2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
74 q
->merge_bvec_fn
= mbfn
;
76 EXPORT_SYMBOL(blk_queue_merge_bvec
);
78 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
80 q
->softirq_done_fn
= fn
;
82 EXPORT_SYMBOL(blk_queue_softirq_done
);
84 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
86 q
->rq_timeout
= timeout
;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
90 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
92 q
->rq_timed_out_fn
= fn
;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
96 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state. Can be used by
108 * stacking drivers like DM that stage table swaps and reuse an
109 * existing device queue.
111 void blk_set_default_limits(struct queue_limits
*lim
)
113 lim
->max_segments
= BLK_MAX_SEGMENTS
;
114 lim
->max_integrity_segments
= 0;
115 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
116 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
117 lim
->max_sectors
= BLK_DEF_MAX_SECTORS
;
118 lim
->max_hw_sectors
= INT_MAX
;
119 lim
->max_discard_sectors
= 0;
120 lim
->discard_granularity
= 0;
121 lim
->discard_alignment
= 0;
122 lim
->discard_misaligned
= 0;
123 lim
->discard_zeroes_data
= -1;
124 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
125 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
126 lim
->alignment_offset
= 0;
131 EXPORT_SYMBOL(blk_set_default_limits
);
134 * blk_queue_make_request - define an alternate make_request function for a device
135 * @q: the request queue for the device to be affected
136 * @mfn: the alternate make_request function
139 * The normal way for &struct bios to be passed to a device
140 * driver is for them to be collected into requests on a request
141 * queue, and then to allow the device driver to select requests
142 * off that queue when it is ready. This works well for many block
143 * devices. However some block devices (typically virtual devices
144 * such as md or lvm) do not benefit from the processing on the
145 * request queue, and are served best by having the requests passed
146 * directly to them. This can be achieved by providing a function
147 * to blk_queue_make_request().
150 * The driver that does this *must* be able to deal appropriately
151 * with buffers in "highmemory". This can be accomplished by either calling
152 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153 * blk_queue_bounce() to create a buffer in normal memory.
155 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
160 q
->nr_requests
= BLKDEV_MAX_RQ
;
162 q
->make_request_fn
= mfn
;
163 blk_queue_dma_alignment(q
, 511);
164 blk_queue_congestion_threshold(q
);
165 q
->nr_batching
= BLK_BATCH_REQ
;
167 blk_set_default_limits(&q
->limits
);
168 blk_queue_max_hw_sectors(q
, BLK_SAFE_MAX_SECTORS
);
171 * by default assume old behaviour and bounce for any highmem page
173 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
175 EXPORT_SYMBOL(blk_queue_make_request
);
178 * blk_queue_bounce_limit - set bounce buffer limit for queue
179 * @q: the request queue for the device
180 * @dma_mask: the maximum address the device can handle
183 * Different hardware can have different requirements as to what pages
184 * it can do I/O directly to. A low level driver can call
185 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
186 * buffers for doing I/O to pages residing above @dma_mask.
188 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_mask
)
190 unsigned long b_pfn
= dma_mask
>> PAGE_SHIFT
;
193 q
->bounce_gfp
= GFP_NOIO
;
194 #if BITS_PER_LONG == 64
196 * Assume anything <= 4GB can be handled by IOMMU. Actually
197 * some IOMMUs can handle everything, but I don't know of a
198 * way to test this here.
200 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
202 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
204 if (b_pfn
< blk_max_low_pfn
)
206 q
->limits
.bounce_pfn
= b_pfn
;
209 init_emergency_isa_pool();
210 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
211 q
->limits
.bounce_pfn
= b_pfn
;
214 EXPORT_SYMBOL(blk_queue_bounce_limit
);
217 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
218 * @limits: the queue limits
219 * @max_hw_sectors: max hardware sectors in the usual 512b unit
222 * Enables a low level driver to set a hard upper limit,
223 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
224 * the device driver based upon the combined capabilities of I/O
225 * controller and storage device.
