ath9k_hw: clean up tx power handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
blobab6811dc5debbea9dfa561935e9f5a2dede38a57
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
23 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
28 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
35 struct ath_common *common = ath9k_hw_common(ah);
36 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37 int addr, eep_start_loc = 64;
39 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41 ath_dbg(common, ATH_DBG_EEPROM,
42 "Unable to read eeprom region\n");
43 return false;
45 eep_data++;
48 return true;
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
53 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
55 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
57 return true;
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
62 struct ath_common *common = ath9k_hw_common(ah);
64 if (!ath9k_hw_use_flash(ah)) {
65 ath_dbg(common, ATH_DBG_EEPROM,
66 "Reading from EEPROM, not flash\n");
69 if (common->bus_ops->ath_bus_type == ATH_USB)
70 return __ath9k_hw_usb_4k_fill_eeprom(ah);
71 else
72 return __ath9k_hw_4k_fill_eeprom(ah);
75 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
76 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
77 struct modal_eep_4k_header *modal_hdr)
79 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
80 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
81 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
82 PR_EEP("Switch Settle", modal_hdr->switchSettling);
83 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
84 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
85 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
86 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
87 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
88 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
89 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
90 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
91 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
92 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
93 PR_EEP("xpdGain", modal_hdr->xpdGain);
94 PR_EEP("External PD", modal_hdr->xpd);
95 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
96 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
97 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
98 PR_EEP("O/D Bias Version", modal_hdr->version);
99 PR_EEP("CCK OutputBias", modal_hdr->ob_0);
100 PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
101 PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
102 PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
103 PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
104 PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
105 PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
106 PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
107 PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
108 PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
109 PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
110 PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
111 PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
112 PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
113 PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
114 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
115 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
116 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
117 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
118 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
119 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
120 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
121 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
122 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
123 PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
124 PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
125 PR_EEP("TX Diversity", modal_hdr->tx_diversity);
127 return len;
130 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
131 u8 *buf, u32 len, u32 size)
133 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
134 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
136 if (!dump_base_hdr) {
137 len += snprintf(buf + len, size - len,
