Char: synclink, remove unnecessary checks
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / pci.c
blob5b548aee9cbc43f30a0e0bb0d850ceed3d606e08
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <linux/device.h>
23 #include <linux/pm_runtime.h>
24 #include <asm/setup.h>
25 #include "pci.h"
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 EXPORT_SYMBOL_GPL(pci_power_names);
32 int isa_dma_bridge_buggy;
33 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35 int pci_pci_problems;
36 EXPORT_SYMBOL(pci_pci_problems);
38 unsigned int pci_pm_d3_delay;
40 static void pci_dev_d3_sleep(struct pci_dev *dev)
42 unsigned int delay = dev->d3_delay;
44 if (delay < pci_pm_d3_delay)
45 delay = pci_pm_d3_delay;
47 msleep(delay);
50 #ifdef CONFIG_PCI_DOMAINS
51 int pci_domains_supported = 1;
52 #endif
54 #define DEFAULT_CARDBUS_IO_SIZE (256)
55 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
56 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
57 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
58 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
60 #define DEFAULT_HOTPLUG_IO_SIZE (256)
61 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
62 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
63 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
64 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
67 * The default CLS is used if arch didn't set CLS explicitly and not
68 * all pci devices agree on the same value. Arch can override either
69 * the dfl or actual value as it sees fit. Don't forget this is
70 * measured in 32-bit words, not bytes.
72 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
73 u8 pci_cache_line_size;
75 /**
76 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
77 * @bus: pointer to PCI bus structure to search
79 * Given a PCI bus, returns the highest PCI bus number present in the set
80 * including the given PCI bus and its list of child PCI buses.
82 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
84 struct list_head *tmp;
85 unsigned char max, n;
87 max = bus->subordinate;
88 list_for_each(tmp, &bus->children) {
89 n = pci_bus_max_busnr(pci_bus_b(tmp));
90 if(n > max)
91 max = n;
93 return max;
95 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
97 #ifdef CONFIG_HAS_IOMEM
98 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
101 * Make sure the BAR is actually a memory resource, not an IO resource
103 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
104 WARN_ON(1);
105 return NULL;
107 return ioremap_nocache(pci_resource_start(pdev, bar),
108 pci_resource_len(pdev, bar));
110 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
111 #endif
113 #if 0
115 * pci_max_busnr - returns maximum PCI bus number
117 * Returns the highest PCI bus number present in the system global list of
118 * PCI buses.
120 unsigned char __devinit
121 pci_max_busnr(void)
123 struct pci_bus *bus = NULL;
124 unsigned char max, n;
126 max = 0;
127 while ((bus = pci_find_next_bus(bus)) != NULL) {
128 n = pci_bus_max_busnr(bus);
129 if(n > max)
130 max = n;
132 return max;
135 #endif /* 0 */
137 #define PCI_FIND_CAP_TTL 48
139 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
140 u8 pos, int cap, int *ttl)
142 u8 id;
144 while ((*ttl)--) {
145 pci_bus_read_config_byte(bus, devfn, pos, &pos);
146 if (pos < 0x40)
147 break;
148 pos &= ~3;
149 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
150 &id);
151 if (id == 0xff)
152 break;
153 if (id == cap)
154 return pos;
155 pos += PCI_CAP_LIST_NEXT;
157 return 0;
160 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
161 u8 pos, int cap)
163 int ttl = PCI_FIND_CAP_TTL;
165 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
170 return __pci_find_next_cap(dev->bus, dev->devfn,
171 pos + PCI_CAP_LIST_NEXT, cap);
173 EXPORT_SYMBOL_GPL(pci_find_next_capability);
175 static int __pci_bus_find_cap_start(struct pci_bus *bus,
176 unsigned int devfn, u8 hdr_type)
178 u16 status;
180 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
181 if (!(status & PCI_STATUS_CAP_LIST))
182 return 0;
184 switch (hdr_type) {
185 case PCI_HEADER_TYPE_NORMAL:
186 case PCI_HEADER_TYPE_BRIDGE:
187 return PCI_CAPABILITY_LIST;
188 case PCI_HEADER_TYPE_CARDBUS:
189 return PCI_CB_CAPABILITY_LIST;
190 default:
191 return 0;
194 return 0;
198 * pci_find_capability - query for devices' capabilities
199 * @dev: PCI device to query
200 * @cap: capability code
202 * Tell if a device supports a given PCI capability.
203 * Returns the address of the requested capability structure within the
204 * device's PCI configuration space or 0 in case the device does not
205 * support it. Possible values for @cap:
207 * %PCI_CAP_ID_PM Power Management
208 * %PCI_CAP_ID_AGP Accelerated Graphics Port
209 * %PCI_CAP_ID_VPD Vital Product Data
210 * %PCI_CAP_ID_SLOTID Slot Identification
211 * %PCI_CAP_ID_MSI Message Signalled Interrupts
212 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
213 * %PCI_CAP_ID_PCIX PCI-X
214 * %PCI_CAP_ID_EXP PCI Express
216 int pci_find_capability(struct pci_dev *dev, int cap)
218 int pos;
220 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
221 if (pos)
222 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
224 return pos;
228 * pci_bus_find_capability - query for devices' capabilities
229 * @bus: the PCI bus to query
230 * @devfn: PCI device to query
231 * @cap: capability code
233 * Like pci_find_capability() but works for pci devices that do not have a
234 * pci_dev structure set up yet.
236 * Returns the address of the requested capability structure within the
237 * device's PCI configuration space or 0 in case the device does not
238 * support it.
240 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
242 int pos;
243 u8 hdr_type;
245 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
247 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
248 if (pos)
249 pos = __pci_find_next_cap(bus, devfn, pos, cap);
251 return pos;
255 * pci_find_ext_capability - Find an extended capability
256 * @dev: PCI device to query
257 * @cap: capability code
259 * Returns the address of the requested extended capability structure
260 * within the device's PCI configuration space or 0 if the device does
261 * not support it. Possible values for @cap:
263 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
264 * %PCI_EXT_CAP_ID_VC Virtual Channel
265 * %PCI_EXT_CAP_ID_DSN Device Serial Number
266 * %PCI_EXT_CAP_ID_PWR Power Budgeting
268 int pci_find_ext_capability(struct pci_dev *dev, int cap)
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
280 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
281 return 0;
284 * If we have no capabilities, this is indicated by cap ID,
285 * cap version and next pointer all being 0.
287 if (header == 0)
288 return 0;
290 while (ttl-- > 0) {
291 if (PCI_EXT_CAP_ID(header) == cap)
292 return pos;
294 pos = PCI_EXT_CAP_NEXT(header);
295 if (pos < PCI_CFG_SPACE_SIZE)
296 break;
298 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
299 break;
302 return 0;
304 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
306 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
308 int rc, ttl = PCI_FIND_CAP_TTL;
309 u8 cap, mask;
311 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
312 mask = HT_3BIT_CAP_MASK;
313 else
314 mask = HT_5BIT_CAP_MASK;
316 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
317 PCI_CAP_ID_HT, &ttl);
318 while (pos) {
319 rc = pci_read_config_byte(dev, pos + 3, &cap);
320 if (rc != PCIBIOS_SUCCESSFUL)
321 return 0;
323 if ((cap & mask) == ht_cap)
324 return pos;
326 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
327 pos + PCI_CAP_LIST_NEXT,
328 PCI_CAP_ID_HT, &ttl);
331 return 0;
334 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
335 * @dev: PCI device to query
336 * @pos: Position from which to continue searching
337 * @ht_cap: Hypertransport capability code
339 * To be used in conjunction with pci_find_ht_capability() to search for
340 * all capabilities matching @ht_cap. @pos should always be a value returned
341 * from pci_find_ht_capability().
343 * NB. To be 100% safe against broken PCI devices, the caller should take
344 * steps to avoid an infinite loop.
346 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
348 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
350 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
353 * pci_find_ht_capability - query a device's Hypertransport capabilities
354 * @dev: PCI device to query
355 * @ht_cap: Hypertransport capability code
357 * Tell if a device supports a given Hypertransport capability.
358 * Returns an address within the device's PCI configuration space
359 * or 0 in case the device does not support the request capability.
360 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
361 * which has a Hypertransport capability matching @ht_cap.
363 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
365 int pos;
367 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
368 if (pos)
369 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
371 return pos;
373 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
376 * pci_find_parent_resource - return resource region of parent bus of given region
377 * @dev: PCI device structure contains resources to be searched
378 * @res: child resource record for which parent is sought
380 * For given resource region of given device, return the resource
381 * region of parent bus the given region is contained in or where
382 * it should be allocated from.
384 struct resource *
385 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
387 const struct pci_bus *bus = dev->bus;
388 int i;
389 struct resource *best = NULL, *r;
391 pci_bus_for_each_resource(bus, r, i) {
392 if (!r)
393 continue;
394 if (res->start && !(res->start >= r->start && res->end <= r->end))
395 continue; /* Not contained */
396 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
397 continue; /* Wrong type */
398 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
399 return r; /* Exact match */
400 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
401 if (r->flags & IORESOURCE_PREFETCH)
402 continue;
403 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
404 if (!best)
405 best = r;
407 return best;
411 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
412 * @dev: PCI device to have its BARs restored
414 * Restore the BAR values for a given device, so as to make it
415 * accessible by its driver.
