ath9k_hw: clean up tx power handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath9k / ar9003_paprd.c
bloba1a08b31b33ddca2025eba9405b467f376c6d27d
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9003_phy.h"
20 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22 struct ath9k_channel *chan = ah->curchan;
23 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
26 * 3 bits for modalHeader5G.papdRateMaskHt20
27 * is used for sub-band disabling of PAPRD.
28 * 5G band is divided into 3 sub-bands -- upper,
29 * middle, lower.
30 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
31 * -- disable PAPRD for upper band 5GHz
32 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
33 * -- disable PAPRD for middle band 5GHz
34 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
35 * -- disable PAPRD for lower band 5GHz
38 if (IS_CHAN_5GHZ(chan)) {
39 if (chan->channel >= UPPER_5G_SUB_BAND_START) {
40 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
41 & BIT(30))
42 val = false;
43 } else if (chan->channel >= MID_5G_SUB_BAND_START) {
44 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
45 & BIT(29))
46 val = false;
47 } else {
48 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
49 & BIT(28))
50 val = false;
54 if (val) {
55 ah->paprd_table_write_done = true;
56 ath9k_hw_apply_txpower(ah, chan);
59 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
60 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
61 if (ah->caps.tx_chainmask & BIT(1))
62 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
63 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
64 if (ah->caps.tx_chainmask & BIT(2))
65 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
66 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68 EXPORT_SYMBOL(ar9003_paprd_enable);
70 static int ar9003_get_training_power_2g(struct ath_hw *ah)
72 struct ath9k_channel *chan = ah->curchan;
73 unsigned int power, scale, delta;
75 scale = ar9003_get_paprd_scale_factor(ah, chan);
76 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
77 AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
79 delta = abs((int) ah->paprd_target_power - (int) power);
80 if (delta > scale)
81 return -1;
83 if (delta < 4)
84 power -= 4 - delta;
86 return power;
89 static int ar9003_get_training_power_5g(struct ath_hw *ah)
91 struct ath_common *common = ath9k_hw_common(ah);
92 struct ath9k_channel *chan = ah->curchan;
93 unsigned int power, scale, delta;
95 scale = ar9003_get_paprd_scale_factor(ah, chan);
97 if (IS_CHAN_HT40(chan))
98 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
99 AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
100 else
101 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
102 AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
104 power += scale;
105 delta = abs((int) ah->paprd_target_power - (int) power);
106 if (delta > scale)
107 return -1;
109 switch (get_streams(ah->txchainmask)) {
110 case 1:
111 delta = 6;
112 break;
113 case 2:
114 delta = 4;
115 break;
116 case 3:
117 delta = 2;
118 break;
119 default:
120 delta = 0;
121 ath_dbg(common, ATH_DBG_CALIBRATE,
122 "Invalid tx-chainmask: %u\n", ah->txchainmask);
125 power += delta;
126 return power;
129 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
131 struct ath_common *common = ath9k_hw_common(ah);
132 static const u32 ctrl0[3] = {
133 AR_PHY_PAPRD_CTRL0_B0,
134 AR_PHY_PAPRD_CTRL0_B1,
135 AR_PHY_PAPRD_CTRL0_B2
137 static const u32 ctrl1[3] = {
138 AR_PHY_PAPRD_CTRL1_B0,
139 AR_PHY_PAPRD_CTRL1_B1,
140 AR_PHY_PAPRD_CTRL1_B2
142 int training_power;
143 int i, val;
145 if (IS_CHAN_2GHZ(ah->curchan))
146 training_power = ar9003_get_training_power_2g(ah);
147 else
148 training_power = ar9003_get_training_power_5g(ah);
150 ath_dbg(common, ATH_DBG_CALIBRATE,
151 "Training power: %d, Target power: %d\n",
152 training_power, ah->paprd_target_power);
154 if (training_power < 0) {
155 ath_dbg(common, ATH_DBG_CALIBRATE,
156 "PAPRD target power delta out of range");
157 return -ERANGE;
159 ah->paprd_training_power = training_power;
161 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
162 ah->paprd_ratemask);
163 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
164 ah->paprd_ratemask);
165 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
166 ah->paprd_ratemask_ht40);
168 for (i = 0; i < ah->caps.max_txchains; i++) {
169 REG_RMW_FIELD(ah, ctrl0[i],
170 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
171 REG_RMW_FIELD(ah, ctrl1[i],
172 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
173 REG_RMW_FIELD(ah, ctrl1[i],
174 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
175 REG_RMW_FIELD(ah, ctrl1[i],
176 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
177 REG_RMW_FIELD(ah, ctrl1[i],
178 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
179 REG_RMW_FIELD(ah, ctrl1[i],
180 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
181 REG_RMW_FIELD(ah, ctrl1[i],
182 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
183 REG_RMW_FIELD(ah, ctrl0[i],
184 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
187 ar9003_paprd_enable(ah, false);
189 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
190 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