138 "%20s :\n", "2GHz modal Header");
139 len += ath9k_dump_4k_modal_eeprom(buf, len, size,
140 &eep->modalHeader);
141 goto out;
144 PR_EEP("Major Version", pBase->version >> 12);
145 PR_EEP("Minor Version", pBase->version & 0xFFF);
146 PR_EEP("Checksum", pBase->checksum);
147 PR_EEP("Length", pBase->length);
148 PR_EEP("RegDomain1", pBase->regDmn[0]);
149 PR_EEP("RegDomain2", pBase->regDmn[1]);
150 PR_EEP("TX Mask", pBase->txMask);
151 PR_EEP("RX Mask", pBase->rxMask);
152 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
153 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
154 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
155 AR5416_OPFLAGS_N_2G_HT20));
156 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
157 AR5416_OPFLAGS_N_2G_HT40));
158 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
159 AR5416_OPFLAGS_N_5G_HT20));
160 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
161 AR5416_OPFLAGS_N_5G_HT40));
162 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
163 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
164 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
165 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
166 PR_EEP("TX Gain type", pBase->txGainType);
168 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
169 pBase->macAddr);
171 out:
172 if (len > size)
173 len = size;
175 return len;
177 #else
178 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
179 u8 *buf, u32 len, u32 size)
181 return 0;
183 #endif
186 #undef SIZE_EEPROM_4K
188 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
190 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
191 struct ath_common *common = ath9k_hw_common(ah);
192 struct ar5416_eeprom_4k *eep =
193 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
194 u16 *eepdata, temp, magic, magic2;
195 u32 sum = 0, el;
196 bool need_swap = false;
197 int i, addr;
200 if (!ath9k_hw_use_flash(ah)) {
201 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
202 &magic)) {
203 ath_err(common, "Reading Magic # failed\n");
204 return false;
207 ath_dbg(common, ATH_DBG_EEPROM,
208 "Read Magic = 0x%04X\n", magic);
210 if (magic != AR5416_EEPROM_MAGIC) {
211 magic2 = swab16(magic);
213 if (magic2 == AR5416_EEPROM_MAGIC) {
214 need_swap = true;
215 eepdata = (u16 *) (&ah->eeprom);
217 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
218 temp = swab16(*eepdata);
219 *eepdata = temp;
220 eepdata++;
222 } else {
223 ath_err(common,
224 "Invalid EEPROM Magic. Endianness mismatch.\n");
225 return -EINVAL;
230 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
231 need_swap ? "True" : "False");
233 if (need_swap)
234 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
235 else
236 el = ah->eeprom.map4k.baseEepHeader.length;
238 if (el > sizeof(struct ar5416_eeprom_4k))
239 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
240 else
241 el = el / sizeof(u16);
243 eepdata = (u16 *)(&ah->eeprom);
245 for (i = 0; i < el; i++)
246 sum ^= *eepdata++;
248 if (need_swap) {
249 u32 integer;
250 u16 word;
252 ath_dbg(common, ATH_DBG_EEPROM,
253 "EEPROM Endianness is not native.. Changing\n");
255 word = swab16(eep->baseEepHeader.length);
256 eep->baseEepHeader.length = word;
258 word = swab16(eep->baseEepHeader.checksum);
259 eep->baseEepHeader.checksum = word;
261 word = swab16(eep->baseEepHeader.version);
262 eep->baseEepHeader.version = word;
264 word = swab16(eep->baseEepHeader.regDmn[0]);
265 eep->baseEepHeader.regDmn[0] = word;
267 word = swab16(eep->baseEepHeader.regDmn[1]);
268 eep->baseEepHeader.regDmn[1] = word;
270 word = swab16(eep->baseEepHeader.rfSilent);
271 eep->baseEepHeader.rfSilent = word;
273 word = swab16(eep->baseEepHeader.blueToothOptions);
274 eep->baseEepHeader.blueToothOptions = word;
276 word = swab16(eep->baseEepHeader.deviceCap);
277 eep->baseEepHeader.deviceCap = word;
279 integer = swab32(eep->modalHeader.antCtrlCommon);
280 eep->modalHeader.antCtrlCommon = integer;
282 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
283 integer = swab32(eep->modalHeader.antCtrlChain[i]);
284 eep->modalHeader.antCtrlChain[i] = integer;
287 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
288 word = swab16(eep->modalHeader.spurChans[i].spurChan);
289 eep->modalHeader.spurChans[i].spurChan = word;
