Btrfs: don't warn in btrfs_add_orphan
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / inode.c
blobcc6022842e0c490911782d8122f1b052a5d5808f
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
98 int err;
100 err = btrfs_init_acl(trans, inode, dir);
101 if (!err)
102 err = btrfs_xattr_security_init(trans, inode, dir);
103 return err;
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 int compress_type,
115 struct page **compressed_pages)
117 struct btrfs_key key;
118 struct btrfs_path *path;
119 struct extent_buffer *leaf;
120 struct page *page = NULL;
121 char *kaddr;
122 unsigned long ptr;
123 struct btrfs_file_extent_item *ei;
124 int err = 0;
125 int ret;
126 size_t cur_size = size;
127 size_t datasize;
128 unsigned long offset;
130 if (compressed_size && compressed_pages)
131 cur_size = compressed_size;
133 path = btrfs_alloc_path();
134 if (!path)
135 return -ENOMEM;
137 path->leave_spinning = 1;
138 btrfs_set_trans_block_group(trans, inode);
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
151 goto fail;
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
163 if (compress_type != BTRFS_COMPRESS_NONE) {
164 struct page *cpage;
165 int i = 0;
166 while (compressed_size > 0) {
167 cpage = compressed_pages[i];
168 cur_size = min_t(unsigned long, compressed_size,
169 PAGE_CACHE_SIZE);
171 kaddr = kmap_atomic(cpage, KM_USER0);
172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
173 kunmap_atomic(kaddr, KM_USER0);
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
179 btrfs_set_file_extent_compression(leaf, ei,
180 compress_type);
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
195 * we're an inline extent, so nobody can
196 * extend the file past i_size without locking
197 * a page we already have locked.
199 * We must do any isize and inode updates
200 * before we unlock the pages. Otherwise we
201 * could end up racing with unlink.
203 BTRFS_I(inode)->disk_i_size = inode->i_size;
204 btrfs_update_inode(trans, root, inode);
206 return 0;
207 fail:
208 btrfs_free_path(path);
209 return err;
214 * conditionally insert an inline extent into the file. This
215 * does the checks required to make sure the data is small enough
216 * to fit as an inline extent.
218 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
219 struct btrfs_root *root,
220 struct inode *inode, u64 start, u64 end,
221 size_t compressed_size, int compress_type,
222 struct page **compressed_pages)
224 u64 isize = i_size_read(inode);
225 u64 actual_end = min(end + 1, isize);
226 u64 inline_len = actual_end - start;
227 u64 aligned_end = (end + root->sectorsize - 1) &
228 ~((u64)root->sectorsize - 1);
229 u64 hint_byte;
230 u64 data_len = inline_len;
231 int ret;
233 if (compressed_size)
234 data_len = compressed_size;
236 if (start > 0 ||
237 actual_end >= PAGE_CACHE_SIZE ||
238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (!compressed_size &&
240 (actual_end & (root->sectorsize - 1)) == 0) ||
241 end + 1 < isize ||
242 data_len > root->fs_info->max_inline) {
243 return 1;
246 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
247 &hint_byte, 1);
248 BUG_ON(ret);
250 if (isize > actual_end)
251 inline_len = min_t(u64, isize, actual_end);
252 ret = insert_inline_extent(trans, root, inode, start,
253 inline_len, compressed_size,
254 compress_type, compressed_pages);
255 BUG_ON(ret);
256 btrfs_delalloc_release_metadata(inode, end + 1 - start);
257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
258 return 0;
261 struct async_extent {
262 u64 start;
263 u64 ram_size;
264 u64 compressed_size;
265 struct page **pages;
266 unsigned long nr_pages;
267 int compress_type;
268 struct list_head list;
271 struct async_cow {
272 struct inode *inode;
273 struct btrfs_root *root;
274 struct page *locked_page;
275 u64 start;
276 u64 end;
277 struct list_head extents;
278 struct btrfs_work work;
281 static noinline int add_async_extent(struct async_cow *cow,
282 u64 start, u64 ram_size,
283 u64 compressed_size,
284 struct page **pages,
285 unsigned long nr_pages,
286 int compress_type)
288 struct async_extent *async_extent;
290 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
291 BUG_ON(!async_extent);
292 async_extent->start = start;
293 async_extent->ram_size = ram_size;
294 async_extent->compressed_size = compressed_size;
295 async_extent->pages = pages;
296 async_extent->nr_pages = nr_pages;
297 async_extent->compress_type = compress_type;
298 list_add_tail(&async_extent->list, &cow->extents);
299 return 0;
303 * we create compressed extents in two phases. The first
304 * phase compresses a range of pages that have already been
305 * locked (both pages and state bits are locked).
307 * This is done inside an ordered work queue, and the compression
308 * is spread across many cpus. The actual IO submission is step
309 * two, and the ordered work queue takes care of making sure that
310 * happens in the same order things were put onto the queue by
311 * writepages and friends.
313 * If this code finds it can't get good compression, it puts an
314 * entry onto the work queue to write the uncompressed bytes. This
315 * makes sure that both compressed inodes and uncompressed inodes
316 * are written in the same order that pdflush sent them down.
