ALSA: hdspm - Use HDSPM_TOGGLE_SETTING to alter settings
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / sata_dwc_460ex.c
blob937aeb34b310e8d97152b6eef39529f53fef0aa8
1 /*
2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/libata.h>
37 #include <linux/slab.h>
38 #include "libata.h"
40 #include <scsi/scsi_host.h>
41 #include <scsi/scsi_cmnd.h>
43 /* These two are defined in "libata.h" */
44 #undef DRV_NAME
45 #undef DRV_VERSION
46 #define DRV_NAME "sata-dwc"
47 #define DRV_VERSION "1.3"
49 /* SATA DMA driver Globals */
50 #define DMA_NUM_CHANS 1
51 #define DMA_NUM_CHAN_REGS 8
53 /* SATA DMA Register definitions */
54 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
56 struct dmareg {
57 u32 low; /* Low bits 0-31 */
58 u32 high; /* High bits 32-63 */
61 /* DMA Per Channel registers */
62 struct dma_chan_regs {
63 struct dmareg sar; /* Source Address */
64 struct dmareg dar; /* Destination address */
65 struct dmareg llp; /* Linked List Pointer */
66 struct dmareg ctl; /* Control */
67 struct dmareg sstat; /* Source Status not implemented in core */
68 struct dmareg dstat; /* Destination Status not implemented in core*/
69 struct dmareg sstatar; /* Source Status Address not impl in core */
70 struct dmareg dstatar; /* Destination Status Address not implemente */
71 struct dmareg cfg; /* Config */
72 struct dmareg sgr; /* Source Gather */
73 struct dmareg dsr; /* Destination Scatter */
76 /* Generic Interrupt Registers */
77 struct dma_interrupt_regs {
78 struct dmareg tfr; /* Transfer Interrupt */
79 struct dmareg block; /* Block Interrupt */
80 struct dmareg srctran; /* Source Transfer Interrupt */
81 struct dmareg dsttran; /* Dest Transfer Interrupt */
82 struct dmareg error; /* Error */
85 struct ahb_dma_regs {
86 struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
87 struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */
88 struct dma_interrupt_regs interrupt_status; /* Interrupt Status */
89 struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */
90 struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */
91 struct dmareg statusInt; /* Interrupt combined*/
92 struct dmareg rq_srcreg; /* Src Trans Req */
93 struct dmareg rq_dstreg; /* Dst Trans Req */
94 struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/
95 struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/
96 struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/
97 struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/
98 struct dmareg dma_cfg; /* DMA Config */
99 struct dmareg dma_chan_en; /* DMA Channel Enable*/
100 struct dmareg dma_id; /* DMA ID */
101 struct dmareg dma_test; /* DMA Test */
102 struct dmareg res1; /* reserved */
103 struct dmareg res2; /* reserved */
105 * DMA Comp Params
106 * Param 6 = dma_param[0], Param 5 = dma_param[1],
107 * Param 4 = dma_param[2] ...
109 struct dmareg dma_params[6];
112 /* Data structure for linked list item */
113 struct lli {
114 u32 sar; /* Source Address */
115 u32 dar; /* Destination address */
116 u32 llp; /* Linked List Pointer */
117 struct dmareg ctl; /* Control */
118 struct dmareg dstat; /* Destination Status */
121 enum {
122 SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)),
123 SATA_DWC_DMAC_LLI_NUM = 256,
124 SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
125 SATA_DWC_DMAC_LLI_NUM),
126 SATA_DWC_DMAC_TWIDTH_BYTES = 4,
127 SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
128 SATA_DWC_DMAC_TWIDTH_BYTES),
131 /* DMA Register Operation Bits */
132 enum {
133 DMA_EN = 0x00000001, /* Enable AHB DMA */
134 DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */
135 DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */
138 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
139 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
140 /* Enable channel */
141 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
142 ((0x000000001 << (ch)) << 8))
143 /* Disable channel */
144 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
145 /* Transfer Type & Flow Controller */
146 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
147 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
148 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
149 /* Src Burst Transaction Length */
150 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
151 /* Dst Burst Transaction Length */
152 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
153 /* Source Transfer Width */
154 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
155 /* Destination Transfer Width */
156 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
158 /* Assign HW handshaking interface (x) to destination / source peripheral */
159 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
160 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
161 #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5)
162 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
165 * This define is used to set block chaining disabled in the control low
166 * register. It is already in little endian format so it can be &'d dirctly.
167 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
169 enum {
170 DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
171 DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
172 DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */
173 DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */
174 DMA_CTL_SINC_DEC = 0x00000200,
175 DMA_CTL_SINC_NOCHANGE = 0x00000400,
176 DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */
177 DMA_CTL_DINC_DEC = 0x00000080,
178 DMA_CTL_DINC_NOCHANGE = 0x00000100,
179 DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */
181 /* Channel Configuration Register high bits */
182 DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */
183 DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */
185 /* Channel Configuration Register low bits */
186 DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */
187 DMA_CFG_RELD_SRC = 0x40000000,
188 DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */
189 DMA_CFG_HS_SELDST = 0x00000400,
190 DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */
192 /* Channel Linked List Pointer Register */
193 DMA_LLP_AHBMASTER1 = 0, /* List Master Select */
194 DMA_LLP_AHBMASTER2 = 1,
196 SATA_DWC_MAX_PORTS = 1,
198 SATA_DWC_SCR_OFFSET = 0x24,
199 SATA_DWC_REG_OFFSET = 0x64,
202 /* DWC SATA Registers */
203 struct sata_dwc_regs {
204 u32 fptagr; /* 1st party DMA tag */
