[CPUFREQ] powernow-k8: determine exact CPU frequency for HW Pstates
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
blobf6b32d11235733a1c2cf7153effc4fa42e68e251
1 /*
2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
39 #include <asm/msr.h>
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
49 /* serialize freq changes */
50 static DEFINE_MUTEX(fidvid_mutex);
52 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54 static int cpu_family = CPU_OPTERON;
56 #ifndef CONFIG_SMP
57 static inline const struct cpumask *cpu_core_mask(int cpu)
59 return cpumask_of(0);
61 #endif
63 /* Return a frequency in MHz, given an input fid */
64 static u32 find_freq_from_fid(u32 fid)
66 return 800 + (fid * 100);
69 /* Return a frequency in KHz, given an input fid */
70 static u32 find_khz_freq_from_fid(u32 fid)
72 return 1000 * find_freq_from_fid(fid);
75 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
76 u32 pstate)
78 return data[pstate].frequency;
81 /* Return the vco fid for an input fid
83 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
84 * only from corresponding high fids. This returns "high" fid corresponding to
85 * "low" one.
87 static u32 convert_fid_to_vco_fid(u32 fid)
89 if (fid < HI_FID_TABLE_BOTTOM)
90 return 8 + (2 * fid);
91 else
92 return fid;
96 * Return 1 if the pending bit is set. Unless we just instructed the processor
97 * to transition to a new state, seeing this bit set is really bad news.
99 static int pending_bit_stuck(void)
101 u32 lo, hi;
103 if (cpu_family == CPU_HW_PSTATE)
104 return 0;
106 rdmsr(MSR_FIDVID_STATUS, lo, hi);
107 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
111 * Update the global current fid / vid values from the status msr.
112 * Returns 1 on error.
114 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
116 u32 lo, hi;
117 u32 i = 0;
119 if (cpu_family == CPU_HW_PSTATE) {
120 if (data->currpstate == HW_PSTATE_INVALID) {
121 /* read (initial) hw pstate if not yet set */
122 rdmsr(MSR_PSTATE_STATUS, lo, hi);
123 i = lo & HW_PSTATE_MASK;
126 * a workaround for family 11h erratum 311 might cause
127 * an "out-of-range Pstate if the core is in Pstate-0
129 if (i >= data->numps)
130 data->currpstate = HW_PSTATE_0;
131 else
132 data->currpstate = i;
134 return 0;
136 do {
137 if (i++ > 10000) {
138 dprintk("detected change pending stuck\n");
139 return 1;
141 rdmsr(MSR_FIDVID_STATUS, lo, hi);
142 } while (lo & MSR_S_LO_CHANGE_PENDING);
144 data->currvid = hi & MSR_S_HI_CURRENT_VID;
145 data->currfid = lo & MSR_S_LO_CURRENT_FID;
147 return 0;
150 /* the isochronous relief time */
151 static void count_off_irt(struct powernow_k8_data *data)
153 udelay((1 << data->irt) * 10);
154 return;
157 /* the voltage stabilization time */
158 static void count_off_vst(struct powernow_k8_data *data)
160 udelay(data->vstable * VST_UNITS_20US);
161 return;
164 /* need to init the control msr to a safe value (for each cpu) */
165 static void fidvid_msr_init(void)
167 u32 lo, hi;
168 u8 fid, vid;
170 rdmsr(MSR_FIDVID_STATUS, lo, hi);
171 vid = hi & MSR_S_HI_CURRENT_VID;
172 fid = lo & MSR_S_LO_CURRENT_FID;
173 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
174 hi = MSR_C_HI_STP_GNT_BENIGN;
175 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
176 wrmsr(MSR_FIDVID_CTL, lo, hi);
179 /* write the new fid value along with the other control fields to the msr */
180 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
182 u32 lo;
183 u32 savevid = data->currvid;
184 u32 i = 0;
186 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
187 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
188 return 1;
191 lo = fid;
192 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
193 lo |= MSR_C_LO_INIT_FID_VID;
195 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
196 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
198 do {
199 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
200 if (i++ > 100) {
201 printk(KERN_ERR PFX
202 "Hardware error - pending bit very stuck - "
203 "no further pstate changes possible\n");
204 return 1;
206 } while (query_current_values_with_pending_wait(data));
208 count_off_irt(data);
210 if (savevid != data->currvid) {
211 printk(KERN_ERR PFX
212 "vid change on fid trans, old 0x%x, new 0x%x\n",
213 savevid, data->currvid);
214 return 1;
217 if (fid != data->currfid) {
218 printk(KERN_ERR PFX
219 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
220 data->currfid);
221 return 1;
224 return 0;
227 /* Write a new vid to the hardware */
228 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
230 u32 lo;
231 u32 savefid = data->currfid;
232 int i = 0;
234 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
235 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
236 return 1;
239 lo = data->currfid;
240 lo |= (vid << MSR_C_LO_VID_SHIFT);
241 lo |= MSR_C_LO_INIT_FID_VID;