318 static noinline int compress_file_range(struct inode *inode,
319 struct page *locked_page,
320 u64 start, u64 end,
321 struct async_cow *async_cow,
322 int *num_added)
324 struct btrfs_root *root = BTRFS_I(inode)->root;
325 struct btrfs_trans_handle *trans;
326 u64 num_bytes;
327 u64 blocksize = root->sectorsize;
328 u64 actual_end;
329 u64 isize = i_size_read(inode);
330 int ret = 0;
331 struct page **pages = NULL;
332 unsigned long nr_pages;
333 unsigned long nr_pages_ret = 0;
334 unsigned long total_compressed = 0;
335 unsigned long total_in = 0;
336 unsigned long max_compressed = 128 * 1024;
337 unsigned long max_uncompressed = 128 * 1024;
338 int i;
339 int will_compress;
340 int compress_type = root->fs_info->compress_type;
342 actual_end = min_t(u64, isize, end + 1);
343 again:
344 will_compress = 0;
345 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
349 * we don't want to send crud past the end of i_size through
350 * compression, that's just a waste of CPU time. So, if the
351 * end of the file is before the start of our current
352 * requested range of bytes, we bail out to the uncompressed
353 * cleanup code that can deal with all of this.
355 * It isn't really the fastest way to fix things, but this is a
356 * very uncommon corner.
358 if (actual_end <= start)
359 goto cleanup_and_bail_uncompressed;
361 total_compressed = actual_end - start;
363 /* we want to make sure that amount of ram required to uncompress
364 * an extent is reasonable, so we limit the total size in ram
365 * of a compressed extent to 128k. This is a crucial number
366 * because it also controls how easily we can spread reads across
367 * cpus for decompression.
369 * We also want to make sure the amount of IO required to do
370 * a random read is reasonably small, so we limit the size of
371 * a compressed extent to 128k.
373 total_compressed = min(total_compressed, max_uncompressed);
374 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375 num_bytes = max(blocksize, num_bytes);
376 total_in = 0;
377 ret = 0;
380 * we do compression for mount -o compress and when the
381 * inode has not been flagged as nocompress. This flag can
382 * change at any time if we discover bad compression ratios.
384 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385 (btrfs_test_opt(root, COMPRESS) ||
386 (BTRFS_I(inode)->force_compress) ||
387 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
388 WARN_ON(pages);
389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
390 BUG_ON(!pages);
392 if (BTRFS_I(inode)->force_compress)
393 compress_type = BTRFS_I(inode)->force_compress;
395 ret = btrfs_compress_pages(compress_type,
396 inode->i_mapping, start,
397 total_compressed, pages,
398 nr_pages, &nr_pages_ret,
399 &total_in,
400 &total_compressed,
401 max_compressed);
403 if (!ret) {
404 unsigned long offset = total_compressed &
405 (PAGE_CACHE_SIZE - 1);
406 struct page *page = pages[nr_pages_ret - 1];
407 char *kaddr;
409 /* zero the tail end of the last page, we might be
410 * sending it down to disk
412 if (offset) {
413 kaddr = kmap_atomic(page, KM_USER0);
414 memset(kaddr + offset, 0,
415 PAGE_CACHE_SIZE - offset);
416 kunmap_atomic(kaddr, KM_USER0);
418 will_compress = 1;
421 if (start == 0) {
422 trans = btrfs_join_transaction(root, 1);
423 BUG_ON(IS_ERR(trans));
424 btrfs_set_trans_block_group(trans, inode);
425 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
427 /* lets try to make an inline extent */
428 if (ret || total_in < (actual_end - start)) {
429 /* we didn't compress the entire range, try
430 * to make an uncompressed inline extent.
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end, 0, 0, NULL);
434 } else {
435 /* try making a compressed inline extent */
436 ret = cow_file_range_inline(trans, root, inode,
437 start, end,
438 total_compressed,
439 compress_type, pages);
441 if (ret == 0) {
443 * inline extent creation worked, we don't need
444 * to create any more async work items. Unlock
445 * and free up our temp pages.
447 extent_clear_unlock_delalloc(inode,
448 &BTRFS_I(inode)->io_tree,
449 start, end, NULL,
450 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
451 EXTENT_CLEAR_DELALLOC |
452 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
454 btrfs_end_transaction(trans, root);
455 goto free_pages_out;
457 btrfs_end_transaction(trans, root);
460 if (will_compress) {
462 * we aren't doing an inline extent round the compressed size
463 * up to a block size boundary so the allocator does sane
464 * things
466 total_compressed = (total_compressed + blocksize - 1) &
467 ~(blocksize - 1);
470 * one last check to make sure the compression is really a
471 * win, compare the page count read with the blocks on disk
473 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474 ~(PAGE_CACHE_SIZE - 1);
475 if (total_compressed >= total_in) {
476 will_compress = 0;
477 } else {
478 num_bytes = total_in;
481 if (!will_compress && pages) {
483 * the compression code ran but failed to make things smaller,
484 * free any pages it allocated and our page pointer array
486 for (i = 0; i < nr_pages_ret; i++) {
487 WARN_ON(pages[i]->mapping);
488 page_cache_release(pages[i]);
490 kfree(pages);
491 pages = NULL;
492 total_compressed = 0;
493 nr_pages_ret = 0;
495 /* flag the file so we don't compress in the future */
496 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497 !(BTRFS_I(inode)->force_compress)) {
498 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
501 if (will_compress) {
502 *num_added += 1;
504 /* the async work queues will take care of doing actual
505 * allocation on disk for these compressed pages,
506 * and will submit them to the elevator.
