != RUNSTATE_running);
127 snap = &__get_cpu_var(xen_runstate_snapshot);
129 /* work out how much time the VCPU has not been runn*ing* */
130 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
131 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
132 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
134 *snap = state;
136 /* Add the appropriate number of ticks of stolen time,
137 including any left-overs from last time. */
138 stolen = runnable + offline + __get_cpu_var(xen_residual_stolen);
140 if (stolen < 0)
141 stolen = 0;
143 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
144 __get_cpu_var(xen_residual_stolen) = stolen;
145 account_steal_ticks(ticks);
147 /* Add the appropriate number of ticks of blocked time,
148 including any left-overs from last time. */
149 blocked += __get_cpu_var(xen_residual_blocked);
151 if (blocked < 0)
152 blocked = 0;
154 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
155 __get_cpu_var(xen_residual_blocked) = blocked;
156 account_idle_ticks(ticks);
160 * Xen sched_clock implementation. Returns the number of unstolen
161 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED
162 * states.
164 static unsigned long long xen_sched_clock(void)
166 struct vcpu_runstate_info state;
167 cycle_t now;
168 u64 ret;
169 s64 offset;
172 * Ideally sched_clock should be called on a per-cpu basis
173 * anyway, so preempt should already be disabled, but that's
174 * not current practice at the moment.
176 preempt_disable();
178 now = xen_clocksource_read();
180 get_runstate_snapshot(&state);
182 WARN_ON(state.state != RUNSTATE_running);
184 offset = now - state.state_entry_time;
185 if (offset < 0)
186 offset = 0;
188 ret = state.time[RUNSTATE_blocked] +
189 state.time[RUNSTATE_running] +
190 offset;
192 preempt_enable();
194 return ret;
198 /* Get the TSC speed from Xen */
199 static unsigned long xen_tsc_khz(void)
201 struct pvclock_vcpu_time_info *info =
202 &HYPERVISOR_shared_info->vcpu_info[0].time;
204 return pvclock_tsc_khz(info);
207 cycle_t xen_clocksource_read(void)
209 struct pvclock_vcpu_time_info *src;
210 cycle_t ret;
212 src = &get_cpu_var(xen_vcpu)->time;
213 ret = pvclock_clocksource_read(src);
214 put_cpu_var(xen_vcpu);
215 return ret;
218 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
220 return xen_clocksource_read();
223 static void xen_read_wallclock(struct timespec *ts)
225 struct shared_info *s = HYPERVISOR_shared_info;
226 struct pvclock_wall_clock *wall_clock = &(s->wc);
227 struct pvclock_vcpu_time_info *vcpu_time;
229 vcpu_time = &get_cpu_var(xen_vcpu)->time;
230 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
231 put_cpu_var(xen_vcpu);
234 static unsigned long xen_get_wallclock(void)
236 struct timespec ts;
238 xen_read_wallclock(&ts);
239 return ts.tv_sec;
242 static int xen_set_wallclock(unsigned long now)
244 /* do nothing for domU */
245 return -1;
248 static struct clocksource xen_clocksource __read_mostly = {
249 .name = "xen",
250 .rating = 400,
251 .read = xen_clocksource_get_cycles,
252 .mask = ~0,
253 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
254 .shift = XEN_SHIFT,
255 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
259 Xen clockevent implementation
261 Xen has two clockevent implementations:
263 The old timer_op one works with all released versions of Xen prior
264 to version 3.0.4. This version of the hypervisor provides a
265 single-shot timer with nanosecond resolution. However, sharing the
266 same event channel is a 100Hz tick which is delivered while the
267 vcpu is running. We don't care about or use this tick, but it will
268 cause the core time code to think the timer fired too soon, and
269 will end up resetting it each time. It could be filtered, but
270 doing so has complications when the ktime clocksource is not yet
271 the xen clocksource (ie, at boot time).
273 The new vcpu_op-based timer interface allows the tick timer period
274 to be changed or turned off. The tick timer is not useful as a
275 periodic timer because events are only delivered to running vcpus.
276 The one-shot timer can report when a timeout is in the past, so
277 set_next_event is capable of returning -ETIME when appropriate.
278 This interface is used when available.
283 Get a hypervisor absolute time. In theory we could maintain an
284 offset between the kernel's time and the hypervisor's time, and
285 apply that to a kernel's absolute timeout. Unfortunately the
286 hypervisor and kernel times can drift even if the kernel is using
287 the Xen clocksource, because ntp can warp the kernel's clocksource.