243 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
244 vid, lo, STOP_GRANT_5NS);
246 do {
247 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
248 if (i++ > 100) {
249 printk(KERN_ERR PFX "internal error - pending bit "
250 "very stuck - no further pstate "
251 "changes possible\n");
252 return 1;
254 } while (query_current_values_with_pending_wait(data));
256 if (savefid != data->currfid) {
257 printk(KERN_ERR PFX "fid changed on vid trans, old "
258 "0x%x new 0x%x\n",
259 savefid, data->currfid);
260 return 1;
263 if (vid != data->currvid) {
264 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
265 "curr 0x%x\n",
266 vid, data->currvid);
267 return 1;
270 return 0;
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
278 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
279 u32 reqvid, u32 step)
281 if ((data->currvid - reqvid) > step)
282 reqvid = data->currvid - step;
284 if (write_new_vid(data, reqvid))
285 return 1;
287 count_off_vst(data);
289 return 0;
292 /* Change hardware pstate by single MSR write */
293 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
295 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
296 data->currpstate = pstate;
297 return 0;
300 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
301 static int transition_fid_vid(struct powernow_k8_data *data,
302 u32 reqfid, u32 reqvid)
304 if (core_voltage_pre_transition(data, reqvid))
305 return 1;
307 if (core_frequency_transition(data, reqfid))
308 return 1;
310 if (core_voltage_post_transition(data, reqvid))
311 return 1;
313 if (query_current_values_with_pending_wait(data))
314 return 1;
316 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
317 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
318 "curr 0x%x 0x%x\n",
319 smp_processor_id(),
320 reqfid, reqvid, data->currfid, data->currvid);
321 return 1;
324 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
325 smp_processor_id(), data->currfid, data->currvid);
327 return 0;
330 /* Phase 1 - core voltage transition ... setup voltage */
331 static int core_voltage_pre_transition(struct powernow_k8_data *data,
332 u32 reqvid)
334 u32 rvosteps = data->rvo;
335 u32 savefid = data->currfid;
336 u32 maxvid, lo;
338 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
339 "reqvid 0x%x, rvo 0x%x\n",
340 smp_processor_id(),
341 data->currfid, data->currvid, reqvid, data->rvo);
343 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
344 maxvid = 0x1f & (maxvid >> 16);
345 dprintk("ph1 maxvid=0x%x\n", maxvid);
346 if (reqvid < maxvid) /* lower numbers are higher voltages */
347 reqvid = maxvid;
349 while (data->currvid > reqvid) {
350 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
351 data->currvid, reqvid);
352 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
353 return 1;
356 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
357 if (data->currvid == maxvid) {
358 rvosteps = 0;
359 } else {
360 dprintk("ph1: changing vid for rvo, req 0x%x\n",
361 data->currvid - 1);
362 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
363 return 1;
364 rvosteps--;
368 if (query_current_values_with_pending_wait(data))
369 return 1;
371 if (savefid != data->currfid) {
372 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
373 data->currfid);
374 return 1;
377 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
378 data->currfid, data->currvid);
380 return 0;
383 /* Phase 2 - core frequency transition */
384 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
386 u32 vcoreqfid, vcocurrfid, vcofiddiff;
387 u32 fid_interval, savevid = data->currvid;
389 if ((reqfid < HI_FID_TABLE_BOTTOM) &&
390 (data->currfid < HI_FID_TABLE_BOTTOM)) {
391 printk(KERN_ERR PFX "ph2: illegal lo-lo transition "
392 "0x%x 0x%x\n", reqfid, data->currfid);
393 return 1;
396 if (data->currfid == reqfid) {
397 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
398 data->currfid);
399 return 0;
402 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
403 "reqfid 0x%x\n",
404 smp_processor_id(),
405 data->currfid, data->currvid, reqfid);
407 vcoreqfid = convert_fid_to_vco_fid(reqfid);
408 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
409 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
410 : vcoreqfid - vcocurrfid;
412 while (vcofiddiff > 2) {
413 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
415 if (reqfid > data->currfid) {
416 if (data->currfid > LO_FID_TABLE_TOP) {
417 if (write_new_fid(data,
418 data->currfid + fid_interval))
419 return 1;
420 } else {
421 if (write_new_fid
422 (data,
423 2 + convert_fid_to_vco_fid(data->currfid)))
424 return 1;
426 } else {
427 if (write_new_fid(data, data->currfid - fid_interval))
428 return 1;
431 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
432 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
433 : vcoreqfid - vcocurrfid;
436 if (write_new_fid(data, reqfid))