191 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
192 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
193 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
194 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
195 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
196 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
197 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
198 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
199 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
200 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
201 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
202 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
203 val = AR_SREV_9480(ah) ? 0x91 : 147;
204 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
205 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
206 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
207 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
209 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
211 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
213 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
214 if (AR_SREV_9485(ah) || AR_SREV_9480(ah))
215 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
216 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
217 -3);
218 else
219 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
220 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
221 -6);
222 val = AR_SREV_9480(ah) ? -10 : -15;
223 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
224 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
225 val);
226 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
227 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
228 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
229 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
230 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
231 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
232 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
233 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
234 100);
235 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
236 AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
237 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
238 AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
239 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
240 AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
241 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
242 AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
243 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
244 AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
245 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
246 AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
247 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
248 AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
249 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
250 AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
251 return 0;
254 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
256 u32 *entry = ah->paprd_gain_table_entries;
257 u8 *index = ah->paprd_gain_table_index;
258 u32 reg = AR_PHY_TXGAIN_TABLE;
259 int i;
261 memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
262 memset(index, 0, sizeof(ah->paprd_gain_table_index));
264 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
265 entry[i] = REG_READ(ah, reg);
266 index[i] = (entry[i] >> 24) & 0xff;
267 reg += 4;
271 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
272 int target_power)
274 int olpc_gain_delta = 0, cl_gain_mod;
275 int alpha_therm, alpha_volt;
276 int therm_cal_value, volt_cal_value;
277 int therm_value, volt_value;
278 int thermal_gain_corr, voltage_gain_corr;
279 int desired_scale, desired_gain = 0;
280 u32 reg_olpc = 0, reg_cl_gain = 0;
282 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
283 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
284 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
285 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
286 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
287 AR_PHY_TPC_19_ALPHA_THERM);
288 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
289 AR_PHY_TPC_19_ALPHA_VOLT);
290 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
291 AR_PHY_TPC_18_THERM_CAL_VALUE);
292 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
293 AR_PHY_TPC_18_VOLT_CAL_VALUE);
294 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
295 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
296 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
297 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
299 switch (chain) {
300 case 0:
301 reg_olpc = AR_PHY_TPC_11_B0;
302 reg_cl_gain = AR_PHY_CL_TAB_0;
303 break;
304 case 1:
305 reg_olpc = AR_PHY_TPC_11_B1;
306 reg_cl_gain = AR_PHY_CL_TAB_1;
307 break;
308 case 2:
309 reg_olpc = AR_PHY_TPC_11_B2;
310 reg_cl_gain = AR_PHY_CL_TAB_2;
311 break;
312 default:
313 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
314 "Invalid chainmask: %d\n", chain);
315 break;
318 olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