227 * max_sectors is a soft limit imposed by the block layer for
228 * filesystem type requests. This value can be overridden on a
229 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
230 * The soft limit can not exceed max_hw_sectors.
232 void blk_limits_max_hw_sectors(struct queue_limits
*limits
, unsigned int max_hw_sectors
)
234 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
235 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
236 printk(KERN_INFO
"%s: set to minimum %d\n",
237 __func__
, max_hw_sectors
);
240 limits
->max_hw_sectors
= max_hw_sectors
;
241 limits
->max_sectors
= min_t(unsigned int, max_hw_sectors
,
242 BLK_DEF_MAX_SECTORS
);
244 EXPORT_SYMBOL(blk_limits_max_hw_sectors
);
247 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
248 * @q: the request queue for the device
249 * @max_hw_sectors: max hardware sectors in the usual 512b unit
252 * See description for blk_limits_max_hw_sectors().
254 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
256 blk_limits_max_hw_sectors(&q
->limits
, max_hw_sectors
);
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
261 * blk_queue_max_discard_sectors - set max sectors for a single discard
262 * @q: the request queue for the device
263 * @max_discard_sectors: maximum number of sectors to discard
265 void blk_queue_max_discard_sectors(struct request_queue
*q
,
266 unsigned int max_discard_sectors
)
268 q
->limits
.max_discard_sectors
= max_discard_sectors
;
270 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
273 * blk_queue_max_segments - set max hw segments for a request for this queue
274 * @q: the request queue for the device
275 * @max_segments: max number of segments
278 * Enables a low level driver to set an upper limit on the number of
279 * hw data segments in a request.
281 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
285 printk(KERN_INFO
"%s: set to minimum %d\n",
286 __func__
, max_segments
);
289 q
->limits
.max_segments
= max_segments
;
291 EXPORT_SYMBOL(blk_queue_max_segments
);
294 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
295 * @q: the request queue for the device
296 * @max_size: max size of segment in bytes
299 * Enables a low level driver to set an upper limit on the size of a
302 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
304 if (max_size
< PAGE_CACHE_SIZE
) {
305 max_size
= PAGE_CACHE_SIZE
;
306 printk(KERN_INFO
"%s: set to minimum %d\n",
310 q
->limits
.max_segment_size
= max_size
;
312 EXPORT_SYMBOL(blk_queue_max_segment_size
);
315 * blk_queue_logical_block_size - set logical block size for the queue
316 * @q: the request queue for the device
317 * @size: the logical block size, in bytes
320 * This should be set to the lowest possible block size that the
321 * storage device can address. The default of 512 covers most
324 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
326 q
->limits
.logical_block_size
= size
;
328 if (q
->limits
.physical_block_size
< size
)
329 q
->limits
.physical_block_size
= size
;
331 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
332 q
->limits
.io_min
= q
->limits
.physical_block_size
;
334 EXPORT_SYMBOL(blk_queue_logical_block_size
);
337 * blk_queue_physical_block_size - set physical block size for the queue
338 * @q: the request queue for the device
339 * @size: the physical block size, in bytes
342 * This should be set to the lowest possible sector size that the
343 * hardware can operate on without reverting to read-modify-write
346 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
348 q
->limits
.physical_block_size
= size
;
350 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
351 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
353 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
354 q
->limits
.io_min
= q
->limits
.physical_block_size
;
356 EXPORT_SYMBOL(blk_queue_physical_block_size
);
359 * blk_queue_alignment_offset - set physical block alignment offset
360 * @q: the request queue for the device
361 * @offset: alignment offset in bytes
364 * Some devices are naturally misaligned to compensate for things like
365 * the legacy DOS partition table 63-sector offset. Low-level drivers
366 * should call this function for devices whose first sector is not
369 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
371 q
->limits
.alignment_offset
=
372 offset
& (q
->limits
.physical_block_size
- 1);
373 q
->limits
.misaligned
= 0;
375 EXPORT_SYMBOL(blk_queue_alignment_offset
);
378 * blk_limits_io_min - set minimum request size for a device
379 * @limits: the queue limits
380 * @min: smallest I/O size in bytes
383 * Some devices have an internal block size bigger than the reported
