Introduce CONFIG_XEN_PVHVM compile option
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / enlighten.c
blob6f5345378abc897277d490233365dea2c07a1f20
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
34 #include <xen/xen.h>
35 #include <xen/interface/xen.h>
36 #include <xen/interface/version.h>
37 #include <xen/interface/physdev.h>
38 #include <xen/interface/vcpu.h>
39 #include <xen/interface/memory.h>
40 #include <xen/features.h>
41 #include <xen/page.h>
42 #include <xen/hvm.h>
43 #include <xen/hvc-console.h>
45 #include <asm/paravirt.h>
46 #include <asm/apic.h>
47 #include <asm/page.h>
48 #include <asm/xen/hypercall.h>
49 #include <asm/xen/hypervisor.h>
50 #include <asm/fixmap.h>
51 #include <asm/processor.h>
52 #include <asm/proto.h>
53 #include <asm/msr-index.h>
54 #include <asm/traps.h>
55 #include <asm/setup.h>
56 #include <asm/desc.h>
57 #include <asm/pgalloc.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/reboot.h>
61 #include <asm/setup.h>
62 #include <asm/stackprotector.h>
63 #include <asm/hypervisor.h>
65 #include "xen-ops.h"
66 #include "mmu.h"
67 #include "multicalls.h"
69 EXPORT_SYMBOL_GPL(hypercall_page);
71 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
72 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74 enum xen_domain_type xen_domain_type = XEN_NATIVE;
75 EXPORT_SYMBOL_GPL(xen_domain_type);
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
80 struct shared_info xen_dummy_shared_info;
82 void *xen_initial_gdt;
84 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
85 __read_mostly int xen_have_vector_callback;
86 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
89 * Point at some empty memory to start with. We map the real shared_info
90 * page as soon as fixmap is up and running.
92 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
95 * Flag to determine whether vcpu info placement is available on all
96 * VCPUs. We assume it is to start with, and then set it to zero on
97 * the first failure. This is because it can succeed on some VCPUs
98 * and not others, since it can involve hypervisor memory allocation,
99 * or because the guest failed to guarantee all the appropriate
100 * constraints on all VCPUs (ie buffer can't cross a page boundary).
102 * Note that any particular CPU may be using a placed vcpu structure,
103 * but we can only optimise if the all are.
105 * 0: not available, 1: available
107 static int have_vcpu_info_placement = 1;
109 static void xen_vcpu_setup(int cpu)
111 struct vcpu_register_vcpu_info info;
112 int err;
113 struct vcpu_info *vcpup;
115 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
116 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
118 if (!have_vcpu_info_placement)
119 return; /* already tested, not available */
121 vcpup = &per_cpu(xen_vcpu_info, cpu);
123 info.mfn = arbitrary_virt_to_mfn(vcpup);
124 info.offset = offset_in_page(vcpup);
126 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
127 cpu, vcpup, info.mfn, info.offset);
129 /* Check to see if the hypervisor will put the vcpu_info
130 structure where we want it, which allows direct access via
131 a percpu-variable. */
132 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
134 if (err) {
135 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
136 have_vcpu_info_placement = 0;
137 } else {
138 /* This cpu is using the registered vcpu info, even if
139 later ones fail to. */
140 per_cpu(xen_vcpu, cpu) = vcpup;
142 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
143 cpu, vcpup);
148 * On restore, set the vcpu placement up again.
149 * If it fails, then we're in a bad state, since
150 * we can't back out from using it...
152 void xen_vcpu_restore(void)
154 int cpu;
156 for_each_online_cpu(cpu) {
157 bool other_cpu = (cpu != smp_processor_id());
159 if (other_cpu &&
160 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
161 BUG();
163 xen_setup_runstate_info(cpu);
165 if (have_vcpu_info_placement)
166 xen_vcpu_setup(cpu);
168 if (other_cpu &&
169 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
170 BUG();
174 static void __init xen_banner(void)
176 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
177 struct xen_extraversion extra;
178 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
180 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
181 pv_info.name);
182 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
183 version >> 16, version & 0xffff, extra.extraversion,
184 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
187 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
188 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
190 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
191 unsigned int *cx, unsigned int *dx)
193 unsigned maskebx = ~0;
194 unsigned maskecx = ~0;
195 unsigned maskedx = ~0;
198 * Mask out inconvenient features, to try and disable as many
199 * unsupported kernel subsystems as possible.