319 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
320 cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
321 AR_PHY_CL_TAB_CL_GAIN_MOD);
323 if (olpc_gain_delta >= 128)
324 olpc_gain_delta = olpc_gain_delta - 256;
326 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
327 (256 / 2)) / 256;
328 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
329 (128 / 2)) / 128;
330 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
331 voltage_gain_corr + desired_scale + cl_gain_mod;
333 return desired_gain;
336 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
338 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
339 int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
340 u32 *gain_table_entries = ah->paprd_gain_table_entries;
342 selected_gain_entry = gain_table_entries[gain_index];
343 txbb1dbgain = selected_gain_entry & 0x7;
344 txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
345 txmxrgain = (selected_gain_entry >> 5) & 0xf;
346 padrvgnA = (selected_gain_entry >> 9) & 0xf;
347 padrvgnB = (selected_gain_entry >> 13) & 0xf;
348 padrvgnC = (selected_gain_entry >> 17) & 0xf;
349 padrvgnD = (selected_gain_entry >> 21) & 0x3;
351 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
352 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
353 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
354 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
355 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
356 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
357 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
358 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
359 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
360 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
361 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
362 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
363 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
364 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
365 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
366 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
367 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
368 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
369 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
370 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
373 static inline int find_expn(int num)
375 return fls(num) - 1;
378 static inline int find_proper_scale(int expn, int N)
380 return (expn > N) ? expn - 10 : 0;
383 #define NUM_BIN 23
385 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
387 unsigned int thresh_accum_cnt;
388 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
389 int PA_in[NUM_BIN + 1];
390 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
391 unsigned int B1_abs_max, B2_abs_max;
392 int max_index, scale_factor;
393 int y_est[NUM_BIN + 1];
394 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
395 unsigned int x_tilde_abs;
396 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
397 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
398 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
399 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
400 int y5, y3, tmp;
401 int theta_low_bin = 0;
402 int i;
404 /* disregard any bin that contains <= 16 samples */
405 thresh_accum_cnt = 16;
406 scale_factor = 5;
407 max_index = 0;
408 memset(theta, 0, sizeof(theta));
409 memset(x_est, 0, sizeof(x_est));
410 memset(Y, 0, sizeof(Y));
411 memset(y_est, 0, sizeof(y_est));
412 memset(x_tilde, 0, sizeof(x_tilde));
414 for (i = 0; i < NUM_BIN; i++) {
415 s32 accum_cnt, accum_tx, accum_rx, accum_ang;
417 /* number of samples */
418 accum_cnt = data_L[i] & 0xffff;
420 if (accum_cnt <= thresh_accum_cnt)
421 continue;
423 /* sum(tx amplitude) */
424 accum_tx = ((data_L[i] >> 16) & 0xffff) |
425 ((data_U[i] & 0x7ff) << 16);
427 /* sum(rx amplitude distance to lower bin edge) */
428 accum_rx = ((data_U[i] >> 11) & 0x1f) |
429 ((data_L[i + 23] & 0xffff) << 5);
431 /* sum(angles) */
432 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
433 ((data_U[i + 23] & 0x7ff) << 16);
435 accum_tx <<= scale_factor;
436 accum_rx <<= scale_factor;
437 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
438 scale_factor;
440 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
441 scale_factor) +
442 (1 << scale_factor) * max_index + 16;
444 if (accum_ang >= (1 << 26))
445 accum_ang -= 1 << 27;
447 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
448 accum_cnt;
450 max_index++;
454 * Find average theta of first 5 bin and all of those to same value.
455 * Curve is linear at that range.
457 for (i = 1; i < 6; i++)
458 theta_low_bin += theta[i];
460 theta_low_bin = theta_low_bin / 5;
461 for (i = 1; i < 6; i++)
462 theta[i] = theta_low_bin;
464 /* Set values at origin */
465 theta[0] = theta_low_bin;
466 for (i = 0; i <= max_index; i++)
467 theta[i] -= theta_low_bin;
469 x_est[0] = 0;
470 Y[0] = 0;
471 scale_factor = 8;
473 /* low signal gain */
474 if (x_est[6] == x_est[3])
475 return false;
477 G_fxp =
478 (((Y[6] - Y[3]) * 1 << scale_factor) +
479 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
481 /* prevent division by zero */
482 if (G_fxp == 0)
483 return false;
485 Y_intercept =