417 static void
418 pci_restore_bars(struct pci_dev *dev)
420 int i;
422 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
423 pci_update_resource(dev, i);
426 static struct pci_platform_pm_ops *pci_platform_pm;
428 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
430 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
431 || !ops->sleep_wake || !ops->can_wakeup)
432 return -EINVAL;
433 pci_platform_pm = ops;
434 return 0;
437 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
439 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
442 static inline int platform_pci_set_power_state(struct pci_dev *dev,
443 pci_power_t t)
445 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
448 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
450 return pci_platform_pm ?
451 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
454 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
456 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
459 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
461 return pci_platform_pm ?
462 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
465 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
467 return pci_platform_pm ?
468 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
472 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
473 * given PCI device
474 * @dev: PCI device to handle.
475 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
477 * RETURN VALUE:
478 * -EINVAL if the requested state is invalid.
479 * -EIO if device does not support PCI PM or its PM capabilities register has a
480 * wrong version, or device doesn't support the requested state.
481 * 0 if device already is in the requested state.
482 * 0 if device's power state has been successfully changed.
484 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
486 u16 pmcsr;
487 bool need_restore = false;
489 /* Check if we're already there */
490 if (dev->current_state == state)
491 return 0;
493 if (!dev->pm_cap)
494 return -EIO;
496 if (state < PCI_D0 || state > PCI_D3hot)
497 return -EINVAL;
499 /* Validate current state:
500 * Can enter D0 from any state, but if we can only go deeper
501 * to sleep if we're already in a low power state
503 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
504 && dev->current_state > state) {
505 dev_err(&dev->dev, "invalid power transition "
506 "(from state %d to %d)\n", dev->current_state, state);
507 return -EINVAL;
510 /* check if this device supports the desired state */
511 if ((state == PCI_D1 && !dev->d1_support)
512 || (state == PCI_D2 && !dev->d2_support))
513 return -EIO;
515 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
517 /* If we're (effectively) in D3, force entire word to 0.
518 * This doesn't affect PME_Status, disables PME_En, and
519 * sets PowerState to 0.
521 switch (dev->current_state) {
522 case PCI_D0:
523 case PCI_D1:
524 case PCI_D2:
525 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
526 pmcsr |= state;
527 break;
528 case PCI_D3hot:
529 case PCI_D3cold:
530 case PCI_UNKNOWN: /* Boot-up */
531 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
532 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
533 need_restore = true;
534 /* Fall-through: force to D0 */
535 default:
536 pmcsr = 0;
537 break;
540 /* enter specified state */
541 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
543 /* Mandatory power management transition delays */
544 /* see PCI PM 1.1 5.6.1 table 18 */
545 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
546 pci_dev_d3_sleep(dev);
547 else if (state == PCI_D2 || dev->current_state == PCI_D2)
548 udelay(PCI_PM_D2_DELAY);
550 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
551 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
552 if (dev->current_state != state && printk_ratelimit())
553 dev_info(&dev->dev, "Refused to change power state, "
554 "currently in D%d\n", dev->current_state);
556 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
557 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
558 * from D3hot to D0 _may_ perform an internal reset, thereby
559 * going to "D0 Uninitialized" rather than "D0 Initialized".
560 * For example, at least some versions of the 3c905B and the
561 * 3c556B exhibit this behaviour.
563 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
564 * devices in a D3hot state at boot. Consequently, we need to
565 * restore at least the BARs so that the device will be
566 * accessible to its driver.
568 if (need_restore)
569 pci_restore_bars(dev);
571 if (dev->bus->self)
572 pcie_aspm_pm_state_change(dev->bus->self);
574 return 0;
578 * pci_update_current_state - Read PCI power state of given device from its
579 * PCI PM registers and cache it
580 * @dev: PCI device to handle.
581 * @state: State to cache in case the device doesn't have the PM capability
583 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
585 if (dev->pm_cap) {
586 u16 pmcsr;
588 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
589 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
590 } else {
591 dev->current_state = state;
596 * pci_platform_power_transition - Use platform to change device power state
597 * @dev: PCI device to handle.
598 * @state: State to put the device into.
600 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
602 int error;
604 if (platform_pci_power_manageable(dev)) {
605 error = platform_pci_set_power_state(dev, state);
606 if (!error)
607 pci_update_current_state(dev, state);
608 } else {
609 error = -ENODEV;
610 /* Fall back to PCI_D0 if native PM is not supported */
611 if (!dev->pm_cap)
612 dev->current_state = PCI_D0;
615 return error;
619 * __pci_start_power_transition - Start power transition of a PCI device
620 * @dev: PCI device to handle.
621 * @state: State to put the device into.
623 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
625 if (state == PCI_D0)
626 pci_platform_power_transition(dev, PCI_D0);
630 * __pci_complete_power_transition - Complete power transition of a PCI device
631 * @dev: PCI device to handle.
632 * @state: State to put the device into.
634 * This function should not be called directly by device drivers.
636 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
638 return state > PCI_D0 ?
639 pci_platform_power_transition(dev, state) : -EINVAL;
641 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
644 * pci_set_power_state - Set the power state of a PCI device
645 * @dev: PCI device to handle.
646 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
648 * Transition a device to a new power state, using the platform firmware and/or
649 * the device's PCI PM registers.
651 * RETURN VALUE:
652 * -EINVAL if the requested state is invalid.
653 * -EIO if device does not support PCI PM or its PM capabilities register has a
654 * wrong version, or device doesn't support the requested state.
655 * 0 if device already is in the requested state.
656 * 0 if device's power state has been successfully changed.
658 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
660 int error;
662 /* bound the state we're entering */
663 if (state > PCI_D3hot)
664 state = PCI_D3hot;
665 else if (state < PCI_D0)
666 state = PCI_D0;
667 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
669 * If the device or the parent bridge do not support PCI PM,
670 * ignore the request if we're doing anything other than putting
671 * it into D0 (which would only happen on boot).
673 return 0;
675 /* Check if we're already there */
676 if (dev->current_state == state)
677 return 0;
679 __pci_start_power_transition(dev, state);
681 /* This device is quirked not to be put into D3, so
682 don't put it in D3 */
683 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
684 return 0;
686 error = pci_raw_set_power_state(dev, state);
688 if (!__pci_complete_power_transition(dev, state))
689 error = 0;
691 return error;
695 * pci_choose_state - Choose the power state of a PCI device
696 * @dev: PCI device to be suspended
697 * @state: target sleep state for the whole system. This is the value
698 * that is passed to suspend() function.
700 * Returns PCI power state suitable for given device and given system
701 * message.