384 * hardware sector size. This function can be used to signal the
385 * smallest I/O the device can perform without incurring a performance
388 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
390 limits
->io_min
= min
;
392 if (limits
->io_min
< limits
->logical_block_size
)
393 limits
->io_min
= limits
->logical_block_size
;
395 if (limits
->io_min
< limits
->physical_block_size
)
396 limits
->io_min
= limits
->physical_block_size
;
398 EXPORT_SYMBOL(blk_limits_io_min
);
401 * blk_queue_io_min - set minimum request size for the queue
402 * @q: the request queue for the device
403 * @min: smallest I/O size in bytes
406 * Storage devices may report a granularity or preferred minimum I/O
407 * size which is the smallest request the device can perform without
408 * incurring a performance penalty. For disk drives this is often the
409 * physical block size. For RAID arrays it is often the stripe chunk
410 * size. A properly aligned multiple of minimum_io_size is the
411 * preferred request size for workloads where a high number of I/O
412 * operations is desired.
414 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
416 blk_limits_io_min(&q
->limits
, min
);
418 EXPORT_SYMBOL(blk_queue_io_min
);
421 * blk_limits_io_opt - set optimal request size for a device
422 * @limits: the queue limits
423 * @opt: smallest I/O size in bytes
426 * Storage devices may report an optimal I/O size, which is the
427 * device's preferred unit for sustained I/O. This is rarely reported
428 * for disk drives. For RAID arrays it is usually the stripe width or
429 * the internal track size. A properly aligned multiple of
430 * optimal_io_size is the preferred request size for workloads where
431 * sustained throughput is desired.
433 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
435 limits
->io_opt
= opt
;
437 EXPORT_SYMBOL(blk_limits_io_opt
);
440 * blk_queue_io_opt - set optimal request size for the queue
441 * @q: the request queue for the device
442 * @opt: optimal request size in bytes
445 * Storage devices may report an optimal I/O size, which is the
446 * device's preferred unit for sustained I/O. This is rarely reported
447 * for disk drives. For RAID arrays it is usually the stripe width or
448 * the internal track size. A properly aligned multiple of
449 * optimal_io_size is the preferred request size for workloads where
450 * sustained throughput is desired.
452 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
454 blk_limits_io_opt(&q
->limits
, opt
);
456 EXPORT_SYMBOL(blk_queue_io_opt
);
459 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
460 * @t: the stacking driver (top)
461 * @b: the underlying device (bottom)
463 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
465 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
467 EXPORT_SYMBOL(blk_queue_stack_limits
);
470 * blk_stack_limits - adjust queue_limits for stacked devices
471 * @t: the stacking driver limits (top device)
472 * @b: the underlying queue limits (bottom, component device)
473 * @start: first data sector within component device
476 * This function is used by stacking drivers like MD and DM to ensure
477 * that all component devices have compatible block sizes and
478 * alignments. The stacking driver must provide a queue_limits
479 * struct (top) and then iteratively call the stacking function for
480 * all component (bottom) devices. The stacking function will
481 * attempt to combine the values and ensure proper alignment.
483 * Returns 0 if the top and bottom queue_limits are compatible. The
484 * top device's block sizes and alignment offsets may be adjusted to
485 * ensure alignment with the bottom device. If no compatible sizes
486 * and alignments exist, -1 is returned and the resulting top
487 * queue_limits will have the misaligned flag set to indicate that
488 * the alignment_offset is undefined.
490 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
493 unsigned int top
, bottom
, alignment
, ret
= 0;
495 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
496 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
497 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
499 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
500 b
->seg_boundary_mask
);
502 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
503 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
504 b
->max_integrity_segments
);
506 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
507 b
->max_segment_size
);
509 t
->misaligned
|= b
->misaligned
;
511 alignment
= queue_limit_alignment_offset(b
, start
);
513 /* Bottom device has different alignment. Check that it is
514 * compatible with the current top alignment.