201 switch (*ax) {
202 case 1:
203 maskecx = cpuid_leaf1_ecx_mask;
204 maskedx = cpuid_leaf1_edx_mask;
205 break;
207 case 0xb:
208 /* Suppress extended topology stuff */
209 maskebx = 0;
210 break;
213 asm(XEN_EMULATE_PREFIX "cpuid"
214 : "=a" (*ax),
215 "=b" (*bx),
216 "=c" (*cx),
217 "=d" (*dx)
218 : "0" (*ax), "2" (*cx));
220 *bx &= maskebx;
221 *cx &= maskecx;
222 *dx &= maskedx;
225 static __init void xen_init_cpuid_mask(void)
227 unsigned int ax, bx, cx, dx;
229 cpuid_leaf1_edx_mask =
230 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
231 (1 << X86_FEATURE_MCA) | /* disable MCA */
232 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
234 if (!xen_initial_domain())
235 cpuid_leaf1_edx_mask &=
236 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
237 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
239 ax = 1;
240 cx = 0;
241 xen_cpuid(&ax, &bx, &cx, &dx);
243 /* cpuid claims we support xsave; try enabling it to see what happens */
244 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
245 unsigned long cr4;
247 set_in_cr4(X86_CR4_OSXSAVE);
249 cr4 = read_cr4();
251 if ((cr4 & X86_CR4_OSXSAVE) == 0)
252 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
254 clear_in_cr4(X86_CR4_OSXSAVE);
258 static void xen_set_debugreg(int reg, unsigned long val)
260 HYPERVISOR_set_debugreg(reg, val);
263 static unsigned long xen_get_debugreg(int reg)
265 return HYPERVISOR_get_debugreg(reg);
268 static void xen_end_context_switch(struct task_struct *next)
270 xen_mc_flush();
271 paravirt_end_context_switch(next);
274 static unsigned long xen_store_tr(void)
276 return 0;
280 * Set the page permissions for a particular virtual address. If the
281 * address is a vmalloc mapping (or other non-linear mapping), then
282 * find the linear mapping of the page and also set its protections to
283 * match.
285 static void set_aliased_prot(void *v, pgprot_t prot)
287 int level;
288 pte_t *ptep;
289 pte_t pte;
290 unsigned long pfn;
291 struct page *page;
293 ptep = lookup_address((unsigned long)v, &level);
294 BUG_ON(ptep == NULL);
296 pfn = pte_pfn(*ptep);
297 page = pfn_to_page(pfn);
299 pte = pfn_pte(pfn, prot);
301 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
302 BUG();
304 if (!PageHighMem(page)) {
305 void *av = __va(PFN_PHYS(pfn));
307 if (av != v)
308 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
309 BUG();
310 } else
311 kmap_flush_unused();
314 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
316 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
317 int i;
319 for(i = 0; i < entries; i += entries_per_page)
320 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
323 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
325 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
326 int i;
328 for(i = 0; i < entries; i += entries_per_page)
329 set_aliased_prot(ldt + i, PAGE_KERNEL);
332 static void xen_set_ldt(const void *addr, unsigned entries)
334 struct mmuext_op *op;
335 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
337 op = mcs.args;
338 op->cmd = MMUEXT_SET_LDT;
339 op->arg1.linear_addr = (unsigned long)addr;
340 op->arg2.nr_ents = entries;
342 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
344 xen_mc_issue(PARAVIRT_LAZY_CPU);
347 static void xen_load_gdt(const struct desc_ptr *dtr)
349 unsigned long va = dtr->address;
350 unsigned int size = dtr->size + 1;
351 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
352 unsigned long frames[pages];
353 int f;
356 * A GDT can be up to 64k in size, which corresponds to 8192
357 * 8-byte entries, or 16 4k pages..
360 BUG_ON(size > 65536);
361 BUG_ON(va & ~PAGE_MASK);
363 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
364 int level;
365 pte_t *ptep;
366 unsigned long pfn, mfn;
367 void *virt;
370 * The GDT is per-cpu and is in the percpu data area.