486 (G_fxp * (x_est[0] - x_est[3]) +
487 (1 << scale_factor)) / (1 << scale_factor) + Y[3];
489 for (i = 0; i <= max_index; i++)
490 y_est[i] = Y[i] - Y_intercept;
492 for (i = 0; i <= 3; i++) {
493 y_est[i] = i * 32;
494 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
497 if (y_est[max_index] == 0)
498 return false;
500 x_est_fxp1_nonlin =
501 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
502 G_fxp) / G_fxp;
504 order_x_by_y =
505 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
507 if (order_x_by_y == 0)
508 M = 10;
509 else if (order_x_by_y == 1)
510 M = 9;
511 else
512 M = 8;
514 I = (max_index > 15) ? 7 : max_index >> 1;
515 L = max_index - I;
516 scale_factor = 8;
517 sum_y_sqr = 0;
518 sum_y_quad = 0;
519 x_tilde_abs = 0;
521 for (i = 0; i <= L; i++) {
522 unsigned int y_sqr;
523 unsigned int y_quad;
524 unsigned int tmp_abs;
526 /* prevent division by zero */
527 if (y_est[i + I] == 0)
528 return false;
530 x_est_fxp1_nonlin =
531 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
532 G_fxp) / G_fxp;
534 x_tilde[i] =
535 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
537 x_tilde[i] =
538 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
539 x_tilde[i] =
540 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
541 y_sqr =
542 (y_est[i + I] * y_est[i + I] +
543 (scale_factor * scale_factor)) / (scale_factor *
544 scale_factor);
545 tmp_abs = abs(x_tilde[i]);
546 if (tmp_abs > x_tilde_abs)
547 x_tilde_abs = tmp_abs;
549 y_quad = y_sqr * y_sqr;
550 sum_y_sqr = sum_y_sqr + y_sqr;
551 sum_y_quad = sum_y_quad + y_quad;
552 B1_tmp[i] = y_sqr * (L + 1);
553 B2_tmp[i] = y_sqr;
556 B1_abs_max = 0;
557 B2_abs_max = 0;
558 for (i = 0; i <= L; i++) {
559 int abs_val;
561 B1_tmp[i] -= sum_y_sqr;
562 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
564 abs_val = abs(B1_tmp[i]);
565 if (abs_val > B1_abs_max)
566 B1_abs_max = abs_val;
568 abs_val = abs(B2_tmp[i]);
569 if (abs_val > B2_abs_max)
570 B2_abs_max = abs_val;
573 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
574 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
575 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
577 beta_raw = 0;
578 alpha_raw = 0;
579 for (i = 0; i <= L; i++) {
580 x_tilde[i] = x_tilde[i] / (1 << Q_x);
581 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
582 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
583 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
584 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
587 scale_B =
588 ((sum_y_quad / scale_factor) * (L + 1) -
589 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
591 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
592 scale_B = scale_B / (1 << Q_scale_B);
593 if (scale_B == 0)
594 return false;
595 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
596 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
597 beta_raw = beta_raw / (1 << Q_beta);
598 alpha_raw = alpha_raw / (1 << Q_alpha);
599 alpha = (alpha_raw << 10) / scale_B;
600 beta = (beta_raw << 10) / scale_B;
601 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
602 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
603 order1_5x = order_1 / 5;
604 order2_3x = order_2 / 3;
605 order1_5x_rem = order_1 - 5 * order1_5x;
606 order2_3x_rem = order_2 - 3 * order2_3x;
608 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
609 tmp = i * 32;
610 y5 = ((beta * tmp) >> 6) >> order1_5x;
611 y5 = (y5 * tmp) >> order1_5x;
612 y5 = (y5 * tmp) >> order1_5x;
613 y5 = (y5 * tmp) >> order1_5x;
614 y5 = (y5 * tmp) >> order1_5x;
615 y5 = y5 >> order1_5x_rem;
616 y3 = (alpha * tmp) >> order2_3x;
617 y3 = (y3 * tmp) >> order2_3x;
618 y3 = (y3 * tmp) >> order2_3x;
619 y3 = y3 >> order2_3x_rem;
620 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
622 if (i >= 2) {
623 tmp = PA_in[i] - PA_in[i - 1];
624 if (tmp < 0)
625 PA_in[i] =
626 PA_in[i - 1] + (PA_in[i - 1] -
627 PA_in[i - 2]);
630 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
633 beta_raw = 0;
634 alpha_raw = 0;
636 for (i = 0; i <= L; i++) {
637 int theta_tilde =
638 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
639 theta_tilde =
640 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
641 theta_tilde =
642 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
643 beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
644 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
647 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
648 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
649 beta_raw = beta_raw / (1 << Q_beta);
650 alpha_raw = alpha_raw / (1 << Q_alpha);
652 alpha = (alpha_raw << 10) / scale_B;
653 beta = (beta_raw << 10) / scale_B;
654 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
655 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
656 order1_5x = order_1 / 5;
657 order2_3x = order_2 / 3;
658 order1_5x_rem = order_1 - 5 * order1_5x;
659 order2_3x_rem = order_2 - 3 * order2_3x;
661 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
662 int PA_angle;
664 /* pa_table[4] is calculated from PA_angle for i=5 */
665 if (i == 4)
666 continue;
668 tmp = i * 32;
669 if (beta > 0)
670 y5 = (((beta * tmp - 64) >> 6) -
671 (1 << order1_5x)) / (1 << order1_5x);