293 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
294 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
295 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
296 sum, ah->eep_ops->get_eeprom_ver(ah));
297 return -EINVAL;
300 return 0;
301 #undef EEPROM_4K_SIZE
304 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
305 enum eeprom_param param)
307 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
308 struct modal_eep_4k_header *pModal = &eep->modalHeader;
309 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
310 u16 ver_minor;
312 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
314 switch (param) {
315 case EEP_NFTHRESH_2:
316 return pModal->noiseFloorThreshCh[0];
317 case EEP_MAC_LSW:
318 return get_unaligned_be16(pBase->macAddr);
319 case EEP_MAC_MID:
320 return get_unaligned_be16(pBase->macAddr + 2);
321 case EEP_MAC_MSW:
322 return get_unaligned_be16(pBase->macAddr + 4);
323 case EEP_REG_0:
324 return pBase->regDmn[0];
325 case EEP_REG_1:
326 return pBase->regDmn[1];
327 case EEP_OP_CAP:
328 return pBase->deviceCap;
329 case EEP_OP_MODE:
330 return pBase->opCapFlags;
331 case EEP_RF_SILENT:
332 return pBase->rfSilent;
333 case EEP_OB_2:
334 return pModal->ob_0;
335 case EEP_DB_2:
336 return pModal->db1_1;
337 case EEP_MINOR_REV:
338 return ver_minor;
339 case EEP_TX_MASK:
340 return pBase->txMask;
341 case EEP_RX_MASK:
342 return pBase->rxMask;
343 case EEP_FRAC_N_5G:
344 return 0;
345 case EEP_PWR_TABLE_OFFSET:
346 return AR5416_PWR_TABLE_OFFSET_DB;
347 case EEP_MODAL_VER:
348 return pModal->version;
349 case EEP_ANT_DIV_CTL1:
350 return pModal->antdiv_ctl1;
351 case EEP_TXGAIN_TYPE:
352 return pBase->txGainType;
353 case EEP_ANTENNA_GAIN_2G:
354 return pModal->antennaGainCh[0];
355 default:
356 return 0;
360 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
361 struct ath9k_channel *chan)
363 struct ath_common *common = ath9k_hw_common(ah);
364 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
365 struct cal_data_per_freq_4k *pRawDataset;
366 u8 *pCalBChans = NULL;
367 u16 pdGainOverlap_t2;
368 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
369 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
370 u16 numPiers, i, j;
371 u16 numXpdGain, xpdMask;
372 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
373 u32 reg32, regOffset, regChainOffset;
375 xpdMask = pEepData->modalHeader.xpdGain;
377 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
378 AR5416_EEP_MINOR_VER_2) {
379 pdGainOverlap_t2 =
380 pEepData->modalHeader.pdGainOverlap;
381 } else {
382 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
383 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
386 pCalBChans = pEepData->calFreqPier2G;
387 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
389 numXpdGain = 0;
391 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
392 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
393 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
394 break;
395 xpdGainValues[numXpdGain] =
396 (u16)(AR5416_PD_GAINS_IN_MASK - i);
397 numXpdGain++;
401 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
402 (numXpdGain - 1) & 0x3);
403 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
404 xpdGainValues[0]);
405 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
406 xpdGainValues[1]);
407 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
409 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
410 regChainOffset = i * 0x1000;
412 if (pEepData->baseEepHeader.txMask & (1 << i)) {
413 pRawDataset = pEepData->calPierData2G[i];
415 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
416 pRawDataset, pCalBChans,
417 numPiers, pdGainOverlap_t2,
418 gainBoundaries,
419 pdadcValues, numXpdGain);
421 ENABLE_REGWRITE_BUFFER(ah);
423 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
424 SM(pdGainOverlap_t2,
425 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
426 | SM(gainBoundaries[0],
427 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
428 | SM(gainBoundaries[1],
429 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
430 | SM(gainBoundaries[2],
431 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
432 | SM(gainBoundaries[3],
433 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