205 u32 fpbor; /* 1st party DMA buffer offset */
206 u32 fptcr; /* 1st party DMA Xfr count */
207 u32 dmacr; /* DMA Control */
208 u32 dbtsr; /* DMA Burst Transac size */
209 u32 intpr; /* Interrupt Pending */
210 u32 intmr; /* Interrupt Mask */
211 u32 errmr; /* Error Mask */
212 u32 llcr; /* Link Layer Control */
213 u32 phycr; /* PHY Control */
214 u32 physr; /* PHY Status */
215 u32 rxbistpd; /* Recvd BIST pattern def register */
216 u32 rxbistpd1; /* Recvd BIST data dword1 */
217 u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
218 u32 txbistpd; /* Trans BIST pattern def register */
219 u32 txbistpd1; /* Trans BIST data dword1 */
220 u32 txbistpd2; /* Trans BIST data dword2 */
221 u32 bistcr; /* BIST Control Register */
222 u32 bistfctr; /* BIST FIS Count Register */
223 u32 bistsr; /* BIST Status Register */
224 u32 bistdecr; /* BIST Dword Error count register */
225 u32 res[15]; /* Reserved locations */
226 u32 testr; /* Test Register */
227 u32 versionr; /* Version Register */
228 u32 idr; /* ID Register */
229 u32 unimpl[192]; /* Unimplemented */
230 u32 dmadr[256]; /* FIFO Locations in DMA Mode */
233 enum {
234 SCR_SCONTROL_DET_ENABLE = 0x00000001,
235 SCR_SSTATUS_DET_PRESENT = 0x00000001,
236 SCR_SERROR_DIAG_X = 0x04000000,
237 /* DWC SATA Register Operations */
238 SATA_DWC_TXFIFO_DEPTH = 0x01FF,
239 SATA_DWC_RXFIFO_DEPTH = 0x01FF,
240 SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
241 SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
242 SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
243 SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
244 SATA_DWC_INTPR_DMAT = 0x00000001,
245 SATA_DWC_INTPR_NEWFP = 0x00000002,
246 SATA_DWC_INTPR_PMABRT = 0x00000004,
247 SATA_DWC_INTPR_ERR = 0x00000008,
248 SATA_DWC_INTPR_NEWBIST = 0x00000010,
249 SATA_DWC_INTPR_IPF = 0x10000000,
250 SATA_DWC_INTMR_DMATM = 0x00000001,
251 SATA_DWC_INTMR_NEWFPM = 0x00000002,
252 SATA_DWC_INTMR_PMABRTM = 0x00000004,
253 SATA_DWC_INTMR_ERRM = 0x00000008,
254 SATA_DWC_INTMR_NEWBISTM = 0x00000010,
255 SATA_DWC_LLCR_SCRAMEN = 0x00000001,
256 SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
257 SATA_DWC_LLCR_RPDEN = 0x00000004,
258 /* This is all error bits, zero's are reserved fields. */
259 SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
262 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
263 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
264 SATA_DWC_DMACR_TMOD_TXCHEN)
265 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
266 SATA_DWC_DMACR_TMOD_TXCHEN)
267 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
268 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
269 << 16)
270 struct sata_dwc_device {
271 struct device *dev; /* generic device struct */
272 struct ata_probe_ent *pe; /* ptr to probe-ent */
273 struct ata_host *host;
274 u8 *reg_base;
275 struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */
276 int irq_dma;
279 #define SATA_DWC_QCMD_MAX 32
281 struct sata_dwc_device_port {
282 struct sata_dwc_device *hsdev;
283 int cmd_issued[SATA_DWC_QCMD_MAX];
284 struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */
285 dma_addr_t llit_dma[SATA_DWC_QCMD_MAX];
286 u32 dma_chan[SATA_DWC_QCMD_MAX];
287 int dma_pending[SATA_DWC_QCMD_MAX];
291 * Commonly used DWC SATA driver Macros
293 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
294 (host)->private_data)
295 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
296 (ap)->host->private_data)
297 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
298 (ap)->private_data)
299 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
300 (qc)->ap->host->private_data)
301 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
302 (hsdevp)->hsdev)
304 enum {
305 SATA_DWC_CMD_ISSUED_NOT = 0,
306 SATA_DWC_CMD_ISSUED_PEND = 1,
307 SATA_DWC_CMD_ISSUED_EXEC = 2,
308 SATA_DWC_CMD_ISSUED_NODATA = 3,
310 SATA_DWC_DMA_PENDING_NONE = 0,
311 SATA_DWC_DMA_PENDING_TX = 1,
312 SATA_DWC_DMA_PENDING_RX = 2,
315 struct sata_dwc_host_priv {
316 void __iomem *scr_addr_sstatus;
317 u32 sata_dwc_sactive_issued ;
318 u32 sata_dwc_sactive_queued ;
319 u32 dma_interrupt_count;
320 struct ahb_dma_regs *sata_dma_regs;
321 struct device *dwc_dev;
322 int dma_channel;
324 struct sata_dwc_host_priv host_pvt;
326 * Prototypes
328 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
329 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
330 u32 check_status);
331 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
332 static void sata_dwc_port_stop(struct ata_port *ap);
333 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
334 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
335 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
336 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
337 struct lli *lli, dma_addr_t dma_lli,
338 void __iomem *addr, int dir);
339 static void dma_dwc_xfer_start(int dma_ch);
341 static const char *get_prot_descript(u8 protocol)
343 switch ((enum ata_tf_protocols)protocol) {
344 case ATA_PROT_NODATA:
345 return "ATA no data";
346 case ATA_PROT_PIO:
347 return "ATA PIO";
348 case ATA_PROT_DMA:
349 return "ATA DMA";
350 case ATA_PROT_NCQ:
351 return "ATA NCQ";
352 case ATAPI_PROT_NODATA:
353 return "ATAPI no data";
354 case ATAPI_PROT_PIO:
355 return "ATAPI PIO";
356 case ATAPI_PROT_DMA:
357 return "ATAPI DMA";
358 default:
359 return "unknown";
363 static const char *get_dma_dir_descript(int dma_dir)
365 switch ((enum dma_data_direction)dma_dir) {
366 case DMA_BIDIRECTIONAL:
367 return "bidirectional";
368 case DMA_TO_DEVICE:
369 return "to device";
370 case DMA_FROM_DEVICE:
371 return "from device";
372 default:
373 return "none";
377 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
379 dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
380 "0x%lx device: %x\n", tf->command,
381 get_prot_descript(tf->protocol), tf->flags, tf->device);
382 dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
383 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
384 tf->lbam, tf->lbah);
385 dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
386 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
387 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
388 tf->hob_lbah);
392 * Function: get_burst_length_encode
393 * arguments: datalength: length in bytes of data
394 * returns value to be programmed in register corresponding to data length
395 * This value is effectively the log(base 2) of the length