371 * That can be virtually mapped, so we need to do a
372 * page-walk to get the underlying MFN for the
373 * hypercall. The page can also be in the kernel's
374 * linear range, so we need to RO that mapping too.
376 ptep = lookup_address(va, &level);
377 BUG_ON(ptep == NULL);
379 pfn = pte_pfn(*ptep);
380 mfn = pfn_to_mfn(pfn);
381 virt = __va(PFN_PHYS(pfn));
383 frames[f] = mfn;
385 make_lowmem_page_readonly((void *)va);
386 make_lowmem_page_readonly(virt);
389 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
390 BUG();
394 * load_gdt for early boot, when the gdt is only mapped once
396 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
398 unsigned long va = dtr->address;
399 unsigned int size = dtr->size + 1;
400 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
401 unsigned long frames[pages];
402 int f;
405 * A GDT can be up to 64k in size, which corresponds to 8192
406 * 8-byte entries, or 16 4k pages..
409 BUG_ON(size > 65536);
410 BUG_ON(va & ~PAGE_MASK);
412 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
413 pte_t pte;
414 unsigned long pfn, mfn;
416 pfn = virt_to_pfn(va);
417 mfn = pfn_to_mfn(pfn);
419 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
421 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
422 BUG();
424 frames[f] = mfn;
427 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
428 BUG();
431 static void load_TLS_descriptor(struct thread_struct *t,
432 unsigned int cpu, unsigned int i)
434 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
435 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
436 struct multicall_space mc = __xen_mc_entry(0);
438 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
441 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
444 * XXX sleazy hack: If we're being called in a lazy-cpu zone
445 * and lazy gs handling is enabled, it means we're in a
446 * context switch, and %gs has just been saved. This means we
447 * can zero it out to prevent faults on exit from the
448 * hypervisor if the next process has no %gs. Either way, it
449 * has been saved, and the new value will get loaded properly.
450 * This will go away as soon as Xen has been modified to not
451 * save/restore %gs for normal hypercalls.
453 * On x86_64, this hack is not used for %gs, because gs points
454 * to KERNEL_GS_BASE (and uses it for PDA references), so we
455 * must not zero %gs on x86_64
457 * For x86_64, we need to zero %fs, otherwise we may get an
458 * exception between the new %fs descriptor being loaded and
459 * %fs being effectively cleared at __switch_to().
461 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
462 #ifdef CONFIG_X86_32
463 lazy_load_gs(0);
464 #else
465 loadsegment(fs, 0);
466 #endif
469 xen_mc_batch();
471 load_TLS_descriptor(t, cpu, 0);
472 load_TLS_descriptor(t, cpu, 1);
473 load_TLS_descriptor(t, cpu, 2);
475 xen_mc_issue(PARAVIRT_LAZY_CPU);
478 #ifdef CONFIG_X86_64
479 static void xen_load_gs_index(unsigned int idx)
481 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
482 BUG();
484 #endif
486 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
487 const void *ptr)
489 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
490 u64 entry = *(u64 *)ptr;
492 preempt_disable();
494 xen_mc_flush();
495 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
496 BUG();
498 preempt_enable();
501 static int cvt_gate_to_trap(int vector, const gate_desc *val,
502 struct trap_info *info)
504 unsigned long addr;
506 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
507 return 0;
509 info->vector = vector;
511 addr = gate_offset(*val);
512 #ifdef CONFIG_X86_64
514 * Look for known traps using IST, and substitute them
515 * appropriately. The debugger ones are the only ones we care
516 * about. Xen will handle faults like double_fault and
517 * machine_check, so we should never see them. Warn if
518 * there's an unexpected IST-using fault handler.