437 return 1;
439 if (query_current_values_with_pending_wait(data))
440 return 1;
442 if (data->currfid != reqfid) {
443 printk(KERN_ERR PFX
444 "ph2: mismatch, failed fid transition, "
445 "curr 0x%x, req 0x%x\n",
446 data->currfid, reqfid);
447 return 1;
450 if (savevid != data->currvid) {
451 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
452 savevid, data->currvid);
453 return 1;
456 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
457 data->currfid, data->currvid);
459 return 0;
462 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
463 static int core_voltage_post_transition(struct powernow_k8_data *data,
464 u32 reqvid)
466 u32 savefid = data->currfid;
467 u32 savereqvid = reqvid;
469 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
470 smp_processor_id(),
471 data->currfid, data->currvid);
473 if (reqvid != data->currvid) {
474 if (write_new_vid(data, reqvid))
475 return 1;
477 if (savefid != data->currfid) {
478 printk(KERN_ERR PFX
479 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
480 savefid, data->currfid);
481 return 1;
484 if (data->currvid != reqvid) {
485 printk(KERN_ERR PFX
486 "ph3: failed vid transition\n, "
487 "req 0x%x, curr 0x%x",
488 reqvid, data->currvid);
489 return 1;
493 if (query_current_values_with_pending_wait(data))
494 return 1;
496 if (savereqvid != data->currvid) {
497 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
498 return 1;
501 if (savefid != data->currfid) {
502 dprintk("ph3 failed, currfid changed 0x%x\n",
503 data->currfid);
504 return 1;
507 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
508 data->currfid, data->currvid);
510 return 0;
513 static int check_supported_cpu(unsigned int cpu)
515 cpumask_t oldmask;
516 u32 eax, ebx, ecx, edx;
517 unsigned int rc = 0;
519 oldmask = current->cpus_allowed;
520 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
522 if (smp_processor_id() != cpu) {
523 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
524 goto out;
527 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
528 goto out;
530 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
531 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
532 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
533 goto out;
535 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
536 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
537 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
538 printk(KERN_INFO PFX
539 "Processor cpuid %x not supported\n", eax);
540 goto out;
543 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
544 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
545 printk(KERN_INFO PFX
546 "No frequency change capabilities detected\n");
547 goto out;
550 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
551 if ((edx & P_STATE_TRANSITION_CAPABLE)
552 != P_STATE_TRANSITION_CAPABLE) {
553 printk(KERN_INFO PFX
554 "Power state transitions not supported\n");
555 goto out;
557 } else { /* must be a HW Pstate capable processor */
558 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
559 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
560 cpu_family = CPU_HW_PSTATE;
561 else
562 goto out;
565 rc = 1;
567 out:
568 set_cpus_allowed_ptr(current, &oldmask);
569 return rc;
572 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
573 u8 maxvid)
575 unsigned int j;
576 u8 lastfid = 0xff;
578 for (j = 0; j < data->numps; j++) {
579 if (pst[j].vid > LEAST_VID) {
580 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
581 j, pst[j].vid);
582 return -EINVAL;
584 if (pst[j].vid < data->rvo) {
585 /* vid + rvo >= 0 */
586 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
587 " %d\n", j);
588 return -ENODEV;
590 if (pst[j].vid < maxvid + data->rvo) {
591 /* vid + rvo >= maxvid */
592 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
593 " %d\n", j);
594 return -ENODEV;
596 if (pst[j].fid > MAX_FID) {
597 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
598 " %d\n", j);
599 return -ENODEV;
601 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
602 /* Only first fid is allowed to be in "low" range */
603 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
604 "0x%x\n", j, pst[j].fid);
605 return -EINVAL;
607 if (pst[j].fid < lastfid)
608 lastfid = pst[j].fid;
610 if (lastfid & 1) {
611 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
612 return -EINVAL;
614 if (lastfid > LO_FID_TABLE_TOP)
615 printk(KERN_INFO FW_BUG PFX
616 "first fid not from lo freq table\n");
618 return 0;
621 static void invalidate_entry(struct powernow_k8_data *data, unsigned int entry)
623 data->powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
626 static void print_basics(struct powernow_k8_data *data)
628 int j;
629 for (j = 0; j < data->numps; j++) {
630 if (data->powernow_table[j].frequency !=
631 CPUFREQ_ENTRY_INVALID) {
632 if (cpu_family == CPU_HW_PSTATE) {