289 static s64 get_abs_timeout(unsigned long delta)
291 return xen_clocksource_read() + delta;
294 static void xen_timerop_set_mode(enum clock_event_mode mode,
295 struct clock_event_device *evt)
297 switch (mode) {
298 case CLOCK_EVT_MODE_PERIODIC:
299 /* unsupported */
300 WARN_ON(1);
301 break;
303 case CLOCK_EVT_MODE_ONESHOT:
304 case CLOCK_EVT_MODE_RESUME:
305 break;
307 case CLOCK_EVT_MODE_UNUSED:
308 case CLOCK_EVT_MODE_SHUTDOWN:
309 HYPERVISOR_set_timer_op(0); /* cancel timeout */
310 break;
314 static int xen_timerop_set_next_event(unsigned long delta,
315 struct clock_event_device *evt)
317 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
319 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
320 BUG();
322 /* We may have missed the deadline, but there's no real way of
323 knowing for sure. If the event was in the past, then we'll
324 get an immediate interrupt. */
326 return 0;
329 static const struct clock_event_device xen_timerop_clockevent = {
330 .name = "xen",
331 .features = CLOCK_EVT_FEAT_ONESHOT,
333 .max_delta_ns = 0xffffffff,
334 .min_delta_ns = TIMER_SLOP,
336 .mult = 1,
337 .shift = 0,
338 .rating = 500,
340 .set_mode = xen_timerop_set_mode,
341 .set_next_event = xen_timerop_set_next_event,
346 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
347 struct clock_event_device *evt)
349 int cpu = smp_processor_id();
351 switch (mode) {
352 case CLOCK_EVT_MODE_PERIODIC:
353 WARN_ON(1); /* unsupported */
354 break;
356 case CLOCK_EVT_MODE_ONESHOT:
357 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
358 BUG();
359 break;
361 case CLOCK_EVT_MODE_UNUSED:
362 case CLOCK_EVT_MODE_SHUTDOWN:
363 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
364 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
365 BUG();
366 break;
367 case CLOCK_EVT_MODE_RESUME:
368 break;
372 static int xen_vcpuop_set_next_event(unsigned long delta,
373 struct clock_event_device *evt)
375 int cpu = smp_processor_id();
376 struct vcpu_set_singleshot_timer single;
377 int ret;
379 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
381 single.timeout_abs_ns = get_abs_timeout(delta);
382 single.flags = VCPU_SSHOTTMR_future;
384 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
386 BUG_ON(ret != 0 && ret != -ETIME);
388 return ret;
391 static const struct clock_event_device xen_vcpuop_clockevent = {
392 .name = "xen",
393 .features = CLOCK_EVT_FEAT_ONESHOT,
395 .max_delta_ns = 0xffffffff,
396 .min_delta_ns = TIMER_SLOP,
398 .mult = 1,
399 .shift = 0,
400 .rating = 500,
402 .set_mode = xen_vcpuop_set_mode,
403 .set_next_event = xen_vcpuop_set_next_event,
406 static const struct clock_event_device *xen_clockevent =
407 &xen_timerop_clockevent;
408 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
410 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
412 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
413 irqreturn_t ret;
415 ret = IRQ_NONE;
416 if (evt->event_handler) {
417 evt->event_handler(evt);
418 ret = IRQ_HANDLED;
421 do_stolen_accounting();
423 return ret;
426 void xen_setup_timer(int cpu)
428 const char *name;
429 struct clock_event_device *evt;
430 int irq;
432 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
434 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
435 if (!name)
436 name = "<timer kasprintf failed>";
438 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
439 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER,
440 name, NULL);
442 evt = &per_cpu(xen_clock_events, cpu);
443 memcpy(evt, xen_clockevent, sizeof(*evt));
445 evt->cpumask = cpumask_of(cpu);
446 evt->irq = irq;
449 void xen_teardown_timer(int cpu)
451 struct clock_event_device *evt;
452 BUG_ON(cpu == 0);
453 evt = &per_cpu(xen_clock_events, cpu);
454 unbind_from_irqhandler(evt->irq, NULL);
457 void xen_setup_cpu_clockevents(void)
459 BUG_ON(preemptible());
461 clockevents_register_device(&__get_cpu_var(xen_clock_events));
464 void xen_timer_resume(void)
466 int cpu;
468 if (xen_clockevent != &xen_vcpuop_clockevent)
469 return;
471 for_each_online_cpu(cpu) {
472 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
473 BUG();
477 static const struct pv_time_ops xen_time_ops __initdata = {
478 .sched_clock = xen_sched_clock,
481 static __init void xen_time_init(void)
483 int cpu = smp_processor_id();
484 struct timespec tp;
486 clocksource_register(&xen_clocksource);
488 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
489 /* Successfully turned off 100Hz tick, so we have the
490 vcpuop-based timer interface */
491 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
492 xen_clockevent = &xen_vcpuop_clockevent;
495 /* Set initial system time with full resolution */
496 xen_read_wallclock(&tp);
497 do_settimeofday(&tp);
499 setup_force_cpu_cap(X86_FEATURE_TSC);
501 xen_setup_runstate_info(cpu);
502 xen_setup_timer(cpu);
503 xen_setup_cpu_clockevents();
506 __init void xen_init_time_ops(void)
508 pv_time_ops = xen_time_ops;
510 x86_init.timers.timer_init = xen_time_init;
511 x86_init.timers.setup_percpu_clockev = x86_init_noop;
512 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
514 x86_platform.calibrate_tsc = xen_tsc_khz;
515 x86_platform.get_wallclock = xen_get_wallclock;
516 x86_platform.set_wallclock = xen_set_wallclock;
519 #ifdef CONFIG_XEN_PVHVM
520 static void xen_hvm_setup_cpu_clockevents(void)
522 int cpu = smp_processor_id();
523 xen_setup_runstate_info(cpu);
524 xen_setup_timer(cpu);
525 xen_setup_cpu_clockevents();
528 __init void xen_hvm_init_time_ops(void)
530 /* vector callback is needed otherwise we cannot receive interrupts
531 * on cpu > 0 */
532 if (!xen_have_vector_callback && num_present_cpus() > 1)
533 return;
534 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
535 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
536 "disable pv timer\n");
537 return;
540 pv_time_ops = xen_time_ops;
541 x86_init.timers.setup_percpu_clockev = xen_time_init;
542 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
544 x86_platform.calibrate_tsc = xen_tsc_khz;
545 x86_platform.get_wallclock = xen_get_wallclock;
546 x86_platform.set_wallclock = xen_set_wallclock;
548 #endif