tcp: md5: dont write skb head in tcp_md5_hash_header()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid1.c
blobd9587dffe533e69c81b6adf5221ee1da745cfa4b
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
39 #include "md.h"
40 #include "raid1.h"
41 #include "bitmap.h"
43 #define DEBUG 0
44 #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
47 * Number of guaranteed r1bios in case of extreme VM load:
49 #define NR_RAID1_BIOS 256
52 static void allow_barrier(conf_t *conf);
53 static void lower_barrier(conf_t *conf);
55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 struct pool_info *pi = data;
58 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
60 /* allocate a r1bio with room for raid_disks entries in the bios array */
61 return kzalloc(size, gfp_flags);
64 static void r1bio_pool_free(void *r1_bio, void *data)
66 kfree(r1_bio);
69 #define RESYNC_BLOCK_SIZE (64*1024)
70 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
71 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
72 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
73 #define RESYNC_WINDOW (2048*1024)
75 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
77 struct pool_info *pi = data;
78 struct page *page;
79 r1bio_t *r1_bio;
80 struct bio *bio;
81 int i, j;
83 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
84 if (!r1_bio)
85 return NULL;
88 * Allocate bios : 1 for reading, n-1 for writing
90 for (j = pi->raid_disks ; j-- ; ) {
91 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
92 if (!bio)
93 goto out_free_bio;
94 r1_bio->bios[j] = bio;
97 * Allocate RESYNC_PAGES data pages and attach them to
98 * the first bio.
99 * If this is a user-requested check/repair, allocate
100 * RESYNC_PAGES for each bio.
102 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
103 j = pi->raid_disks;
104 else
105 j = 1;
106 while(j--) {
107 bio = r1_bio->bios[j];
108 for (i = 0; i < RESYNC_PAGES; i++) {
109 page = alloc_page(gfp_flags);
110 if (unlikely(!page))
111 goto out_free_pages;
113 bio->bi_io_vec[i].bv_page = page;
114 bio->bi_vcnt = i+1;
117 /* If not user-requests, copy the page pointers to all bios */
118 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
119 for (i=0; i<RESYNC_PAGES ; i++)
120 for (j=1; j<pi->raid_disks; j++)
121 r1_bio->bios[j]->bi_io_vec[i].bv_page =
122 r1_bio->bios[0]->bi_io_vec[i].bv_page;
125 r1_bio->master_bio = NULL;
127 return r1_bio;
129 out_free_pages:
130 for (j=0 ; j < pi->raid_disks; j++)
131 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
132 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
133 j = -1;
134 out_free_bio:
135 while ( ++j < pi->raid_disks )
136 bio_put(r1_bio->bios[j]);
137 r1bio_pool_free(r1_bio, data);
138 return NULL;
141 static void r1buf_pool_free(void *__r1_bio, void *data)
143 struct pool_info *pi = data;
144 int i,j;
145 r1bio_t *r1bio = __r1_bio;
147 for (i = 0; i < RESYNC_PAGES; i++)
148 for (j = pi->raid_disks; j-- ;) {
149 if (j == 0 ||
150 r1bio->bios[j]->bi_io_vec[i].bv_page !=
151 r1bio->bios[0]->bi_io_vec[i].bv_page)
152 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
154 for (i=0 ; i < pi->raid_disks; i++)
155 bio_put(r1bio->bios[i]);
157 r1bio_pool_free(r1bio, data);
160 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
162 int i;
164 for (i = 0; i < conf->raid_disks; i++) {
165 struct bio **bio = r1_bio->bios + i;
166 if (!BIO_SPECIAL(*bio))
167 bio_put(*bio);
168 *bio = NULL;
172 static void free_r1bio(r1bio_t *r1_bio)
174 conf_t *conf = r1_bio->mddev->private;
176 put_all_bios(conf, r1_bio);
177 mempool_free(r1_bio, conf->r1bio_pool);
180 static void put_buf(r1bio_t *r1_bio)
182 conf_t *conf = r1_bio->mddev->private;
183 int i;
185 for (i=0; i<conf->raid_disks; i++) {
186 struct bio *bio = r1_bio->bios[i];
187 if (bio->bi_end_io)
188 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
191 mempool_free(r1_bio, conf->r1buf_pool);
193 lower_barrier(conf);
196 static void reschedule_retry(r1bio_t *r1_bio)
198 unsigned long flags;
199 mddev_t *mddev = r1_bio->mddev;
200 conf_t *conf = mddev->private;
202 spin_lock_irqsave(&conf->device_lock, flags);
203 list_add(&r1_bio->retry_list, &conf->retry_list);
204 conf->nr_queued ++;
205 spin_unlock_irqrestore(&conf->device_lock, flags);
207 wake_up(&conf->wait_barrier);
208 md_wakeup_thread(mddev->thread);
212 * raid_end_bio_io() is called when we have finished servicing a mirrored
213 * operation and are ready to return a success/failure code to the buffer
214 * cache layer.
216 static void call_bio_endio(r1bio_t *r1_bio)
218 struct bio *bio = r1_bio->master_bio;
219 int done;
220 conf_t *conf = r1_bio->mddev->private;
222 if (bio->bi_phys_segments) {
223 unsigned long flags;
224 spin_lock_irqsave(&conf->device_lock, flags);
225 bio->bi_phys_segments--;
226 done = (bio->bi_phys_segments == 0);
227 spin_unlock_irqrestore(&conf->device_lock, flags);
228 } else
229 done = 1;
231 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
232 clear_bit(BIO_UPTODATE, &bio->bi_flags);
233 if (done) {
234 bio_endio(bio, 0);
236 * Wake up any possible resync thread that waits for the device
237 * to go idle.
239 allow_barrier(conf);
243 static void raid_end_bio_io(r1bio_t *r1_bio)
245 struct bio *bio = r1_bio->master_bio;
247 /* if nobody has done the final endio yet, do it now */
248 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
249 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
250 (bio_data_dir(bio) == WRITE) ? "write" : "read",
251 (unsigned long long) bio->bi_sector,
252 (unsigned long long) bio->bi_sector +
253 (bio->bi_size >> 9) - 1);
255 call_bio_endio(r1_bio);
257 free_r1bio(r1_bio);
261 * Update disk head position estimator based on IRQ completion info.
263 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
265 conf_t *conf = r1_bio->mddev->private;
267 conf->mirrors[disk].head_position =
268 r1_bio->sector + (r1_bio->sectors);
271 static void raid1_end_read_request(struct bio *bio, int error)
273 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
274 r1bio_t *r1_bio = bio->bi_private;
275 int mirror;
276 conf_t *conf = r1_bio->mddev->private;
278 mirror = r1_bio->read_disk;
280 * this branch is our 'one mirror IO has finished' event handler:
282 update_head_pos(mirror, r1_bio);
284 if (uptodate)
285 set_bit(R1BIO_Uptodate, &r1_bio->state);
286 else {
287 /* If all other devices have failed, we want to return
288 * the error upwards rather than fail the last device.
289 * Here we redefine "uptodate" to mean "Don't want to retry"
291 unsigned long flags;
292 spin_lock_irqsave(&conf->device_lock, flags);
293 if (r1_bio->mddev->degraded == conf->raid_disks ||
294 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
295 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
296 uptodate = 1;
297 spin_unlock_irqrestore(&conf->device_lock, flags);
300 if (uptodate)
301 raid_end_bio_io(r1_bio);
302 else {
304 * oops, read error:
306 char b[BDEVNAME_SIZE];
307 printk_ratelimited(
308 KERN_ERR "md/raid1:%s: %s: "
309 "rescheduling sector %llu\n",
310 mdname(conf->mddev),
311 bdevname(conf->mirrors[mirror].rdev->bdev,
313 (unsigned long long)r1_bio->sector);
314 set_bit(R1BIO_ReadError, &r1_bio->state);
315 reschedule_retry(r1_bio);
318 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
321 static void close_write(r1bio_t *r1_bio)
323 /* it really is the end of this request */
324 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
325 /* free extra copy of the data pages */
326 int i = r1_bio->behind_page_count;
327 while (i--)
328 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
329 kfree(r1_bio->behind_bvecs);
330 r1_bio->behind_bvecs = NULL;
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
334 r1_bio->sectors,
335 !test_bit(R1BIO_Degraded, &r1_bio->state),
336 test_bit(R1BIO_BehindIO, &r1_bio->state));
337 md_write_end(r1_bio->mddev);
340 static void r1_bio_write_done(r1bio_t *r1_bio)
342 if (!atomic_dec_and_test(&r1_bio->remaining))
343 return;
345 if (test_bit(R1BIO_WriteError, &r1_bio->state))
346 reschedule_retry(r1_bio);
347 else {
348 close_write(r1_bio);
349 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
350 reschedule_retry(r1_bio);
351 else
352 raid_end_bio_io(r1_bio);
356 static void raid1_end_write_request(struct bio *bio, int error)
358 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
359 r1bio_t *r1_bio = bio->bi_private;
360 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
361 conf_t *conf = r1_bio->mddev->private;
362 struct bio *to_put = NULL;
365 for (mirror = 0; mirror < conf->raid_disks; mirror++)
366 if (r1_bio->bios[mirror] == bio)
367 break;
370 * 'one mirror IO has finished' event handler:
372 if (!uptodate) {
373 set_bit(WriteErrorSeen,
374 &conf->mirrors[mirror].rdev->flags);
375 set_bit(R1BIO_WriteError, &r1_bio->state);
376 } else {
378 * Set R1BIO_Uptodate in our master bio, so that we
379 * will return a good error code for to the higher
380 * levels even if IO on some other mirrored buffer
381 * fails.
383 * The 'master' represents the composite IO operation
384 * to user-side. So if something waits for IO, then it
385 * will wait for the 'master' bio.