633 printk(KERN_INFO PFX
634 " %d : pstate %d (%d MHz)\n", j,
635 data->powernow_table[j].index,
636 data->powernow_table[j].frequency/1000);
637 } else {
638 printk(KERN_INFO PFX
639 " %d : fid 0x%x (%d MHz), vid 0x%x\n",
641 data->powernow_table[j].index & 0xff,
642 data->powernow_table[j].frequency/1000,
643 data->powernow_table[j].index >> 8);
647 if (data->batps)
648 printk(KERN_INFO PFX "Only %d pstates on battery\n",
649 data->batps);
652 static u32 freq_from_fid_did(u32 fid, u32 did)
654 u32 mhz = 0;
656 if (boot_cpu_data.x86 == 0x10)
657 mhz = (100 * (fid + 0x10)) >> did;
658 else if (boot_cpu_data.x86 == 0x11)
659 mhz = (100 * (fid + 8)) >> did;
660 else
661 BUG();
663 return mhz * 1000;
666 static int fill_powernow_table(struct powernow_k8_data *data,
667 struct pst_s *pst, u8 maxvid)
669 struct cpufreq_frequency_table *powernow_table;
670 unsigned int j;
672 if (data->batps) {
673 /* use ACPI support to get full speed on mains power */
674 printk(KERN_WARNING PFX
675 "Only %d pstates usable (use ACPI driver for full "
676 "range\n", data->batps);
677 data->numps = data->batps;
680 for (j = 1; j < data->numps; j++) {
681 if (pst[j-1].fid >= pst[j].fid) {
682 printk(KERN_ERR PFX "PST out of sequence\n");
683 return -EINVAL;
687 if (data->numps < 2) {
688 printk(KERN_ERR PFX "no p states to transition\n");
689 return -ENODEV;
692 if (check_pst_table(data, pst, maxvid))
693 return -EINVAL;
695 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
696 * (data->numps + 1)), GFP_KERNEL);
697 if (!powernow_table) {
698 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
699 return -ENOMEM;
702 for (j = 0; j < data->numps; j++) {
703 int freq;
704 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
705 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
706 freq = find_khz_freq_from_fid(pst[j].fid);
707 powernow_table[j].frequency = freq;
709 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
710 powernow_table[data->numps].index = 0;
712 if (query_current_values_with_pending_wait(data)) {
713 kfree(powernow_table);
714 return -EIO;
717 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
718 data->powernow_table = powernow_table;
719 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
720 print_basics(data);
722 for (j = 0; j < data->numps; j++)
723 if ((pst[j].fid == data->currfid) &&
724 (pst[j].vid == data->currvid))
725 return 0;
727 dprintk("currfid/vid do not match PST, ignoring\n");
728 return 0;
731 /* Find and validate the PSB/PST table in BIOS. */
732 static int find_psb_table(struct powernow_k8_data *data)
734 struct psb_s *psb;
735 unsigned int i;
736 u32 mvs;
737 u8 maxvid;
738 u32 cpst = 0;
739 u32 thiscpuid;
741 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
742 /* Scan BIOS looking for the signature. */
743 /* It can not be at ffff0 - it is too big. */
745 psb = phys_to_virt(i);
746 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
747 continue;
749 dprintk("found PSB header at 0x%p\n", psb);
751 dprintk("table vers: 0x%x\n", psb->tableversion);
752 if (psb->tableversion != PSB_VERSION_1_4) {
753 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
754 return -ENODEV;
757 dprintk("flags: 0x%x\n", psb->flags1);
758 if (psb->flags1) {
759 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
760 return -ENODEV;
763 data->vstable = psb->vstable;
764 dprintk("voltage stabilization time: %d(*20us)\n",
765 data->vstable);
767 dprintk("flags2: 0x%x\n", psb->flags2);
768 data->rvo = psb->flags2 & 3;
769 data->irt = ((psb->flags2) >> 2) & 3;
770 mvs = ((psb->flags2) >> 4) & 3;
771 data->vidmvs = 1 << mvs;
772 data->batps = ((psb->flags2) >> 6) & 3;
774 dprintk("ramp voltage offset: %d\n", data->rvo);
775 dprintk("isochronous relief time: %d\n", data->irt);
776 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
778 dprintk("numpst: 0x%x\n", psb->num_tables);
779 cpst = psb->num_tables;
780 if ((psb->cpuid == 0x00000fc0) ||
781 (psb->cpuid == 0x00000fe0)) {
782 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
783 if ((thiscpuid == 0x00000fc0) ||
784 (thiscpuid == 0x00000fe0))
785 cpst = 1;
787 if (cpst != 1) {
788 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
789 return -ENODEV;
792 data->plllock = psb->plllocktime;
793 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
794 dprintk("maxfid: 0x%x\n", psb->maxfid);
795 dprintk("maxvid: 0x%x\n", psb->maxvid);
796 maxvid = psb->maxvid;
798 data->numps = psb->numps;
799 dprintk("numpstates: 0x%x\n", data->numps);
800 return fill_powernow_table(data,
801 (struct pst_s *)(psb+1), maxvid);
804 * If you see this message, complain to BIOS manufacturer. If
805 * he tells you "we do not support Linux" or some similar
806 * nonsense, remember that Windows 2000 uses the same legacy
807 * mechanism that the old Linux PSB driver uses. Tell them it
808 * is broken with Windows 2000.