520 if (addr == (unsigned long)debug)
521 addr = (unsigned long)xen_debug;
522 else if (addr == (unsigned long)int3)
523 addr = (unsigned long)xen_int3;
524 else if (addr == (unsigned long)stack_segment)
525 addr = (unsigned long)xen_stack_segment;
526 else if (addr == (unsigned long)double_fault ||
527 addr == (unsigned long)nmi) {
528 /* Don't need to handle these */
529 return 0;
530 #ifdef CONFIG_X86_MCE
531 } else if (addr == (unsigned long)machine_check) {
532 return 0;
533 #endif
534 } else {
535 /* Some other trap using IST? */
536 if (WARN_ON(val->ist != 0))
537 return 0;
539 #endif /* CONFIG_X86_64 */
540 info->address = addr;
542 info->cs = gate_segment(*val);
543 info->flags = val->dpl;
544 /* interrupt gates clear IF */
545 if (val->type == GATE_INTERRUPT)
546 info->flags |= 1 << 2;
548 return 1;
551 /* Locations of each CPU's IDT */
552 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
554 /* Set an IDT entry. If the entry is part of the current IDT, then
555 also update Xen. */
556 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
558 unsigned long p = (unsigned long)&dt[entrynum];
559 unsigned long start, end;
561 preempt_disable();
563 start = __get_cpu_var(idt_desc).address;
564 end = start + __get_cpu_var(idt_desc).size + 1;
566 xen_mc_flush();
568 native_write_idt_entry(dt, entrynum, g);
570 if (p >= start && (p + 8) <= end) {
571 struct trap_info info[2];
573 info[1].address = 0;
575 if (cvt_gate_to_trap(entrynum, g, &info[0]))
576 if (HYPERVISOR_set_trap_table(info))
577 BUG();
580 preempt_enable();
583 static void xen_convert_trap_info(const struct desc_ptr *desc,
584 struct trap_info *traps)
586 unsigned in, out, count;
588 count = (desc->size+1) / sizeof(gate_desc);
589 BUG_ON(count > 256);
591 for (in = out = 0; in < count; in++) {
592 gate_desc *entry = (gate_desc*)(desc->address) + in;
594 if (cvt_gate_to_trap(in, entry, &traps[out]))
595 out++;
597 traps[out].address = 0;
600 void xen_copy_trap_info(struct trap_info *traps)
602 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
604 xen_convert_trap_info(desc, traps);
607 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
608 hold a spinlock to protect the static traps[] array (static because
609 it avoids allocation, and saves stack space). */
610 static void xen_load_idt(const struct desc_ptr *desc)
612 static DEFINE_SPINLOCK(lock);
613 static struct trap_info traps[257];
615 spin_lock(&lock);
617 __get_cpu_var(idt_desc) = *desc;
619 xen_convert_trap_info(desc, traps);
621 xen_mc_flush();
622 if (HYPERVISOR_set_trap_table(traps))
623 BUG();
625 spin_unlock(&lock);
628 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
629 they're handled differently. */
630 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
631 const void *desc, int type)
633 preempt_disable();
635 switch (type) {
636 case DESC_LDT:
637 case DESC_TSS:
638 /* ignore */
639 break;
641 default: {
642 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
644 xen_mc_flush();
645 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
646 BUG();
651 preempt_enable();
655 * Version of write_gdt_entry for use at early boot-time needed to
656 * update an entry as simply as possible.