508 add_async_extent(async_cow, start, num_bytes,
509 total_compressed, pages, nr_pages_ret,
510 compress_type);
512 if (start + num_bytes < end) {
513 start += num_bytes;
514 pages = NULL;
515 cond_resched();
516 goto again;
518 } else {
519 cleanup_and_bail_uncompressed:
521 * No compression, but we still need to write the pages in
522 * the file we've been given so far. redirty the locked
523 * page if it corresponds to our extent and set things up
524 * for the async work queue to run cow_file_range to do
525 * the normal delalloc dance
527 if (page_offset(locked_page) >= start &&
528 page_offset(locked_page) <= end) {
529 __set_page_dirty_nobuffers(locked_page);
530 /* unlocked later on in the async handlers */
532 add_async_extent(async_cow, start, end - start + 1,
533 0, NULL, 0, BTRFS_COMPRESS_NONE);
534 *num_added += 1;
537 out:
538 return 0;
540 free_pages_out:
541 for (i = 0; i < nr_pages_ret; i++) {
542 WARN_ON(pages[i]->mapping);
543 page_cache_release(pages[i]);
545 kfree(pages);
547 goto out;
551 * phase two of compressed writeback. This is the ordered portion
552 * of the code, which only gets called in the order the work was
553 * queued. We walk all the async extents created by compress_file_range
554 * and send them down to the disk.
556 static noinline int submit_compressed_extents(struct inode *inode,
557 struct async_cow *async_cow)
559 struct async_extent *async_extent;
560 u64 alloc_hint = 0;
561 struct btrfs_trans_handle *trans;
562 struct btrfs_key ins;
563 struct extent_map *em;
564 struct btrfs_root *root = BTRFS_I(inode)->root;
565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 struct extent_io_tree *io_tree;
567 int ret = 0;
569 if (list_empty(&async_cow->extents))
570 return 0;
573 while (!list_empty(&async_cow->extents)) {
574 async_extent = list_entry(async_cow->extents.next,
575 struct async_extent, list);
576 list_del(&async_extent->list);
578 io_tree = &BTRFS_I(inode)->io_tree;
580 retry:
581 /* did the compression code fall back to uncompressed IO? */
582 if (!async_extent->pages) {
583 int page_started = 0;
584 unsigned long nr_written = 0;
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start +
588 async_extent->ram_size - 1, GFP_NOFS);
590 /* allocate blocks */
591 ret = cow_file_range(inode, async_cow->locked_page,
592 async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1,
595 &page_started, &nr_written, 0);
598 * if page_started, cow_file_range inserted an
599 * inline extent and took care of all the unlocking
600 * and IO for us. Otherwise, we need to submit
601 * all those pages down to the drive.
603 if (!page_started && !ret)
604 extent_write_locked_range(io_tree,
605 inode, async_extent->start,
606 async_extent->start +
607 async_extent->ram_size - 1,
608 btrfs_get_extent,
609 WB_SYNC_ALL);
610 kfree(async_extent);
611 cond_resched();
612 continue;
615 lock_extent(io_tree, async_extent->start,
616 async_extent->start + async_extent->ram_size - 1,
617 GFP_NOFS);
619 trans = btrfs_join_transaction(root, 1);
620 BUG_ON(IS_ERR(trans));
621 ret = btrfs_reserve_extent(trans, root,
622 async_extent->compressed_size,
623 async_extent->compressed_size,
624 0, alloc_hint,
625 (u64)-1, &ins, 1);
626 btrfs_end_transaction(trans, root);
628 if (ret) {
629 int i;
630 for (i = 0; i < async_extent->nr_pages; i++) {
631 WARN_ON(async_extent->pages[i]->mapping);
632 page_cache_release(async_extent->pages[i]);
634 kfree(async_extent->pages);
635 async_extent->nr_pages = 0;
636 async_extent->pages = NULL;
637 unlock_extent(io_tree, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, GFP_NOFS);
640 goto retry;
644 * here we're doing allocation and writeback of the
645 * compressed pages
647 btrfs_drop_extent_cache(inode, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, 0);
651 em = alloc_extent_map(GFP_NOFS);
652 BUG_ON(!em);
653 em->start = async_extent->start;
654 em->len = async_extent->ram_size;
655 em->orig_start = em->start;
657 em->block_start = ins.objectid;
658 em->block_len = ins.offset;
659 em->bdev = root->fs_info->fs_devices->latest_bdev;
660 em->compress_type = async_extent->compress_type;
661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664 while (1) {
665 write_lock(&em_tree->lock);
666 ret = add_extent_mapping(em_tree, em);
667 write_unlock(&em_tree->lock);
668 if (ret != -EEXIST) {
669 free_extent_map(em);
670 break;
672 btrfs_drop_extent_cache(inode, async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1, 0);
677 ret = btrfs_add_ordered_extent_compress(inode,
678 async_extent->start,
679 ins.objectid,
680 async_extent->ram_size,
681 ins.offset,
682 BTRFS_ORDERED_COMPRESSED,
683 async_extent->compress_type);
684 BUG_ON(ret);
687 * clear dirty, set writeback and unlock the pages.