435 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
436 for (j = 0; j < 32; j++) {
437 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
438 REG_WRITE(ah, regOffset, reg32);
440 ath_dbg(common, ATH_DBG_EEPROM,
441 "PDADC (%d,%4x): %4.4x %8.8x\n",
442 i, regChainOffset, regOffset,
443 reg32);
444 ath_dbg(common, ATH_DBG_EEPROM,
445 "PDADC: Chain %d | "
446 "PDADC %3d Value %3d | "
447 "PDADC %3d Value %3d | "
448 "PDADC %3d Value %3d | "
449 "PDADC %3d Value %3d |\n",
450 i, 4 * j, pdadcValues[4 * j],
451 4 * j + 1, pdadcValues[4 * j + 1],
452 4 * j + 2, pdadcValues[4 * j + 2],
453 4 * j + 3, pdadcValues[4 * j + 3]);
455 regOffset += 4;
458 REGWRITE_BUFFER_FLUSH(ah);
463 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
464 struct ath9k_channel *chan,
465 int16_t *ratesArray,
466 u16 cfgCtl,
467 u16 antenna_reduction,
468 u16 powerLimit)
470 #define CMP_TEST_GRP \
471 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
472 pEepData->ctlIndex[i]) \
473 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
474 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
476 int i;
477 u16 twiceMinEdgePower;
478 u16 twiceMaxEdgePower = MAX_RATE_POWER;
479 u16 scaledPower = 0, minCtlPower;
480 u16 numCtlModes;
481 const u16 *pCtlMode;
482 u16 ctlMode, freq;
483 struct chan_centers centers;
484 struct cal_ctl_data_4k *rep;
485 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
486 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
487 0, { 0, 0, 0, 0}
489 struct cal_target_power_leg targetPowerOfdmExt = {
490 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
491 0, { 0, 0, 0, 0 }
493 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
494 0, {0, 0, 0, 0}
496 static const u16 ctlModesFor11g[] = {
497 CTL_11B, CTL_11G, CTL_2GHT20,
498 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
501 ath9k_hw_get_channel_centers(ah, chan, &centers);
503 scaledPower = powerLimit - antenna_reduction;
504 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
505 pCtlMode = ctlModesFor11g;
507 ath9k_hw_get_legacy_target_powers(ah, chan,
508 pEepData->calTargetPowerCck,
509 AR5416_NUM_2G_CCK_TARGET_POWERS,
510 &targetPowerCck, 4, false);
511 ath9k_hw_get_legacy_target_powers(ah, chan,
512 pEepData->calTargetPower2G,
513 AR5416_NUM_2G_20_TARGET_POWERS,
514 &targetPowerOfdm, 4, false);
515 ath9k_hw_get_target_powers(ah, chan,
516 pEepData->calTargetPower2GHT20,
517 AR5416_NUM_2G_20_TARGET_POWERS,
518 &targetPowerHt20, 8, false);
520 if (IS_CHAN_HT40(chan)) {
521 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
522 ath9k_hw_get_target_powers(ah, chan,
523 pEepData->calTargetPower2GHT40,
524 AR5416_NUM_2G_40_TARGET_POWERS,
525 &targetPowerHt40, 8, true);
526 ath9k_hw_get_legacy_target_powers(ah, chan,
527 pEepData->calTargetPowerCck,
528 AR5416_NUM_2G_CCK_TARGET_POWERS,
529 &targetPowerCckExt, 4, true);
530 ath9k_hw_get_legacy_target_powers(ah, chan,
531 pEepData->calTargetPower2G,
532 AR5416_NUM_2G_20_TARGET_POWERS,
533 &targetPowerOfdmExt, 4, true);
536 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
537 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
538 (pCtlMode[ctlMode] == CTL_2GHT40);
540 if (isHt40CtlMode)
541 freq = centers.synth_center;
542 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
543 freq = centers.ext_center;
544 else
545 freq = centers.ctl_center;
547 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
548 ah->eep_ops->get_eeprom_rev(ah) <= 2)
549 twiceMaxEdgePower = MAX_RATE_POWER;
551 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
552 pEepData->ctlIndex[i]; i++) {
554 if (CMP_TEST_GRP) {
555 rep = &(pEepData->ctlData[i]);
557 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
558 freq,
559 rep->ctlEdges[
560 ar5416_get_ntxchains(ah->txchainmask) - 1],
561 IS_CHAN_2GHZ(chan),
562 AR5416_EEP4K_NUM_BAND_EDGES);
564 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
565 twiceMaxEdgePower =
566 min(twiceMaxEdgePower,
567 twiceMinEdgePower);
568 } else {
569 twiceMaxEdgePower = twiceMinEdgePower;
570 break;
575 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
577 switch (pCtlMode[ctlMode]) {
578 case CTL_11B:
579 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
580 targetPowerCck.tPow2x[i] =
581 min((u16)targetPowerCck.tPow2x[i],
582 minCtlPower);