397 static int get_burst_length_encode(int datalength)
399 int items = datalength >> 2; /* div by 4 to get lword count */
401 if (items >= 64)
402 return 5;
404 if (items >= 32)
405 return 4;
407 if (items >= 16)
408 return 3;
410 if (items >= 8)
411 return 2;
413 if (items >= 4)
414 return 1;
416 return 0;
419 static void clear_chan_interrupts(int c)
421 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
422 DMA_CHANNEL(c));
423 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
424 DMA_CHANNEL(c));
425 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
426 DMA_CHANNEL(c));
427 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
428 DMA_CHANNEL(c));
429 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
430 DMA_CHANNEL(c));
434 * Function: dma_request_channel
435 * arguments: None
436 * returns channel number if available else -1
437 * This function assigns the next available DMA channel from the list to the
438 * requester
440 static int dma_request_channel(void)
442 /* Check if the channel is not currently in use */
443 if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &
444 DMA_CHANNEL(host_pvt.dma_channel)))
445 return host_pvt.dma_channel;
446 dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n",
447 __func__, host_pvt.dma_channel);
448 return -1;
452 * Function: dma_dwc_interrupt
453 * arguments: irq, dev_id, pt_regs
454 * returns channel number if available else -1
455 * Interrupt Handler for DW AHB SATA DMA
457 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
459 int chan;
460 u32 tfr_reg, err_reg;
461 unsigned long flags;
462 struct sata_dwc_device *hsdev =
463 (struct sata_dwc_device *)hsdev_instance;
464 struct ata_host *host = (struct ata_host *)hsdev->host;
465 struct ata_port *ap;
466 struct sata_dwc_device_port *hsdevp;
467 u8 tag = 0;
468 unsigned int port = 0;
470 spin_lock_irqsave(&host->lock, flags);
471 ap = host->ports[port];
472 hsdevp = HSDEVP_FROM_AP(ap);
473 tag = ap->link.active_tag;
475 tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
476 .low));
477 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
478 .low));
480 dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
481 tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
483 chan = host_pvt.dma_channel;
484 if (chan >= 0) {
485 /* Check for end-of-transfer interrupt. */
486 if (tfr_reg & DMA_CHANNEL(chan)) {
488 * Each DMA command produces 2 interrupts. Only
489 * complete the command after both interrupts have been
490 * seen. (See sata_dwc_isr())
492 host_pvt.dma_interrupt_count++;
493 sata_dwc_clear_dmacr(hsdevp, tag);
495 if (hsdevp->dma_pending[tag] ==
496 SATA_DWC_DMA_PENDING_NONE) {
497 dev_err(ap->dev, "DMA not pending eot=0x%08x "
498 "err=0x%08x tag=0x%02x pending=%d\n",
499 tfr_reg, err_reg, tag,
500 hsdevp->dma_pending[tag]);
503 if ((host_pvt.dma_interrupt_count % 2) == 0)
504 sata_dwc_dma_xfer_complete(ap, 1);
506 /* Clear the interrupt */
507 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
508 .tfr.low),
509 DMA_CHANNEL(chan));
512 /* Check for error interrupt. */
513 if (err_reg & DMA_CHANNEL(chan)) {
514 /* TODO Need error handler ! */
515 dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
516 err_reg);
518 /* Clear the interrupt. */
519 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
520 .error.low),
521 DMA_CHANNEL(chan));
524 spin_unlock_irqrestore(&host->lock, flags);
525 return IRQ_HANDLED;
529 * Function: dma_request_interrupts
530 * arguments: hsdev
531 * returns status
532 * This function registers ISR for a particular DMA channel interrupt
534 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
536 int retval = 0;
537 int chan = host_pvt.dma_channel;
539 if (chan >= 0) {
540 /* Unmask error interrupt */
541 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
542 DMA_ENABLE_CHAN(chan));
544 /* Unmask end-of-transfer interrupt */
545 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
546 DMA_ENABLE_CHAN(chan));
549 retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
550 if (retval) {
551 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
552 __func__, irq);
553 return -ENODEV;
556 /* Mark this interrupt as requested */
557 hsdev->irq_dma = irq;
558 return 0;
562 * Function: map_sg_to_lli
563 * The Synopsis driver has a comment proposing that better performance
564 * is possible by only enabling interrupts on the last item in the linked list.
565 * However, it seems that could be a problem if an error happened on one of the
566 * first items. The transfer would halt, but no error interrupt would occur.
567 * Currently this function sets interrupts enabled for each linked list item:
568 * DMA_CTL_INT_EN.
570 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
571 struct lli *lli, dma_addr_t dma_lli,
572 void __iomem *dmadr_addr, int dir)
574 int i, idx = 0;
575 int fis_len = 0;
576 dma_addr_t next_llp;
577 int bl;
578 int sms_val, dms_val;
580 sms_val = 0;
581 dms_val = 1 + host_pvt.dma_channel;
582 dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
583 " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
584 (u32)dmadr_addr);
586 bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
588 for (i = 0; i < num_elems; i++, sg++) {
589 u32 addr, offset;
590 u32 sg_len, len;
592 addr = (u32) sg_dma_address(sg);
593 sg_len = sg_dma_len(sg);
595 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
596 "=%d\n", __func__, i, addr, sg_len);
598 while (sg_len) {
599 if (idx >= SATA_DWC_DMAC_LLI_NUM) {
600 /* The LLI table is not large enough. */
601 dev_err(host_pvt.dwc_dev, "LLI table overrun "
602 "(idx=%d)\n", idx);
603 break;
605 len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
606 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
608 offset = addr & 0xffff;
609 if ((offset + sg_len) > 0x10000)
610 len = 0x10000 - offset;
613 * Make sure a LLI block is not created that will span
614 * 8K max FIS boundary. If the block spans such a FIS
615 * boundary, there is a chance that a DMA burst will
616 * cross that boundary -- this results in an error in
617 * the host controller.
619 if (fis_len + len > 8192) {
620 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
621 "%d(0x%x) len=%d(0x%x)\n", fis_len,
622 fis_len, len, len);
623 len = 8192 - fis_len;
624 fis_len = 0;
625 } else {
626 fis_len += len;
628 if (fis_len == 8192)
629 fis_len = 0;
632 * Set DMA addresses and lower half of control register
633 * based on direction.