387 sector_t first_bad;
388 int bad_sectors;
390 r1_bio->bios[mirror] = NULL;
391 to_put = bio;
392 set_bit(R1BIO_Uptodate, &r1_bio->state);
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf->mirrors[mirror].rdev,
396 r1_bio->sector, r1_bio->sectors,
397 &first_bad, &bad_sectors)) {
398 r1_bio->bios[mirror] = IO_MADE_GOOD;
399 set_bit(R1BIO_MadeGood, &r1_bio->state);
403 update_head_pos(mirror, r1_bio);
405 if (behind) {
406 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
407 atomic_dec(&r1_bio->behind_remaining);
410 * In behind mode, we ACK the master bio once the I/O
411 * has safely reached all non-writemostly
412 * disks. Setting the Returned bit ensures that this
413 * gets done only once -- we don't ever want to return
414 * -EIO here, instead we'll wait
416 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
417 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
418 /* Maybe we can return now */
419 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
420 struct bio *mbio = r1_bio->master_bio;
421 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
422 (unsigned long long) mbio->bi_sector,
423 (unsigned long long) mbio->bi_sector +
424 (mbio->bi_size >> 9) - 1);
425 call_bio_endio(r1_bio);
429 if (r1_bio->bios[mirror] == NULL)
430 rdev_dec_pending(conf->mirrors[mirror].rdev,
431 conf->mddev);
434 * Let's see if all mirrored write operations have finished
435 * already.
437 r1_bio_write_done(r1_bio);
439 if (to_put)
440 bio_put(to_put);
445 * This routine returns the disk from which the requested read should
446 * be done. There is a per-array 'next expected sequential IO' sector
447 * number - if this matches on the next IO then we use the last disk.
448 * There is also a per-disk 'last know head position' sector that is
449 * maintained from IRQ contexts, both the normal and the resync IO
450 * completion handlers update this position correctly. If there is no
451 * perfect sequential match then we pick the disk whose head is closest.
453 * If there are 2 mirrors in the same 2 devices, performance degrades
454 * because position is mirror, not device based.
456 * The rdev for the device selected will have nr_pending incremented.
458 static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
460 const sector_t this_sector = r1_bio->sector;
461 int sectors;
462 int best_good_sectors;
463 int start_disk;
464 int best_disk;
465 int i;
466 sector_t best_dist;
467 mdk_rdev_t *rdev;
468 int choose_first;
470 rcu_read_lock();
472 * Check if we can balance. We can balance on the whole
473 * device if no resync is going on, or below the resync window.
474 * We take the first readable disk when above the resync window.
476 retry:
477 sectors = r1_bio->sectors;
478 best_disk = -1;
479 best_dist = MaxSector;
480 best_good_sectors = 0;
482 if (conf->mddev->recovery_cp < MaxSector &&
483 (this_sector + sectors >= conf->next_resync)) {
484 choose_first = 1;
485 start_disk = 0;
486 } else {
487 choose_first = 0;
488 start_disk = conf->last_used;
491 for (i = 0 ; i < conf->raid_disks ; i++) {
492 sector_t dist;
493 sector_t first_bad;
494 int bad_sectors;
496 int disk = start_disk + i;
497 if (disk >= conf->raid_disks)
498 disk -= conf->raid_disks;
500 rdev = rcu_dereference(conf->mirrors[disk].rdev);
501 if (r1_bio->bios[disk] == IO_BLOCKED
502 || rdev == NULL
503 || test_bit(Faulty, &rdev->flags))
504 continue;
505 if (!test_bit(In_sync, &rdev->flags) &&
506 rdev->recovery_offset < this_sector + sectors)
507 continue;
508 if (test_bit(WriteMostly, &rdev->flags)) {
509 /* Don't balance among write-mostly, just
510 * use the first as a last resort */
511 if (best_disk < 0)
512 best_disk = disk;
513 continue;
515 /* This is a reasonable device to use. It might
516 * even be best.
518 if (is_badblock(rdev, this_sector, sectors,
519 &first_bad, &bad_sectors)) {
520 if (best_dist < MaxSector)
521 /* already have a better device */
522 continue;
523 if (first_bad <= this_sector) {
524 /* cannot read here. If this is the 'primary'
525 * device, then we must not read beyond
526 * bad_sectors from another device..
528 bad_sectors -= (this_sector - first_bad);
529 if (choose_first && sectors > bad_sectors)
530 sectors = bad_sectors;
531 if (best_good_sectors > sectors)
532 best_good_sectors = sectors;
534 } else {
535 sector_t good_sectors = first_bad - this_sector;
536 if (good_sectors > best_good_sectors) {
537 best_good_sectors = good_sectors;
538 best_disk = disk;
540 if (choose_first)
541 break;
543 continue;
544 } else
545 best_good_sectors = sectors;
547 dist = abs(this_sector - conf->mirrors[disk].head_position);
548 if (choose_first
549 /* Don't change to another disk for sequential reads */
550 || conf->next_seq_sect == this_sector
551 || dist == 0
552 /* If device is idle, use it */
553 || atomic_read(&rdev->nr_pending) == 0) {
554 best_disk = disk;
555 break;
557 if (dist < best_dist) {
558 best_dist = dist;
559 best_disk = disk;
563 if (best_disk >= 0) {
564 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
565 if (!rdev)
566 goto retry;
567 atomic_inc(&rdev->nr_pending);
568 if (test_bit(Faulty, &rdev->flags)) {
569 /* cannot risk returning a device that failed
570 * before we inc'ed nr_pending
572 rdev_dec_pending(rdev, conf->mddev);
573 goto retry;
575 sectors = best_good_sectors;
576 conf->next_seq_sect = this_sector + sectors;
577 conf->last_used = best_disk;
579 rcu_read_unlock();
580 *max_sectors = sectors;
582 return best_disk;
585 int md_raid1_congested(mddev_t *mddev, int bits)
587 conf_t *conf = mddev->private;
588 int i, ret = 0;
590 rcu_read_lock();
591 for (i = 0; i < mddev->raid_disks; i++) {
592 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
593 if (rdev && !test_bit(Faulty, &rdev->flags)) {
594 struct request_queue *q = bdev_get_queue(rdev->bdev);
596 BUG_ON(!q);
598 /* Note the '|| 1' - when read_balance prefers
599 * non-congested targets, it can be removed
601 if ((bits & (1<<BDI_async_congested)) || 1)
602 ret |= bdi_congested(&q->backing_dev_info, bits);
603 else
604 ret &= bdi_congested(&q->backing_dev_info, bits);
607 rcu_read_unlock();
608 return ret;
610 EXPORT_SYMBOL_GPL(md_raid1_congested);
612 static int raid1_congested(void *data, int bits)
614 mddev_t *mddev = data;
616 return mddev_congested(mddev, bits) ||
617 md_raid1_congested(mddev, bits);
620 static void flush_pending_writes(conf_t *conf)
622 /* Any writes that have been queued but are awaiting
623 * bitmap updates get flushed here.
625 spin_lock_irq(&conf->device_lock);
627 if (conf->pending_bio_list.head) {
628 struct bio *bio;
629 bio = bio_list_get(&conf->pending_bio_list);
630 spin_unlock_irq(&conf->device_lock);
631 /* flush any pending bitmap writes to
632 * disk before proceeding w/ I/O */
633 bitmap_unplug(conf->mddev->bitmap);
635 while (bio) { /* submit pending writes */
636 struct bio *next = bio->bi_next;
637 bio->bi_next = NULL;
638 generic_make_request(bio);
639 bio = next;
641 } else
642 spin_unlock_irq(&conf->device_lock);
645 /* Barriers....
646 * Sometimes we need to suspend IO while we do something else,
647 * either some resync/recovery, or reconfigure the array.
648 * To do this we raise a 'barrier'.
649 * The 'barrier' is a counter that can be raised multiple times
650 * to count how many activities are happening which preclude
651 * normal IO.
652 * We can only raise the barrier if there is no pending IO.
653 * i.e. if nr_pending == 0.
654 * We choose only to raise the barrier if no-one is waiting for the
655 * barrier to go down. This means that as soon as an IO request
656 * is ready, no other operations which require a barrier will start
657 * until the IO request has had a chance.
659 * So: regular IO calls 'wait_barrier'. When that returns there
660 * is no backgroup IO happening, It must arrange to call
661 * allow_barrier when it has finished its IO.
662 * backgroup IO calls must call raise_barrier. Once that returns
663 * there is no normal IO happeing. It must arrange to call
664 * lower_barrier when the particular background IO completes.
666 #define RESYNC_DEPTH 32
668 static void raise_barrier(conf_t *conf)
670 spin_lock_irq(&conf->resync_lock);
672 /* Wait until no block IO is waiting */
673 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
674 conf->resync_lock, );
676 /* block any new IO from starting */
677 conf->barrier++;
679 /* Now wait for all pending IO to complete */
680 wait_event_lock_irq(conf->wait_barrier,
681 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
682 conf->resync_lock, );
684 spin_unlock_irq(&conf->resync_lock);
687 static void lower_barrier(conf_t *conf)
689 unsigned long flags;
690 BUG_ON(conf->barrier <= 0);
691 spin_lock_irqsave(&conf->resync_lock, flags);
692 conf->barrier--;
693 spin_unlock_irqrestore(&conf->resync_lock, flags);
694 wake_up(&conf->wait_barrier);
697 static void wait_barrier(conf_t *conf)
699 spin_lock_irq(&conf->resync_lock);
700 if (conf->barrier) {
701 conf->nr_waiting++;
702 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
703 conf->resync_lock,
705 conf->nr_waiting--;
707 conf->nr_pending++;
708 spin_unlock_irq(&conf->resync_lock);
711 static void allow_barrier(conf_t *conf)
713 unsigned long flags;
714 spin_lock_irqsave(&conf->resync_lock, flags);
715 conf->nr_pending--;
716 spin_unlock_irqrestore(&conf->resync_lock, flags);
717 wake_up(&conf->wait_barrier);
720 static void freeze_array(conf_t *conf)
722 /* stop syncio and normal IO and wait for everything to
723 * go quite.
724 * We increment barrier and nr_waiting, and then
725 * wait until nr_pending match nr_queued+1
726 * This is called in the context of one normal IO request
727 * that has failed. Thus any sync request that might be pending
728 * will be blocked by nr_pending, and we need to wait for
729 * pending IO requests to complete or be queued for re-try.
730 * Thus the number queued (nr_queued) plus this request (1)
731 * must match the number of pending IOs (nr_pending) before
732 * we continue.