584 break;
585 case CTL_11G:
586 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
587 targetPowerOfdm.tPow2x[i] =
588 min((u16)targetPowerOfdm.tPow2x[i],
589 minCtlPower);
591 break;
592 case CTL_2GHT20:
593 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
594 targetPowerHt20.tPow2x[i] =
595 min((u16)targetPowerHt20.tPow2x[i],
596 minCtlPower);
598 break;
599 case CTL_11B_EXT:
600 targetPowerCckExt.tPow2x[0] =
601 min((u16)targetPowerCckExt.tPow2x[0],
602 minCtlPower);
603 break;
604 case CTL_11G_EXT:
605 targetPowerOfdmExt.tPow2x[0] =
606 min((u16)targetPowerOfdmExt.tPow2x[0],
607 minCtlPower);
608 break;
609 case CTL_2GHT40:
610 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
611 targetPowerHt40.tPow2x[i] =
612 min((u16)targetPowerHt40.tPow2x[i],
613 minCtlPower);
615 break;
616 default:
617 break;
621 ratesArray[rate6mb] =
622 ratesArray[rate9mb] =
623 ratesArray[rate12mb] =
624 ratesArray[rate18mb] =
625 ratesArray[rate24mb] =
626 targetPowerOfdm.tPow2x[0];
628 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
629 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
630 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
631 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
633 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
634 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
636 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
637 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
638 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
639 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
641 if (IS_CHAN_HT40(chan)) {
642 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
643 ratesArray[rateHt40_0 + i] =
644 targetPowerHt40.tPow2x[i];
646 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
647 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
648 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
649 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
652 #undef CMP_TEST_GRP
655 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
656 struct ath9k_channel *chan,
657 u16 cfgCtl,
658 u8 twiceAntennaReduction,
659 u8 powerLimit, bool test)
661 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
662 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
663 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
664 int16_t ratesArray[Ar5416RateSize];
665 u8 ht40PowerIncForPdadc = 2;
666 int i;
668 memset(ratesArray, 0, sizeof(ratesArray));
670 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
671 AR5416_EEP_MINOR_VER_2) {
672 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
675 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
676 &ratesArray[0], cfgCtl,
677 twiceAntennaReduction,
678 powerLimit);
680 ath9k_hw_set_4k_power_cal_table(ah, chan);
682 regulatory->max_power_level = 0;
683 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
684 if (ratesArray[i] > MAX_RATE_POWER)
685 ratesArray[i] = MAX_RATE_POWER;
687 if (ratesArray[i] > regulatory->max_power_level)
688 regulatory->max_power_level = ratesArray[i];
691 if (test)
692 return;
694 for (i = 0; i < Ar5416RateSize; i++)
695 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
697 ENABLE_REGWRITE_BUFFER(ah);
699 /* OFDM power per rate */
700 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
701 ATH9K_POW_SM(ratesArray[rate18mb], 24)
702 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
703 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
704 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
705 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
706 ATH9K_POW_SM(ratesArray[rate54mb], 24)
707 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
708 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
709 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
711 /* CCK power per rate */
712 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
713 ATH9K_POW_SM(ratesArray[rate2s], 24)
714 | ATH9K_POW_SM(ratesArray[rate2l], 16)
715 | ATH9K_POW_SM(ratesArray[rateXr], 8)
716 | ATH9K_POW_SM(ratesArray[rate1l], 0));
717 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
718 ATH9K_POW_SM(ratesArray[rate11s], 24)
719 | ATH9K_POW_SM(ratesArray[rate11l], 16)
720 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
721 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