658 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
659 const void *desc, int type)
661 switch (type) {
662 case DESC_LDT:
663 case DESC_TSS:
664 /* ignore */
665 break;
667 default: {
668 xmaddr_t maddr = virt_to_machine(&dt[entry]);
670 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
671 dt[entry] = *(struct desc_struct *)desc;
677 static void xen_load_sp0(struct tss_struct *tss,
678 struct thread_struct *thread)
680 struct multicall_space mcs = xen_mc_entry(0);
681 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
682 xen_mc_issue(PARAVIRT_LAZY_CPU);
685 static void xen_set_iopl_mask(unsigned mask)
687 struct physdev_set_iopl set_iopl;
689 /* Force the change at ring 0. */
690 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
691 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
694 static void xen_io_delay(void)
698 #ifdef CONFIG_X86_LOCAL_APIC
699 static u32 xen_apic_read(u32 reg)
701 return 0;
704 static void xen_apic_write(u32 reg, u32 val)
706 /* Warn to see if there's any stray references */
707 WARN_ON(1);
710 static u64 xen_apic_icr_read(void)
712 return 0;
715 static void xen_apic_icr_write(u32 low, u32 id)
717 /* Warn to see if there's any stray references */
718 WARN_ON(1);
721 static void xen_apic_wait_icr_idle(void)
723 return;
726 static u32 xen_safe_apic_wait_icr_idle(void)
728 return 0;
731 static void set_xen_basic_apic_ops(void)
733 apic->read = xen_apic_read;
734 apic->write = xen_apic_write;
735 apic->icr_read = xen_apic_icr_read;
736 apic->icr_write = xen_apic_icr_write;
737 apic->wait_icr_idle = xen_apic_wait_icr_idle;
738 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
741 #endif
744 static void xen_clts(void)
746 struct multicall_space mcs;
748 mcs = xen_mc_entry(0);
750 MULTI_fpu_taskswitch(mcs.mc, 0);
752 xen_mc_issue(PARAVIRT_LAZY_CPU);
755 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
757 static unsigned long xen_read_cr0(void)
759 unsigned long cr0 = percpu_read(xen_cr0_value);
761 if (unlikely(cr0 == 0)) {
762 cr0 = native_read_cr0();
763 percpu_write(xen_cr0_value, cr0);
766 return cr0;
769 static void xen_write_cr0(unsigned long cr0)
771 struct multicall_space mcs;
773 percpu_write(xen_cr0_value, cr0);
775 /* Only pay attention to cr0.TS; everything else is
776 ignored. */
777 mcs = xen_mc_entry(0);
779 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
781 xen_mc_issue(PARAVIRT_LAZY_CPU);
784 static void xen_write_cr4(unsigned long cr4)
786 cr4 &= ~X86_CR4_PGE;
787 cr4 &= ~X86_CR4_PSE;
789 native_write_cr4(cr4);
792 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
794 int ret;
796 ret = 0;
798 switch (msr) {
799 #ifdef CONFIG_X86_64
800 unsigned which;
801 u64 base;
803 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
804 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
805 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
807 set:
808 base = ((u64)high << 32) | low;
809 if (HYPERVISOR_set_segment_base(which, base) != 0)
810 ret = -EIO;
811 break;
812 #endif
814 case MSR_STAR:
815 case MSR_CSTAR:
816 case MSR_LSTAR:
817 case MSR_SYSCALL_MASK:
818 case MSR_IA32_SYSENTER_CS:
819 case MSR_IA32_SYSENTER_ESP:
820 case MSR_IA32_SYSENTER_EIP:
821 /* Fast syscall setup is all done in hypercalls, so
822 these are all ignored. Stub them out here to stop
823 Xen console noise. */
824 break;
826 default:
827 ret = native_write_msr_safe(msr, low, high);
830 return ret;
833 void xen_setup_shared_info(void)
835 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
836 set_fixmap(FIX_PARAVIRT_BOOTMAP,
837 xen_start_info->shared_info);
839 HYPERVISOR_shared_info =
840 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
841 } else
842 HYPERVISOR_shared_info =
843 (struct shared_info *)__va(xen_start_info->shared_info);
845 #ifndef CONFIG_SMP
846 /* In UP this is as good a place as any to set up shared info */
847 xen_setup_vcpu_info_placement();
848 #endif
850 xen_setup_mfn_list_list();
853 /* This is called once we have the cpu_possible_map */
854 void xen_setup_vcpu_info_placement(void)
856 int cpu;
858 for_each_possible_cpu(cpu)
859 xen_vcpu_setup(cpu);
861 /* xen_vcpu_setup managed to place the vcpu_info within the
862 percpu area for all cpus, so make use of it */
863 if (have_vcpu_info_placement) {
864 printk(KERN_INFO "Xen: using vcpu_info placement\n");
866 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