704 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
706 pci_power_t ret;
708 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
709 return PCI_D0;
711 ret = platform_pci_choose_state(dev);
712 if (ret != PCI_POWER_ERROR)
713 return ret;
715 switch (state.event) {
716 case PM_EVENT_ON:
717 return PCI_D0;
718 case PM_EVENT_FREEZE:
719 case PM_EVENT_PRETHAW:
720 /* REVISIT both freeze and pre-thaw "should" use D0 */
721 case PM_EVENT_SUSPEND:
722 case PM_EVENT_HIBERNATE:
723 return PCI_D3hot;
724 default:
725 dev_info(&dev->dev, "unrecognized suspend event %d\n",
726 state.event);
727 BUG();
729 return PCI_D0;
732 EXPORT_SYMBOL(pci_choose_state);
734 #define PCI_EXP_SAVE_REGS 7
736 #define pcie_cap_has_devctl(type, flags) 1
737 #define pcie_cap_has_lnkctl(type, flags) \
738 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
739 (type == PCI_EXP_TYPE_ROOT_PORT || \
740 type == PCI_EXP_TYPE_ENDPOINT || \
741 type == PCI_EXP_TYPE_LEG_END))
742 #define pcie_cap_has_sltctl(type, flags) \
743 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
744 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
745 (type == PCI_EXP_TYPE_DOWNSTREAM && \
746 (flags & PCI_EXP_FLAGS_SLOT))))
747 #define pcie_cap_has_rtctl(type, flags) \
748 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
749 (type == PCI_EXP_TYPE_ROOT_PORT || \
750 type == PCI_EXP_TYPE_RC_EC))
751 #define pcie_cap_has_devctl2(type, flags) \
752 ((flags & PCI_EXP_FLAGS_VERS) > 1)
753 #define pcie_cap_has_lnkctl2(type, flags) \
754 ((flags & PCI_EXP_FLAGS_VERS) > 1)
755 #define pcie_cap_has_sltctl2(type, flags) \
756 ((flags & PCI_EXP_FLAGS_VERS) > 1)
758 static int pci_save_pcie_state(struct pci_dev *dev)
760 int pos, i = 0;
761 struct pci_cap_saved_state *save_state;
762 u16 *cap;
763 u16 flags;
765 pos = pci_pcie_cap(dev);
766 if (!pos)
767 return 0;
769 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
770 if (!save_state) {
771 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
772 return -ENOMEM;
774 cap = (u16 *)&save_state->data[0];
776 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
778 if (pcie_cap_has_devctl(dev->pcie_type, flags))
779 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
780 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
781 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
782 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
783 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
784 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
785 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
786 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
787 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
788 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
789 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
790 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
791 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
793 return 0;
796 static void pci_restore_pcie_state(struct pci_dev *dev)
798 int i = 0, pos;
799 struct pci_cap_saved_state *save_state;
800 u16 *cap;
801 u16 flags;
803 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
804 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
805 if (!save_state || pos <= 0)
806 return;
807 cap = (u16 *)&save_state->data[0];
809 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
811 if (pcie_cap_has_devctl(dev->pcie_type, flags))
812 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
813 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
814 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
815 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
816 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
817 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
818 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
819 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
820 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
821 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
822 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
823 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
824 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
828 static int pci_save_pcix_state(struct pci_dev *dev)
830 int pos;
831 struct pci_cap_saved_state *save_state;
833 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
834 if (pos <= 0)
835 return 0;
837 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
838 if (!save_state) {
839 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
840 return -ENOMEM;
843 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
845 return 0;
848 static void pci_restore_pcix_state(struct pci_dev *dev)
850 int i = 0, pos;
851 struct pci_cap_saved_state *save_state;
852 u16 *cap;
854 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
855 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
856 if (!save_state || pos <= 0)
857 return;
858 cap = (u16 *)&save_state->data[0];
860 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
865 * pci_save_state - save the PCI configuration space of a device before suspending
866 * @dev: - PCI device that we're dealing with
869 pci_save_state(struct pci_dev *dev)
871 int i;
872 /* XXX: 100% dword access ok here? */
873 for (i = 0; i < 16; i++)
874 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
875 dev->state_saved = true;
876 if ((i = pci_save_pcie_state(dev)) != 0)
877 return i;
878 if ((i = pci_save_pcix_state(dev)) != 0)
879 return i;
880 return 0;
883 /**
884 * pci_restore_state - Restore the saved state of a PCI device
885 * @dev: - PCI device that we're dealing with
887 int
888 pci_restore_state(struct pci_dev *dev)
890 int i;
891 u32 val;
893 if (!dev->state_saved)
894 return 0;
896 /* PCI Express register must be restored first */
897 pci_restore_pcie_state(dev);
900 * The Base Address register should be programmed before the command
901 * register(s)
903 for (i = 15; i >= 0; i--) {
904 pci_read_config_dword(dev, i * 4, &val);
905 if (val != dev->saved_config_space[i]) {
906 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
907 "space at offset %#x (was %#x, writing %#x)\n",
908 i, val, (int)dev->saved_config_space[i]);
909 pci_write_config_dword(dev,i * 4,
910 dev->saved_config_space[i]);
913 pci_restore_pcix_state(dev);
914 pci_restore_msi_state(dev);
915 pci_restore_iov_state(dev);
917 dev->state_saved = false;
919 return 0;
922 static int do_pci_enable_device(struct pci_dev *dev, int bars)
924 int err;
926 err = pci_set_power_state(dev, PCI_D0);
927 if (err < 0 && err != -EIO)
928 return err;
929 err = pcibios_enable_device(dev, bars);
930 if (err < 0)
931 return err;
932 pci_fixup_device(pci_fixup_enable, dev);
934 return 0;
938 * pci_reenable_device - Resume abandoned device
939 * @dev: PCI device to be resumed
941 * Note this function is a backend of pci_default_resume and is not supposed
942 * to be called by normal code, write proper resume handler and use it instead.
944 int pci_reenable_device(struct pci_dev *dev)
946 if (pci_is_enabled(dev))
947 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
948 return 0;
951 static int __pci_enable_device_flags(struct pci_dev *dev,
952 resource_size_t flags)
954 int err;
955 int i, bars = 0;
957 if (atomic_add_return(1, &dev->enable_cnt) > 1)
958 return 0; /* already enabled */
960 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
961 if (dev->resource[i].flags & flags)
962 bars |= (1 << i);
964 err = do_pci_enable_device(dev, bars);
965 if (err < 0)
966 atomic_dec(&dev->enable_cnt);
967 return err;
971 * pci_enable_device_io - Initialize a device for use with IO space
972 * @dev: PCI device to be initialized
974 * Initialize device before it's used by a driver. Ask low-level code
975 * to enable I/O resources. Wake up the device if it was suspended.
976 * Beware, this function can fail.
978 int pci_enable_device_io(struct pci_dev *dev)
980 return __pci_enable_device_flags(dev, IORESOURCE_IO);
984 * pci_enable_device_mem - Initialize a device for use with Memory space
985 * @dev: PCI device to be initialized
987 * Initialize device before it's used by a driver. Ask low-level code
988 * to enable Memory resources. Wake up the device if it was suspended.
989 * Beware, this function can fail.
991 int pci_enable_device_mem(struct pci_dev *dev)
993 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
997 * pci_enable_device - Initialize device before it's used by a driver.
998 * @dev: PCI device to be initialized
1000 * Initialize device before it's used by a driver. Ask low-level code
1001 * to enable I/O and memory. Wake up the device if it was suspended.
1002 * Beware, this function can fail.
1004 * Note we don't actually enable the device many times if we call
1005 * this function repeatedly (we just increment the count).
1007 int pci_enable_device(struct pci_dev *dev)
1009 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1013 * Managed PCI resources. This manages device on/off, intx/msi/msix
1014 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1015 * there's no need to track it separately. pci_devres is initialized
1016 * when a device is enabled using managed PCI device enable interface.
1018 struct pci_devres {
1019 unsigned int enabled:1;
1020 unsigned int pinned:1;
1021 unsigned int orig_intx:1;
1022 unsigned int restore_intx:1;
1023 u32 region_mask;
1026 static void pcim_release(struct device *gendev, void *res)
1028 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1029 struct pci_devres *this = res;
1030 int i;
1032 if (dev->msi_enabled)
1033 pci_disable_msi(dev);
1034 if (dev->msix_enabled)
1035 pci_disable_msix(dev);
1037 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1038 if (this->region_mask & (1 << i))
1039 pci_release_region(dev, i);
1041 if (this->restore_intx)
1042 pci_intx(dev, this->orig_intx);
1044 if (this->enabled && !this->pinned)
1045 pci_disable_device(dev);
1048 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1050 struct pci_devres *dr, *new_dr;
1052 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1053 if (dr)
1054 return dr;
1056 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1057 if (!new_dr)
1058 return NULL;
1059 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1062 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1064 if (pci_is_managed(pdev))
1065 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1066 return NULL;
1070 * pcim_enable_device - Managed pci_enable_device()
1071 * @pdev: PCI device to be initialized
1073 * Managed pci_enable_device().
1075 int pcim_enable_device(struct pci_dev *pdev)
1077 struct pci_devres *dr;
1078 int rc;
1080 dr = get_pci_dr(pdev);
1081 if (unlikely(!dr))
1082 return -ENOMEM;
1083 if (dr->enabled)
1084 return 0;
1086 rc = pci_enable_device(pdev);
1087 if (!rc) {
1088 pdev->is_managed = 1;
1089 dr->enabled = 1;
1091 return rc;
1095 * pcim_pin_device - Pin managed PCI device
1096 * @pdev: PCI device to pin
1098 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1099 * driver detach. @pdev must have been enabled with
1100 * pcim_enable_device().
1102 void pcim_pin_device(struct pci_dev *pdev)
1104 struct pci_devres *dr;
1106 dr = find_pci_dr(pdev);
1107 WARN_ON(!dr || !dr->enabled);
1108 if (dr)
1109 dr->pinned = 1;
1113 * pcibios_disable_device - disable arch specific PCI resources for device dev
1114 * @dev: the PCI device to disable
1116 * Disables architecture specific PCI resources for the device. This
1117 * is the default implementation. Architecture implementations can
1118 * override this.
1120 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1122 static void do_pci_disable_device(struct pci_dev *dev)
1124 u16 pci_command;
1126 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1127 if (pci_command & PCI_COMMAND_MASTER) {
1128 pci_command &= ~PCI_COMMAND_MASTER;
1129 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1132 pcibios_disable_device(dev);
1136 * pci_disable_enabled_device - Disable device without updating enable_cnt
1137 * @dev: PCI device to disable
1139 * NOTE: This function is a backend of PCI power management routines and is
1140 * not supposed to be called drivers.
1142 void pci_disable_enabled_device(struct pci_dev *dev)
1144 if (pci_is_enabled(dev))
1145 do_pci_disable_device(dev);
1149 * pci_disable_device - Disable PCI device after use
1150 * @dev: PCI device to be disabled
1152 * Signal to the system that the PCI device is not in use by the system
1153 * anymore. This only involves disabling PCI bus-mastering, if active.
1155 * Note we don't actually disable the device until all callers of
1156 * pci_device_enable() have called pci_device_disable().
1158 void
1159 pci_disable_device(struct pci_dev *dev)
1161 struct pci_devres *dr;
1163 dr = find_pci_dr(dev);
1164 if (dr)
1165 dr->enabled = 0;
1167 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1168 return;
1170 do_pci_disable_device(dev);
1172 dev->is_busmaster = 0;
1176 * pcibios_set_pcie_reset_state - set reset state for device dev
1177 * @dev: the PCIe device reset
1178 * @state: Reset state to enter into
1181 * Sets the PCIe reset state for the device. This is the default
1182 * implementation. Architecture implementations can override this.
1184 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1185 enum pcie_reset_state state)
1187 return -EINVAL;
1191 * pci_set_pcie_reset_state - set reset state for device dev
1192 * @dev: the PCIe device reset
1193 * @state: Reset state to enter into
1196 * Sets the PCI reset state for the device.