689 extent_clear_unlock_delalloc(inode,
690 &BTRFS_I(inode)->io_tree,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695 EXTENT_CLEAR_UNLOCK |
696 EXTENT_CLEAR_DELALLOC |
697 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
699 ret = btrfs_submit_compressed_write(inode,
700 async_extent->start,
701 async_extent->ram_size,
702 ins.objectid,
703 ins.offset, async_extent->pages,
704 async_extent->nr_pages);
706 BUG_ON(ret);
707 alloc_hint = ins.objectid + ins.offset;
708 kfree(async_extent);
709 cond_resched();
712 return 0;
715 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716 u64 num_bytes)
718 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 struct extent_map *em;
720 u64 alloc_hint = 0;
722 read_lock(&em_tree->lock);
723 em = search_extent_mapping(em_tree, start, num_bytes);
724 if (em) {
726 * if block start isn't an actual block number then find the
727 * first block in this inode and use that as a hint. If that
728 * block is also bogus then just don't worry about it.
730 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731 free_extent_map(em);
732 em = search_extent_mapping(em_tree, 0, 0);
733 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734 alloc_hint = em->block_start;
735 if (em)
736 free_extent_map(em);
737 } else {
738 alloc_hint = em->block_start;
739 free_extent_map(em);
742 read_unlock(&em_tree->lock);
744 return alloc_hint;
748 * when extent_io.c finds a delayed allocation range in the file,
749 * the call backs end up in this code. The basic idea is to
750 * allocate extents on disk for the range, and create ordered data structs
751 * in ram to track those extents.
753 * locked_page is the page that writepage had locked already. We use
754 * it to make sure we don't do extra locks or unlocks.
756 * *page_started is set to one if we unlock locked_page and do everything
757 * required to start IO on it. It may be clean and already done with
758 * IO when we return.
760 static noinline int cow_file_range(struct inode *inode,
761 struct page *locked_page,
762 u64 start, u64 end, int *page_started,
763 unsigned long *nr_written,
764 int unlock)
766 struct btrfs_root *root = BTRFS_I(inode)->root;
767 struct btrfs_trans_handle *trans;
768 u64 alloc_hint = 0;
769 u64 num_bytes;
770 unsigned long ram_size;
771 u64 disk_num_bytes;
772 u64 cur_alloc_size;
773 u64 blocksize = root->sectorsize;
774 struct btrfs_key ins;
775 struct extent_map *em;
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 int ret = 0;
779 BUG_ON(root == root->fs_info->tree_root);
780 trans = btrfs_join_transaction(root, 1);
781 BUG_ON(IS_ERR(trans));
782 btrfs_set_trans_block_group(trans, inode);
783 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
785 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786 num_bytes = max(blocksize, num_bytes);
787 disk_num_bytes = num_bytes;
788 ret = 0;
790 if (start == 0) {
791 /* lets try to make an inline extent */
792 ret = cow_file_range_inline(trans, root, inode,
793 start, end, 0, 0, NULL);
794 if (ret == 0) {
795 extent_clear_unlock_delalloc(inode,
796 &BTRFS_I(inode)->io_tree,
797 start, end, NULL,
798 EXTENT_CLEAR_UNLOCK_PAGE |
799 EXTENT_CLEAR_UNLOCK |
800 EXTENT_CLEAR_DELALLOC |
801 EXTENT_CLEAR_DIRTY |
802 EXTENT_SET_WRITEBACK |
803 EXTENT_END_WRITEBACK);
805 *nr_written = *nr_written +
806 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807 *page_started = 1;
808 ret = 0;
809 goto out;
813 BUG_ON(disk_num_bytes >
814 btrfs_super_total_bytes(&root->fs_info->super_copy));
816 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
817 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819 while (disk_num_bytes > 0) {
820 unsigned long op;
822 cur_alloc_size = disk_num_bytes;
823 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
824 root->sectorsize, 0, alloc_hint,
825 (u64)-1, &ins, 1);
826 BUG_ON(ret);
828 em = alloc_extent_map(GFP_NOFS);
829 BUG_ON(!em);
830 em->start = start;
831 em->orig_start = em->start;
832 ram_size = ins.offset;
833 em->len = ins.offset;
835 em->block_start = ins.objectid;
836 em->block_len = ins.offset;
837 em->bdev = root->fs_info->fs_devices->latest_bdev;
838 set_bit(EXTENT_FLAG_PINNED, &em->flags);
840 while (1) {
841 write_lock(&em_tree->lock);
842 ret = add_extent_mapping(em_tree, em);
843 write_unlock(&em_tree->lock);
844 if (ret != -EEXIST) {
845 free_extent_map(em);
846 break;
848 btrfs_drop_extent_cache(inode, start,
849 start + ram_size - 1, 0);
852 cur_alloc_size = ins.offset;
853 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