734 spin_lock_irq(&conf->resync_lock);
735 conf->barrier++;
736 conf->nr_waiting++;
737 wait_event_lock_irq(conf->wait_barrier,
738 conf->nr_pending == conf->nr_queued+1,
739 conf->resync_lock,
740 flush_pending_writes(conf));
741 spin_unlock_irq(&conf->resync_lock);
743 static void unfreeze_array(conf_t *conf)
745 /* reverse the effect of the freeze */
746 spin_lock_irq(&conf->resync_lock);
747 conf->barrier--;
748 conf->nr_waiting--;
749 wake_up(&conf->wait_barrier);
750 spin_unlock_irq(&conf->resync_lock);
754 /* duplicate the data pages for behind I/O
756 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
758 int i;
759 struct bio_vec *bvec;
760 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
761 GFP_NOIO);
762 if (unlikely(!bvecs))
763 return;
765 bio_for_each_segment(bvec, bio, i) {
766 bvecs[i] = *bvec;
767 bvecs[i].bv_page = alloc_page(GFP_NOIO);
768 if (unlikely(!bvecs[i].bv_page))
769 goto do_sync_io;
770 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
771 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
772 kunmap(bvecs[i].bv_page);
773 kunmap(bvec->bv_page);
775 r1_bio->behind_bvecs = bvecs;
776 r1_bio->behind_page_count = bio->bi_vcnt;
777 set_bit(R1BIO_BehindIO, &r1_bio->state);
778 return;
780 do_sync_io:
781 for (i = 0; i < bio->bi_vcnt; i++)
782 if (bvecs[i].bv_page)
783 put_page(bvecs[i].bv_page);
784 kfree(bvecs);
785 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
788 static int make_request(mddev_t *mddev, struct bio * bio)
790 conf_t *conf = mddev->private;
791 mirror_info_t *mirror;
792 r1bio_t *r1_bio;
793 struct bio *read_bio;
794 int i, disks;
795 struct bitmap *bitmap;
796 unsigned long flags;
797 const int rw = bio_data_dir(bio);
798 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
799 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
800 mdk_rdev_t *blocked_rdev;
801 int plugged;
802 int first_clone;
803 int sectors_handled;
804 int max_sectors;
807 * Register the new request and wait if the reconstruction
808 * thread has put up a bar for new requests.
809 * Continue immediately if no resync is active currently.
812 md_write_start(mddev, bio); /* wait on superblock update early */
814 if (bio_data_dir(bio) == WRITE &&
815 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
816 bio->bi_sector < mddev->suspend_hi) {
817 /* As the suspend_* range is controlled by
818 * userspace, we want an interruptible
819 * wait.
821 DEFINE_WAIT(w);
822 for (;;) {
823 flush_signals(current);
824 prepare_to_wait(&conf->wait_barrier,
825 &w, TASK_INTERRUPTIBLE);
826 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
827 bio->bi_sector >= mddev->suspend_hi)
828 break;
829 schedule();
831 finish_wait(&conf->wait_barrier, &w);
834 wait_barrier(conf);
836 bitmap = mddev->bitmap;
839 * make_request() can abort the operation when READA is being
840 * used and no empty request is available.
843 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
845 r1_bio->master_bio = bio;
846 r1_bio->sectors = bio->bi_size >> 9;
847 r1_bio->state = 0;
848 r1_bio->mddev = mddev;
849 r1_bio->sector = bio->bi_sector;
851 /* We might need to issue multiple reads to different
852 * devices if there are bad blocks around, so we keep
853 * track of the number of reads in bio->bi_phys_segments.
854 * If this is 0, there is only one r1_bio and no locking
855 * will be needed when requests complete. If it is
856 * non-zero, then it is the number of not-completed requests.
858 bio->bi_phys_segments = 0;
859 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
861 if (rw == READ) {
863 * read balancing logic:
865 int rdisk;
867 read_again:
868 rdisk = read_balance(conf, r1_bio, &max_sectors);
870 if (rdisk < 0) {
871 /* couldn't find anywhere to read from */
872 raid_end_bio_io(r1_bio);
873 return 0;
875 mirror = conf->mirrors + rdisk;
877 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
878 bitmap) {
879 /* Reading from a write-mostly device must
880 * take care not to over-take any writes
881 * that are 'behind'
883 wait_event(bitmap->behind_wait,
884 atomic_read(&bitmap->behind_writes) == 0);
886 r1_bio->read_disk = rdisk;
888 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
889 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
890 max_sectors);
892 r1_bio->bios[rdisk] = read_bio;
894 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
895 read_bio->bi_bdev = mirror->rdev->bdev;
896 read_bio->bi_end_io = raid1_end_read_request;
897 read_bio->bi_rw = READ | do_sync;
898 read_bio->bi_private = r1_bio;
900 if (max_sectors < r1_bio->sectors) {
901 /* could not read all from this device, so we will
902 * need another r1_bio.
905 sectors_handled = (r1_bio->sector + max_sectors
906 - bio->bi_sector);
907 r1_bio->sectors = max_sectors;
908 spin_lock_irq(&conf->device_lock);
909 if (bio->bi_phys_segments == 0)
910 bio->bi_phys_segments = 2;
911 else
912 bio->bi_phys_segments++;
913 spin_unlock_irq(&conf->device_lock);
914 /* Cannot call generic_make_request directly
915 * as that will be queued in __make_request
916 * and subsequent mempool_alloc might block waiting
917 * for it. So hand bio over to raid1d.
919 reschedule_retry(r1_bio);
921 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
923 r1_bio->master_bio = bio;
924 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
925 r1_bio->state = 0;
926 r1_bio->mddev = mddev;
927 r1_bio->sector = bio->bi_sector + sectors_handled;
928 goto read_again;
929 } else
930 generic_make_request(read_bio);
931 return 0;
935 * WRITE:
937 /* first select target devices under rcu_lock and
938 * inc refcount on their rdev. Record them by setting
939 * bios[x] to bio
940 * If there are known/acknowledged bad blocks on any device on
941 * which we have seen a write error, we want to avoid writing those
942 * blocks.
943 * This potentially requires several writes to write around
944 * the bad blocks. Each set of writes gets it's own r1bio
945 * with a set of bios attached.
947 plugged = mddev_check_plugged(mddev);
949 disks = conf->raid_disks;
950 retry_write:
951 blocked_rdev = NULL;
952 rcu_read_lock();
953 max_sectors = r1_bio->sectors;
954 for (i = 0; i < disks; i++) {
955 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
956 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
957 atomic_inc(&rdev->nr_pending);
958 blocked_rdev = rdev;
959 break;
961 r1_bio->bios[i] = NULL;
962 if (!rdev || test_bit(Faulty, &rdev->flags)) {
963 set_bit(R1BIO_Degraded, &r1_bio->state);
964 continue;
967 atomic_inc(&rdev->nr_pending);
968 if (test_bit(WriteErrorSeen, &rdev->flags)) {
969 sector_t first_bad;
970 int bad_sectors;
971 int is_bad;
973 is_bad = is_badblock(rdev, r1_bio->sector,
974 max_sectors,
975 &first_bad, &bad_sectors);
976 if (is_bad < 0) {
977 /* mustn't write here until the bad block is
978 * acknowledged*/
979 set_bit(BlockedBadBlocks, &rdev->flags);
980 blocked_rdev = rdev;
981 break;
983 if (is_bad && first_bad <= r1_bio->sector) {
984 /* Cannot write here at all */
985 bad_sectors -= (r1_bio->sector - first_bad);
986 if (bad_sectors < max_sectors)
987 /* mustn't write more than bad_sectors
988 * to other devices yet
990 max_sectors = bad_sectors;
991 rdev_dec_pending(rdev, mddev);
992 /* We don't set R1BIO_Degraded as that
993 * only applies if the disk is
994 * missing, so it might be re-added,
995 * and we want to know to recover this
996 * chunk.
997 * In this case the device is here,
998 * and the fact that this chunk is not
999 * in-sync is recorded in the bad
1000 * block log
1002 continue;
1004 if (is_bad) {
1005 int good_sectors = first_bad - r1_bio->sector;
1006 if (good_sectors < max_sectors)
1007 max_sectors = good_sectors;
1010 r1_bio->bios[i] = bio;
1012 rcu_read_unlock();
1014 if (unlikely(blocked_rdev)) {
1015 /* Wait for this device to become unblocked */
1016 int j;
1018 for (j = 0; j < i; j++)
1019 if (r1_bio->bios[j])
1020 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1021 r1_bio->state = 0;
1022 allow_barrier(conf);
1023 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024 wait_barrier(conf);
1025 goto retry_write;
1028 if (max_sectors < r1_bio->sectors) {
1029 /* We are splitting this write into multiple parts, so
1030 * we need to prepare for allocating another r1_bio.
1032 r1_bio->sectors = max_sectors;
1033 spin_lock_irq(&conf->device_lock);
1034 if (bio->bi_phys_segments == 0)
1035 bio->bi_phys_segments = 2;
1036 else
1037 bio->bi_phys_segments++;
1038 spin_unlock_irq(&conf->device_lock);
1040 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1042 atomic_set(&r1_bio->remaining, 1);
1043 atomic_set(&r1_bio->behind_remaining, 0);
1045 first_clone = 1;
1046 for (i = 0; i < disks; i++) {
1047 struct bio *mbio;
1048 if (!r1_bio->bios[i])
1049 continue;
1051 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1052 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1054 if (first_clone) {
1055 /* do behind I/O ?
1056 * Not if there are too many, or cannot
1057 * allocate memory, or a reader on WriteMostly
1058 * is waiting for behind writes to flush */
1059 if (bitmap &&
1060 (atomic_read(&bitmap->behind_writes)
1061 < mddev->bitmap_info.max_write_behind) &&
1062 !waitqueue_active(&bitmap->behind_wait))
1063 alloc_behind_pages(mbio, r1_bio);
1065 bitmap_startwrite(bitmap, r1_bio->sector,
1066 r1_bio->sectors,
1067 test_bit(R1BIO_BehindIO,
1068 &r1_bio->state));
1069 first_clone = 0;
1071 if (r1_bio->behind_bvecs) {
1072 struct bio_vec *bvec;
1073 int j;
1075 /* Yes, I really want the '__' version so that
1076 * we clear any unused pointer in the io_vec, rather
1077 * than leave them unchanged. This is important
1078 * because when we come to free the pages, we won't
1079 * know the original bi_idx, so we just free
1080 * them all
1082 __bio_for_each_segment(bvec, mbio, j, 0)
1083 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1084 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085 atomic_inc(&r1_bio->behind_remaining);
1088 r1_bio->bios[i] = mbio;
1090 mbio->bi_sector = (r1_bio->sector +
1091 conf->mirrors[i].rdev->data_offset);
1092 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093 mbio->bi_end_io = raid1_end_write_request;
1094 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1095 mbio->bi_private = r1_bio;
1097 atomic_inc(&r1_bio->remaining);
1098 spin_lock_irqsave(&conf->device_lock, flags);
1099 bio_list_add(&conf->pending_bio_list, mbio);
1100 spin_unlock_irqrestore(&conf->device_lock, flags);
1102 /* Mustn't call r1_bio_write_done before this next test,
1103 * as it could result in the bio being freed.