810 * The reference to the AMD documentation is chapter 9 in the
811 * BIOS and Kernel Developer's Guide, which is available on
812 * www.amd.com
814 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
815 return -ENODEV;
818 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
819 unsigned int index)
821 acpi_integer control;
823 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
824 return;
826 control = data->acpi_data.states[index].control; data->irt = (control
827 >> IRT_SHIFT) & IRT_MASK; data->rvo = (control >>
828 RVO_SHIFT) & RVO_MASK; data->exttype = (control
829 >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
830 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; data->vidmvs = 1
831 << ((control >> MVS_SHIFT) & MVS_MASK); data->vstable =
832 (control >> VST_SHIFT) & VST_MASK; }
834 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
836 struct cpufreq_frequency_table *powernow_table;
837 int ret_val = -ENODEV;
838 acpi_integer space_id;
840 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
841 dprintk("register performance failed: bad ACPI data\n");
842 return -EIO;
845 /* verify the data contained in the ACPI structures */
846 if (data->acpi_data.state_count <= 1) {
847 dprintk("No ACPI P-States\n");
848 goto err_out;
851 space_id = data->acpi_data.control_register.space_id;
852 if ((space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
853 (space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
854 dprintk("Invalid control/status registers (%x - %x)\n",
855 data->acpi_data.control_register.space_id,
856 space_id);
857 goto err_out;
860 /* fill in data->powernow_table */
861 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
862 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
863 if (!powernow_table) {
864 dprintk("powernow_table memory alloc failure\n");
865 goto err_out;
868 if (cpu_family == CPU_HW_PSTATE)
869 ret_val = fill_powernow_table_pstate(data, powernow_table);
870 else
871 ret_val = fill_powernow_table_fidvid(data, powernow_table);
872 if (ret_val)
873 goto err_out_mem;
875 powernow_table[data->acpi_data.state_count].frequency =
876 CPUFREQ_TABLE_END;
877 powernow_table[data->acpi_data.state_count].index = 0;
878 data->powernow_table = powernow_table;
880 /* fill in data */
881 data->numps = data->acpi_data.state_count;
882 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
883 print_basics(data);
884 powernow_k8_acpi_pst_values(data, 0);
886 /* notify BIOS that we exist */
887 acpi_processor_notify_smm(THIS_MODULE);
889 if (!alloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
890 printk(KERN_ERR PFX
891 "unable to alloc powernow_k8_data cpumask\n");
892 ret_val = -ENOMEM;
893 goto err_out_mem;
896 return 0;
898 err_out_mem:
899 kfree(powernow_table);
901 err_out:
902 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
904 /* data->acpi_data.state_count informs us at ->exit()
905 * whether ACPI was used */
906 data->acpi_data.state_count = 0;
908 return ret_val;
911 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
912 struct cpufreq_frequency_table *powernow_table)
914 int i;
915 u32 hi = 0, lo = 0;
916 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
917 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
919 for (i = 0; i < data->acpi_data.state_count; i++) {
920 u32 index;
922 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
923 if (index > data->max_hw_pstate) {
924 printk(KERN_ERR PFX "invalid pstate %d - "
925 "bad value %d.\n", i, index);
926 printk(KERN_ERR PFX "Please report to BIOS "
927 "manufacturer\n");
928 invalidate_entry(data, i);
929 continue;
931 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