723 /* HT20 power per rate */
724 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
725 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
726 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
727 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
728 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
729 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
730 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
731 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
732 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
733 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
735 /* HT40 power per rate */
736 if (IS_CHAN_HT40(chan)) {
737 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
738 ATH9K_POW_SM(ratesArray[rateHt40_3] +
739 ht40PowerIncForPdadc, 24)
740 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
741 ht40PowerIncForPdadc, 16)
742 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
743 ht40PowerIncForPdadc, 8)
744 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
745 ht40PowerIncForPdadc, 0));
746 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
747 ATH9K_POW_SM(ratesArray[rateHt40_7] +
748 ht40PowerIncForPdadc, 24)
749 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
750 ht40PowerIncForPdadc, 16)
751 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
752 ht40PowerIncForPdadc, 8)
753 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
754 ht40PowerIncForPdadc, 0));
755 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
756 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
757 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
758 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
759 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
762 REGWRITE_BUFFER_FLUSH(ah);
765 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
766 struct modal_eep_4k_header *pModal,
767 struct ar5416_eeprom_4k *eep,
768 u8 txRxAttenLocal)
770 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
771 pModal->antCtrlChain[0]);
773 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
774 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
775 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
776 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
777 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
778 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
780 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
781 AR5416_EEP_MINOR_VER_3) {
782 txRxAttenLocal = pModal->txRxAttenCh[0];
784 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
785 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
786 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
787 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
788 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
789 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
790 pModal->xatten2Margin[0]);
791 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
792 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
794 /* Set the block 1 value to block 0 value */
795 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
796 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
797 pModal->bswMargin[0]);
798 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
799 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
800 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
801 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
802 pModal->xatten2Margin[0]);
803 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
804 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
805 pModal->xatten2Db[0]);
808 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
809 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
810 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
811 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
813 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
814 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
815 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
816 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
820 * Read EEPROM header info and program the device for correct operation
821 * given the channel value.
823 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
824 struct ath9k_channel *chan)