1105 if (sectors_handled < (bio->bi_size >> 9)) {
1106 r1_bio_write_done(r1_bio);
1107 /* We need another r1_bio. It has already been counted
1108 * in bio->bi_phys_segments
1110 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1111 r1_bio->master_bio = bio;
1112 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1113 r1_bio->state = 0;
1114 r1_bio->mddev = mddev;
1115 r1_bio->sector = bio->bi_sector + sectors_handled;
1116 goto retry_write;
1119 r1_bio_write_done(r1_bio);
1121 /* In case raid1d snuck in to freeze_array */
1122 wake_up(&conf->wait_barrier);
1124 if (do_sync || !bitmap || !plugged)
1125 md_wakeup_thread(mddev->thread);
1127 return 0;
1130 static void status(struct seq_file *seq, mddev_t *mddev)
1132 conf_t *conf = mddev->private;
1133 int i;
1135 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1136 conf->raid_disks - mddev->degraded);
1137 rcu_read_lock();
1138 for (i = 0; i < conf->raid_disks; i++) {
1139 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1140 seq_printf(seq, "%s",
1141 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1143 rcu_read_unlock();
1144 seq_printf(seq, "]");
1148 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1150 char b[BDEVNAME_SIZE];
1151 conf_t *conf = mddev->private;
1154 * If it is not operational, then we have already marked it as dead
1155 * else if it is the last working disks, ignore the error, let the
1156 * next level up know.
1157 * else mark the drive as failed
1159 if (test_bit(In_sync, &rdev->flags)
1160 && (conf->raid_disks - mddev->degraded) == 1) {
1162 * Don't fail the drive, act as though we were just a
1163 * normal single drive.
1164 * However don't try a recovery from this drive as
1165 * it is very likely to fail.
1167 conf->recovery_disabled = mddev->recovery_disabled;
1168 return;
1170 set_bit(Blocked, &rdev->flags);
1171 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1172 unsigned long flags;
1173 spin_lock_irqsave(&conf->device_lock, flags);
1174 mddev->degraded++;
1175 set_bit(Faulty, &rdev->flags);
1176 spin_unlock_irqrestore(&conf->device_lock, flags);
1178 * if recovery is running, make sure it aborts.
1180 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1181 } else
1182 set_bit(Faulty, &rdev->flags);
1183 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1184 printk(KERN_ALERT
1185 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1186 "md/raid1:%s: Operation continuing on %d devices.\n",
1187 mdname(mddev), bdevname(rdev->bdev, b),
1188 mdname(mddev), conf->raid_disks - mddev->degraded);
1191 static void print_conf(conf_t *conf)
1193 int i;
1195 printk(KERN_DEBUG "RAID1 conf printout:\n");
1196 if (!conf) {
1197 printk(KERN_DEBUG "(!conf)\n");
1198 return;
1200 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1201 conf->raid_disks);
1203 rcu_read_lock();
1204 for (i = 0; i < conf->raid_disks; i++) {
1205 char b[BDEVNAME_SIZE];
1206 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1207 if (rdev)
1208 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1209 i, !test_bit(In_sync, &rdev->flags),
1210 !test_bit(Faulty, &rdev->flags),
1211 bdevname(rdev->bdev,b));
1213 rcu_read_unlock();
1216 static void close_sync(conf_t *conf)
1218 wait_barrier(conf);
1219 allow_barrier(conf);
1221 mempool_destroy(conf->r1buf_pool);
1222 conf->r1buf_pool = NULL;
1225 static int raid1_spare_active(mddev_t *mddev)
1227 int i;
1228 conf_t *conf = mddev->private;
1229 int count = 0;
1230 unsigned long flags;
1233 * Find all failed disks within the RAID1 configuration
1234 * and mark them readable.
1235 * Called under mddev lock, so rcu protection not needed.
1237 for (i = 0; i < conf->raid_disks; i++) {
1238 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1239 if (rdev
1240 && !test_bit(Faulty, &rdev->flags)
1241 && !test_and_set_bit(In_sync, &rdev->flags)) {
1242 count++;
1243 sysfs_notify_dirent_safe(rdev->sysfs_state);
1246 spin_lock_irqsave(&conf->device_lock, flags);
1247 mddev->degraded -= count;
1248 spin_unlock_irqrestore(&conf->device_lock, flags);
1250 print_conf(conf);
1251 return count;
1255 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1257 conf_t *conf = mddev->private;
1258 int err = -EEXIST;
1259 int mirror = 0;
1260 mirror_info_t *p;
1261 int first = 0;
1262 int last = mddev->raid_disks - 1;
1264 if (mddev->recovery_disabled == conf->recovery_disabled)
1265 return -EBUSY;
1267 if (rdev->raid_disk >= 0)
1268 first = last = rdev->raid_disk;
1270 for (mirror = first; mirror <= last; mirror++)
1271 if ( !(p=conf->mirrors+mirror)->rdev) {
1273 disk_stack_limits(mddev->gendisk, rdev->bdev,
1274 rdev->data_offset << 9);
1275 /* as we don't honour merge_bvec_fn, we must
1276 * never risk violating it, so limit
1277 * ->max_segments to one lying with a single
1278 * page, as a one page request is never in
1279 * violation.
1281 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1282 blk_queue_max_segments(mddev->queue, 1);
1283 blk_queue_segment_boundary(mddev->queue,
1284 PAGE_CACHE_SIZE - 1);
1287 p->head_position = 0;
1288 rdev->raid_disk = mirror;
1289 err = 0;
1290 /* As all devices are equivalent, we don't need a full recovery
1291 * if this was recently any drive of the array
1293 if (rdev->saved_raid_disk < 0)
1294 conf->fullsync = 1;
1295 rcu_assign_pointer(p->rdev, rdev);
1296 break;
1298 md_integrity_add_rdev(rdev, mddev);
1299 print_conf(conf);
1300 return err;
1303 static int raid1_remove_disk(mddev_t *mddev, int number)
1305 conf_t *conf = mddev->private;
1306 int err = 0;
1307 mdk_rdev_t *rdev;
1308 mirror_info_t *p = conf->mirrors+ number;
1310 print_conf(conf);
1311 rdev = p->rdev;
1312 if (rdev) {
1313 if (test_bit(In_sync, &rdev->flags) ||
1314 atomic_read(&rdev->nr_pending)) {
1315 err = -EBUSY;
1316 goto abort;
1318 /* Only remove non-faulty devices if recovery
1319 * is not possible.
1321 if (!test_bit(Faulty, &rdev->flags) &&
1322 mddev->recovery_disabled != conf->recovery_disabled &&
1323 mddev->degraded < conf->raid_disks) {
1324 err = -EBUSY;
1325 goto abort;
1327 p->rdev = NULL;
1328 synchronize_rcu();
1329 if (atomic_read(&rdev->nr_pending)) {
1330 /* lost the race, try later */
1331 err = -EBUSY;
1332 p->rdev = rdev;
1333 goto abort;
1335 err = md_integrity_register(mddev);
1337 abort:
1339 print_conf(conf);
1340 return err;
1344 static void end_sync_read(struct bio *bio, int error)
1346 r1bio_t *r1_bio = bio->bi_private;
1347 int i;
1349 for (i=r1_bio->mddev->raid_disks; i--; )
1350 if (r1_bio->bios[i] == bio)
1351 break;
1352 BUG_ON(i < 0);
1353 update_head_pos(i, r1_bio);
1355 * we have read a block, now it needs to be re-written,
1356 * or re-read if the read failed.
1357 * We don't do much here, just schedule handling by raid1d
1359 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1360 set_bit(R1BIO_Uptodate, &r1_bio->state);
1362 if (atomic_dec_and_test(&r1_bio->remaining))
1363 reschedule_retry(r1_bio);
1366 static void end_sync_write(struct bio *bio, int error)
1368 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1369 r1bio_t *r1_bio = bio->bi_private;
1370 mddev_t *mddev = r1_bio->mddev;
1371 conf_t *conf = mddev->private;
1372 int i;
1373 int mirror=0;
1374 sector_t first_bad;
1375 int bad_sectors;
1377 for (i = 0; i < conf->raid_disks; i++)
1378 if (r1_bio->bios[i] == bio) {
1379 mirror = i;
1380 break;
1382 if (!uptodate) {
1383 sector_t sync_blocks = 0;
1384 sector_t s = r1_bio->sector;
1385 long sectors_to_go = r1_bio->sectors;
1386 /* make sure these bits doesn't get cleared. */
1387 do {
1388 bitmap_end_sync(mddev->bitmap, s,
1389 &sync_blocks, 1);
1390 s += sync_blocks;
1391 sectors_to_go -= sync_blocks;
1392 } while (sectors_to_go > 0);
1393 set_bit(WriteErrorSeen,
1394 &conf->mirrors[mirror].rdev->flags);
1395 set_bit(R1BIO_WriteError, &r1_bio->state);
1396 } else if (is_badblock(conf->mirrors[mirror].rdev,
1397 r1_bio->sector,
1398 r1_bio->sectors,
1399 &first_bad, &bad_sectors) &&
1400 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1401 r1_bio->sector,
1402 r1_bio->sectors,
1403 &first_bad, &bad_sectors)
1405 set_bit(R1BIO_MadeGood, &r1_bio->state);
1407 update_head_pos(mirror, r1_bio);
1409 if (atomic_dec_and_test(&r1_bio->remaining)) {
1410 int s = r1_bio->sectors;
1411 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1412 test_bit(R1BIO_WriteError, &r1_bio->state))
1413 reschedule_retry(r1_bio);
1414 else {
1415 put_buf(r1_bio);
1416 md_done_sync(mddev, s, uptodate);
1421 static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1422 int sectors, struct page *page, int rw)
1424 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1425 /* success */
1426 return 1;
1427 if (rw == WRITE)
1428 set_bit(WriteErrorSeen, &rdev->flags);
1429 /* need to record an error - either for the block or the device */
1430 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1431 md_error(rdev->mddev, rdev);
1432 return 0;
1435 static int fix_sync_read_error(r1bio_t *r1_bio)
1437 /* Try some synchronous reads of other devices to get
1438 * good data, much like with normal read errors. Only
1439 * read into the pages we already have so we don't
1440 * need to re-issue the read request.