1198 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1200 return pcibios_set_pcie_reset_state(dev, state);
1204 * pci_check_pme_status - Check if given device has generated PME.
1205 * @dev: Device to check.
1207 * Check the PME status of the device and if set, clear it and clear PME enable
1208 * (if set). Return 'true' if PME status and PME enable were both set or
1209 * 'false' otherwise.
1211 bool pci_check_pme_status(struct pci_dev *dev)
1213 int pmcsr_pos;
1214 u16 pmcsr;
1215 bool ret = false;
1217 if (!dev->pm_cap)
1218 return false;
1220 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1221 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1222 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1223 return false;
1225 /* Clear PME status. */
1226 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1227 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1228 /* Disable PME to avoid interrupt flood. */
1229 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1230 ret = true;
1233 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1235 return ret;
1239 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1240 * @dev: Device to handle.
1241 * @ign: Ignored.
1243 * Check if @dev has generated PME and queue a resume request for it in that
1244 * case.
1246 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1248 if (pci_check_pme_status(dev))
1249 pm_request_resume(&dev->dev);
1250 return 0;
1254 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1255 * @bus: Top bus of the subtree to walk.
1257 void pci_pme_wakeup_bus(struct pci_bus *bus)
1259 if (bus)
1260 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1264 * pci_pme_capable - check the capability of PCI device to generate PME#
1265 * @dev: PCI device to handle.
1266 * @state: PCI state from which device will issue PME#.
1268 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1270 if (!dev->pm_cap)
1271 return false;
1273 return !!(dev->pme_support & (1 << state));
1277 * pci_pme_active - enable or disable PCI device's PME# function
1278 * @dev: PCI device to handle.
1279 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1281 * The caller must verify that the device is capable of generating PME# before
1282 * calling this function with @enable equal to 'true'.
1284 void pci_pme_active(struct pci_dev *dev, bool enable)
1286 u16 pmcsr;
1288 if (!dev->pm_cap)
1289 return;
1291 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1292 /* Clear PME_Status by writing 1 to it and enable PME# */
1293 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1294 if (!enable)
1295 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1297 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1299 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1300 enable ? "enabled" : "disabled");
1304 * __pci_enable_wake - enable PCI device as wakeup event source
1305 * @dev: PCI device affected
1306 * @state: PCI state from which device will issue wakeup events
1307 * @runtime: True if the events are to be generated at run time
1308 * @enable: True to enable event generation; false to disable
1310 * This enables the device as a wakeup event source, or disables it.
1311 * When such events involves platform-specific hooks, those hooks are
1312 * called automatically by this routine.
1314 * Devices with legacy power management (no standard PCI PM capabilities)
1315 * always require such platform hooks.
1317 * RETURN VALUE:
1318 * 0 is returned on success
1319 * -EINVAL is returned if device is not supposed to wake up the system
1320 * Error code depending on the platform is returned if both the platform and
1321 * the native mechanism fail to enable the generation of wake-up events
1323 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1324 bool runtime, bool enable)
1326 int ret = 0;
1328 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1329 return -EINVAL;
1331 /* Don't do the same thing twice in a row for one device. */
1332 if (!!enable == !!dev->wakeup_prepared)
1333 return 0;
1336 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1337 * Anderson we should be doing PME# wake enable followed by ACPI wake
1338 * enable. To disable wake-up we call the platform first, for symmetry.
1341 if (enable) {
1342 int error;
1344 if (pci_pme_capable(dev, state))
1345 pci_pme_active(dev, true);
1346 else
1347 ret = 1;
1348 error = runtime ? platform_pci_run_wake(dev, true) :
1349 platform_pci_sleep_wake(dev, true);
1350 if (ret)
1351 ret = error;
1352 if (!ret)
1353 dev->wakeup_prepared = true;
1354 } else {
1355 if (runtime)
1356 platform_pci_run_wake(dev, false);
1357 else
1358 platform_pci_sleep_wake(dev, false);
1359 pci_pme_active(dev, false);
1360 dev->wakeup_prepared = false;
1363 return ret;
1365 EXPORT_SYMBOL(__pci_enable_wake);
1368 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1369 * @dev: PCI device to prepare
1370 * @enable: True to enable wake-up event generation; false to disable
1372 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1373 * and this function allows them to set that up cleanly - pci_enable_wake()
1374 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1375 * ordering constraints.
1377 * This function only returns error code if the device is not capable of
1378 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1379 * enable wake-up power for it.
1381 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1383 return pci_pme_capable(dev, PCI_D3cold) ?
1384 pci_enable_wake(dev, PCI_D3cold, enable) :
1385 pci_enable_wake(dev, PCI_D3hot, enable);
1389 * pci_target_state - find an appropriate low power state for a given PCI dev
1390 * @dev: PCI device
1392 * Use underlying platform code to find a supported low power state for @dev.
1393 * If the platform can't manage @dev, return the deepest state from which it
1394 * can generate wake events, based on any available PME info.
1396 pci_power_t pci_target_state(struct pci_dev *dev)
1398 pci_power_t target_state = PCI_D3hot;
1400 if (platform_pci_power_manageable(dev)) {
1402 * Call the platform to choose the target state of the device
1403 * and enable wake-up from this state if supported.
1405 pci_power_t state = platform_pci_choose_state(dev);
1407 switch (state) {
1408 case PCI_POWER_ERROR:
1409 case PCI_UNKNOWN:
1410 break;
1411 case PCI_D1:
1412 case PCI_D2:
1413 if (pci_no_d1d2(dev))
1414 break;
1415 default:
1416 target_state = state;
1418 } else if (!dev->pm_cap) {
1419 target_state = PCI_D0;
1420 } else if (device_may_wakeup(&dev->dev)) {
1422 * Find the deepest state from which the device can generate
1423 * wake-up events, make it the target state and enable device
1424 * to generate PME#.
1426 if (dev->pme_support) {
1427 while (target_state
1428 && !(dev->pme_support & (1 << target_state)))
1429 target_state--;
1433 return target_state;
1437 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1438 * @dev: Device to handle.
1440 * Choose the power state appropriate for the device depending on whether
1441 * it can wake up the system and/or is power manageable by the platform
1442 * (PCI_D3hot is the default) and put the device into that state.
1444 int pci_prepare_to_sleep(struct pci_dev *dev)
1446 pci_power_t target_state = pci_target_state(dev);
1447 int error;
1449 if (target_state == PCI_POWER_ERROR)
1450 return -EIO;
1452 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1454 error = pci_set_power_state(dev, target_state);
1456 if (error)
1457 pci_enable_wake(dev, target_state, false);
1459 return error;
1463 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1464 * @dev: Device to handle.
1466 * Disable device's sytem wake-up capability and put it into D0.
1468 int pci_back_from_sleep(struct pci_dev *dev)
1470 pci_enable_wake(dev, PCI_D0, false);
1471 return pci_set_power_state(dev, PCI_D0);
1475 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1476 * @dev: PCI device being suspended.
1478 * Prepare @dev to generate wake-up events at run time and put it into a low
1479 * power state.
1481 int pci_finish_runtime_suspend(struct pci_dev *dev)
1483 pci_power_t target_state = pci_target_state(dev);
1484 int error;
1486 if (target_state == PCI_POWER_ERROR)
1487 return -EIO;
1489 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1491 error = pci_set_power_state(dev, target_state);
1493 if (error)
1494 __pci_enable_wake(dev, target_state, true, false);
1496 return error;
1500 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1501 * @dev: Device to check.
1503 * Return true if the device itself is cabable of generating wake-up events
1504 * (through the platform or using the native PCIe PME) or if the device supports
1505 * PME and one of its upstream bridges can generate wake-up events.
1507 bool pci_dev_run_wake(struct pci_dev *dev)
1509 struct pci_bus *bus = dev->bus;
1511 if (device_run_wake(&dev->dev))
1512 return true;
1514 if (!dev->pme_support)
1515 return false;
1517 while (bus->parent) {
1518 struct pci_dev *bridge = bus->self;
1520 if (device_run_wake(&bridge->dev))
1521 return true;
1523 bus = bus->parent;
1526 /* We have reached the root bus. */
1527 if (bus->bridge)
1528 return device_run_wake(bus->bridge);
1530 return false;
1532 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1535 * pci_pm_init - Initialize PM functions of given PCI device
1536 * @dev: PCI device to handle.
1538 void pci_pm_init(struct pci_dev *dev)
1540 int pm;
1541 u16 pmc;
1543 device_enable_async_suspend(&dev->dev);
1544 dev->wakeup_prepared = false;
1545 dev->pm_cap = 0;
1547 /* find PCI PM capability in list */
1548 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1549 if (!pm)
1550 return;
1551 /* Check device's ability to generate PME# */
1552 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1554 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1555 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1556 pmc & PCI_PM_CAP_VER_MASK);
1557 return;
1560 dev->pm_cap = pm;
1561 dev->d3_delay = PCI_PM_D3_WAIT;
1563 dev->d1_support = false;
1564 dev->d2_support = false;
1565 if (!pci_no_d1d2(dev)) {
1566 if (pmc & PCI_PM_CAP_D1)
1567 dev->d1_support = true;
1568 if (pmc & PCI_PM_CAP_D2)
1569 dev->d2_support = true;
1571 if (dev->d1_support || dev->d2_support)
1572 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1573 dev->d1_support ? " D1" : "",
1574 dev->d2_support ? " D2" : "");
1577 pmc &= PCI_PM_CAP_PME_MASK;
1578 if (pmc) {
1579 dev_printk(KERN_DEBUG, &dev->dev,
1580 "PME# supported from%s%s%s%s%s\n",
1581 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1582 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1583 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1584 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1585 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1586 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1588 * Make device's PM flags reflect the wake-up capability, but
1589 * let the user space enable it to wake up the system as needed.