867 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
868 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
869 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
870 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
874 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
875 unsigned long addr, unsigned len)
877 char *start, *end, *reloc;
878 unsigned ret;
880 start = end = reloc = NULL;
882 #define SITE(op, x) \
883 case PARAVIRT_PATCH(op.x): \
884 if (have_vcpu_info_placement) { \
885 start = (char *)xen_##x##_direct; \
886 end = xen_##x##_direct_end; \
887 reloc = xen_##x##_direct_reloc; \
889 goto patch_site
891 switch (type) {
892 SITE(pv_irq_ops, irq_enable);
893 SITE(pv_irq_ops, irq_disable);
894 SITE(pv_irq_ops, save_fl);
895 SITE(pv_irq_ops, restore_fl);
896 #undef SITE
898 patch_site:
899 if (start == NULL || (end-start) > len)
900 goto default_patch;
902 ret = paravirt_patch_insns(insnbuf, len, start, end);
904 /* Note: because reloc is assigned from something that
905 appears to be an array, gcc assumes it's non-null,
906 but doesn't know its relationship with start and
907 end. */
908 if (reloc > start && reloc < end) {
909 int reloc_off = reloc - start;
910 long *relocp = (long *)(insnbuf + reloc_off);
911 long delta = start - (char *)addr;
913 *relocp += delta;
915 break;
917 default_patch:
918 default:
919 ret = paravirt_patch_default(type, clobbers, insnbuf,
920 addr, len);
921 break;
924 return ret;
927 static const struct pv_info xen_info __initdata = {
928 .paravirt_enabled = 1,
929 .shared_kernel_pmd = 0,
931 .name = "Xen",
934 static const struct pv_init_ops xen_init_ops __initdata = {
935 .patch = xen_patch,
938 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
939 .cpuid = xen_cpuid,
941 .set_debugreg = xen_set_debugreg,
942 .get_debugreg = xen_get_debugreg,
944 .clts = xen_clts,
946 .read_cr0 = xen_read_cr0,
947 .write_cr0 = xen_write_cr0,
949 .read_cr4 = native_read_cr4,
950 .read_cr4_safe = native_read_cr4_safe,
951 .write_cr4 = xen_write_cr4,
953 .wbinvd = native_wbinvd,
955 .read_msr = native_read_msr_safe,
956 .write_msr = xen_write_msr_safe,
957 .read_tsc = native_read_tsc,
958 .read_pmc = native_read_pmc,
960 .iret = xen_iret,
961 .irq_enable_sysexit = xen_sysexit,
962 #ifdef CONFIG_X86_64
963 .usergs_sysret32 = xen_sysret32,
964 .usergs_sysret64 = xen_sysret64,
965 #endif
967 .load_tr_desc = paravirt_nop,
968 .set_ldt = xen_set_ldt,
969 .load_gdt = xen_load_gdt,
970 .load_idt = xen_load_idt,
971 .load_tls = xen_load_tls,
972 #ifdef CONFIG_X86_64
973 .load_gs_index = xen_load_gs_index,
974 #endif
976 .alloc_ldt = xen_alloc_ldt,
977 .free_ldt = xen_free_ldt,
979 .store_gdt = native_store_gdt,
980 .store_idt = native_store_idt,
981 .store_tr = xen_store_tr,
983 .write_ldt_entry = xen_write_ldt_entry,
984 .write_gdt_entry = xen_write_gdt_entry,
985 .write_idt_entry = xen_write_idt_entry,
986 .load_sp0 = xen_load_sp0,
988 .set_iopl_mask = xen_set_iopl_mask,
989 .io_delay = xen_io_delay,
991 /* Xen takes care of %gs when switching to usermode for us */
992 .swapgs = paravirt_nop,
994 .start_context_switch = paravirt_start_context_switch,
995 .end_context_switch = xen_end_context_switch,
998 static const struct pv_apic_ops xen_apic_ops __initdata = {
999 #ifdef CONFIG_X86_LOCAL_APIC
1000 .startup_ipi_hook = paravirt_nop,
1001 #endif
1004 static void xen_reboot(int reason)
1006 struct sched_shutdown r = { .reason = reason };
1008 #ifdef CONFIG_SMP
1009 smp_send_stop();
1010 #endif
1012 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1013 BUG();
1016 static void xen_restart(char *msg)
1018 xen_reboot(SHUTDOWN_reboot);
1021 static void xen_emergency_restart(void)
1023 xen_reboot(SHUTDOWN_reboot);
1026 static void xen_machine_halt(void)
1028 xen_reboot(SHUTDOWN_poweroff);
1031 static void xen_crash_shutdown(struct pt_regs *regs)
1033 xen_reboot(SHUTDOWN_crash);
1036 static const struct machine_ops __initdata xen_machine_ops = {
1037 .restart = xen_restart,
1038 .halt = xen_machine_halt,
1039 .power_off = xen_machine_halt,
1040 .shutdown = xen_machine_halt,
1041 .crash_shutdown = xen_crash_shutdown,
1042 .emergency_restart = xen_emergency_restart,
1046 * Set up the GDT and segment registers for -fstack-protector. Until
1047 * we do this, we have to be careful not to call any stack-protected
1048 * function, which is most of the kernel.