1441 * We don't need to freeze the array, because being in an
1442 * active sync request, there is no normal IO, and
1443 * no overlapping syncs.
1444 * We don't need to check is_badblock() again as we
1445 * made sure that anything with a bad block in range
1446 * will have bi_end_io clear.
1448 mddev_t *mddev = r1_bio->mddev;
1449 conf_t *conf = mddev->private;
1450 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1451 sector_t sect = r1_bio->sector;
1452 int sectors = r1_bio->sectors;
1453 int idx = 0;
1455 while(sectors) {
1456 int s = sectors;
1457 int d = r1_bio->read_disk;
1458 int success = 0;
1459 mdk_rdev_t *rdev;
1460 int start;
1462 if (s > (PAGE_SIZE>>9))
1463 s = PAGE_SIZE >> 9;
1464 do {
1465 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1466 /* No rcu protection needed here devices
1467 * can only be removed when no resync is
1468 * active, and resync is currently active
1470 rdev = conf->mirrors[d].rdev;
1471 if (sync_page_io(rdev, sect, s<<9,
1472 bio->bi_io_vec[idx].bv_page,
1473 READ, false)) {
1474 success = 1;
1475 break;
1478 d++;
1479 if (d == conf->raid_disks)
1480 d = 0;
1481 } while (!success && d != r1_bio->read_disk);
1483 if (!success) {
1484 char b[BDEVNAME_SIZE];
1485 int abort = 0;
1486 /* Cannot read from anywhere, this block is lost.
1487 * Record a bad block on each device. If that doesn't
1488 * work just disable and interrupt the recovery.
1489 * Don't fail devices as that won't really help.
1491 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1492 " for block %llu\n",
1493 mdname(mddev),
1494 bdevname(bio->bi_bdev, b),
1495 (unsigned long long)r1_bio->sector);
1496 for (d = 0; d < conf->raid_disks; d++) {
1497 rdev = conf->mirrors[d].rdev;
1498 if (!rdev || test_bit(Faulty, &rdev->flags))
1499 continue;
1500 if (!rdev_set_badblocks(rdev, sect, s, 0))
1501 abort = 1;
1503 if (abort) {
1504 mddev->recovery_disabled = 1;
1505 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1506 md_done_sync(mddev, r1_bio->sectors, 0);
1507 put_buf(r1_bio);
1508 return 0;
1510 /* Try next page */
1511 sectors -= s;
1512 sect += s;
1513 idx++;
1514 continue;
1517 start = d;
1518 /* write it back and re-read */
1519 while (d != r1_bio->read_disk) {
1520 if (d == 0)
1521 d = conf->raid_disks;
1522 d--;
1523 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1524 continue;
1525 rdev = conf->mirrors[d].rdev;
1526 if (r1_sync_page_io(rdev, sect, s,
1527 bio->bi_io_vec[idx].bv_page,
1528 WRITE) == 0) {
1529 r1_bio->bios[d]->bi_end_io = NULL;
1530 rdev_dec_pending(rdev, mddev);
1533 d = start;
1534 while (d != r1_bio->read_disk) {
1535 if (d == 0)
1536 d = conf->raid_disks;
1537 d--;
1538 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1539 continue;
1540 rdev = conf->mirrors[d].rdev;
1541 if (r1_sync_page_io(rdev, sect, s,
1542 bio->bi_io_vec[idx].bv_page,
1543 READ) != 0)
1544 atomic_add(s, &rdev->corrected_errors);
1546 sectors -= s;
1547 sect += s;
1548 idx ++;
1550 set_bit(R1BIO_Uptodate, &r1_bio->state);
1551 set_bit(BIO_UPTODATE, &bio->bi_flags);
1552 return 1;
1555 static int process_checks(r1bio_t *r1_bio)
1557 /* We have read all readable devices. If we haven't
1558 * got the block, then there is no hope left.
1559 * If we have, then we want to do a comparison
1560 * and skip the write if everything is the same.
1561 * If any blocks failed to read, then we need to
1562 * attempt an over-write
1564 mddev_t *mddev = r1_bio->mddev;
1565 conf_t *conf = mddev->private;
1566 int primary;
1567 int i;
1569 for (primary = 0; primary < conf->raid_disks; primary++)
1570 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1571 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1572 r1_bio->bios[primary]->bi_end_io = NULL;
1573 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1574 break;
1576 r1_bio->read_disk = primary;
1577 for (i = 0; i < conf->raid_disks; i++) {
1578 int j;
1579 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1580 struct bio *pbio = r1_bio->bios[primary];
1581 struct bio *sbio = r1_bio->bios[i];
1582 int size;
1584 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1585 continue;
1587 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1588 for (j = vcnt; j-- ; ) {
1589 struct page *p, *s;
1590 p = pbio->bi_io_vec[j].bv_page;
1591 s = sbio->bi_io_vec[j].bv_page;
1592 if (memcmp(page_address(p),
1593 page_address(s),
1594 PAGE_SIZE))
1595 break;
1597 } else
1598 j = 0;
1599 if (j >= 0)
1600 mddev->resync_mismatches += r1_bio->sectors;
1601 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1602 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1603 /* No need to write to this device. */
1604 sbio->bi_end_io = NULL;
1605 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1606 continue;
1608 /* fixup the bio for reuse */
1609 sbio->bi_vcnt = vcnt;
1610 sbio->bi_size = r1_bio->sectors << 9;
1611 sbio->bi_idx = 0;
1612 sbio->bi_phys_segments = 0;
1613 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1614 sbio->bi_flags |= 1 << BIO_UPTODATE;
1615 sbio->bi_next = NULL;
1616 sbio->bi_sector = r1_bio->sector +
1617 conf->mirrors[i].rdev->data_offset;
1618 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1619 size = sbio->bi_size;
1620 for (j = 0; j < vcnt ; j++) {
1621 struct bio_vec *bi;
1622 bi = &sbio->bi_io_vec[j];
1623 bi->bv_offset = 0;
1624 if (size > PAGE_SIZE)
1625 bi->bv_len = PAGE_SIZE;
1626 else
1627 bi->bv_len = size;
1628 size -= PAGE_SIZE;
1629 memcpy(page_address(bi->bv_page),
1630 page_address(pbio->bi_io_vec[j].bv_page),
1631 PAGE_SIZE);
1634 return 0;
1637 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1639 conf_t *conf = mddev->private;
1640 int i;
1641 int disks = conf->raid_disks;
1642 struct bio *bio, *wbio;
1644 bio = r1_bio->bios[r1_bio->read_disk];
1646 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1647 /* ouch - failed to read all of that. */
1648 if (!fix_sync_read_error(r1_bio))
1649 return;
1651 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1652 if (process_checks(r1_bio) < 0)
1653 return;
1655 * schedule writes
1657 atomic_set(&r1_bio->remaining, 1);
1658 for (i = 0; i < disks ; i++) {
1659 wbio = r1_bio->bios[i];
1660 if (wbio->bi_end_io == NULL ||
1661 (wbio->bi_end_io == end_sync_read &&
1662 (i == r1_bio->read_disk ||
1663 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1664 continue;
1666 wbio->bi_rw = WRITE;
1667 wbio->bi_end_io = end_sync_write;
1668 atomic_inc(&r1_bio->remaining);
1669 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1671 generic_make_request(wbio);
1674 if (atomic_dec_and_test(&r1_bio->remaining)) {
1675 /* if we're here, all write(s) have completed, so clean up */
1676 md_done_sync(mddev, r1_bio->sectors, 1);
1677 put_buf(r1_bio);
1682 * This is a kernel thread which:
1684 * 1. Retries failed read operations on working mirrors.
1685 * 2. Updates the raid superblock when problems encounter.
1686 * 3. Performs writes following reads for array synchronising.
1689 static void fix_read_error(conf_t *conf, int read_disk,
1690 sector_t sect, int sectors)
1692 mddev_t *mddev = conf->mddev;
1693 while(sectors) {
1694 int s = sectors;
1695 int d = read_disk;
1696 int success = 0;
1697 int start;
1698 mdk_rdev_t *rdev;
1700 if (s > (PAGE_SIZE>>9))
1701 s = PAGE_SIZE >> 9;
1703 do {
1704 /* Note: no rcu protection needed here
1705 * as this is synchronous in the raid1d thread
1706 * which is the thread that might remove
1707 * a device. If raid1d ever becomes multi-threaded....
1709 sector_t first_bad;
1710 int bad_sectors;
1712 rdev = conf->mirrors[d].rdev;
1713 if (rdev &&
1714 test_bit(In_sync, &rdev->flags) &&
1715 is_badblock(rdev, sect, s,
1716 &first_bad, &bad_sectors) == 0 &&
1717 sync_page_io(rdev, sect, s<<9,
1718 conf->tmppage, READ, false))
1719 success = 1;
1720 else {
1721 d++;
1722 if (d == conf->raid_disks)
1723 d = 0;
1725 } while (!success && d != read_disk);
1727 if (!success) {
1728 /* Cannot read from anywhere - mark it bad */
1729 mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1730 if (!rdev_set_badblocks(rdev, sect, s, 0))
1731 md_error(mddev, rdev);
1732 break;
1734 /* write it back and re-read */
1735 start = d;
1736 while (d != read_disk) {
1737 if (d==0)
1738 d = conf->raid_disks;
1739 d--;
1740 rdev = conf->mirrors[d].rdev;
1741 if (rdev &&
1742 test_bit(In_sync, &rdev->flags))
1743 r1_sync_page_io(rdev, sect, s,
1744 conf->tmppage, WRITE);
1746 d = start;
1747 while (d != read_disk) {
1748 char b[BDEVNAME_SIZE];
1749 if (d==0)
1750 d = conf->raid_disks;
1751 d--;
1752 rdev = conf->mirrors[d].rdev;
1753 if (rdev &&
1754 test_bit(In_sync, &rdev->flags)) {
1755 if (r1_sync_page_io(rdev, sect, s,
1756 conf->tmppage, READ)) {
1757 atomic_add(s, &rdev->corrected_errors);
1758 printk(KERN_INFO
1759 "md/raid1:%s: read error corrected "
1760 "(%d sectors at %llu on %s)\n",
1761 mdname(mddev), s,
1762 (unsigned long long)(sect +
1763 rdev->data_offset),
1764 bdevname(rdev->bdev, b));
1768 sectors -= s;
1769 sect += s;
1773 static void bi_complete(struct bio *bio, int error)
1775 complete((struct completion *)bio->bi_private);
1778 static int submit_bio_wait(int rw, struct bio *bio)
1780 struct completion event;
1781 rw |= REQ_SYNC;
1783 init_completion(&event);
1784 bio->bi_private = &event;
1785 bio->bi_end_io = bi_complete;
1786 submit_bio(rw, bio);
1787 wait_for_completion(&event);
1789 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1792 static int narrow_write_error(r1bio_t *r1_bio, int i)
1794 mddev_t *mddev = r1_bio->mddev;
1795 conf_t *conf = mddev->private;
1796 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1797 int vcnt, idx;
1798 struct bio_vec *vec;
1800 /* bio has the data to be written to device 'i' where
1801 * we just recently had a write error.