1591 device_set_wakeup_capable(&dev->dev, true);
1592 device_set_wakeup_enable(&dev->dev, false);
1593 /* Disable the PME# generation functionality */
1594 pci_pme_active(dev, false);
1595 } else {
1596 dev->pme_support = 0;
1601 * platform_pci_wakeup_init - init platform wakeup if present
1602 * @dev: PCI device
1604 * Some devices don't have PCI PM caps but can still generate wakeup
1605 * events through platform methods (like ACPI events). If @dev supports
1606 * platform wakeup events, set the device flag to indicate as much. This
1607 * may be redundant if the device also supports PCI PM caps, but double
1608 * initialization should be safe in that case.
1610 void platform_pci_wakeup_init(struct pci_dev *dev)
1612 if (!platform_pci_can_wakeup(dev))
1613 return;
1615 device_set_wakeup_capable(&dev->dev, true);
1616 device_set_wakeup_enable(&dev->dev, false);
1617 platform_pci_sleep_wake(dev, false);
1621 * pci_add_save_buffer - allocate buffer for saving given capability registers
1622 * @dev: the PCI device
1623 * @cap: the capability to allocate the buffer for
1624 * @size: requested size of the buffer
1626 static int pci_add_cap_save_buffer(
1627 struct pci_dev *dev, char cap, unsigned int size)
1629 int pos;
1630 struct pci_cap_saved_state *save_state;
1632 pos = pci_find_capability(dev, cap);
1633 if (pos <= 0)
1634 return 0;
1636 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1637 if (!save_state)
1638 return -ENOMEM;
1640 save_state->cap_nr = cap;
1641 pci_add_saved_cap(dev, save_state);
1643 return 0;
1647 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1648 * @dev: the PCI device
1650 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1652 int error;
1654 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1655 PCI_EXP_SAVE_REGS * sizeof(u16));
1656 if (error)
1657 dev_err(&dev->dev,
1658 "unable to preallocate PCI Express save buffer\n");
1660 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1661 if (error)
1662 dev_err(&dev->dev,
1663 "unable to preallocate PCI-X save buffer\n");
1667 * pci_enable_ari - enable ARI forwarding if hardware support it
1668 * @dev: the PCI device
1670 void pci_enable_ari(struct pci_dev *dev)
1672 int pos;
1673 u32 cap;
1674 u16 ctrl;
1675 struct pci_dev *bridge;
1677 if (!pci_is_pcie(dev) || dev->devfn)
1678 return;
1680 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1681 if (!pos)
1682 return;
1684 bridge = dev->bus->self;
1685 if (!bridge || !pci_is_pcie(bridge))
1686 return;
1688 pos = pci_pcie_cap(bridge);
1689 if (!pos)
1690 return;
1692 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1693 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1694 return;
1696 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1697 ctrl |= PCI_EXP_DEVCTL2_ARI;
1698 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1700 bridge->ari_enabled = 1;
1703 static int pci_acs_enable;
1706 * pci_request_acs - ask for ACS to be enabled if supported
1708 void pci_request_acs(void)
1710 pci_acs_enable = 1;
1714 * pci_enable_acs - enable ACS if hardware support it
1715 * @dev: the PCI device
1717 void pci_enable_acs(struct pci_dev *dev)
1719 int pos;
1720 u16 cap;
1721 u16 ctrl;
1723 if (!pci_acs_enable)
1724 return;
1726 if (!pci_is_pcie(dev))
1727 return;
1729 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1730 if (!pos)
1731 return;
1733 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1734 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1736 /* Source Validation */
1737 ctrl |= (cap & PCI_ACS_SV);
1739 /* P2P Request Redirect */
1740 ctrl |= (cap & PCI_ACS_RR);
1742 /* P2P Completion Redirect */
1743 ctrl |= (cap & PCI_ACS_CR);
1745 /* Upstream Forwarding */
1746 ctrl |= (cap & PCI_ACS_UF);
1748 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1752 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1753 * @dev: the PCI device
1754 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1756 * Perform INTx swizzling for a device behind one level of bridge. This is
1757 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1758 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1759 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1760 * the PCI Express Base Specification, Revision 2.1)
1762 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1764 int slot;
1766 if (pci_ari_enabled(dev->bus))
1767 slot = 0;
1768 else
1769 slot = PCI_SLOT(dev->devfn);
1771 return (((pin - 1) + slot) % 4) + 1;
1775 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1777 u8 pin;
1779 pin = dev->pin;
1780 if (!pin)
1781 return -1;
1783 while (!pci_is_root_bus(dev->bus)) {
1784 pin = pci_swizzle_interrupt_pin(dev, pin);
1785 dev = dev->bus->self;
1787 *bridge = dev;
1788 return pin;
1792 * pci_common_swizzle - swizzle INTx all the way to root bridge
1793 * @dev: the PCI device
1794 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1796 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1797 * bridges all the way up to a PCI root bus.
1799 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1801 u8 pin = *pinp;
1803 while (!pci_is_root_bus(dev->bus)) {
1804 pin = pci_swizzle_interrupt_pin(dev, pin);
1805 dev = dev->bus->self;
1807 *pinp = pin;
1808 return PCI_SLOT(dev->devfn);
1812 * pci_release_region - Release a PCI bar
1813 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1814 * @bar: BAR to release
1816 * Releases the PCI I/O and memory resources previously reserved by a
1817 * successful call to pci_request_region. Call this function only
1818 * after all use of the PCI regions has ceased.
1820 void pci_release_region(struct pci_dev *pdev, int bar)
1822 struct pci_devres *dr;
1824 if (pci_resource_len(pdev, bar) == 0)
1825 return;
1826 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1827 release_region(pci_resource_start(pdev, bar),
1828 pci_resource_len(pdev, bar));
1829 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1830 release_mem_region(pci_resource_start(pdev, bar),
1831 pci_resource_len(pdev, bar));
1833 dr = find_pci_dr(pdev);
1834 if (dr)
1835 dr->region_mask &= ~(1 << bar);
1839 * __pci_request_region - Reserved PCI I/O and memory resource
1840 * @pdev: PCI device whose resources are to be reserved
1841 * @bar: BAR to be reserved
1842 * @res_name: Name to be associated with resource.
1843 * @exclusive: whether the region access is exclusive or not
1845 * Mark the PCI region associated with PCI device @pdev BR @bar as
1846 * being reserved by owner @res_name. Do not access any
1847 * address inside the PCI regions unless this call returns
1848 * successfully.
1850 * If @exclusive is set, then the region is marked so that userspace
1851 * is explicitly not allowed to map the resource via /dev/mem or
1852 * sysfs MMIO access.
1854 * Returns 0 on success, or %EBUSY on error. A warning
1855 * message is also printed on failure.
1857 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1858 int exclusive)
1860 struct pci_devres *dr;
1862 if (pci_resource_len(pdev, bar) == 0)
1863 return 0;
1865 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1866 if (!request_region(pci_resource_start(pdev, bar),
1867 pci_resource_len(pdev, bar), res_name))
1868 goto err_out;
1870 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1871 if (!__request_mem_region(pci_resource_start(pdev, bar),
1872 pci_resource_len(pdev, bar), res_name,
1873 exclusive))
1874 goto err_out;
1877 dr = find_pci_dr(pdev);
1878 if (dr)
1879 dr->region_mask |= 1 << bar;
1881 return 0;
1883 err_out:
1884 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
1885 &pdev->resource[bar]);
1886 return -EBUSY;
1890 * pci_request_region - Reserve PCI I/O and memory resource
1891 * @pdev: PCI device whose resources are to be reserved
1892 * @bar: BAR to be reserved
1893 * @res_name: Name to be associated with resource
1895 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1896 * being reserved by owner @res_name. Do not access any
1897 * address inside the PCI regions unless this call returns
1898 * successfully.
1900 * Returns 0 on success, or %EBUSY on error. A warning
1901 * message is also printed on failure.
1903 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1905 return __pci_request_region(pdev, bar, res_name, 0);
1909 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1910 * @pdev: PCI device whose resources are to be reserved
1911 * @bar: BAR to be reserved
1912 * @res_name: Name to be associated with resource.
1914 * Mark the PCI region associated with PCI device @pdev BR @bar as
1915 * being reserved by owner @res_name. Do not access any
1916 * address inside the PCI regions unless this call returns
1917 * successfully.
1919 * Returns 0 on success, or %EBUSY on error. A warning
1920 * message is also printed on failure.
1922 * The key difference that _exclusive makes it that userspace is
1923 * explicitly not allowed to map the resource via /dev/mem or
1924 * sysfs.