635 if (dir == DMA_FROM_DEVICE) {
636 lli[idx].dar = cpu_to_le32(addr);
637 lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
639 lli[idx].ctl.low = cpu_to_le32(
640 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
641 DMA_CTL_SMS(sms_val) |
642 DMA_CTL_DMS(dms_val) |
643 DMA_CTL_SRC_MSIZE(bl) |
644 DMA_CTL_DST_MSIZE(bl) |
645 DMA_CTL_SINC_NOCHANGE |
646 DMA_CTL_SRC_TRWID(2) |
647 DMA_CTL_DST_TRWID(2) |
648 DMA_CTL_INT_EN |
649 DMA_CTL_LLP_SRCEN |
650 DMA_CTL_LLP_DSTEN);
651 } else { /* DMA_TO_DEVICE */
652 lli[idx].sar = cpu_to_le32(addr);
653 lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
655 lli[idx].ctl.low = cpu_to_le32(
656 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
657 DMA_CTL_SMS(dms_val) |
658 DMA_CTL_DMS(sms_val) |
659 DMA_CTL_SRC_MSIZE(bl) |
660 DMA_CTL_DST_MSIZE(bl) |
661 DMA_CTL_DINC_NOCHANGE |
662 DMA_CTL_SRC_TRWID(2) |
663 DMA_CTL_DST_TRWID(2) |
664 DMA_CTL_INT_EN |
665 DMA_CTL_LLP_SRCEN |
666 DMA_CTL_LLP_DSTEN);
669 dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
670 "0x%08x val: 0x%08x\n", __func__,
671 len, DMA_CTL_BLK_TS(len / 4));
673 /* Program the LLI CTL high register */
674 lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
675 (len / 4));
677 /* Program the next pointer. The next pointer must be
678 * the physical address, not the virtual address.
680 next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
681 lli)));
683 /* The last 2 bits encode the list master select. */
684 next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
686 lli[idx].llp = cpu_to_le32(next_llp);
687 idx++;
688 sg_len -= len;
689 addr += len;
694 * The last next ptr has to be zero and the last control low register
695 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
696 * and destination enable) set back to 0 (disabled.) This is what tells
697 * the core that this is the last item in the linked list.
699 if (idx) {
700 lli[idx-1].llp = 0x00000000;
701 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
703 /* Flush cache to memory */
704 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
705 DMA_BIDIRECTIONAL);
708 return idx;
712 * Function: dma_dwc_xfer_start
713 * arguments: Channel number
714 * Return : None
715 * Enables the DMA channel
717 static void dma_dwc_xfer_start(int dma_ch)
719 /* Enable the DMA channel */
720 out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
721 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
722 DMA_ENABLE_CHAN(dma_ch));
725 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
726 struct lli *lli, dma_addr_t dma_lli,
727 void __iomem *addr, int dir)
729 int dma_ch;
730 int num_lli;
731 /* Acquire DMA channel */
732 dma_ch = dma_request_channel();
733 if (dma_ch == -1) {
734 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
735 __func__);
736 return -EAGAIN;
739 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
740 num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
742 dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
743 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
744 lli, (u32)dma_lli, addr, num_lli);
746 clear_chan_interrupts(dma_ch);
748 /* Program the CFG register. */
749 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
750 DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) |
751 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
752 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low),
753 DMA_CFG_HW_CH_PRIOR(dma_ch));
755 /* Program the address of the linked list */
756 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
757 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
759 /* Program the CTL register with src enable / dst enable */
760 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
761 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
762 return dma_ch;
766 * Function: dma_dwc_exit
767 * arguments: None
768 * returns status
769 * This function exits the SATA DMA driver
771 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
773 dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
774 if (host_pvt.sata_dma_regs) {
775 iounmap(host_pvt.sata_dma_regs);
776 host_pvt.sata_dma_regs = NULL;
779 if (hsdev->irq_dma) {
780 free_irq(hsdev->irq_dma, hsdev);
781 hsdev->irq_dma = 0;
786 * Function: dma_dwc_init
787 * arguments: hsdev
788 * returns status
789 * This function initializes the SATA DMA driver
791 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
793 int err;
795 err = dma_request_interrupts(hsdev, irq);
796 if (err) {
797 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
798 " %d\n", __func__, err);
799 goto error_out;
802 /* Enabe DMA */
803 out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
805 dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
806 dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
807 sata_dma_regs);
809 return 0;
811 error_out:
812 dma_dwc_exit(hsdev);
814 return err;
817 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
819 if (scr > SCR_NOTIFICATION) {
820 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
821 __func__, scr);
822 return -EINVAL;
825 *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
826 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
827 __func__, link->ap->print_id, scr, *val);
829 return 0;
832 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
834 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
835 __func__, link->ap->print_id, scr, val);
836 if (scr > SCR_NOTIFICATION) {
837 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
838 __func__, scr);
839 return -EINVAL;
841 out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
843 return 0;
846 static u32 core_scr_read(unsigned int scr)
848 return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
849 (scr * 4));
852 static void core_scr_write(unsigned int scr, u32 val)
854 out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
855 val);
858 static void clear_serror(void)
860 u32 val;
861 val = core_scr_read(SCR_ERROR);
862 core_scr_write(SCR_ERROR, val);
866 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
868 out_le32(&hsdev->sata_dwc_regs->intpr,
869 in_le32(&hsdev->sata_dwc_regs->intpr));
872 static u32 qcmd_tag_to_mask(u8 tag)
874 return 0x00000001 << (tag & 0x1f);
877 /* See ahci.c */
878 static void sata_dwc_error_intr(struct ata_port *ap,
879 struct sata_dwc_device *hsdev, uint intpr)
881 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
882 struct ata_eh_info *ehi = &ap->link.eh_info;
883 unsigned int err_mask = 0, action = 0;
884 struct ata_queued_cmd *qc;
885 u32 serror;
886 u8 status, tag;
887 u32 err_reg;
889 ata_ehi_clear_desc(ehi);
891 serror = core_scr_read(SCR_ERROR);
892 status = ap->ops->sff_check_status(ap);
894 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
895 low));
896 tag = ap->link.active_tag;
898 dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
899 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
900 __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
901 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
903 /* Clear error register and interrupt bit */
904 clear_serror();
905 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
907 /* This is the only error happening now. TODO check for exact error */
909 err_mask |= AC_ERR_HOST_BUS;
910 action |= ATA_EH_RESET;
912 /* Pass this on to EH */
913 ehi->serror |= serror;
914 ehi->action |= action;
916 qc = ata_qc_from_tag(ap, tag);
917 if (qc)
918 qc->err_mask |= err_mask;
919 else
920 ehi->err_mask |= err_mask;
922 ata_port_abort(ap);
926 * Function : sata_dwc_isr
927 * arguments : irq, void *dev_instance, struct pt_regs *regs
928 * Return value : irqreturn_t - status of IRQ
929 * This Interrupt handler called via port ops registered function.