932 if (!(hi & HW_PSTATE_VALID_MASK)) {
933 dprintk("invalid pstate %d, ignoring\n", index);
934 invalidate_entry(data, i);
935 continue;
938 powernow_table[i].index = index;
940 /* Frequency may be rounded for these */
941 if (boot_cpu_data.x86 == 0x10 || boot_cpu_data.x86 == 0x11) {
942 powernow_table[i].frequency =
943 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
944 } else
945 powernow_table[i].frequency =
946 data->acpi_data.states[i].core_frequency * 1000;
948 return 0;
951 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
952 struct cpufreq_frequency_table *powernow_table)
954 int i;
955 int cntlofreq = 0;
957 for (i = 0; i < data->acpi_data.state_count; i++) {
958 u32 fid;
959 u32 vid;
960 u32 freq, index;
961 acpi_integer status, control;
963 if (data->exttype) {
964 status = data->acpi_data.states[i].status;
965 fid = status & EXT_FID_MASK;
966 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
967 } else {
968 control = data->acpi_data.states[i].control;
969 fid = control & FID_MASK;
970 vid = (control >> VID_SHIFT) & VID_MASK;
973 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
975 index = fid | (vid<<8);
976 powernow_table[i].index = index;
978 freq = find_khz_freq_from_fid(fid);
979 powernow_table[i].frequency = freq;
981 /* verify frequency is OK */
982 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
983 dprintk("invalid freq %u kHz, ignoring\n", freq);
984 invalidate_entry(data, i);
985 continue;
988 /* verify voltage is OK -
989 * BIOSs are using "off" to indicate invalid */
990 if (vid == VID_OFF) {
991 dprintk("invalid vid %u, ignoring\n", vid);
992 invalidate_entry(data, i);
993 continue;
996 /* verify only 1 entry from the lo frequency table */
997 if (fid < HI_FID_TABLE_BOTTOM) {
998 if (cntlofreq) {
999 /* if both entries are the same,
1000 * ignore this one ... */
1001 if ((freq != powernow_table[cntlofreq].frequency) ||
1002 (index != powernow_table[cntlofreq].index)) {
1003 printk(KERN_ERR PFX
1004 "Too many lo freq table "
1005 "entries\n");
1006 return 1;
1009 dprintk("double low frequency table entry, "
1010 "ignoring it.\n");
1011 invalidate_entry(data, i);
1012 continue;
1013 } else
1014 cntlofreq = i;
1017 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1018 printk(KERN_INFO PFX "invalid freq entries "
1019 "%u kHz vs. %u kHz\n", freq,
1020 (unsigned int)
1021 (data->acpi_data.states[i].core_frequency
1022 * 1000));
1023 invalidate_entry(data, i);
1024 continue;
1027 return 0;
1030 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1032 if (data->acpi_data.state_count)
1033 acpi_processor_unregister_performance(&data->acpi_data,
1034 data->cpu);
1035 free_cpumask_var(data->acpi_data.shared_cpu_map);
1038 static int get_transition_latency(struct powernow_k8_data *data)
1040 int max_latency = 0;
1041 int i;
1042 for (i = 0; i < data->acpi_data.state_count; i++) {
1043 int cur_latency = data->acpi_data.states[i].transition_latency
1044 + data->acpi_data.states[i].bus_master_latency;
1045 if (cur_latency > max_latency)
1046 max_latency = cur_latency;
1048 /* value in usecs, needs to be in nanoseconds */
1049 return 1000 * max_latency;
1052 /* Take a frequency, and issue the fid/vid transition command */
1053 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1054 unsigned int index)
1056 u32 fid = 0;
1057 u32 vid = 0;
1058 int res, i;
1059 struct cpufreq_freqs freqs;
1061 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1063 /* fid/vid correctness check for k8 */
1064 /* fid are the lower 8 bits of the index we stored into
1065 * the cpufreq frequency table in find_psb_table, vid
1066 * are the upper 8 bits.