1926 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1928 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1931 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1932 * @pdev: PCI device whose resources were previously reserved
1933 * @bars: Bitmask of BARs to be released
1935 * Release selected PCI I/O and memory resources previously reserved.
1936 * Call this function only after all use of the PCI regions has ceased.
1938 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1940 int i;
1942 for (i = 0; i < 6; i++)
1943 if (bars & (1 << i))
1944 pci_release_region(pdev, i);
1947 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1948 const char *res_name, int excl)
1950 int i;
1952 for (i = 0; i < 6; i++)
1953 if (bars & (1 << i))
1954 if (__pci_request_region(pdev, i, res_name, excl))
1955 goto err_out;
1956 return 0;
1958 err_out:
1959 while(--i >= 0)
1960 if (bars & (1 << i))
1961 pci_release_region(pdev, i);
1963 return -EBUSY;
1968 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1969 * @pdev: PCI device whose resources are to be reserved
1970 * @bars: Bitmask of BARs to be requested
1971 * @res_name: Name to be associated with resource
1973 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1974 const char *res_name)
1976 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1979 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1980 int bars, const char *res_name)
1982 return __pci_request_selected_regions(pdev, bars, res_name,
1983 IORESOURCE_EXCLUSIVE);
1987 * pci_release_regions - Release reserved PCI I/O and memory resources
1988 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1990 * Releases all PCI I/O and memory resources previously reserved by a
1991 * successful call to pci_request_regions. Call this function only
1992 * after all use of the PCI regions has ceased.
1995 void pci_release_regions(struct pci_dev *pdev)
1997 pci_release_selected_regions(pdev, (1 << 6) - 1);
2001 * pci_request_regions - Reserved PCI I/O and memory resources
2002 * @pdev: PCI device whose resources are to be reserved
2003 * @res_name: Name to be associated with resource.
2005 * Mark all PCI regions associated with PCI device @pdev as
2006 * being reserved by owner @res_name. Do not access any
2007 * address inside the PCI regions unless this call returns
2008 * successfully.
2010 * Returns 0 on success, or %EBUSY on error. A warning
2011 * message is also printed on failure.
2013 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2015 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2019 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2020 * @pdev: PCI device whose resources are to be reserved
2021 * @res_name: Name to be associated with resource.
2023 * Mark all PCI regions associated with PCI device @pdev as
2024 * being reserved by owner @res_name. Do not access any
2025 * address inside the PCI regions unless this call returns
2026 * successfully.
2028 * pci_request_regions_exclusive() will mark the region so that
2029 * /dev/mem and the sysfs MMIO access will not be allowed.
2031 * Returns 0 on success, or %EBUSY on error. A warning
2032 * message is also printed on failure.
2034 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2036 return pci_request_selected_regions_exclusive(pdev,
2037 ((1 << 6) - 1), res_name);
2040 static void __pci_set_master(struct pci_dev *dev, bool enable)
2042 u16 old_cmd, cmd;
2044 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2045 if (enable)
2046 cmd = old_cmd | PCI_COMMAND_MASTER;
2047 else
2048 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2049 if (cmd != old_cmd) {
2050 dev_dbg(&dev->dev, "%s bus mastering\n",
2051 enable ? "enabling" : "disabling");
2052 pci_write_config_word(dev, PCI_COMMAND, cmd);
2054 dev->is_busmaster = enable;
2058 * pci_set_master - enables bus-mastering for device dev
2059 * @dev: the PCI device to enable
2061 * Enables bus-mastering on the device and calls pcibios_set_master()
2062 * to do the needed arch specific settings.
2064 void pci_set_master(struct pci_dev *dev)
2066 __pci_set_master(dev, true);
2067 pcibios_set_master(dev);
2071 * pci_clear_master - disables bus-mastering for device dev
2072 * @dev: the PCI device to disable
2074 void pci_clear_master(struct pci_dev *dev)
2076 __pci_set_master(dev, false);
2080 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2081 * @dev: the PCI device for which MWI is to be enabled
2083 * Helper function for pci_set_mwi.
2084 * Originally copied from drivers/net/acenic.c.
2085 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2087 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2089 int pci_set_cacheline_size(struct pci_dev *dev)
2091 u8 cacheline_size;
2093 if (!pci_cache_line_size)
2094 return -EINVAL;
2096 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2097 equal to or multiple of the right value. */
2098 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2099 if (cacheline_size >= pci_cache_line_size &&
2100 (cacheline_size % pci_cache_line_size) == 0)
2101 return 0;
2103 /* Write the correct value. */
2104 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2105 /* Read it back. */
2106 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2107 if (cacheline_size == pci_cache_line_size)
2108 return 0;
2110 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2111 "supported\n", pci_cache_line_size << 2);
2113 return -EINVAL;
2115 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2117 #ifdef PCI_DISABLE_MWI
2118 int pci_set_mwi(struct pci_dev *dev)
2120 return 0;
2123 int pci_try_set_mwi(struct pci_dev *dev)
2125 return 0;
2128 void pci_clear_mwi(struct pci_dev *dev)
2132 #else
2135 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2136 * @dev: the PCI device for which MWI is enabled
2138 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2140 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2143 pci_set_mwi(struct pci_dev *dev)
2145 int rc;
2146 u16 cmd;
2148 rc = pci_set_cacheline_size(dev);
2149 if (rc)
2150 return rc;
2152 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2153 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2154 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2155 cmd |= PCI_COMMAND_INVALIDATE;
2156 pci_write_config_word(dev, PCI_COMMAND, cmd);
2159 return 0;
2163 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2164 * @dev: the PCI device for which MWI is enabled
2166 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2167 * Callers are not required to check the return value.
2169 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2171 int pci_try_set_mwi(struct pci_dev *dev)
2173 int rc = pci_set_mwi(dev);
2174 return rc;
2178 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2179 * @dev: the PCI device to disable
2181 * Disables PCI Memory-Write-Invalidate transaction on the device
2183 void
2184 pci_clear_mwi(struct pci_dev *dev)
2186 u16 cmd;
2188 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2189 if (cmd & PCI_COMMAND_INVALIDATE) {
2190 cmd &= ~PCI_COMMAND_INVALIDATE;
2191 pci_write_config_word(dev, PCI_COMMAND, cmd);
2194 #endif /* ! PCI_DISABLE_MWI */
2197 * pci_intx - enables/disables PCI INTx for device dev
2198 * @pdev: the PCI device to operate on
2199 * @enable: boolean: whether to enable or disable PCI INTx
2201 * Enables/disables PCI INTx for device dev
2203 void
2204 pci_intx(struct pci_dev *pdev, int enable)
2206 u16 pci_command, new;
2208 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2210 if (enable) {
2211 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2212 } else {
2213 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2216 if (new != pci_command) {
2217 struct pci_devres *dr;
2219 pci_write_config_word(pdev, PCI_COMMAND, new);
2221 dr = find_pci_dr(pdev);
2222 if (dr && !dr->restore_intx) {
2223 dr->restore_intx = 1;
2224 dr->orig_intx = !enable;
2230 * pci_msi_off - disables any msi or msix capabilities
2231 * @dev: the PCI device to operate on
2233 * If you want to use msi see pci_enable_msi and friends.
2234 * This is a lower level primitive that allows us to disable
2235 * msi operation at the device level.