854 ram_size, cur_alloc_size, 0);
855 BUG_ON(ret);
857 if (root->root_key.objectid ==
858 BTRFS_DATA_RELOC_TREE_OBJECTID) {
859 ret = btrfs_reloc_clone_csums(inode, start,
860 cur_alloc_size);
861 BUG_ON(ret);
864 if (disk_num_bytes < cur_alloc_size)
865 break;
867 /* we're not doing compressed IO, don't unlock the first
868 * page (which the caller expects to stay locked), don't
869 * clear any dirty bits and don't set any writeback bits
871 * Do set the Private2 bit so we know this page was properly
872 * setup for writepage
874 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876 EXTENT_SET_PRIVATE2;
878 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879 start, start + ram_size - 1,
880 locked_page, op);
881 disk_num_bytes -= cur_alloc_size;
882 num_bytes -= cur_alloc_size;
883 alloc_hint = ins.objectid + ins.offset;
884 start += cur_alloc_size;
886 out:
887 ret = 0;
888 btrfs_end_transaction(trans, root);
890 return ret;
894 * work queue call back to started compression on a file and pages
896 static noinline void async_cow_start(struct btrfs_work *work)
898 struct async_cow *async_cow;
899 int num_added = 0;
900 async_cow = container_of(work, struct async_cow, work);
902 compress_file_range(async_cow->inode, async_cow->locked_page,
903 async_cow->start, async_cow->end, async_cow,
904 &num_added);
905 if (num_added == 0)
906 async_cow->inode = NULL;
910 * work queue call back to submit previously compressed pages
912 static noinline void async_cow_submit(struct btrfs_work *work)
914 struct async_cow *async_cow;
915 struct btrfs_root *root;
916 unsigned long nr_pages;
918 async_cow = container_of(work, struct async_cow, work);
920 root = async_cow->root;
921 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922 PAGE_CACHE_SHIFT;
924 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926 if (atomic_read(&root->fs_info->async_delalloc_pages) <
927 5 * 1042 * 1024 &&
928 waitqueue_active(&root->fs_info->async_submit_wait))
929 wake_up(&root->fs_info->async_submit_wait);
931 if (async_cow->inode)
932 submit_compressed_extents(async_cow->inode, async_cow);
935 static noinline void async_cow_free(struct btrfs_work *work)
937 struct async_cow *async_cow;
938 async_cow = container_of(work, struct async_cow, work);
939 kfree(async_cow);
942 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943 u64 start, u64 end, int *page_started,
944 unsigned long *nr_written)
946 struct async_cow *async_cow;
947 struct btrfs_root *root = BTRFS_I(inode)->root;
948 unsigned long nr_pages;
949 u64 cur_end;
950 int limit = 10 * 1024 * 1042;
952 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953 1, 0, NULL, GFP_NOFS);
954 while (start < end) {
955 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956 async_cow->inode = inode;
957 async_cow->root = root;
958 async_cow->locked_page = locked_page;
959 async_cow->start = start;
961 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
962 cur_end = end;
963 else
964 cur_end = min(end, start + 512 * 1024 - 1);
966 async_cow->end = cur_end;
967 INIT_LIST_HEAD(&async_cow->extents);
969 async_cow->work.func = async_cow_start;
970 async_cow->work.ordered_func = async_cow_submit;
971 async_cow->work.ordered_free = async_cow_free;
972 async_cow->work.flags = 0;
974 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975 PAGE_CACHE_SHIFT;
976 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979 &async_cow->work);
981 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982 wait_event(root->fs_info->async_submit_wait,
983 (atomic_read(&root->fs_info->async_delalloc_pages) <
984 limit));
987 while (atomic_read(&root->fs_info->async_submit_draining) &&
988 atomic_read(&root->fs_info->async_delalloc_pages)) {
989 wait_event(root->fs_info->async_submit_wait,
990 (atomic_read(&root->fs_info->async_delalloc_pages) ==
991 0));
994 *nr_written += nr_pages;
995 start = cur_end + 1;
997 *page_started = 1;
998 return 0;
1001 static noinline int csum_exist_in_range(struct btrfs_root *root,
1002 u64 bytenr, u64 num_bytes)
1004 int ret;
1005 struct btrfs_ordered_sum *sums;
1006 LIST_HEAD(list);
1008 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009 bytenr + num_bytes - 1, &list);
1010 if (ret == 0 && list_empty(&list))
1011 return 0;
1013 while (!list_empty(&list)) {
1014 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015 list_del(&sums->list);
1016 kfree(sums);
1018 return 1;
1022 * when nowcow writeback call back. This checks for snapshots or COW copies
1023 * of the extents that exist in the file, and COWs the file as required.