1050 static void __init xen_setup_stackprotector(void)
1052 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1053 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1055 setup_stack_canary_segment(0);
1056 switch_to_new_gdt(0);
1058 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1059 pv_cpu_ops.load_gdt = xen_load_gdt;
1062 /* First C function to be called on Xen boot */
1063 asmlinkage void __init xen_start_kernel(void)
1065 pgd_t *pgd;
1067 if (!xen_start_info)
1068 return;
1070 xen_domain_type = XEN_PV_DOMAIN;
1072 /* Install Xen paravirt ops */
1073 pv_info = xen_info;
1074 pv_init_ops = xen_init_ops;
1075 pv_cpu_ops = xen_cpu_ops;
1076 pv_apic_ops = xen_apic_ops;
1078 x86_init.resources.memory_setup = xen_memory_setup;
1079 x86_init.oem.arch_setup = xen_arch_setup;
1080 x86_init.oem.banner = xen_banner;
1082 xen_init_time_ops();
1085 * Set up some pagetable state before starting to set any ptes.
1088 xen_init_mmu_ops();
1090 /* Prevent unwanted bits from being set in PTEs. */
1091 __supported_pte_mask &= ~_PAGE_GLOBAL;
1092 if (!xen_initial_domain())
1093 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1095 __supported_pte_mask |= _PAGE_IOMAP;
1098 * Prevent page tables from being allocated in highmem, even
1099 * if CONFIG_HIGHPTE is enabled.
1101 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1103 /* Work out if we support NX */
1104 x86_configure_nx();
1106 xen_setup_features();
1108 /* Get mfn list */
1109 if (!xen_feature(XENFEAT_auto_translated_physmap))
1110 xen_build_dynamic_phys_to_machine();
1113 * Set up kernel GDT and segment registers, mainly so that
1114 * -fstack-protector code can be executed.
1116 xen_setup_stackprotector();
1118 xen_init_irq_ops();
1119 xen_init_cpuid_mask();
1121 #ifdef CONFIG_X86_LOCAL_APIC
1123 * set up the basic apic ops.
1125 set_xen_basic_apic_ops();
1126 #endif
1128 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1129 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1130 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1133 machine_ops = xen_machine_ops;
1136 * The only reliable way to retain the initial address of the
1137 * percpu gdt_page is to remember it here, so we can go and
1138 * mark it RW later, when the initial percpu area is freed.