1802 * We repeatedly clone the bio and trim down to one block,
1803 * then try the write. Where the write fails we record
1804 * a bad block.
1805 * It is conceivable that the bio doesn't exactly align with
1806 * blocks. We must handle this somehow.
1808 * We currently own a reference on the rdev.
1811 int block_sectors;
1812 sector_t sector;
1813 int sectors;
1814 int sect_to_write = r1_bio->sectors;
1815 int ok = 1;
1817 if (rdev->badblocks.shift < 0)
1818 return 0;
1820 block_sectors = 1 << rdev->badblocks.shift;
1821 sector = r1_bio->sector;
1822 sectors = ((sector + block_sectors)
1823 & ~(sector_t)(block_sectors - 1))
1824 - sector;
1826 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1827 vcnt = r1_bio->behind_page_count;
1828 vec = r1_bio->behind_bvecs;
1829 idx = 0;
1830 while (vec[idx].bv_page == NULL)
1831 idx++;
1832 } else {
1833 vcnt = r1_bio->master_bio->bi_vcnt;
1834 vec = r1_bio->master_bio->bi_io_vec;
1835 idx = r1_bio->master_bio->bi_idx;
1837 while (sect_to_write) {
1838 struct bio *wbio;
1839 if (sectors > sect_to_write)
1840 sectors = sect_to_write;
1841 /* Write at 'sector' for 'sectors'*/
1843 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1844 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1845 wbio->bi_sector = r1_bio->sector;
1846 wbio->bi_rw = WRITE;
1847 wbio->bi_vcnt = vcnt;
1848 wbio->bi_size = r1_bio->sectors << 9;
1849 wbio->bi_idx = idx;
1851 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1852 wbio->bi_sector += rdev->data_offset;
1853 wbio->bi_bdev = rdev->bdev;
1854 if (submit_bio_wait(WRITE, wbio) == 0)
1855 /* failure! */
1856 ok = rdev_set_badblocks(rdev, sector,
1857 sectors, 0)
1858 && ok;
1860 bio_put(wbio);
1861 sect_to_write -= sectors;
1862 sector += sectors;
1863 sectors = block_sectors;
1865 return ok;
1868 static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1870 int m;
1871 int s = r1_bio->sectors;
1872 for (m = 0; m < conf->raid_disks ; m++) {
1873 mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1874 struct bio *bio = r1_bio->bios[m];
1875 if (bio->bi_end_io == NULL)
1876 continue;
1877 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1878 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1879 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1881 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1882 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1883 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1884 md_error(conf->mddev, rdev);
1887 put_buf(r1_bio);
1888 md_done_sync(conf->mddev, s, 1);
1891 static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1893 int m;
1894 for (m = 0; m < conf->raid_disks ; m++)
1895 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1896 mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1897 rdev_clear_badblocks(rdev,
1898 r1_bio->sector,
1899 r1_bio->sectors);
1900 rdev_dec_pending(rdev, conf->mddev);
1901 } else if (r1_bio->bios[m] != NULL) {
1902 /* This drive got a write error. We need to
1903 * narrow down and record precise write
1904 * errors.
1906 if (!narrow_write_error(r1_bio, m)) {
1907 md_error(conf->mddev,
1908 conf->mirrors[m].rdev);
1909 /* an I/O failed, we can't clear the bitmap */
1910 set_bit(R1BIO_Degraded, &r1_bio->state);
1912 rdev_dec_pending(conf->mirrors[m].rdev,
1913 conf->mddev);
1915 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1916 close_write(r1_bio);
1917 raid_end_bio_io(r1_bio);
1920 static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1922 int disk;
1923 int max_sectors;
1924 mddev_t *mddev = conf->mddev;
1925 struct bio *bio;
1926 char b[BDEVNAME_SIZE];
1927 mdk_rdev_t *rdev;
1929 clear_bit(R1BIO_ReadError, &r1_bio->state);
1930 /* we got a read error. Maybe the drive is bad. Maybe just
1931 * the block and we can fix it.
1932 * We freeze all other IO, and try reading the block from
1933 * other devices. When we find one, we re-write
1934 * and check it that fixes the read error.
1935 * This is all done synchronously while the array is
1936 * frozen
1938 if (mddev->ro == 0) {
1939 freeze_array(conf);
1940 fix_read_error(conf, r1_bio->read_disk,
1941 r1_bio->sector, r1_bio->sectors);
1942 unfreeze_array(conf);
1943 } else
1944 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1946 bio = r1_bio->bios[r1_bio->read_disk];
1947 bdevname(bio->bi_bdev, b);
1948 read_more:
1949 disk = read_balance(conf, r1_bio, &max_sectors);
1950 if (disk == -1) {
1951 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1952 " read error for block %llu\n",
1953 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1954 raid_end_bio_io(r1_bio);
1955 } else {
1956 const unsigned long do_sync
1957 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1958 if (bio) {
1959 r1_bio->bios[r1_bio->read_disk] =
1960 mddev->ro ? IO_BLOCKED : NULL;
1961 bio_put(bio);
1963 r1_bio->read_disk = disk;
1964 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1965 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1966 r1_bio->bios[r1_bio->read_disk] = bio;
1967 rdev = conf->mirrors[disk].rdev;
1968 printk_ratelimited(KERN_ERR
1969 "md/raid1:%s: redirecting sector %llu"
1970 " to other mirror: %s\n",
1971 mdname(mddev),
1972 (unsigned long long)r1_bio->sector,
1973 bdevname(rdev->bdev, b));
1974 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1975 bio->bi_bdev = rdev->bdev;
1976 bio->bi_end_io = raid1_end_read_request;
1977 bio->bi_rw = READ | do_sync;
1978 bio->bi_private = r1_bio;
1979 if (max_sectors < r1_bio->sectors) {
1980 /* Drat - have to split this up more */
1981 struct bio *mbio = r1_bio->master_bio;
1982 int sectors_handled = (r1_bio->sector + max_sectors
1983 - mbio->bi_sector);
1984 r1_bio->sectors = max_sectors;
1985 spin_lock_irq(&conf->device_lock);
1986 if (mbio->bi_phys_segments == 0)
1987 mbio->bi_phys_segments = 2;
1988 else
1989 mbio->bi_phys_segments++;
1990 spin_unlock_irq(&conf->device_lock);
1991 generic_make_request(bio);
1992 bio = NULL;
1994 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1996 r1_bio->master_bio = mbio;
1997 r1_bio->sectors = (mbio->bi_size >> 9)
1998 - sectors_handled;
1999 r1_bio->state = 0;
2000 set_bit(R1BIO_ReadError, &r1_bio->state);
2001 r1_bio->mddev = mddev;
2002 r1_bio->sector = mbio->bi_sector + sectors_handled;
2004 goto read_more;
2005 } else
2006 generic_make_request(bio);
2010 static void raid1d(mddev_t *mddev)
2012 r1bio_t *r1_bio;
2013 unsigned long flags;
2014 conf_t *conf = mddev->private;
2015 struct list_head *head = &conf->retry_list;
2016 struct blk_plug plug;
2018 md_check_recovery(mddev);
2020 blk_start_plug(&plug);
2021 for (;;) {
2023 if (atomic_read(&mddev->plug_cnt) == 0)
2024 flush_pending_writes(conf);
2026 spin_lock_irqsave(&conf->device_lock, flags);
2027 if (list_empty(head)) {
2028 spin_unlock_irqrestore(&conf->device_lock, flags);
2029 break;
2031 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2032 list_del(head->prev);
2033 conf->nr_queued--;
2034 spin_unlock_irqrestore(&conf->device_lock, flags);
2036 mddev = r1_bio->mddev;
2037 conf = mddev->private;
2038 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2039 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2040 test_bit(R1BIO_WriteError, &r1_bio->state))
2041 handle_sync_write_finished(conf, r1_bio);
2042 else
2043 sync_request_write(mddev, r1_bio);
2044 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045 test_bit(R1BIO_WriteError, &r1_bio->state))
2046 handle_write_finished(conf, r1_bio);
2047 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2048 handle_read_error(conf, r1_bio);
2049 else
2050 /* just a partial read to be scheduled from separate
2051 * context
2053 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2055 cond_resched();
2056 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2057 md_check_recovery(mddev);
2059 blk_finish_plug(&plug);
2063 static int init_resync(conf_t *conf)
2065 int buffs;
2067 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2068 BUG_ON(conf->r1buf_pool);
2069 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2070 conf->poolinfo);
2071 if (!conf->r1buf_pool)
2072 return -ENOMEM;
2073 conf->next_resync = 0;
2074 return 0;
2078 * perform a "sync" on one "block"
2080 * We need to make sure that no normal I/O request - particularly write
2081 * requests - conflict with active sync requests.
2083 * This is achieved by tracking pending requests and a 'barrier' concept
2084 * that can be installed to exclude normal IO requests.