1025 * If no cow copies or snapshots exist, we write directly to the existing
1026 * blocks on disk
1028 static noinline int run_delalloc_nocow(struct inode *inode,
1029 struct page *locked_page,
1030 u64 start, u64 end, int *page_started, int force,
1031 unsigned long *nr_written)
1033 struct btrfs_root *root = BTRFS_I(inode)->root;
1034 struct btrfs_trans_handle *trans;
1035 struct extent_buffer *leaf;
1036 struct btrfs_path *path;
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key found_key;
1039 u64 cow_start;
1040 u64 cur_offset;
1041 u64 extent_end;
1042 u64 extent_offset;
1043 u64 disk_bytenr;
1044 u64 num_bytes;
1045 int extent_type;
1046 int ret;
1047 int type;
1048 int nocow;
1049 int check_prev = 1;
1050 bool nolock = false;
1052 path = btrfs_alloc_path();
1053 BUG_ON(!path);
1054 if (root == root->fs_info->tree_root) {
1055 nolock = true;
1056 trans = btrfs_join_transaction_nolock(root, 1);
1057 } else {
1058 trans = btrfs_join_transaction(root, 1);
1060 BUG_ON(IS_ERR(trans));
1062 cow_start = (u64)-1;
1063 cur_offset = start;
1064 while (1) {
1065 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066 cur_offset, 0);
1067 BUG_ON(ret < 0);
1068 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &found_key,
1071 path->slots[0] - 1);
1072 if (found_key.objectid == inode->i_ino &&
1073 found_key.type == BTRFS_EXTENT_DATA_KEY)
1074 path->slots[0]--;
1076 check_prev = 0;
1077 next_slot:
1078 leaf = path->nodes[0];
1079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080 ret = btrfs_next_leaf(root, path);
1081 if (ret < 0)
1082 BUG_ON(1);
1083 if (ret > 0)
1084 break;
1085 leaf = path->nodes[0];
1088 nocow = 0;
1089 disk_bytenr = 0;
1090 num_bytes = 0;
1091 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093 if (found_key.objectid > inode->i_ino ||
1094 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095 found_key.offset > end)
1096 break;
1098 if (found_key.offset > cur_offset) {
1099 extent_end = found_key.offset;
1100 extent_type = 0;
1101 goto out_check;
1104 fi = btrfs_item_ptr(leaf, path->slots[0],
1105 struct btrfs_file_extent_item);
1106 extent_type = btrfs_file_extent_type(leaf, fi);
1108 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1110 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1111 extent_offset = btrfs_file_extent_offset(leaf, fi);
1112 extent_end = found_key.offset +
1113 btrfs_file_extent_num_bytes(leaf, fi);
1114 if (extent_end <= start) {
1115 path->slots[0]++;
1116 goto next_slot;
1118 if (disk_bytenr == 0)
1119 goto out_check;
1120 if (btrfs_file_extent_compression(leaf, fi) ||
1121 btrfs_file_extent_encryption(leaf, fi) ||
1122 btrfs_file_extent_other_encoding(leaf, fi))
1123 goto out_check;
1124 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125 goto out_check;
1126 if (btrfs_extent_readonly(root, disk_bytenr))
1127 goto out_check;
1128 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1129 found_key.offset -
1130 extent_offset, disk_bytenr))
1131 goto out_check;
1132 disk_bytenr += extent_offset;
1133 disk_bytenr += cur_offset - found_key.offset;
1134 num_bytes = min(end + 1, extent_end) - cur_offset;
1136 * force cow if csum exists in the range.
1137 * this ensure that csum for a given extent are
1138 * either valid or do not exist.
1140 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141 goto out_check;
1142 nocow = 1;
1143 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144 extent_end = found_key.offset +
1145 btrfs_file_extent_inline_len(leaf, fi);
1146 extent_end = ALIGN(extent_end, root->sectorsize);
1147 } else {
1148 BUG_ON(1);
1150 out_check:
1151 if (extent_end <= start) {
1152 path->slots[0]++;
1153 goto next_slot;
1155 if (!nocow) {
1156 if (cow_start == (u64)-1)
1157 cow_start = cur_offset;
1158 cur_offset = extent_end;
1159 if (cur_offset > end)
1160 break;
1161 path->slots[0]++;
1162 goto next_slot;
1165 btrfs_release_path(root, path);
1166 if (cow_start != (u64)-1) {
1167 ret = cow_file_range(inode, locked_page, cow_start,
1168 found_key.offset - 1, page_started,
1169 nr_written, 1);
1170 BUG_ON(ret);
1171 cow_start = (u64)-1;
1174 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175 struct extent_map *em;
1176 struct extent_map_tree *em_tree;
1177 em_tree = &BTRFS_I(inode)->extent_tree;
1178 em = alloc_extent_map(GFP_NOFS);
1179 BUG_ON(!em);
1180 em->start = cur_offset;
1181 em->orig_start = em->start;
1182 em->len = num_bytes;
1183 em->block_len = num_bytes;
1184 em->block_start = disk_bytenr;
1185 em->bdev = root->fs_info->fs_devices->latest_bdev;
1186 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187 while (1) {
1188 write_lock(&em_tree->lock);
1189 ret = add_extent_mapping(em_tree, em);
1190 write_unlock(&em_tree->lock);
1191 if (ret != -EEXIST) {
1192 free_extent_map(em);
1193 break;
1195 btrfs_drop_extent_cache(inode, em->start,
1196 em->start + em->len - 1, 0);
1198 type = BTRFS_ORDERED_PREALLOC;
1199 } else {
1200 type = BTRFS_ORDERED_NOCOW;
1203 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1204 num_bytes, num_bytes, type);
1205 BUG_ON(ret);
1207 if (root->root_key.objectid ==
1208 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210 num_bytes);
1211 BUG_ON(ret);
1214 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1215 cur_offset, cur_offset + num_bytes - 1,
1216 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218 EXTENT_SET_PRIVATE2);
1219 cur_offset = extent_end;
1220 if (cur_offset > end)
1221 break;
1223 btrfs_release_path(root, path);
1225 if (cur_offset <= end && cow_start == (u64)-1)
1226 cow_start = cur_offset;
1227 if (cow_start != (u64)-1) {
1228 ret = cow_file_range(inode, locked_page, cow_start, end,
1229 page_started, nr_written, 1);
1230 BUG_ON(ret);
1233 if (nolock) {
1234 ret = btrfs_end_transaction_nolock(trans, root);
1235 BUG_ON(ret);
1236 } else {
1237 ret = btrfs_end_transaction(trans, root);
1238 BUG_ON(ret);
1240 btrfs_free_path(path);
1241 return 0;
1245 * extent_io.c call back to do delayed allocation processing
1247 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1248 u64 start, u64 end, int *page_started,
1249 unsigned long *nr_written)
1251 int ret;
1252 struct btrfs_root *root = BTRFS_I(inode)->root;
1254 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1255 ret = run_delalloc_nocow(inode, locked_page, start, end,
1256 page_started, 1, nr_written);
1257 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1258 ret = run_delalloc_nocow(inode, locked_page, start, end,
1259 page_started, 0, nr_written);
1260 else if (!btrfs_test_opt(root, COMPRESS) &&
1261 !(BTRFS_I(inode)->force_compress) &&
1262 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1263 ret = cow_file_range(inode, locked_page, start, end,
1264 page_started, nr_written, 1);
1265 else
1266 ret = cow_file_range_async(inode, locked_page, start, end,
1267 page_started, nr_written);
1268 return ret;
1271 static int btrfs_split_extent_hook(struct inode *inode,
1272 struct extent_state *orig, u64 split)
1274 /* not delalloc, ignore it */
1275 if (!(orig->state & EXTENT_DELALLOC))
1276 return 0;
1278 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1279 return 0;
1283 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284 * extents so we can keep track of new extents that are just merged onto old
1285 * extents, such as when we are doing sequential writes, so we can properly
1286 * account for the metadata space we'll need.