930 * .irq_handler = sata_dwc_isr
932 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
934 struct ata_host *host = (struct ata_host *)dev_instance;
935 struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
936 struct ata_port *ap;
937 struct ata_queued_cmd *qc;
938 unsigned long flags;
939 u8 status, tag;
940 int handled, num_processed, port = 0;
941 uint intpr, sactive, sactive2, tag_mask;
942 struct sata_dwc_device_port *hsdevp;
943 host_pvt.sata_dwc_sactive_issued = 0;
945 spin_lock_irqsave(&host->lock, flags);
947 /* Read the interrupt register */
948 intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
950 ap = host->ports[port];
951 hsdevp = HSDEVP_FROM_AP(ap);
953 dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
954 ap->link.active_tag);
956 /* Check for error interrupt */
957 if (intpr & SATA_DWC_INTPR_ERR) {
958 sata_dwc_error_intr(ap, hsdev, intpr);
959 handled = 1;
960 goto DONE;
963 /* Check for DMA SETUP FIS (FP DMA) interrupt */
964 if (intpr & SATA_DWC_INTPR_NEWFP) {
965 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
967 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
968 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
969 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
970 dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
972 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
974 qc = ata_qc_from_tag(ap, tag);
976 * Start FP DMA for NCQ command. At this point the tag is the
977 * active tag. It is the tag that matches the command about to
978 * be completed.
980 qc->ap->link.active_tag = tag;
981 sata_dwc_bmdma_start_by_tag(qc, tag);
983 handled = 1;
984 goto DONE;
986 sactive = core_scr_read(SCR_ACTIVE);
987 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
989 /* If no sactive issued and tag_mask is zero then this is not NCQ */
990 if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
991 if (ap->link.active_tag == ATA_TAG_POISON)
992 tag = 0;
993 else
994 tag = ap->link.active_tag;
995 qc = ata_qc_from_tag(ap, tag);
997 /* DEV interrupt w/ no active qc? */
998 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
999 dev_err(ap->dev, "%s interrupt with no active qc "
1000 "qc=%p\n", __func__, qc);
1001 ap->ops->sff_check_status(ap);
1002 handled = 1;
1003 goto DONE;
1005 status = ap->ops->sff_check_status(ap);
1007 qc->ap->link.active_tag = tag;
1008 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1010 if (status & ATA_ERR) {
1011 dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1012 sata_dwc_qc_complete(ap, qc, 1);
1013 handled = 1;
1014 goto DONE;
1017 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1018 __func__, get_prot_descript(qc->tf.protocol));
1019 DRVSTILLBUSY:
1020 if (ata_is_dma(qc->tf.protocol)) {
1022 * Each DMA transaction produces 2 interrupts. The DMAC
1023 * transfer complete interrupt and the SATA controller
1024 * operation done interrupt. The command should be
1025 * completed only after both interrupts are seen.
1027 host_pvt.dma_interrupt_count++;
1028 if (hsdevp->dma_pending[tag] == \
1029 SATA_DWC_DMA_PENDING_NONE) {
1030 dev_err(ap->dev, "%s: DMA not pending "
1031 "intpr=0x%08x status=0x%08x pending"
1032 "=%d\n", __func__, intpr, status,
1033 hsdevp->dma_pending[tag]);
1036 if ((host_pvt.dma_interrupt_count % 2) == 0)
1037 sata_dwc_dma_xfer_complete(ap, 1);
1038 } else if (ata_is_pio(qc->tf.protocol)) {
1039 ata_sff_hsm_move(ap, qc, status, 0);
1040 handled = 1;
1041 goto DONE;
1042 } else {
1043 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1044 goto DRVSTILLBUSY;
1047 handled = 1;
1048 goto DONE;
1052 * This is a NCQ command. At this point we need to figure out for which
1053 * tags we have gotten a completion interrupt. One interrupt may serve
1054 * as completion for more than one operation when commands are queued
1055 * (NCQ). We need to process each completed command.
1058 /* process completed commands */
1059 sactive = core_scr_read(SCR_ACTIVE);
1060 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1062 if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1063 tag_mask > 1) {
1064 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1065 "tag_mask=0x%08x\n", __func__, sactive,
1066 host_pvt.sata_dwc_sactive_issued, tag_mask);
1069 if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1070 (host_pvt.sata_dwc_sactive_issued)) {
1071 dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x "
1072 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1073 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1074 tag_mask);
1077 /* read just to clear ... not bad if currently still busy */
1078 status = ap->ops->sff_check_status(ap);
1079 dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1081 tag = 0;
1082 num_processed = 0;
1083 while (tag_mask) {
1084 num_processed++;
1085 while (!(tag_mask & 0x00000001)) {
1086 tag++;
1087 tag_mask <<= 1;
1090 tag_mask &= (~0x00000001);
1091 qc = ata_qc_from_tag(ap, tag);
1093 /* To be picked up by completion functions */
1094 qc->ap->link.active_tag = tag;
1095 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1097 /* Let libata/scsi layers handle error */
1098 if (status & ATA_ERR) {
1099 dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1100 status);
1101 sata_dwc_qc_complete(ap, qc, 1);
1102 handled = 1;
1103 goto DONE;
1106 /* Process completed command */
1107 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1108 get_prot_descript(qc->tf.protocol));
1109 if (ata_is_dma(qc->tf.protocol)) {
1110 host_pvt.dma_interrupt_count++;
1111 if (hsdevp->dma_pending[tag] == \
1112 SATA_DWC_DMA_PENDING_NONE)
1113 dev_warn(ap->dev, "%s: DMA not pending?\n",
1114 __func__);
1115 if ((host_pvt.dma_interrupt_count % 2) == 0)
1116 sata_dwc_dma_xfer_complete(ap, 1);
1117 } else {
1118 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1119 goto STILLBUSY;
1121 continue;
1123 STILLBUSY:
1124 ap->stats.idle_irq++;
1125 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1126 ap->print_id);
1127 } /* while tag_mask */
1130 * Check to see if any commands completed while we were processing our
1131 * initial set of completed commands (read status clears interrupts,
1132 * so we might miss a completed command interrupt if one came in while
1133 * we were processing --we read status as part of processing a completed
1134 * command).