2087 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2089 conf_t *conf = mddev->private;
2090 r1bio_t *r1_bio;
2091 struct bio *bio;
2092 sector_t max_sector, nr_sectors;
2093 int disk = -1;
2094 int i;
2095 int wonly = -1;
2096 int write_targets = 0, read_targets = 0;
2097 sector_t sync_blocks;
2098 int still_degraded = 0;
2099 int good_sectors = RESYNC_SECTORS;
2100 int min_bad = 0; /* number of sectors that are bad in all devices */
2102 if (!conf->r1buf_pool)
2103 if (init_resync(conf))
2104 return 0;
2106 max_sector = mddev->dev_sectors;
2107 if (sector_nr >= max_sector) {
2108 /* If we aborted, we need to abort the
2109 * sync on the 'current' bitmap chunk (there will
2110 * only be one in raid1 resync.
2111 * We can find the current addess in mddev->curr_resync
2113 if (mddev->curr_resync < max_sector) /* aborted */
2114 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2115 &sync_blocks, 1);
2116 else /* completed sync */
2117 conf->fullsync = 0;
2119 bitmap_close_sync(mddev->bitmap);
2120 close_sync(conf);
2121 return 0;
2124 if (mddev->bitmap == NULL &&
2125 mddev->recovery_cp == MaxSector &&
2126 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2127 conf->fullsync == 0) {
2128 *skipped = 1;
2129 return max_sector - sector_nr;
2131 /* before building a request, check if we can skip these blocks..
2132 * This call the bitmap_start_sync doesn't actually record anything
2134 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2135 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2136 /* We can skip this block, and probably several more */
2137 *skipped = 1;
2138 return sync_blocks;
2141 * If there is non-resync activity waiting for a turn,
2142 * and resync is going fast enough,
2143 * then let it though before starting on this new sync request.
2145 if (!go_faster && conf->nr_waiting)
2146 msleep_interruptible(1000);
2148 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2149 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2150 raise_barrier(conf);
2152 conf->next_resync = sector_nr;
2154 rcu_read_lock();
2156 * If we get a correctably read error during resync or recovery,
2157 * we might want to read from a different device. So we
2158 * flag all drives that could conceivably be read from for READ,
2159 * and any others (which will be non-In_sync devices) for WRITE.
2160 * If a read fails, we try reading from something else for which READ
2161 * is OK.
2164 r1_bio->mddev = mddev;
2165 r1_bio->sector = sector_nr;
2166 r1_bio->state = 0;
2167 set_bit(R1BIO_IsSync, &r1_bio->state);
2169 for (i=0; i < conf->raid_disks; i++) {
2170 mdk_rdev_t *rdev;
2171 bio = r1_bio->bios[i];
2173 /* take from bio_init */
2174 bio->bi_next = NULL;
2175 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2176 bio->bi_flags |= 1 << BIO_UPTODATE;
2177 bio->bi_comp_cpu = -1;
2178 bio->bi_rw = READ;
2179 bio->bi_vcnt = 0;
2180 bio->bi_idx = 0;
2181 bio->bi_phys_segments = 0;
2182 bio->bi_size = 0;
2183 bio->bi_end_io = NULL;
2184 bio->bi_private = NULL;
2186 rdev = rcu_dereference(conf->mirrors[i].rdev);
2187 if (rdev == NULL ||
2188 test_bit(Faulty, &rdev->flags)) {
2189 still_degraded = 1;
2190 } else if (!test_bit(In_sync, &rdev->flags)) {
2191 bio->bi_rw = WRITE;
2192 bio->bi_end_io = end_sync_write;
2193 write_targets ++;
2194 } else {
2195 /* may need to read from here */
2196 sector_t first_bad = MaxSector;
2197 int bad_sectors;
2199 if (is_badblock(rdev, sector_nr, good_sectors,
2200 &first_bad, &bad_sectors)) {
2201 if (first_bad > sector_nr)
2202 good_sectors = first_bad - sector_nr;
2203 else {
2204 bad_sectors -= (sector_nr - first_bad);
2205 if (min_bad == 0 ||
2206 min_bad > bad_sectors)
2207 min_bad = bad_sectors;
2210 if (sector_nr < first_bad) {
2211 if (test_bit(WriteMostly, &rdev->flags)) {
2212 if (wonly < 0)
2213 wonly = i;
2214 } else {
2215 if (disk < 0)
2216 disk = i;
2218 bio->bi_rw = READ;
2219 bio->bi_end_io = end_sync_read;
2220 read_targets++;
2223 if (bio->bi_end_io) {
2224 atomic_inc(&rdev->nr_pending);
2225 bio->bi_sector = sector_nr + rdev->data_offset;
2226 bio->bi_bdev = rdev->bdev;
2227 bio->bi_private = r1_bio;
2230 rcu_read_unlock();
2231 if (disk < 0)
2232 disk = wonly;
2233 r1_bio->read_disk = disk;
2235 if (read_targets == 0 && min_bad > 0) {
2236 /* These sectors are bad on all InSync devices, so we
2237 * need to mark them bad on all write targets
2239 int ok = 1;
2240 for (i = 0 ; i < conf->raid_disks ; i++)
2241 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2242 mdk_rdev_t *rdev =
2243 rcu_dereference(conf->mirrors[i].rdev);
2244 ok = rdev_set_badblocks(rdev, sector_nr,
2245 min_bad, 0
2246 ) && ok;
2248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2249 *skipped = 1;
2250 put_buf(r1_bio);
2252 if (!ok) {
2253 /* Cannot record the badblocks, so need to
2254 * abort the resync.
2255 * If there are multiple read targets, could just
2256 * fail the really bad ones ???
2258 conf->recovery_disabled = mddev->recovery_disabled;
2259 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2260 return 0;
2261 } else
2262 return min_bad;
2265 if (min_bad > 0 && min_bad < good_sectors) {
2266 /* only resync enough to reach the next bad->good
2267 * transition */
2268 good_sectors = min_bad;
2271 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2272 /* extra read targets are also write targets */
2273 write_targets += read_targets-1;
2275 if (write_targets == 0 || read_targets == 0) {
2276 /* There is nowhere to write, so all non-sync
2277 * drives must be failed - so we are finished
2279 sector_t rv = max_sector - sector_nr;
2280 *skipped = 1;
2281 put_buf(r1_bio);
2282 return rv;
2285 if (max_sector > mddev->resync_max)
2286 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2287 if (max_sector > sector_nr + good_sectors)
2288 max_sector = sector_nr + good_sectors;
2289 nr_sectors = 0;
2290 sync_blocks = 0;
2291 do {
2292 struct page *page;
2293 int len = PAGE_SIZE;
2294 if (sector_nr + (len>>9) > max_sector)
2295 len = (max_sector - sector_nr) << 9;
2296 if (len == 0)
2297 break;
2298 if (sync_blocks == 0) {
2299 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2300 &sync_blocks, still_degraded) &&
2301 !conf->fullsync &&
2302 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2303 break;
2304 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2305 if ((len >> 9) > sync_blocks)
2306 len = sync_blocks<<9;
2309 for (i=0 ; i < conf->raid_disks; i++) {
2310 bio = r1_bio->bios[i];
2311 if (bio->bi_end_io) {
2312 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2313 if (bio_add_page(bio, page, len, 0) == 0) {
2314 /* stop here */
2315 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2316 while (i > 0) {
2317 i--;
2318 bio = r1_bio->bios[i];
2319 if (bio->bi_end_io==NULL)
2320 continue;
2321 /* remove last page from this bio */
2322 bio->bi_vcnt--;
2323 bio->bi_size -= len;
2324 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2326 goto bio_full;
2330 nr_sectors += len>>9;
2331 sector_nr += len>>9;
2332 sync_blocks -= (len>>9);
2333 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2334 bio_full:
2335 r1_bio->sectors = nr_sectors;
2337 /* For a user-requested sync, we read all readable devices and do a
2338 * compare
2340 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2341 atomic_set(&r1_bio->remaining, read_targets);
2342 for (i=0; i<conf->raid_disks; i++) {
2343 bio = r1_bio->bios[i];
2344 if (bio->bi_end_io == end_sync_read) {
2345 md_sync_acct(bio->bi_bdev, nr_sectors);
2346 generic_make_request(bio);
2349 } else {
2350 atomic_set(&r1_bio->remaining, 1);
2351 bio = r1_bio->bios[r1_bio->read_disk];
2352 md_sync_acct(bio->bi_bdev, nr_sectors);
2353 generic_make_request(bio);
2356 return nr_sectors;
2359 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2361 if (sectors)
2362 return sectors;
2364 return mddev->dev_sectors;
2367 static conf_t *setup_conf(mddev_t *mddev)
2369 conf_t *conf;
2370 int i;
2371 mirror_info_t *disk;
2372 mdk_rdev_t *rdev;
2373 int err = -ENOMEM;
2375 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2376 if (!conf)
2377 goto abort;
2379 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2380 GFP_KERNEL);
2381 if (!conf->mirrors)
2382 goto abort;
2384 conf->tmppage = alloc_page(GFP_KERNEL);
2385 if (!conf->tmppage)
2386 goto abort;
2388 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2389 if (!conf->poolinfo)
2390 goto abort;
2391 conf->poolinfo->raid_disks = mddev->raid_disks;
2392 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2393 r1bio_pool_free,
2394 conf->poolinfo);
2395 if (!conf->r1bio_pool)
2396 goto abort;
2398 conf->poolinfo->mddev = mddev;
2400 spin_lock_init(&conf->device_lock);
2401 list_for_each_entry(rdev, &mddev->disks, same_set) {
2402 int disk_idx = rdev->raid_disk;
2403 if (disk_idx >= mddev->raid_disks
2404 || disk_idx < 0)
2405 continue;
2406 disk = conf->mirrors + disk_idx;
2408 disk->rdev = rdev;
2410 disk->head_position = 0;
2412 conf->raid_disks = mddev->raid_disks;
2413 conf->mddev = mddev;
2414 INIT_LIST_HEAD(&conf->retry_list);
2416 spin_lock_init(&conf->resync_lock);
2417 init_waitqueue_head(&conf->wait_barrier);
2419 bio_list_init(&conf->pending_bio_list);
2421 conf->last_used = -1;
2422 for (i = 0; i < conf->raid_disks; i++) {
2424 disk = conf->mirrors + i;
2426 if (!disk->rdev ||
2427 !test_bit(In_sync, &disk->rdev->flags)) {
2428 disk->head_position = 0;
2429 if (disk->rdev)
2430 conf->fullsync = 1;
2431 } else if (conf->last_used < 0)
2433 * The first working device is used as a
2434 * starting point to read balancing.