2237 void pci_msi_off(struct pci_dev *dev)
2239 int pos;
2240 u16 control;
2242 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2243 if (pos) {
2244 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2245 control &= ~PCI_MSI_FLAGS_ENABLE;
2246 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2248 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2249 if (pos) {
2250 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2251 control &= ~PCI_MSIX_FLAGS_ENABLE;
2252 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2256 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2258 * These can be overridden by arch-specific implementations
2261 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2263 if (!pci_dma_supported(dev, mask))
2264 return -EIO;
2266 dev->dma_mask = mask;
2267 dev_dbg(&dev->dev, "using %dbit DMA mask\n", fls64(mask));
2269 return 0;
2273 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2275 if (!pci_dma_supported(dev, mask))
2276 return -EIO;
2278 dev->dev.coherent_dma_mask = mask;
2279 dev_dbg(&dev->dev, "using %dbit consistent DMA mask\n", fls64(mask));
2281 return 0;
2283 #endif
2285 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2286 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2288 return dma_set_max_seg_size(&dev->dev, size);
2290 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2291 #endif
2293 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2294 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2296 return dma_set_seg_boundary(&dev->dev, mask);
2298 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2299 #endif
2301 static int pcie_flr(struct pci_dev *dev, int probe)
2303 int i;
2304 int pos;
2305 u32 cap;
2306 u16 status, control;
2308 pos = pci_pcie_cap(dev);
2309 if (!pos)
2310 return -ENOTTY;
2312 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2313 if (!(cap & PCI_EXP_DEVCAP_FLR))
2314 return -ENOTTY;
2316 if (probe)
2317 return 0;
2319 /* Wait for Transaction Pending bit clean */
2320 for (i = 0; i < 4; i++) {
2321 if (i)
2322 msleep((1 << (i - 1)) * 100);
2324 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2325 if (!(status & PCI_EXP_DEVSTA_TRPND))
2326 goto clear;
2329 dev_err(&dev->dev, "transaction is not cleared; "
2330 "proceeding with reset anyway\n");
2332 clear:
2333 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2334 control |= PCI_EXP_DEVCTL_BCR_FLR;
2335 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2337 msleep(100);
2339 return 0;
2342 static int pci_af_flr(struct pci_dev *dev, int probe)
2344 int i;
2345 int pos;
2346 u8 cap;
2347 u8 status;
2349 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2350 if (!pos)
2351 return -ENOTTY;
2353 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2354 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2355 return -ENOTTY;
2357 if (probe)
2358 return 0;
2360 /* Wait for Transaction Pending bit clean */
2361 for (i = 0; i < 4; i++) {
2362 if (i)
2363 msleep((1 << (i - 1)) * 100);
2365 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2366 if (!(status & PCI_AF_STATUS_TP))
2367 goto clear;
2370 dev_err(&dev->dev, "transaction is not cleared; "
2371 "proceeding with reset anyway\n");
2373 clear:
2374 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2375 msleep(100);
2377 return 0;
2380 static int pci_pm_reset(struct pci_dev *dev, int probe)
2382 u16 csr;
2384 if (!dev->pm_cap)
2385 return -ENOTTY;
2387 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2388 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2389 return -ENOTTY;
2391 if (probe)
2392 return 0;
2394 if (dev->current_state != PCI_D0)
2395 return -EINVAL;
2397 csr &= ~PCI_PM_CTRL_STATE_MASK;
2398 csr |= PCI_D3hot;
2399 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2400 pci_dev_d3_sleep(dev);
2402 csr &= ~PCI_PM_CTRL_STATE_MASK;
2403 csr |= PCI_D0;
2404 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2405 pci_dev_d3_sleep(dev);
2407 return 0;
2410 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2412 u16 ctrl;
2413 struct pci_dev *pdev;
2415 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2416 return -ENOTTY;
2418 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2419 if (pdev != dev)
2420 return -ENOTTY;
2422 if (probe)
2423 return 0;
2425 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2426 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2427 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2428 msleep(100);
2430 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2431 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2432 msleep(100);
2434 return 0;
2437 static int pci_dev_reset(struct pci_dev *dev, int probe)
2439 int rc;
2441 might_sleep();
2443 if (!probe) {
2444 pci_block_user_cfg_access(dev);
2445 /* block PM suspend, driver probe, etc. */
2446 down(&dev->dev.sem);
2449 rc = pci_dev_specific_reset(dev, probe);
2450 if (rc != -ENOTTY)
2451 goto done;
2453 rc = pcie_flr(dev, probe);
2454 if (rc != -ENOTTY)
2455 goto done;
2457 rc = pci_af_flr(dev, probe);
2458 if (rc != -ENOTTY)
2459 goto done;
2461 rc = pci_pm_reset(dev, probe);
2462 if (rc != -ENOTTY)
2463 goto done;
2465 rc = pci_parent_bus_reset(dev, probe);
2466 done:
2467 if (!probe) {
2468 up(&dev->dev.sem);
2469 pci_unblock_user_cfg_access(dev);
2472 return rc;
2476 * __pci_reset_function - reset a PCI device function
2477 * @dev: PCI device to reset
2479 * Some devices allow an individual function to be reset without affecting
2480 * other functions in the same device. The PCI device must be responsive
2481 * to PCI config space in order to use this function.
2483 * The device function is presumed to be unused when this function is called.
2484 * Resetting the device will make the contents of PCI configuration space
2485 * random, so any caller of this must be prepared to reinitialise the
2486 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2487 * etc.
2489 * Returns 0 if the device function was successfully reset or negative if the
2490 * device doesn't support resetting a single function.
2492 int __pci_reset_function(struct pci_dev *dev)
2494 return pci_dev_reset(dev, 0);
2496 EXPORT_SYMBOL_GPL(__pci_reset_function);
2499 * pci_probe_reset_function - check whether the device can be safely reset
2500 * @dev: PCI device to reset
2502 * Some devices allow an individual function to be reset without affecting
2503 * other functions in the same device. The PCI device must be responsive
2504 * to PCI config space in order to use this function.
2506 * Returns 0 if the device function can be reset or negative if the
2507 * device doesn't support resetting a single function.
2509 int pci_probe_reset_function(struct pci_dev *dev)
2511 return pci_dev_reset(dev, 1);
2515 * pci_reset_function - quiesce and reset a PCI device function
2516 * @dev: PCI device to reset
2518 * Some devices allow an individual function to be reset without affecting
2519 * other functions in the same device. The PCI device must be responsive
2520 * to PCI config space in order to use this function.
2522 * This function does not just reset the PCI portion of a device, but
2523 * clears all the state associated with the device. This function differs
2524 * from __pci_reset_function in that it saves and restores device state
2525 * over the reset.
2527 * Returns 0 if the device function was successfully reset or negative if the
2528 * device doesn't support resetting a single function.
2530 int pci_reset_function(struct pci_dev *dev)
2532 int rc;
2534 rc = pci_dev_reset(dev, 1);
2535 if (rc)
2536 return rc;
2538 pci_save_state(dev);
2541 * both INTx and MSI are disabled after the Interrupt Disable bit
2542 * is set and the Bus Master bit is cleared.
2544 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2546 rc = pci_dev_reset(dev, 0);
2548 pci_restore_state(dev);
2550 return rc;
2552 EXPORT_SYMBOL_GPL(pci_reset_function);
2555 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2556 * @dev: PCI device to query
2558 * Returns mmrbc: maximum designed memory read count in bytes
2559 * or appropriate error value.
2561 int pcix_get_max_mmrbc(struct pci_dev *dev)
2563 int err, cap;
2564 u32 stat;
2566 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2567 if (!cap)
2568 return -EINVAL;
2570 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2571 if (err)
2572 return -EINVAL;
2574 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2576 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2579 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2580 * @dev: PCI device to query
2582 * Returns mmrbc: maximum memory read count in bytes
2583 * or appropriate error value.
2585 int pcix_get_mmrbc(struct pci_dev *dev)
2587 int ret, cap;
2588 u32 cmd;
2590 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2591 if (!cap)
2592 return -EINVAL;
2594 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2595 if (!ret)
2596 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2598 return ret;
2600 EXPORT_SYMBOL(pcix_get_mmrbc);
2603 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2604 * @dev: PCI device to query
2605 * @mmrbc: maximum memory read count in bytes
2606 * valid values are 512, 1024, 2048, 4096
2608 * If possible sets maximum memory read byte count, some bridges have erratas
2609 * that prevent this.
2611 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2613 int cap, err = -EINVAL;
2614 u32 stat, cmd, v, o;
2616 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2617 goto out;
2619 v = ffs(mmrbc) - 10;
2621 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2622 if (!cap)
2623 goto out;
2625 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2626 if (err)
2627 goto out;
2629 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2630 return -E2BIG;
2632 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2633 if (err)
2634 goto out;
2636 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2637 if (o != v) {
2638 if (v > o && dev->bus &&
2639 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2640 return -EIO;
2642 cmd &= ~PCI_X_CMD_MAX_READ;
2643 cmd |= v << 2;
2644 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2646 out:
2647 return err;
2649 EXPORT_SYMBOL(pcix_set_mmrbc);
2652 * pcie_get_readrq - get PCI Express read request size
2653 * @dev: PCI device to query
2655 * Returns maximum memory read request in bytes
2656 * or appropriate error value.
2658 int pcie_get_readrq(struct pci_dev *dev)
2660 int ret, cap;
2661 u16 ctl;
2663 cap = pci_pcie_cap(dev);
2664 if (!cap)
2665 return -EINVAL;
2667 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2668 if (!ret)
2669 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2671 return ret;
2673 EXPORT_SYMBOL(pcie_get_readrq);
2676 * pcie_set_readrq - set PCI Express maximum memory read request
2677 * @dev: PCI device to query
2678 * @rq: maximum memory read count in bytes
2679 * valid values are 128, 256, 512, 1024, 2048, 4096
2681 * If possible sets maximum read byte count
2683 int pcie_set_readrq(struct pci_dev *dev, int rq)
2685 int cap, err = -EINVAL;
2686 u16 ctl, v;
2688 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2689 goto out;
2691 v = (ffs(rq) - 8) << 12;
2693 cap = pci_pcie_cap(dev);
2694 if (!cap)
2695 goto out;
2697 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2698 if (err)
2699 goto out;
2701 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2702 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2703 ctl |= v;
2704 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2707 out:
2708 return err;
2710 EXPORT_SYMBOL(pcie_set_readrq);
2713 * pci_select_bars - Make BAR mask from the type of resource
2714 * @dev: the PCI device for which BAR mask is made
2715 * @flags: resource type mask to be selected
2717 * This helper routine makes bar mask from the type of resource.
2719 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2721 int i, bars = 0;
2722 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2723 if (pci_resource_flags(dev, i) & flags)
2724 bars |= (1 << i);
2725 return bars;
2729 * pci_resource_bar - get position of the BAR associated with a resource
2730 * @dev: the PCI device
2731 * @resno: the resource number
2732 * @type: the BAR type to be filled in
2734 * Returns BAR position in config space, or 0 if the BAR is invalid.