1136 sactive2 = core_scr_read(SCR_ACTIVE);
1137 if (sactive2 != sactive) {
1138 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1139 "=0x%x\n", sactive, sactive2);
1141 handled = 1;
1143 DONE:
1144 spin_unlock_irqrestore(&host->lock, flags);
1145 return IRQ_RETVAL(handled);
1148 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1150 struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1152 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1153 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1154 SATA_DWC_DMACR_RX_CLEAR(
1155 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1156 } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1157 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1158 SATA_DWC_DMACR_TX_CLEAR(
1159 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1160 } else {
1162 * This should not happen, it indicates the driver is out of
1163 * sync. If it does happen, clear dmacr anyway.
1165 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1166 "TX DMA not pending tag=0x%02x pending=%d"
1167 " dmacr: 0x%08x\n", __func__, tag,
1168 hsdevp->dma_pending[tag],
1169 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1170 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1171 SATA_DWC_DMACR_TXRXCH_CLEAR);
1175 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1177 struct ata_queued_cmd *qc;
1178 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1179 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1180 u8 tag = 0;
1182 tag = ap->link.active_tag;
1183 qc = ata_qc_from_tag(ap, tag);
1184 if (!qc) {
1185 dev_err(ap->dev, "failed to get qc");
1186 return;
1189 #ifdef DEBUG_NCQ
1190 if (tag > 0) {
1191 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1192 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1193 get_dma_dir_descript(qc->dma_dir),
1194 get_prot_descript(qc->tf.protocol),
1195 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1197 #endif
1199 if (ata_is_dma(qc->tf.protocol)) {
1200 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1201 dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1202 "pending dmacr: 0x%08x\n", __func__,
1203 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1206 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1207 sata_dwc_qc_complete(ap, qc, check_status);
1208 ap->link.active_tag = ATA_TAG_POISON;
1209 } else {
1210 sata_dwc_qc_complete(ap, qc, check_status);
1214 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1215 u32 check_status)
1217 u8 status = 0;
1218 u32 mask = 0x0;
1219 u8 tag = qc->tag;
1220 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1221 host_pvt.sata_dwc_sactive_queued = 0;
1222 dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1224 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1225 dev_err(ap->dev, "TX DMA PENDING\n");
1226 else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1227 dev_err(ap->dev, "RX DMA PENDING\n");
1228 dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1229 " protocol=%d\n", qc->tf.command, status, ap->print_id,
1230 qc->tf.protocol);
1232 /* clear active bit */
1233 mask = (~(qcmd_tag_to_mask(tag)));
1234 host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1235 & mask;
1236 host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1237 & mask;
1238 ata_qc_complete(qc);
1239 return 0;
1242 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1244 /* Enable selective interrupts by setting the interrupt maskregister*/
1245 out_le32(&hsdev->sata_dwc_regs->intmr,
1246 SATA_DWC_INTMR_ERRM |
1247 SATA_DWC_INTMR_NEWFPM |
1248 SATA_DWC_INTMR_PMABRTM |
1249 SATA_DWC_INTMR_DMATM);
1251 * Unmask the error bits that should trigger an error interrupt by
1252 * setting the error mask register.
1254 out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1256 dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1257 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1258 in_le32(&hsdev->sata_dwc_regs->errmr));
1261 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1263 port->cmd_addr = (void *)base + 0x00;
1264 port->data_addr = (void *)base + 0x00;
1266 port->error_addr = (void *)base + 0x04;
1267 port->feature_addr = (void *)base + 0x04;
1269 port->nsect_addr = (void *)base + 0x08;
1271 port->lbal_addr = (void *)base + 0x0c;
1272 port->lbam_addr = (void *)base + 0x10;
1273 port->lbah_addr = (void *)base + 0x14;
1275 port->device_addr = (void *)base + 0x18;
1276 port->command_addr = (void *)base + 0x1c;
1277 port->status_addr = (void *)base + 0x1c;
1279 port->altstatus_addr = (void *)base + 0x20;
1280 port->ctl_addr = (void *)base + 0x20;
1284 * Function : sata_dwc_port_start
1285 * arguments : struct ata_ioports *port
1286 * Return value : returns 0 if success, error code otherwise
1287 * This function allocates the scatter gather LLI table for AHB DMA
1289 static int sata_dwc_port_start(struct ata_port *ap)
1291 int err = 0;
1292 struct sata_dwc_device *hsdev;
1293 struct sata_dwc_device_port *hsdevp = NULL;
1294 struct device *pdev;
1295 int i;
1297 hsdev = HSDEV_FROM_AP(ap);
1299 dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1301 hsdev->host = ap->host;
1302 pdev = ap->host->dev;
1303 if (!pdev) {
1304 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1305 err = -ENODEV;
1306 goto CLEANUP;
1309 /* Allocate Port Struct */
1310 hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1311 if (!hsdevp) {
1312 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1313 err = -ENOMEM;
1314 goto CLEANUP;
1316 hsdevp->hsdev = hsdev;
1318 for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1319 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1321 ap->bmdma_prd = 0; /* set these so libata doesn't use them */
1322 ap->bmdma_prd_dma = 0;
1325 * DMA - Assign scatter gather LLI table. We can't use the libata
1326 * version since it's PRD is IDE PCI specific.