1288 static int btrfs_merge_extent_hook(struct inode *inode,
1289 struct extent_state *new,
1290 struct extent_state *other)
1292 /* not delalloc, ignore it */
1293 if (!(other->state & EXTENT_DELALLOC))
1294 return 0;
1296 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1297 return 0;
1301 * extent_io.c set_bit_hook, used to track delayed allocation
1302 * bytes in this file, and to maintain the list of inodes that
1303 * have pending delalloc work to be done.
1305 static int btrfs_set_bit_hook(struct inode *inode,
1306 struct extent_state *state, int *bits)
1310 * set_bit and clear bit hooks normally require _irqsave/restore
1311 * but in this case, we are only testeing for the DELALLOC
1312 * bit, which is only set or cleared with irqs on
1314 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1315 struct btrfs_root *root = BTRFS_I(inode)->root;
1316 u64 len = state->end + 1 - state->start;
1317 int do_list = (root->root_key.objectid !=
1318 BTRFS_ROOT_TREE_OBJECTID);
1320 if (*bits & EXTENT_FIRST_DELALLOC)
1321 *bits &= ~EXTENT_FIRST_DELALLOC;
1322 else
1323 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1325 spin_lock(&root->fs_info->delalloc_lock);
1326 BTRFS_I(inode)->delalloc_bytes += len;
1327 root->fs_info->delalloc_bytes += len;
1328 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1329 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330 &root->fs_info->delalloc_inodes);
1332 spin_unlock(&root->fs_info->delalloc_lock);
1334 return 0;
1338 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 static int btrfs_clear_bit_hook(struct inode *inode,
1341 struct extent_state *state, int *bits)
1344 * set_bit and clear bit hooks normally require _irqsave/restore
1345 * but in this case, we are only testeing for the DELALLOC
1346 * bit, which is only set or cleared with irqs on
1348 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1349 struct btrfs_root *root = BTRFS_I(inode)->root;
1350 u64 len = state->end + 1 - state->start;
1351 int do_list = (root->root_key.objectid !=
1352 BTRFS_ROOT_TREE_OBJECTID);
1354 if (*bits & EXTENT_FIRST_DELALLOC)
1355 *bits &= ~EXTENT_FIRST_DELALLOC;
1356 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359 if (*bits & EXTENT_DO_ACCOUNTING)
1360 btrfs_delalloc_release_metadata(inode, len);
1362 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363 && do_list)
1364 btrfs_free_reserved_data_space(inode, len);
1366 spin_lock(&root->fs_info->delalloc_lock);
1367 root->fs_info->delalloc_bytes -= len;
1368 BTRFS_I(inode)->delalloc_bytes -= len;
1370 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1371 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374 spin_unlock(&root->fs_info->delalloc_lock);
1376 return 0;
1380 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381 * we don't create bios that span stripes or chunks
1383 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1384 size_t size, struct bio *bio,
1385 unsigned long bio_flags)
1387 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388 struct btrfs_mapping_tree *map_tree;
1389 u64 logical = (u64)bio->bi_sector << 9;
1390 u64 length = 0;
1391 u64 map_length;
1392 int ret;
1394 if (bio_flags & EXTENT_BIO_COMPRESSED)
1395 return 0;
1397 length = bio->bi_size;
1398 map_tree = &root->fs_info->mapping_tree;
1399 map_length = length;
1400 ret = btrfs_map_block(map_tree, READ, logical,
1401 &map_length, NULL, 0);
1403 if (map_length < length + size)
1404 return 1;
1405 return ret;
1409 * in order to insert checksums into the metadata in large chunks,
1410 * we wait until bio submission time. All the pages in the bio are
1411 * checksummed and sums are attached onto the ordered extent record.