1140 xen_initial_gdt = &per_cpu(gdt_page, 0);
1142 xen_smp_init();
1144 pgd = (pgd_t *)xen_start_info->pt_base;
1146 /* Don't do the full vcpu_info placement stuff until we have a
1147 possible map and a non-dummy shared_info. */
1148 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1150 local_irq_disable();
1151 early_boot_irqs_off();
1153 xen_raw_console_write("mapping kernel into physical memory\n");
1154 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1156 init_mm.pgd = pgd;
1158 /* keep using Xen gdt for now; no urgent need to change it */
1160 #ifdef CONFIG_X86_32
1161 pv_info.kernel_rpl = 1;
1162 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1163 pv_info.kernel_rpl = 0;
1164 #else
1165 pv_info.kernel_rpl = 0;
1166 #endif
1168 /* set the limit of our address space */
1169 xen_reserve_top();
1171 #ifdef CONFIG_X86_32
1172 /* set up basic CPUID stuff */
1173 cpu_detect(&new_cpu_data);
1174 new_cpu_data.hard_math = 1;
1175 new_cpu_data.wp_works_ok = 1;
1176 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1177 #endif
1179 /* Poke various useful things into boot_params */
1180 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1181 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1182 ? __pa(xen_start_info->mod_start) : 0;
1183 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1184 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1186 if (!xen_initial_domain()) {
1187 add_preferred_console("xenboot", 0, NULL);
1188 add_preferred_console("tty", 0, NULL);
1189 add_preferred_console("hvc", 0, NULL);
1190 } else {
1191 /* Make sure ACS will be enabled */
1192 pci_request_acs();
1196 xen_raw_console_write("about to get started...\n");
1198 xen_setup_runstate_info(0);
1200 /* Start the world */
1201 #ifdef CONFIG_X86_32
1202 i386_start_kernel();
1203 #else
1204 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1205 #endif
1208 static uint32_t xen_cpuid_base(void)
1210 uint32_t base, eax, ebx, ecx, edx;
1211 char signature[13];
1213 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1214 cpuid(base, &eax, &ebx, &ecx, &edx);
1215 *(uint32_t *)(signature + 0) = ebx;
1216 *(uint32_t *)(signature + 4) = ecx;
1217 *(uint32_t *)(signature + 8) = edx;
1218 signature[12] = 0;
1220 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1221 return base;
1224 return 0;
1227 static int init_hvm_pv_info(int *major, int *minor)
1229 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1230 u64 pfn;
1232 base = xen_cpuid_base();
1233 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1235 *major = eax >> 16;
1236 *minor = eax & 0xffff;
1237 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1239 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1241 pfn = __pa(hypercall_page);
1242 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1244 xen_setup_features();
1246 pv_info = xen_info;
1247 pv_info.kernel_rpl = 0;
1249 xen_domain_type = XEN_HVM_DOMAIN;
1251 return 0;
1254 void xen_hvm_init_shared_info(void)
1256 int cpu;
1257 struct xen_add_to_physmap xatp;
1258 static struct shared_info *shared_info_page = 0;
1260 if (!shared_info_page)
1261 shared_info_page = (struct shared_info *)
1262 extend_brk(PAGE_SIZE, PAGE_SIZE);
1263 xatp.domid = DOMID_SELF;
1264 xatp.idx = 0;
1265 xatp.space = XENMAPSPACE_shared_info;
1266 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1267 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1268 BUG();
1270 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1272 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1273 * page, we use it in the event channel upcall and in some pvclock
1274 * related functions. We don't need the vcpu_info placement
1275 * optimizations because we don't use any pv_mmu or pv_irq op on
1276 * HVM.
1277 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1278 * online but xen_hvm_init_shared_info is run at resume time too and
1279 * in that case multiple vcpus might be online. */
1280 for_each_online_cpu(cpu) {
1281 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1285 #ifdef CONFIG_XEN_PVHVM
1286 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1287 unsigned long action, void *hcpu)
1289 int cpu = (long)hcpu;
1290 switch (action) {
1291 case CPU_UP_PREPARE:
1292 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1293 break;
1294 default:
1295 break;
1297 return NOTIFY_OK;
1300 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1301 .notifier_call = xen_hvm_cpu_notify,
1304 static void __init xen_hvm_guest_init(void)
1306 int r;
1307 int major, minor;
1309 r = init_hvm_pv_info(&major, &minor);
1310 if (r < 0)
1311 return;
1313 xen_hvm_init_shared_info();
1315 if (xen_feature(XENFEAT_hvm_callback_vector))
1316 xen_have_vector_callback = 1;
1317 register_cpu_notifier(&xen_hvm_cpu_notifier);
1318 xen_unplug_emulated_devices();
1319 have_vcpu_info_placement = 0;
1320 x86_init.irqs.intr_init = xen_init_IRQ;
1321 xen_hvm_init_time_ops();
1322 xen_hvm_init_mmu_ops();
1325 static bool __init xen_hvm_platform(void)
1327 if (xen_pv_domain())
1328 return false;
1330 if (!xen_cpuid_base())
1331 return false;
1333 return true;
1336 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1337 .name = "Xen HVM",
1338 .detect = xen_hvm_platform,
1339 .init_platform = xen_hvm_guest_init,
1341 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1342 #endif