826 struct modal_eep_4k_header *pModal;
827 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
828 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
829 u8 txRxAttenLocal;
830 u8 ob[5], db1[5], db2[5];
831 u8 ant_div_control1, ant_div_control2;
832 u8 bb_desired_scale;
833 u32 regVal;
835 pModal = &eep->modalHeader;
836 txRxAttenLocal = 23;
838 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
840 /* Single chain for 4K EEPROM*/
841 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
843 /* Initialize Ant Diversity settings from EEPROM */
844 if (pModal->version >= 3) {
845 ant_div_control1 = pModal->antdiv_ctl1;
846 ant_div_control2 = pModal->antdiv_ctl2;
848 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
849 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
851 regVal |= SM(ant_div_control1,
852 AR_PHY_9285_ANT_DIV_CTL);
853 regVal |= SM(ant_div_control2,
854 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
855 regVal |= SM((ant_div_control2 >> 2),
856 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
857 regVal |= SM((ant_div_control1 >> 1),
858 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
859 regVal |= SM((ant_div_control1 >> 2),
860 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
863 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
864 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
865 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
866 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
867 regVal |= SM((ant_div_control1 >> 3),
868 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
870 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
871 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
874 if (pModal->version >= 2) {
875 ob[0] = pModal->ob_0;
876 ob[1] = pModal->ob_1;
877 ob[2] = pModal->ob_2;
878 ob[3] = pModal->ob_3;
879 ob[4] = pModal->ob_4;
881 db1[0] = pModal->db1_0;
882 db1[1] = pModal->db1_1;
883 db1[2] = pModal->db1_2;
884 db1[3] = pModal->db1_3;
885 db1[4] = pModal->db1_4;
887 db2[0] = pModal->db2_0;
888 db2[1] = pModal->db2_1;
889 db2[2] = pModal->db2_2;
890 db2[3] = pModal->db2_3;
891 db2[4] = pModal->db2_4;
892 } else if (pModal->version == 1) {
893 ob[0] = pModal->ob_0;
894 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
895 db1[0] = pModal->db1_0;
896 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
897 db2[0] = pModal->db2_0;
898 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
899 } else {
900 int i;
902 for (i = 0; i < 5; i++) {
903 ob[i] = pModal->ob_0;
904 db1[i] = pModal->db1_0;
905 db2[i] = pModal->db1_0;
909 if (AR_SREV_9271(ah)) {
910 ath9k_hw_analog_shift_rmw(ah,
911 AR9285_AN_RF2G3,
912 AR9271_AN_RF2G3_OB_cck,
913 AR9271_AN_RF2G3_OB_cck_S,
914 ob[0]);
915 ath9k_hw_analog_shift_rmw(ah,
916 AR9285_AN_RF2G3,
917 AR9271_AN_RF2G3_OB_psk,
918 AR9271_AN_RF2G3_OB_psk_S,
919 ob[1]);
920 ath9k_hw_analog_shift_rmw(ah,
921 AR9285_AN_RF2G3,
922 AR9271_AN_RF2G3_OB_qam,
923 AR9271_AN_RF2G3_OB_qam_S,
924 ob[2]);
925 ath9k_hw_analog_shift_rmw(ah,
926 AR9285_AN_RF2G3,
927 AR9271_AN_RF2G3_DB_1,
928 AR9271_AN_RF2G3_DB_1_S,
929 db1[0]);
930 ath9k_hw_analog_shift_rmw(ah,
931 AR9285_AN_RF2G4,
932 AR9271_AN_RF2G4_DB_2,
933 AR9271_AN_RF2G4_DB_2_S,
934 db2[0]);
935 } else {
936 ath9k_hw_analog_shift_rmw(ah,
937 AR9285_AN_RF2G3,
938 AR9285_AN_RF2G3_OB_0,
939 AR9285_AN_RF2G3_OB_0_S,
940 ob[0]);
941 ath9k_hw_analog_shift_rmw(ah,
942 AR9285_AN_RF2G3,
943 AR9285_AN_RF2G3_OB_1,
944 AR9285_AN_RF2G3_OB_1_S,
945 ob[1]);
946 ath9k_hw_analog_shift_rmw(ah,
947 AR9285_AN_RF2G3,
948 AR9285_AN_RF2G3_OB_2,
949 AR9285_AN_RF2G3_OB_2_S,
950 ob[2]);
951 ath9k_hw_analog_shift_rmw(ah,
952 AR9285_AN_RF2G3,
953 AR9285_AN_RF2G3_OB_3,
954 AR9285_AN_RF2G3_OB_3_S,
955 ob[3]);
956 ath9k_hw_analog_shift_rmw(ah,
957 AR9285_AN_RF2G3,
958 AR9285_AN_RF2G3_OB_4,
959 AR9285_AN_RF2G3_OB_4_S,
960 ob[4]);
962 ath9k_hw_analog_shift_rmw(ah,
963 AR9285_AN_RF2G3,
964 AR9285_AN_RF2G3_DB1_0,
965 AR9285_AN_RF2G3_DB1_0_S,
966 db1[0]);
967 ath9k_hw_analog_shift_rmw(ah,
968 AR9285_AN_RF2G3,
969 AR9285_AN_RF2G3_DB1_1,
970 AR9285_AN_RF2G3_DB1_1_S,
971 db1[1]);
972 ath9k_hw_analog_shift_rmw(ah,
973 AR9285_AN_RF2G3,
974 AR9285_AN_RF2G3_DB1_2,
975 AR9285_AN_RF2G3_DB1_2_S,
976 db1[2]);
977 ath9k_hw_analog_shift_rmw(ah,
978 AR9285_AN_RF2G4,