1068 fid = data->powernow_table[index].index & 0xFF;
1069 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1071 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1073 if (query_current_values_with_pending_wait(data))
1074 return 1;
1076 if ((data->currvid == vid) && (data->currfid == fid)) {
1077 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1078 fid, vid);
1079 return 0;
1082 if ((fid < HI_FID_TABLE_BOTTOM) &&
1083 (data->currfid < HI_FID_TABLE_BOTTOM)) {
1084 printk(KERN_ERR PFX
1085 "ignoring illegal change in lo freq table-%x to 0x%x\n",
1086 data->currfid, fid);
1087 return 1;
1090 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1091 smp_processor_id(), fid, vid);
1092 freqs.old = find_khz_freq_from_fid(data->currfid);
1093 freqs.new = find_khz_freq_from_fid(fid);
1095 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1096 freqs.cpu = i;
1097 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1100 res = transition_fid_vid(data, fid, vid);
1101 freqs.new = find_khz_freq_from_fid(data->currfid);
1103 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1104 freqs.cpu = i;
1105 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1107 return res;
1110 /* Take a frequency, and issue the hardware pstate transition command */
1111 static int transition_frequency_pstate(struct powernow_k8_data *data,
1112 unsigned int index)
1114 u32 pstate = 0;
1115 int res, i;
1116 struct cpufreq_freqs freqs;
1118 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1120 /* get MSR index for hardware pstate transition */
1121 pstate = index & HW_PSTATE_MASK;
1122 if (pstate > data->max_hw_pstate)
1123 return 0;
1124 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1125 data->currpstate);
1126 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1128 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1129 freqs.cpu = i;
1130 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1133 res = transition_pstate(data, pstate);
1134 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1136 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1137 freqs.cpu = i;
1138 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1140 return res;
1143 /* Driver entry point to switch to the target frequency */
1144 static int powernowk8_target(struct cpufreq_policy *pol,
1145 unsigned targfreq, unsigned relation)
1147 cpumask_t oldmask;
1148 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1149 u32 checkfid;
1150 u32 checkvid;
1151 unsigned int newstate;
1152 int ret = -EIO;
1154 if (!data)
1155 return -EINVAL;
1157 checkfid = data->currfid;
1158 checkvid = data->currvid;
1160 /* only run on specific CPU from here on */
1161 oldmask = current->cpus_allowed;
1162 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1164 if (smp_processor_id() != pol->cpu) {
1165 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1166 goto err_out;
1169 if (pending_bit_stuck()) {
1170 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1171 goto err_out;
1174 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1175 pol->cpu, targfreq, pol->min, pol->max, relation);
1177 if (query_current_values_with_pending_wait(data))
1178 goto err_out;
1180 if (cpu_family != CPU_HW_PSTATE) {
1181 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1182 data->currfid, data->currvid);
1184 if ((checkvid != data->currvid) ||
1185 (checkfid != data->currfid)) {
1186 printk(KERN_INFO PFX
1187 "error - out of sync, fix 0x%x 0x%x, "
1188 "vid 0x%x 0x%x\n",
1189 checkfid, data->currfid,
1190 checkvid, data->currvid);
1194 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1195 targfreq, relation, &newstate))
1196 goto err_out;
1198 mutex_lock(&fidvid_mutex);
1200 powernow_k8_acpi_pst_values(data, newstate);
1202 if (cpu_family == CPU_HW_PSTATE)
1203 ret = transition_frequency_pstate(data, newstate);
1204 else
1205 ret = transition_frequency_fidvid(data, newstate);
1206 if (ret) {
1207 printk(KERN_ERR PFX "transition frequency failed\n");
1208 ret = 1;
1209 mutex_unlock(&fidvid_mutex);
1210 goto err_out;
1212 mutex_unlock(&fidvid_mutex);
1214 if (cpu_family == CPU_HW_PSTATE)
1215 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1216 newstate);
1217 else
1218 pol->cur = find_khz_freq_from_fid(data->currfid);
1219 ret = 0;
1221 err_out:
1222 set_cpus_allowed_ptr(current, &oldmask);
1223 return ret;
1226 /* Driver entry point to verify the policy and range of frequencies */
1227 static int powernowk8_verify(struct cpufreq_policy *pol)
1229 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1231 if (!data)
1232 return -EINVAL;
1234 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1237 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1238 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1239 KERN_ERR FW_BUG PFX "Try again with latest BIOS.\n";
1241 /* per CPU init entry point to the driver */
1242 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1244 struct powernow_k8_data *data;
1245 cpumask_t oldmask;
1246 int rc;
1248 if (!cpu_online(pol->cpu))
1249 return -ENODEV;
1251 if (!check_supported_cpu(pol->cpu))
1252 return -ENODEV;
1254 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1255 if (!data) {
1256 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1257 return -ENOMEM;
1260 data->cpu = pol->cpu;
1261 data->currpstate = HW_PSTATE_INVALID;
1263 if (powernow_k8_cpu_init_acpi(data)) {
1265 * Use the PSB BIOS structure. This is only availabe on
1266 * an UP version, and is deprecated by AMD.
1268 if (num_online_cpus() != 1) {
1269 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1270 goto err_out;
1272 if (pol->cpu != 0) {
1273 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1274 "CPU other than CPU0. Complain to your BIOS "
1275 "vendor.\n");
1276 goto err_out;
1278 rc = find_psb_table(data);
1279 if (rc)
1280 goto err_out;
1282 /* Take a crude guess here.