1328 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1329 hsdevp->llit[i] = dma_alloc_coherent(pdev,
1330 SATA_DWC_DMAC_LLI_TBL_SZ,
1331 &(hsdevp->llit_dma[i]),
1332 GFP_ATOMIC);
1333 if (!hsdevp->llit[i]) {
1334 dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1335 __func__);
1336 err = -ENOMEM;
1337 goto CLEANUP_ALLOC;
1341 if (ap->port_no == 0) {
1342 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1343 __func__);
1344 out_le32(&hsdev->sata_dwc_regs->dmacr,
1345 SATA_DWC_DMACR_TXRXCH_CLEAR);
1347 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1348 __func__);
1349 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1350 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1351 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1354 /* Clear any error bits before libata starts issuing commands */
1355 clear_serror();
1356 ap->private_data = hsdevp;
1357 dev_dbg(ap->dev, "%s: done\n", __func__);
1358 return 0;
1360 CLEANUP_ALLOC:
1361 kfree(hsdevp);
1362 CLEANUP:
1363 dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1364 return err;
1367 static void sata_dwc_port_stop(struct ata_port *ap)
1369 int i;
1370 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1371 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1373 dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1375 if (hsdevp && hsdev) {
1376 /* deallocate LLI table */
1377 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1378 dma_free_coherent(ap->host->dev,
1379 SATA_DWC_DMAC_LLI_TBL_SZ,
1380 hsdevp->llit[i], hsdevp->llit_dma[i]);
1383 kfree(hsdevp);
1385 ap->private_data = NULL;
1389 * Function : sata_dwc_exec_command_by_tag
1390 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1391 * Return value : None
1392 * This function keeps track of individual command tag ids and calls
1393 * ata_exec_command in libata
1395 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1396 struct ata_taskfile *tf,
1397 u8 tag, u32 cmd_issued)
1399 unsigned long flags;
1400 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1402 dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1403 ata_get_cmd_descript(tf->command), tag);
1405 spin_lock_irqsave(&ap->host->lock, flags);
1406 hsdevp->cmd_issued[tag] = cmd_issued;
1407 spin_unlock_irqrestore(&ap->host->lock, flags);
1409 * Clear SError before executing a new command.
1410 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1411 * managed SError register for the disk needs to be done before the
1412 * task file is loaded.
1414 clear_serror();
1415 ata_sff_exec_command(ap, tf);
1418 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1420 sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1421 SATA_DWC_CMD_ISSUED_PEND);
1424 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1426 u8 tag = qc->tag;
1428 if (ata_is_ncq(qc->tf.protocol)) {
1429 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1430 __func__, qc->ap->link.sactive, tag);
1431 } else {
1432 tag = 0;
1434 sata_dwc_bmdma_setup_by_tag(qc, tag);
1437 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1439 int start_dma;
1440 u32 reg, dma_chan;
1441 struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1442 struct ata_port *ap = qc->ap;
1443 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1444 int dir = qc->dma_dir;
1445 dma_chan = hsdevp->dma_chan[tag];
1447 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1448 start_dma = 1;
1449 if (dir == DMA_TO_DEVICE)
1450 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1451 else
1452 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1453 } else {
1454 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1455 "(tag=%d) DMA NOT started\n", __func__,
1456 hsdevp->cmd_issued[tag], tag);
1457 start_dma = 0;
1460 dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1461 "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1462 get_dma_dir_descript(qc->dma_dir), start_dma);
1463 sata_dwc_tf_dump(&(qc->tf));
1465 if (start_dma) {
1466 reg = core_scr_read(SCR_ERROR);
1467 if (reg & SATA_DWC_SERROR_ERR_BITS) {
1468 dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1469 __func__, reg);
1472 if (dir == DMA_TO_DEVICE)
1473 out_le32(&hsdev->sata_dwc_regs->dmacr,
1474 SATA_DWC_DMACR_TXCHEN);
1475 else
1476 out_le32(&hsdev->sata_dwc_regs->dmacr,
1477 SATA_DWC_DMACR_RXCHEN);
1479 /* Enable AHB DMA transfer on the specified channel */
1480 dma_dwc_xfer_start(dma_chan);
1484 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1486 u8 tag = qc->tag;
1488 if (ata_is_ncq(qc->tf.protocol)) {
1489 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1490 __func__, qc->ap->link.sactive, tag);
1491 } else {
1492 tag = 0;
1494 dev_dbg(qc->ap->dev, "%s\n", __func__);
1495 sata_dwc_bmdma_start_by_tag(qc, tag);
1499 * Function : sata_dwc_qc_prep_by_tag
1500 * arguments : ata_queued_cmd *qc, u8 tag
1501 * Return value : None
1502 * qc_prep for a particular queued command based on tag
1504 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1506 struct scatterlist *sg = qc->sg;
1507 struct ata_port *ap = qc->ap;
1508 int dma_chan;
1509 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1510 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1512 dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1513 __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1514 qc->n_elem);
1516 dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1517 hsdevp->llit_dma[tag],
1518 (void *__iomem)(&hsdev->sata_dwc_regs->\
1519 dmadr), qc->dma_dir);
1520 if (dma_chan < 0) {
1521 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1522 __func__, dma_chan);
1523 return;
1525 hsdevp->dma_chan[tag] = dma_chan;
1528 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1530 u32 sactive;
1531 u8 tag = qc->tag;
1532 struct ata_port *ap = qc->ap;
1534 #ifdef DEBUG_NCQ
1535 if (qc->tag > 0 || ap->link.sactive > 1)
1536 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1537 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1538 __func__, ap->print_id, qc->tf.command,
1539 ata_get_cmd_descript(qc->tf.command),
1540 qc->tag, get_prot_descript(qc->tf.protocol),
1541 ap->link.active_tag, ap->link.sactive);
1542 #endif
1544 if (!ata_is_ncq(qc->tf.protocol))
1545 tag = 0;
1546 sata_dwc_qc_prep_by_tag(qc, tag);
1548 if (ata_is_ncq(qc->tf.protocol)) {
1549 sactive = core_scr_read(SCR_ACTIVE);
1550 sactive |= (0x00000001 << tag);
1551 core_scr_write(SCR_ACTIVE, sactive);
1553 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1554 "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1555 sactive);
1557 ap->ops->sff_tf_load(ap, &qc->tf);
1558 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1559 SATA_DWC_CMD_ISSUED_PEND);
1560 } else {
1561 ata_sff_qc_issue(qc);
1563 return 0;
1567 * Function : sata_dwc_qc_prep
1568 * arguments : ata_queued_cmd *qc
1569 * Return value : None
1570 * qc_prep for a particular queued command
1573 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1575 if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1576 return;
1578 #ifdef DEBUG_NCQ
1579 if (qc->tag > 0)
1580 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1581 __func__, qc->tag, qc->ap->link.active_tag);
1583 return ;
1584 #endif
1587 static void sata_dwc_error_handler(struct ata_port *ap)
1589 ata_sff_error_handler(ap);
1592 int sata_dwc_hardreset(struct ata_link *link, unsigned int *class,
1593 unsigned long deadline)
1595 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap);
1596 int ret;
1598 ret = sata_sff_hardreset(link, class, deadline);
1600 sata_dwc_enable_interrupts(hsdev);
1602 /* Reconfigure the DMA control register */
1603 out_le32(&hsdev->sata_dwc_regs->dmacr,
1604 SATA_DWC_DMACR_TXRXCH_CLEAR);
1606 /* Reconfigure the DMA Burst Transaction Size register */
1607 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1608 SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1609 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT));
1611 return ret;
1615 * scsi mid-layer and libata interface structures
1617 static struct scsi_host_template sata_dwc_sht = {
1618 ATA_NCQ_SHT(DRV_NAME),
1620 * test-only: Currently this driver doesn't handle NCQ
1621 * correctly. We enable NCQ but set the queue depth to a
1622 * max of 1. This will get fixed in in a future release.