2736 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2738 int reg;
2740 if (resno < PCI_ROM_RESOURCE) {
2741 *type = pci_bar_unknown;
2742 return PCI_BASE_ADDRESS_0 + 4 * resno;
2743 } else if (resno == PCI_ROM_RESOURCE) {
2744 *type = pci_bar_mem32;
2745 return dev->rom_base_reg;
2746 } else if (resno < PCI_BRIDGE_RESOURCES) {
2747 /* device specific resource */
2748 reg = pci_iov_resource_bar(dev, resno, type);
2749 if (reg)
2750 return reg;
2753 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2754 return 0;
2757 /* Some architectures require additional programming to enable VGA */
2758 static arch_set_vga_state_t arch_set_vga_state;
2760 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2762 arch_set_vga_state = func; /* NULL disables */
2765 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2766 unsigned int command_bits, bool change_bridge)
2768 if (arch_set_vga_state)
2769 return arch_set_vga_state(dev, decode, command_bits,
2770 change_bridge);
2771 return 0;
2775 * pci_set_vga_state - set VGA decode state on device and parents if requested
2776 * @dev: the PCI device
2777 * @decode: true = enable decoding, false = disable decoding
2778 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2779 * @change_bridge: traverse ancestors and change bridges
2781 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2782 unsigned int command_bits, bool change_bridge)
2784 struct pci_bus *bus;
2785 struct pci_dev *bridge;
2786 u16 cmd;
2787 int rc;
2789 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2791 /* ARCH specific VGA enables */
2792 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2793 if (rc)
2794 return rc;
2796 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2797 if (decode == true)
2798 cmd |= command_bits;
2799 else
2800 cmd &= ~command_bits;
2801 pci_write_config_word(dev, PCI_COMMAND, cmd);
2803 if (change_bridge == false)
2804 return 0;
2806 bus = dev->bus;
2807 while (bus) {
2808 bridge = bus->self;
2809 if (bridge) {
2810 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2811 &cmd);
2812 if (decode == true)
2813 cmd |= PCI_BRIDGE_CTL_VGA;
2814 else
2815 cmd &= ~PCI_BRIDGE_CTL_VGA;
2816 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2817 cmd);
2819 bus = bus->parent;
2821 return 0;
2824 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2825 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2826 static DEFINE_SPINLOCK(resource_alignment_lock);
2829 * pci_specified_resource_alignment - get resource alignment specified by user.
2830 * @dev: the PCI device to get
2832 * RETURNS: Resource alignment if it is specified.
2833 * Zero if it is not specified.
2835 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2837 int seg, bus, slot, func, align_order, count;
2838 resource_size_t align = 0;
2839 char *p;
2841 spin_lock(&resource_alignment_lock);
2842 p = resource_alignment_param;
2843 while (*p) {
2844 count = 0;
2845 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2846 p[count] == '@') {
2847 p += count + 1;
2848 } else {
2849 align_order = -1;
2851 if (sscanf(p, "%x:%x:%x.%x%n",
2852 &seg, &bus, &slot, &func, &count) != 4) {
2853 seg = 0;
2854 if (sscanf(p, "%x:%x.%x%n",
2855 &bus, &slot, &func, &count) != 3) {
2856 /* Invalid format */
2857 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2859 break;
2862 p += count;
2863 if (seg == pci_domain_nr(dev->bus) &&
2864 bus == dev->bus->number &&
2865 slot == PCI_SLOT(dev->devfn) &&
2866 func == PCI_FUNC(dev->devfn)) {
2867 if (align_order == -1) {
2868 align = PAGE_SIZE;
2869 } else {
2870 align = 1 << align_order;
2872 /* Found */
2873 break;
2875 if (*p != ';' && *p != ',') {
2876 /* End of param or invalid format */
2877 break;
2879 p++;
2881 spin_unlock(&resource_alignment_lock);
2882 return align;
2886 * pci_is_reassigndev - check if specified PCI is target device to reassign
2887 * @dev: the PCI device to check
2889 * RETURNS: non-zero for PCI device is a target device to reassign,
2890 * or zero is not.
2892 int pci_is_reassigndev(struct pci_dev *dev)
2894 return (pci_specified_resource_alignment(dev) != 0);
2897 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2899 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2900 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2901 spin_lock(&resource_alignment_lock);
2902 strncpy(resource_alignment_param, buf, count);
2903 resource_alignment_param[count] = '\0';
2904 spin_unlock(&resource_alignment_lock);
2905 return count;
2908 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2910 size_t count;
2911 spin_lock(&resource_alignment_lock);
2912 count = snprintf(buf, size, "%s", resource_alignment_param);
2913 spin_unlock(&resource_alignment_lock);
2914 return count;
2917 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2919 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2922 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2923 const char *buf, size_t count)
2925 return pci_set_resource_alignment_param(buf, count);
2928 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2929 pci_resource_alignment_store);
2931 static int __init pci_resource_alignment_sysfs_init(void)
2933 return bus_create_file(&pci_bus_type,
2934 &bus_attr_resource_alignment);
2937 late_initcall(pci_resource_alignment_sysfs_init);
2939 static void __devinit pci_no_domains(void)
2941 #ifdef CONFIG_PCI_DOMAINS
2942 pci_domains_supported = 0;
2943 #endif
2947 * pci_ext_cfg_enabled - can we access extended PCI config space?
2948 * @dev: The PCI device of the root bridge.
2950 * Returns 1 if we can access PCI extended config space (offsets
2951 * greater than 0xff). This is the default implementation. Architecture
2952 * implementations can override this.
2954 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2956 return 1;
2959 void __weak pci_fixup_cardbus(struct pci_bus *bus)
2962 EXPORT_SYMBOL(pci_fixup_cardbus);
2964 static int __init pci_setup(char *str)
2966 while (str) {
2967 char *k = strchr(str, ',');
2968 if (k)
2969 *k++ = 0;
2970 if (*str && (str = pcibios_setup(str)) && *str) {
2971 if (!strcmp(str, "nomsi")) {
2972 pci_no_msi();
2973 } else if (!strcmp(str, "noaer")) {
2974 pci_no_aer();
2975 } else if (!strcmp(str, "nodomains")) {
2976 pci_no_domains();
2977 } else if (!strncmp(str, "cbiosize=", 9)) {
2978 pci_cardbus_io_size = memparse(str + 9, &str);
2979 } else if (!strncmp(str, "cbmemsize=", 10)) {
2980 pci_cardbus_mem_size = memparse(str + 10, &str);
2981 } else if (!strncmp(str, "resource_alignment=", 19)) {
2982 pci_set_resource_alignment_param(str + 19,
2983 strlen(str + 19));
2984 } else if (!strncmp(str, "ecrc=", 5)) {
2985 pcie_ecrc_get_policy(str + 5);
2986 } else if (!strncmp(str, "hpiosize=", 9)) {
2987 pci_hotplug_io_size = memparse(str + 9, &str);
2988 } else if (!strncmp(str, "hpmemsize=", 10)) {
2989 pci_hotplug_mem_size = memparse(str + 10, &str);
2990 } else {
2991 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2992 str);
2995 str = k;
2997 return 0;
2999 early_param("pci", pci_setup);
3001 EXPORT_SYMBOL(pci_reenable_device);
3002 EXPORT_SYMBOL(pci_enable_device_io);
3003 EXPORT_SYMBOL(pci_enable_device_mem);
3004 EXPORT_SYMBOL(pci_enable_device);
3005 EXPORT_SYMBOL(pcim_enable_device);
3006 EXPORT_SYMBOL(pcim_pin_device);
3007 EXPORT_SYMBOL(pci_disable_device);
3008 EXPORT_SYMBOL(pci_find_capability);
3009 EXPORT_SYMBOL(pci_bus_find_capability);
3010 EXPORT_SYMBOL(pci_register_set_vga_state);
3011 EXPORT_SYMBOL(pci_release_regions);
3012 EXPORT_SYMBOL(pci_request_regions);
3013 EXPORT_SYMBOL(pci_request_regions_exclusive);
3014 EXPORT_SYMBOL(pci_release_region);
3015 EXPORT_SYMBOL(pci_request_region);
3016 EXPORT_SYMBOL(pci_request_region_exclusive);
3017 EXPORT_SYMBOL(pci_release_selected_regions);
3018 EXPORT_SYMBOL(pci_request_selected_regions);
3019 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3020 EXPORT_SYMBOL(pci_set_master);
3021 EXPORT_SYMBOL(pci_clear_master);
3022 EXPORT_SYMBOL(pci_set_mwi);
3023 EXPORT_SYMBOL(pci_try_set_mwi);
3024 EXPORT_SYMBOL(pci_clear_mwi);
3025 EXPORT_SYMBOL_GPL(pci_intx);
3026 EXPORT_SYMBOL(pci_set_dma_mask);
3027 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
3028 EXPORT_SYMBOL(pci_assign_resource);
3029 EXPORT_SYMBOL(pci_find_parent_resource);
3030 EXPORT_SYMBOL(pci_select_bars);
3032 EXPORT_SYMBOL(pci_set_power_state);
3033 EXPORT_SYMBOL(pci_save_state);
3034 EXPORT_SYMBOL(pci_restore_state);
3035 EXPORT_SYMBOL(pci_pme_capable);
3036 EXPORT_SYMBOL(pci_pme_active);
3037 EXPORT_SYMBOL(pci_wake_from_d3);
3038 EXPORT_SYMBOL(pci_target_state);
3039 EXPORT_SYMBOL(pci_prepare_to_sleep);
3040 EXPORT_SYMBOL(pci_back_from_sleep);
3041 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);