516 if (t
->alignment_offset
!= alignment
) {
518 top
= max(t
->physical_block_size
, t
->io_min
)
519 + t
->alignment_offset
;
520 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
522 /* Verify that top and bottom intervals line up */
523 if (max(top
, bottom
) & (min(top
, bottom
) - 1)) {
529 t
->logical_block_size
= max(t
->logical_block_size
,
530 b
->logical_block_size
);
532 t
->physical_block_size
= max(t
->physical_block_size
,
533 b
->physical_block_size
);
535 t
->io_min
= max(t
->io_min
, b
->io_min
);
536 t
->io_opt
= lcm(t
->io_opt
, b
->io_opt
);
538 t
->cluster
&= b
->cluster
;
539 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
541 /* Physical block size a multiple of the logical block size? */
542 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
543 t
->physical_block_size
= t
->logical_block_size
;
548 /* Minimum I/O a multiple of the physical block size? */
549 if (t
->io_min
& (t
->physical_block_size
- 1)) {
550 t
->io_min
= t
->physical_block_size
;
555 /* Optimal I/O a multiple of the physical block size? */
556 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
562 /* Find lowest common alignment_offset */
563 t
->alignment_offset
= lcm(t
->alignment_offset
, alignment
)
564 & (max(t
->physical_block_size
, t
->io_min
) - 1);
566 /* Verify that new alignment_offset is on a logical block boundary */
567 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
572 /* Discard alignment and granularity */
573 if (b
->discard_granularity
) {
574 alignment
= queue_limit_discard_alignment(b
, start
);
576 if (t
->discard_granularity
!= 0 &&
577 t
->discard_alignment
!= alignment
) {
578 top
= t
->discard_granularity
+ t
->discard_alignment
;
579 bottom
= b
->discard_granularity
+ alignment
;
581 /* Verify that top and bottom intervals line up */
582 if (max(top
, bottom
) & (min(top
, bottom
) - 1))
583 t
->discard_misaligned
= 1;
586 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
587 b
->max_discard_sectors
);
588 t
->discard_granularity
= max(t
->discard_granularity
,
589 b
->discard_granularity
);
590 t
->discard_alignment
= lcm(t
->discard_alignment
, alignment
) &
591 (t
->discard_granularity
- 1);
596 EXPORT_SYMBOL(blk_stack_limits
);
599 * bdev_stack_limits - adjust queue limits for stacked drivers
600 * @t: the stacking driver limits (top device)
601 * @bdev: the component block_device (bottom)
602 * @start: first data sector within component device
605 * Merges queue limits for a top device and a block_device. Returns
606 * 0 if alignment didn't change. Returns -1 if adding the bottom
607 * device caused misalignment.
609 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
612 struct request_queue
*bq
= bdev_get_queue(bdev
);
614 start
+= get_start_sect(bdev
);
616 return blk_stack_limits(t
, &bq
->limits
, start
);
618 EXPORT_SYMBOL(bdev_stack_limits
);
621 * disk_stack_limits - adjust queue limits for stacked drivers
622 * @disk: MD/DM gendisk (top)
623 * @bdev: the underlying block device (bottom)
624 * @offset: offset to beginning of data within component device
627 * Merges the limits for a top level gendisk and a bottom level
630 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
633 struct request_queue
*t
= disk
->queue
;
635 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
636 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
638 disk_name(disk
, 0, top
);
639 bdevname(bdev
, bottom
);
641 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
645 EXPORT_SYMBOL(disk_stack_limits
);
648 * blk_queue_dma_pad - set pad mask
649 * @q: the request queue for the device
654 * Appending pad buffer to a request modifies the last entry of a
655 * scatter list such that it includes the pad buffer.