1624 .sg_tablesize = LIBATA_MAX_PRD,
1625 .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */
1626 .dma_boundary = ATA_DMA_BOUNDARY,
1629 static struct ata_port_operations sata_dwc_ops = {
1630 .inherits = &ata_sff_port_ops,
1632 .error_handler = sata_dwc_error_handler,
1633 .hardreset = sata_dwc_hardreset,
1635 .qc_prep = sata_dwc_qc_prep,
1636 .qc_issue = sata_dwc_qc_issue,
1638 .scr_read = sata_dwc_scr_read,
1639 .scr_write = sata_dwc_scr_write,
1641 .port_start = sata_dwc_port_start,
1642 .port_stop = sata_dwc_port_stop,
1644 .bmdma_setup = sata_dwc_bmdma_setup,
1645 .bmdma_start = sata_dwc_bmdma_start,
1648 static const struct ata_port_info sata_dwc_port_info[] = {
1650 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
1651 .pio_mask = ATA_PIO4,
1652 .udma_mask = ATA_UDMA6,
1653 .port_ops = &sata_dwc_ops,
1657 static int sata_dwc_probe(struct platform_device *ofdev)
1659 struct sata_dwc_device *hsdev;
1660 u32 idr, versionr;
1661 char *ver = (char *)&versionr;
1662 u8 *base = NULL;
1663 int err = 0;
1664 int irq, rc;
1665 struct ata_host *host;
1666 struct ata_port_info pi = sata_dwc_port_info[0];
1667 const struct ata_port_info *ppi[] = { &pi, NULL };
1668 struct device_node *np = ofdev->dev.of_node;
1669 u32 dma_chan;
1671 /* Allocate DWC SATA device */
1672 hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
1673 if (hsdev == NULL) {
1674 dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1675 err = -ENOMEM;
1676 goto error;
1679 if (of_property_read_u32(np, "dma-channel", &dma_chan)) {
1680 dev_warn(&ofdev->dev, "no dma-channel property set."
1681 " Use channel 0\n");
1682 dma_chan = 0;
1684 host_pvt.dma_channel = dma_chan;
1686 /* Ioremap SATA registers */
1687 base = of_iomap(ofdev->dev.of_node, 0);
1688 if (!base) {
1689 dev_err(&ofdev->dev, "ioremap failed for SATA register"
1690 " address\n");
1691 err = -ENODEV;
1692 goto error_kmalloc;
1694 hsdev->reg_base = base;
1695 dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1697 /* Synopsys DWC SATA specific Registers */
1698 hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1700 /* Allocate and fill host */
1701 host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1702 if (!host) {
1703 dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1704 err = -ENOMEM;
1705 goto error_iomap;
1708 host->private_data = hsdev;
1710 /* Setup port */
1711 host->ports[0]->ioaddr.cmd_addr = base;
1712 host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1713 host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1714 sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1716 /* Read the ID and Version Registers */
1717 idr = in_le32(&hsdev->sata_dwc_regs->idr);
1718 versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1719 dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1720 idr, ver[0], ver[1], ver[2]);
1722 /* Get SATA DMA interrupt number */
1723 irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1724 if (irq == NO_IRQ) {
1725 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1726 err = -ENODEV;
1727 goto error_out;
1730 /* Get physical SATA DMA register base address */
1731 host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1732 if (!(host_pvt.sata_dma_regs)) {
1733 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1734 " address\n");
1735 err = -ENODEV;
1736 goto error_out;
1739 /* Save dev for later use in dev_xxx() routines */
1740 host_pvt.dwc_dev = &ofdev->dev;
1742 /* Initialize AHB DMAC */
1743 dma_dwc_init(hsdev, irq);
1745 /* Enable SATA Interrupts */
1746 sata_dwc_enable_interrupts(hsdev);
1748 /* Get SATA interrupt number */
1749 irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1750 if (irq == NO_IRQ) {
1751 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1752 err = -ENODEV;
1753 goto error_out;
1757 * Now, register with libATA core, this will also initiate the
1758 * device discovery process, invoking our port_start() handler &
1759 * error_handler() to execute a dummy Softreset EH session
1761 rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1763 if (rc != 0)
1764 dev_err(&ofdev->dev, "failed to activate host");
1766 dev_set_drvdata(&ofdev->dev, host);
1767 return 0;
1769 error_out:
1770 /* Free SATA DMA resources */
1771 dma_dwc_exit(hsdev);
1773 error_iomap:
1774 iounmap(base);
1775 error_kmalloc:
1776 kfree(hsdev);
1777 error:
1778 return err;
1781 static int sata_dwc_remove(struct platform_device *ofdev)
1783 struct device *dev = &ofdev->dev;
1784 struct ata_host *host = dev_get_drvdata(dev);
1785 struct sata_dwc_device *hsdev = host->private_data;
1787 ata_host_detach(host);
1788 dev_set_drvdata(dev, NULL);
1790 /* Free SATA DMA resources */
1791 dma_dwc_exit(hsdev);
1793 iounmap(hsdev->reg_base);
1794 kfree(hsdev);
1795 kfree(host);
1796 dev_dbg(&ofdev->dev, "done\n");
1797 return 0;
1800 static const struct of_device_id sata_dwc_match[] = {
1801 { .compatible = "amcc,sata-460ex", },
1804 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1806 static struct platform_driver sata_dwc_driver = {
1807 .driver = {
1808 .name = DRV_NAME,
1809 .owner = THIS_MODULE,
1810 .of_match_table = sata_dwc_match,
1812 .probe = sata_dwc_probe,
1813 .remove = sata_dwc_remove,
1816 module_platform_driver(sata_dwc_driver);
1818 MODULE_LICENSE("GPL");
1819 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1820 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1821 MODULE_VERSION(DRV_VERSION);