2436 conf->last_used = i;
2439 err = -EIO;
2440 if (conf->last_used < 0) {
2441 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2442 mdname(mddev));
2443 goto abort;
2445 err = -ENOMEM;
2446 conf->thread = md_register_thread(raid1d, mddev, NULL);
2447 if (!conf->thread) {
2448 printk(KERN_ERR
2449 "md/raid1:%s: couldn't allocate thread\n",
2450 mdname(mddev));
2451 goto abort;
2454 return conf;
2456 abort:
2457 if (conf) {
2458 if (conf->r1bio_pool)
2459 mempool_destroy(conf->r1bio_pool);
2460 kfree(conf->mirrors);
2461 safe_put_page(conf->tmppage);
2462 kfree(conf->poolinfo);
2463 kfree(conf);
2465 return ERR_PTR(err);
2468 static int run(mddev_t *mddev)
2470 conf_t *conf;
2471 int i;
2472 mdk_rdev_t *rdev;
2474 if (mddev->level != 1) {
2475 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2476 mdname(mddev), mddev->level);
2477 return -EIO;
2479 if (mddev->reshape_position != MaxSector) {
2480 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2481 mdname(mddev));
2482 return -EIO;
2485 * copy the already verified devices into our private RAID1
2486 * bookkeeping area. [whatever we allocate in run(),
2487 * should be freed in stop()]
2489 if (mddev->private == NULL)
2490 conf = setup_conf(mddev);
2491 else
2492 conf = mddev->private;
2494 if (IS_ERR(conf))
2495 return PTR_ERR(conf);
2497 list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 if (!mddev->gendisk)
2499 continue;
2500 disk_stack_limits(mddev->gendisk, rdev->bdev,
2501 rdev->data_offset << 9);
2502 /* as we don't honour merge_bvec_fn, we must never risk
2503 * violating it, so limit ->max_segments to 1 lying within
2504 * a single page, as a one page request is never in violation.
2506 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2507 blk_queue_max_segments(mddev->queue, 1);
2508 blk_queue_segment_boundary(mddev->queue,
2509 PAGE_CACHE_SIZE - 1);
2513 mddev->degraded = 0;
2514 for (i=0; i < conf->raid_disks; i++)
2515 if (conf->mirrors[i].rdev == NULL ||
2516 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2517 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2518 mddev->degraded++;
2520 if (conf->raid_disks - mddev->degraded == 1)
2521 mddev->recovery_cp = MaxSector;
2523 if (mddev->recovery_cp != MaxSector)
2524 printk(KERN_NOTICE "md/raid1:%s: not clean"
2525 " -- starting background reconstruction\n",
2526 mdname(mddev));
2527 printk(KERN_INFO
2528 "md/raid1:%s: active with %d out of %d mirrors\n",
2529 mdname(mddev), mddev->raid_disks - mddev->degraded,
2530 mddev->raid_disks);
2533 * Ok, everything is just fine now
2535 mddev->thread = conf->thread;
2536 conf->thread = NULL;
2537 mddev->private = conf;
2539 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2541 if (mddev->queue) {
2542 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2543 mddev->queue->backing_dev_info.congested_data = mddev;
2545 return md_integrity_register(mddev);
2548 static int stop(mddev_t *mddev)
2550 conf_t *conf = mddev->private;
2551 struct bitmap *bitmap = mddev->bitmap;
2553 /* wait for behind writes to complete */
2554 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2555 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2556 mdname(mddev));
2557 /* need to kick something here to make sure I/O goes? */
2558 wait_event(bitmap->behind_wait,
2559 atomic_read(&bitmap->behind_writes) == 0);
2562 raise_barrier(conf);
2563 lower_barrier(conf);
2565 md_unregister_thread(&mddev->thread);
2566 if (conf->r1bio_pool)
2567 mempool_destroy(conf->r1bio_pool);
2568 kfree(conf->mirrors);
2569 kfree(conf->poolinfo);
2570 kfree(conf);
2571 mddev->private = NULL;
2572 return 0;
2575 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2577 /* no resync is happening, and there is enough space
2578 * on all devices, so we can resize.
2579 * We need to make sure resync covers any new space.
2580 * If the array is shrinking we should possibly wait until
2581 * any io in the removed space completes, but it hardly seems
2582 * worth it.
2584 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2585 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2586 return -EINVAL;
2587 set_capacity(mddev->gendisk, mddev->array_sectors);
2588 revalidate_disk(mddev->gendisk);
2589 if (sectors > mddev->dev_sectors &&
2590 mddev->recovery_cp > mddev->dev_sectors) {
2591 mddev->recovery_cp = mddev->dev_sectors;
2592 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2594 mddev->dev_sectors = sectors;
2595 mddev->resync_max_sectors = sectors;
2596 return 0;
2599 static int raid1_reshape(mddev_t *mddev)
2601 /* We need to:
2602 * 1/ resize the r1bio_pool
2603 * 2/ resize conf->mirrors
2605 * We allocate a new r1bio_pool if we can.
2606 * Then raise a device barrier and wait until all IO stops.
2607 * Then resize conf->mirrors and swap in the new r1bio pool.
2609 * At the same time, we "pack" the devices so that all the missing
2610 * devices have the higher raid_disk numbers.
2612 mempool_t *newpool, *oldpool;
2613 struct pool_info *newpoolinfo;
2614 mirror_info_t *newmirrors;
2615 conf_t *conf = mddev->private;
2616 int cnt, raid_disks;
2617 unsigned long flags;
2618 int d, d2, err;
2620 /* Cannot change chunk_size, layout, or level */
2621 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2622 mddev->layout != mddev->new_layout ||
2623 mddev->level != mddev->new_level) {
2624 mddev->new_chunk_sectors = mddev->chunk_sectors;
2625 mddev->new_layout = mddev->layout;
2626 mddev->new_level = mddev->level;
2627 return -EINVAL;
2630 err = md_allow_write(mddev);
2631 if (err)
2632 return err;
2634 raid_disks = mddev->raid_disks + mddev->delta_disks;
2636 if (raid_disks < conf->raid_disks) {
2637 cnt=0;
2638 for (d= 0; d < conf->raid_disks; d++)
2639 if (conf->mirrors[d].rdev)
2640 cnt++;
2641 if (cnt > raid_disks)
2642 return -EBUSY;
2645 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2646 if (!newpoolinfo)
2647 return -ENOMEM;
2648 newpoolinfo->mddev = mddev;
2649 newpoolinfo->raid_disks = raid_disks;
2651 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2652 r1bio_pool_free, newpoolinfo);
2653 if (!newpool) {
2654 kfree(newpoolinfo);
2655 return -ENOMEM;
2657 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2658 if (!newmirrors) {
2659 kfree(newpoolinfo);
2660 mempool_destroy(newpool);
2661 return -ENOMEM;
2664 raise_barrier(conf);
2666 /* ok, everything is stopped */
2667 oldpool = conf->r1bio_pool;
2668 conf->r1bio_pool = newpool;
2670 for (d = d2 = 0; d < conf->raid_disks; d++) {
2671 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2672 if (rdev && rdev->raid_disk != d2) {
2673 sysfs_unlink_rdev(mddev, rdev);
2674 rdev->raid_disk = d2;
2675 sysfs_unlink_rdev(mddev, rdev);
2676 if (sysfs_link_rdev(mddev, rdev))
2677 printk(KERN_WARNING
2678 "md/raid1:%s: cannot register rd%d\n",
2679 mdname(mddev), rdev->raid_disk);
2681 if (rdev)
2682 newmirrors[d2++].rdev = rdev;
2684 kfree(conf->mirrors);
2685 conf->mirrors = newmirrors;
2686 kfree(conf->poolinfo);
2687 conf->poolinfo = newpoolinfo;
2689 spin_lock_irqsave(&conf->device_lock, flags);
2690 mddev->degraded += (raid_disks - conf->raid_disks);
2691 spin_unlock_irqrestore(&conf->device_lock, flags);
2692 conf->raid_disks = mddev->raid_disks = raid_disks;
2693 mddev->delta_disks = 0;
2695 conf->last_used = 0; /* just make sure it is in-range */
2696 lower_barrier(conf);
2698 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2699 md_wakeup_thread(mddev->thread);
2701 mempool_destroy(oldpool);
2702 return 0;
2705 static void raid1_quiesce(mddev_t *mddev, int state)
2707 conf_t *conf = mddev->private;
2709 switch(state) {
2710 case 2: /* wake for suspend */
2711 wake_up(&conf->wait_barrier);
2712 break;
2713 case 1:
2714 raise_barrier(conf);
2715 break;
2716 case 0:
2717 lower_barrier(conf);
2718 break;
2722 static void *raid1_takeover(mddev_t *mddev)
2724 /* raid1 can take over:
2725 * raid5 with 2 devices, any layout or chunk size
2727 if (mddev->level == 5 && mddev->raid_disks == 2) {
2728 conf_t *conf;
2729 mddev->new_level = 1;
2730 mddev->new_layout = 0;
2731 mddev->new_chunk_sectors = 0;
2732 conf = setup_conf(mddev);
2733 if (!IS_ERR(conf))
2734 conf->barrier = 1;
2735 return conf;
2737 return ERR_PTR(-EINVAL);
2740 static struct mdk_personality raid1_personality =
2742 .name = "raid1",
2743 .level = 1,
2744 .owner = THIS_MODULE,
2745 .make_request = make_request,
2746 .run = run,
2747 .stop = stop,
2748 .status = status,
2749 .error_handler = error,
2750 .hot_add_disk = raid1_add_disk,
2751 .hot_remove_disk= raid1_remove_disk,
2752 .spare_active = raid1_spare_active,
2753 .sync_request = sync_request,
2754 .resize = raid1_resize,
2755 .size = raid1_size,
2756 .check_reshape = raid1_reshape,
2757 .quiesce = raid1_quiesce,
2758 .takeover = raid1_takeover,
2761 static int __init raid_init(void)
2763 return register_md_personality(&raid1_personality);
2766 static void raid_exit(void)
2768 unregister_md_personality(&raid1_personality);
2771 module_init(raid_init);
2772 module_exit(raid_exit);
2773 MODULE_LICENSE("GPL");
2774 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2775 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2776 MODULE_ALIAS("md-raid1");
2777 MODULE_ALIAS("md-level-1");