672 else
673 y5 = ((((beta * tmp - 64) >> 6) +
674 (1 << order1_5x)) / (1 << order1_5x));
676 y5 = (y5 * tmp) / (1 << order1_5x);
677 y5 = (y5 * tmp) / (1 << order1_5x);
678 y5 = (y5 * tmp) / (1 << order1_5x);
679 y5 = (y5 * tmp) / (1 << order1_5x);
680 y5 = y5 / (1 << order1_5x_rem);
682 if (beta > 0)
683 y3 = (alpha * tmp -
684 (1 << order2_3x)) / (1 << order2_3x);
685 else
686 y3 = (alpha * tmp +
687 (1 << order2_3x)) / (1 << order2_3x);
688 y3 = (y3 * tmp) / (1 << order2_3x);
689 y3 = (y3 * tmp) / (1 << order2_3x);
690 y3 = y3 / (1 << order2_3x_rem);
692 if (i < 4) {
693 PA_angle = 0;
694 } else {
695 PA_angle = y5 + y3;
696 if (PA_angle < -150)
697 PA_angle = -150;
698 else if (PA_angle > 150)
699 PA_angle = 150;
702 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
703 if (i == 5) {
704 PA_angle = (PA_angle + 2) >> 1;
705 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
706 (PA_angle & 0x7ff);
710 *gain = G_fxp;
711 return true;
714 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
715 struct ath9k_hw_cal_data *caldata,
716 int chain)
718 u32 *paprd_table_val = caldata->pa_table[chain];
719 u32 small_signal_gain = caldata->small_signal_gain[chain];
720 u32 training_power = ah->paprd_training_power;
721 u32 reg = 0;
722 int i;
724 if (chain == 0)
725 reg = AR_PHY_PAPRD_MEM_TAB_B0;
726 else if (chain == 1)
727 reg = AR_PHY_PAPRD_MEM_TAB_B1;
728 else if (chain == 2)
729 reg = AR_PHY_PAPRD_MEM_TAB_B2;
731 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
732 REG_WRITE(ah, reg, paprd_table_val[i]);
733 reg = reg + 4;
736 if (chain == 0)
737 reg = AR_PHY_PA_GAIN123_B0;
738 else if (chain == 1)
739 reg = AR_PHY_PA_GAIN123_B1;
740 else
741 reg = AR_PHY_PA_GAIN123_B2;
743 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
745 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
746 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
747 training_power);
749 if (ah->caps.tx_chainmask & BIT(1))
750 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
751 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
752 training_power);
754 if (ah->caps.tx_chainmask & BIT(2))
755 /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
756 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
757 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
758 training_power);
760 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
762 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
764 unsigned int i, desired_gain, gain_index;
765 unsigned int train_power = ah->paprd_training_power;
767 desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
769 gain_index = 0;
770 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
771 if (ah->paprd_gain_table_index[i] >= desired_gain)
772 break;
773 gain_index++;
776 ar9003_tx_force_gain(ah, gain_index);
778 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
779 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
781 return 0;
783 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
785 int ar9003_paprd_create_curve(struct ath_hw *ah,
786 struct ath9k_hw_cal_data *caldata, int chain)
788 u16 *small_signal_gain = &caldata->small_signal_gain[chain];
789 u32 *pa_table = caldata->pa_table[chain];
790 u32 *data_L, *data_U;
791 int i, status = 0;
792 u32 *buf;
793 u32 reg;
795 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
797 buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
798 if (!buf)
799 return -ENOMEM;
801 data_L = &buf[0];
802 data_U = &buf[48];
804 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
805 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
807 reg = AR_PHY_CHAN_INFO_TAB_0;
808 for (i = 0; i < 48; i++)
809 data_L[i] = REG_READ(ah, reg + (i << 2));
811 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
812 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
814 for (i = 0; i < 48; i++)
815 data_U[i] = REG_READ(ah, reg + (i << 2));
817 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
818 status = -2;
820 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
821 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
823 kfree(buf);
825 return status;
827 EXPORT_SYMBOL(ar9003_paprd_create_curve);
829 int ar9003_paprd_init_table(struct ath_hw *ah)
831 int ret;
833 ret = ar9003_paprd_setup_single_table(ah);
834 if (ret < 0)
835 return ret;
837 ar9003_paprd_get_gain_table(ah);
838 return 0;
840 EXPORT_SYMBOL(ar9003_paprd_init_table);
842 bool ar9003_paprd_is_done(struct ath_hw *ah)
844 int paprd_done, agc2_pwr;
845 paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
846 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
848 if (paprd_done == 0x1) {
849 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
850 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
852 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
853 "AGC2_PWR = 0x%x training done = 0x%x\n",
854 agc2_pwr, paprd_done);
856 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
857 * when the training is completely done, otherwise retraining is
858 * done to make sure the value is in ideal range
860 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
861 paprd_done = 0;
864 return !!paprd_done;
866 EXPORT_SYMBOL(ar9003_paprd_is_done);