1283 * That guess was in microseconds, so multiply with 1000 */
1284 pol->cpuinfo.transition_latency = (
1285 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1286 ((1 << data->irt) * 30)) * 1000;
1287 } else /* ACPI _PSS objects available */
1288 pol->cpuinfo.transition_latency = get_transition_latency(data);
1290 /* only run on specific CPU from here on */
1291 oldmask = current->cpus_allowed;
1292 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1294 if (smp_processor_id() != pol->cpu) {
1295 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1296 goto err_out_unmask;
1299 if (pending_bit_stuck()) {
1300 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1301 goto err_out_unmask;
1304 if (query_current_values_with_pending_wait(data))
1305 goto err_out_unmask;
1307 if (cpu_family == CPU_OPTERON)
1308 fidvid_msr_init();
1310 /* run on any CPU again */
1311 set_cpus_allowed_ptr(current, &oldmask);
1313 if (cpu_family == CPU_HW_PSTATE)
1314 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1315 else
1316 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1317 data->available_cores = pol->cpus;
1319 if (cpu_family == CPU_HW_PSTATE)
1320 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1321 data->currpstate);
1322 else
1323 pol->cur = find_khz_freq_from_fid(data->currfid);
1324 dprintk("policy current frequency %d kHz\n", pol->cur);
1326 /* min/max the cpu is capable of */
1327 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1328 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1329 powernow_k8_cpu_exit_acpi(data);
1330 kfree(data->powernow_table);
1331 kfree(data);
1332 return -EINVAL;
1335 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1337 if (cpu_family == CPU_HW_PSTATE)
1338 dprintk("cpu_init done, current pstate 0x%x\n",
1339 data->currpstate);
1340 else
1341 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1342 data->currfid, data->currvid);
1344 per_cpu(powernow_data, pol->cpu) = data;
1346 return 0;
1348 err_out_unmask:
1349 set_cpus_allowed_ptr(current, &oldmask);
1350 powernow_k8_cpu_exit_acpi(data);
1352 err_out:
1353 kfree(data);
1354 return -ENODEV;
1357 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1359 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1361 if (!data)
1362 return -EINVAL;
1364 powernow_k8_cpu_exit_acpi(data);
1366 cpufreq_frequency_table_put_attr(pol->cpu);
1368 kfree(data->powernow_table);
1369 kfree(data);
1371 return 0;
1374 static unsigned int powernowk8_get(unsigned int cpu)
1376 struct powernow_k8_data *data;
1377 cpumask_t oldmask = current->cpus_allowed;
1378 unsigned int khz = 0;
1379 unsigned int first;
1381 first = cpumask_first(cpu_core_mask(cpu));
1382 data = per_cpu(powernow_data, first);
1384 if (!data)
1385 return -EINVAL;
1387 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1388 if (smp_processor_id() != cpu) {
1389 printk(KERN_ERR PFX
1390 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1391 set_cpus_allowed_ptr(current, &oldmask);
1392 return 0;
1395 if (query_current_values_with_pending_wait(data))
1396 goto out;
1398 if (cpu_family == CPU_HW_PSTATE)
1399 khz = find_khz_freq_from_pstate(data->powernow_table,
1400 data->currpstate);
1401 else
1402 khz = find_khz_freq_from_fid(data->currfid);
1405 out:
1406 set_cpus_allowed_ptr(current, &oldmask);
1407 return khz;
1410 static struct freq_attr *powernow_k8_attr[] = {
1411 &cpufreq_freq_attr_scaling_available_freqs,
1412 NULL,
1415 static struct cpufreq_driver cpufreq_amd64_driver = {
1416 .verify = powernowk8_verify,
1417 .target = powernowk8_target,
1418 .init = powernowk8_cpu_init,
1419 .exit = __devexit_p(powernowk8_cpu_exit),
1420 .get = powernowk8_get,
1421 .name = "powernow-k8",
1422 .owner = THIS_MODULE,
1423 .attr = powernow_k8_attr,
1426 /* driver entry point for init */
1427 static int __cpuinit powernowk8_init(void)
1429 unsigned int i, supported_cpus = 0;
1431 for_each_online_cpu(i) {
1432 if (check_supported_cpu(i))
1433 supported_cpus++;
1436 if (supported_cpus == num_online_cpus()) {
1437 printk(KERN_INFO PFX "Found %d %s "
1438 "processors (%d cpu cores) (" VERSION ")\n",
1439 num_online_nodes(),
1440 boot_cpu_data.x86_model_id, supported_cpus);
1441 return cpufreq_register_driver(&cpufreq_amd64_driver);
1444 return -ENODEV;
1447 /* driver entry point for term */
1448 static void __exit powernowk8_exit(void)
1450 dprintk("exit\n");
1452 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1455 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1456 "Mark Langsdorf <mark.langsdorf@amd.com>");
1457 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1458 MODULE_LICENSE("GPL");
1460 late_initcall(powernowk8_init);
1461 module_exit(powernowk8_exit);