657 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
659 q
->dma_pad_mask
= mask
;
661 EXPORT_SYMBOL(blk_queue_dma_pad
);
664 * blk_queue_update_dma_pad - update pad mask
665 * @q: the request queue for the device
668 * Update dma pad mask.
670 * Appending pad buffer to a request modifies the last entry of a
671 * scatter list such that it includes the pad buffer.
673 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
675 if (mask
> q
->dma_pad_mask
)
676 q
->dma_pad_mask
= mask
;
678 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
681 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
682 * @q: the request queue for the device
683 * @dma_drain_needed: fn which returns non-zero if drain is necessary
684 * @buf: physically contiguous buffer
685 * @size: size of the buffer in bytes
687 * Some devices have excess DMA problems and can't simply discard (or
688 * zero fill) the unwanted piece of the transfer. They have to have a
689 * real area of memory to transfer it into. The use case for this is
690 * ATAPI devices in DMA mode. If the packet command causes a transfer
691 * bigger than the transfer size some HBAs will lock up if there
692 * aren't DMA elements to contain the excess transfer. What this API
693 * does is adjust the queue so that the buf is always appended
694 * silently to the scatterlist.
696 * Note: This routine adjusts max_hw_segments to make room for appending
697 * the drain buffer. If you call blk_queue_max_segments() after calling
698 * this routine, you must set the limit to one fewer than your device
699 * can support otherwise there won't be room for the drain buffer.
701 int blk_queue_dma_drain(struct request_queue
*q
,
702 dma_drain_needed_fn
*dma_drain_needed
,
703 void *buf
, unsigned int size
)
705 if (queue_max_segments(q
) < 2)
707 /* make room for appending the drain */
708 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
709 q
->dma_drain_needed
= dma_drain_needed
;
710 q
->dma_drain_buffer
= buf
;
711 q
->dma_drain_size
= size
;
715 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
718 * blk_queue_segment_boundary - set boundary rules for segment merging
719 * @q: the request queue for the device
720 * @mask: the memory boundary mask
722 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
724 if (mask
< PAGE_CACHE_SIZE
- 1) {
725 mask
= PAGE_CACHE_SIZE
- 1;
726 printk(KERN_INFO
"%s: set to minimum %lx\n",
730 q
->limits
.seg_boundary_mask
= mask
;
732 EXPORT_SYMBOL(blk_queue_segment_boundary
);
735 * blk_queue_dma_alignment - set dma length and memory alignment
736 * @q: the request queue for the device
737 * @mask: alignment mask
740 * set required memory and length alignment for direct dma transactions.
741 * this is used when building direct io requests for the queue.
744 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
746 q
->dma_alignment
= mask
;
748 EXPORT_SYMBOL(blk_queue_dma_alignment
);
751 * blk_queue_update_dma_alignment - update dma length and memory alignment
752 * @q: the request queue for the device
753 * @mask: alignment mask
756 * update required memory and length alignment for direct dma transactions.
757 * If the requested alignment is larger than the current alignment, then
758 * the current queue alignment is updated to the new value, otherwise it
759 * is left alone. The design of this is to allow multiple objects
760 * (driver, device, transport etc) to set their respective
761 * alignments without having them interfere.
764 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
766 BUG_ON(mask
> PAGE_SIZE
);
768 if (mask
> q
->dma_alignment
)
769 q
->dma_alignment
= mask
;
771 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
774 * blk_queue_flush - configure queue's cache flush capability
775 * @q: the request queue for the device
776 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
778 * Tell block layer cache flush capability of @q. If it supports
779 * flushing, REQ_FLUSH should be set. If it supports bypassing
780 * write cache for individual writes, REQ_FUA should be set.
782 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
784 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
786 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
789 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
791 EXPORT_SYMBOL_GPL(blk_queue_flush
);
793 static int __init
blk_settings_init(void)
795 blk_max_low_pfn
= max_low_pfn
- 1;
796 blk_max_pfn
= max_pfn
- 1;
799 subsys_initcall(blk_settings_init
);