979 AR9285_AN_RF2G4_DB1_3,
980 AR9285_AN_RF2G4_DB1_3_S,
981 db1[3]);
982 ath9k_hw_analog_shift_rmw(ah,
983 AR9285_AN_RF2G4,
984 AR9285_AN_RF2G4_DB1_4,
985 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
987 ath9k_hw_analog_shift_rmw(ah,
988 AR9285_AN_RF2G4,
989 AR9285_AN_RF2G4_DB2_0,
990 AR9285_AN_RF2G4_DB2_0_S,
991 db2[0]);
992 ath9k_hw_analog_shift_rmw(ah,
993 AR9285_AN_RF2G4,
994 AR9285_AN_RF2G4_DB2_1,
995 AR9285_AN_RF2G4_DB2_1_S,
996 db2[1]);
997 ath9k_hw_analog_shift_rmw(ah,
998 AR9285_AN_RF2G4,
999 AR9285_AN_RF2G4_DB2_2,
1000 AR9285_AN_RF2G4_DB2_2_S,
1001 db2[2]);
1002 ath9k_hw_analog_shift_rmw(ah,
1003 AR9285_AN_RF2G4,
1004 AR9285_AN_RF2G4_DB2_3,
1005 AR9285_AN_RF2G4_DB2_3_S,
1006 db2[3]);
1007 ath9k_hw_analog_shift_rmw(ah,
1008 AR9285_AN_RF2G4,
1009 AR9285_AN_RF2G4_DB2_4,
1010 AR9285_AN_RF2G4_DB2_4_S,
1011 db2[4]);
1015 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1016 pModal->switchSettling);
1017 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1018 pModal->adcDesiredSize);
1020 REG_WRITE(ah, AR_PHY_RF_CTL4,
1021 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1022 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1023 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1024 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1026 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1027 pModal->txEndToRxOn);
1029 if (AR_SREV_9271_10(ah))
1030 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1031 pModal->txEndToRxOn);
1032 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1033 pModal->thresh62);
1034 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1035 pModal->thresh62);
1037 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1038 AR5416_EEP_MINOR_VER_2) {
1039 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1040 pModal->txFrameToDataStart);
1041 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1042 pModal->txFrameToPaOn);
1045 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1046 AR5416_EEP_MINOR_VER_3) {
1047 if (IS_CHAN_HT40(chan))
1048 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1049 AR_PHY_SETTLING_SWITCH,
1050 pModal->swSettleHt40);
1053 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1054 EEP_4K_BB_DESIRED_SCALE_MASK);
1055 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1056 u32 pwrctrl, mask, clr;
1058 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1059 pwrctrl = mask * bb_desired_scale;
1060 clr = mask * 0x1f;
1061 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1062 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1063 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1065 mask = BIT(0)|BIT(5)|BIT(15);
1066 pwrctrl = mask * bb_desired_scale;
1067 clr = mask * 0x1f;
1068 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1070 mask = BIT(0)|BIT(5);
1071 pwrctrl = mask * bb_desired_scale;
1072 clr = mask * 0x1f;
1073 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1074 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1078 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1080 #define EEP_MAP4K_SPURCHAN \
1081 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1082 struct ath_common *common = ath9k_hw_common(ah);
1084 u16 spur_val = AR_NO_SPUR;
1086 ath_dbg(common, ATH_DBG_ANI,
1087 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1088 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1090 switch (ah->config.spurmode) {
1091 case SPUR_DISABLE:
1092 break;
1093 case SPUR_ENABLE_IOCTL:
1094 spur_val = ah->config.spurchans[i][is2GHz];
1095 ath_dbg(common, ATH_DBG_ANI,
1096 "Getting spur val from new loc. %d\n", spur_val);
1097 break;
1098 case SPUR_ENABLE_EEPROM:
1099 spur_val = EEP_MAP4K_SPURCHAN;
1100 break;
1103 return spur_val;
1105 #undef EEP_MAP4K_SPURCHAN
1108 const struct eeprom_ops eep_4k_ops = {
1109 .check_eeprom = ath9k_hw_4k_check_eeprom,
1110 .get_eeprom = ath9k_hw_4k_get_eeprom,
1111 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1112 .dump_eeprom = ath9k_hw_4k_dump_eeprom,
1113 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1114 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1115 .set_board_values = ath9k_hw_4k_set_board_values,
1116 .set_txpower = ath9k_hw_4k_set_txpower,
1117 .get_spur_channel = ath9k_hw_4k_get_spur_channel