1413 * At IO completion time the cums attached on the ordered extent record
1414 * are inserted into the btree
1416 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417 struct bio *bio, int mirror_num,
1418 unsigned long bio_flags,
1419 u64 bio_offset)
1421 struct btrfs_root *root = BTRFS_I(inode)->root;
1422 int ret = 0;
1424 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1425 BUG_ON(ret);
1426 return 0;
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1437 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1438 int mirror_num, unsigned long bio_flags,
1439 u64 bio_offset)
1441 struct btrfs_root *root = BTRFS_I(inode)->root;
1442 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1446 * extent_io.c submission hook. This does the right thing for csum calculation
1447 * on write, or reading the csums from the tree before a read
1449 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1450 int mirror_num, unsigned long bio_flags,
1451 u64 bio_offset)
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
1454 int ret = 0;
1455 int skip_sum;
1457 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1459 if (root == root->fs_info->tree_root)
1460 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461 else
1462 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1463 BUG_ON(ret);
1465 if (!(rw & REQ_WRITE)) {
1466 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1467 return btrfs_submit_compressed_read(inode, bio,
1468 mirror_num, bio_flags);
1469 } else if (!skip_sum) {
1470 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471 if (ret)
1472 return ret;
1474 goto mapit;
1475 } else if (!skip_sum) {
1476 /* csum items have already been cloned */
1477 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478 goto mapit;
1479 /* we're doing a write, do the async checksumming */
1480 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1481 inode, rw, bio, mirror_num,
1482 bio_flags, bio_offset,
1483 __btrfs_submit_bio_start,
1484 __btrfs_submit_bio_done);
1487 mapit:
1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1492 * given a list of ordered sums record them in the inode. This happens
1493 * at IO completion time based on sums calculated at bio submission time.
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496 struct inode *inode, u64 file_offset,
1497 struct list_head *list)
1499 struct btrfs_ordered_sum *sum;
1501 btrfs_set_trans_block_group(trans, inode);
1503 list_for_each_entry(sum, list, list) {
1504 btrfs_csum_file_blocks(trans,
1505 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507 return 0;
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511 struct extent_state **cached_state)
1513 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514 WARN_ON(1);
1515 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516 cached_state, GFP_NOFS);
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521 struct page *page;
1522 struct btrfs_work work;
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1527 struct btrfs_writepage_fixup *fixup;
1528 struct btrfs_ordered_extent *ordered;
1529 struct extent_state *cached_state = NULL;
1530 struct page *page;
1531 struct inode *inode;
1532 u64 page_start;
1533 u64 page_end;
1535 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536 page = fixup->page;
1537 again:
1538 lock_page(page);
1539 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540 ClearPageChecked(page);
1541 goto out_page;
1544 inode = page->mapping->host;
1545 page_start = page_offset(page);
1546 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549 &cached_state, GFP_NOFS);
1551 /* already ordered? We're done */
1552 if (PagePrivate2(page))
1553 goto out;
1555 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556 if (ordered) {
1557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558 page_end, &cached_state, GFP_NOFS);
1559 unlock_page(page);
1560 btrfs_start_ordered_extent(inode, ordered, 1);
1561 goto again;
1564 BUG();
1565 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1566 ClearPageChecked(page);
1567 out:
1568 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569 &cached_state, GFP_NOFS);
1570 out_page:
1571 unlock_page(page);
1572 page_cache_release(page);
1573 kfree(fixup);
1577 * There are a few paths in the higher layers of the kernel that directly
1578 * set the page dirty bit without asking the filesystem if it is a
1579 * good idea. This causes problems because we want to make sure COW
1580 * properly happens and the data=ordered rules are followed.
1582 * In our case any range that doesn't have the ORDERED bit set
1583 * hasn't been properly setup for IO. We kick off an async process
1584 * to fix it up. The async helper will wait for ordered extents, set
1585 * the delalloc bit and make it safe to write the page.
1587 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1589 struct inode *inode = page->mapping->host;
1590 struct btrfs_writepage_fixup *fixup;
1591 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 /* this page is properly in the ordered list */
1594 if (TestClearPagePrivate2(page))
1595 return 0;
1597 if (PageChecked(page))
1598 return -EAGAIN;
1600 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601 if (!fixup)
1602 return -EAGAIN;
1604 SetPageChecked(page);
1605 page_cache_get(page);
1606 fixup->work.func = btrfs_writepage_fixup_worker;
1607 fixup->page = page;
1608 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609 return -EAGAIN;
1612 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613 struct inode *inode, u64 file_pos,
1614 u64 disk_bytenr, u64 disk_num_bytes,
1615 u64 num_bytes, u64 ram_bytes,
1616 u8 compression, u8 encryption,
1617 u16 other_encoding, int extent_type)
1619 struct btrfs_root *root = BTRFS_I(inode)->root;
1620 struct btrfs_file_extent_item *fi;
1621 struct btrfs_path *path;
1622 struct extent_buffer *leaf;
1623 struct btrfs_key ins;
1624 u64 hint;
1625 int ret;
1627 path = btrfs_alloc_path();
1628 BUG_ON(!path);
1630 path->leave_spinning = 1;
1633 * we may be replacing one extent in the tree with another.
1634 * The new extent is pinned in the extent map, and we don't want
1635 * to drop it from the cache until it is completely in the btree.
1637 * So, tell btrfs_drop_extents to leave this extent in the cache.
1638 * the caller is expected to unpin it and allow it to be merged
1639 * with the others.
1641 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642 &hint, 0);
1643 BUG_ON(ret);
1645 ins.objectid = inode->i_ino;
1646 ins.offset = file_pos;
1647 ins.type = BTRFS_EXTENT_DATA_KEY;
1648 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649 BUG_ON(ret);
1650 leaf = path->nodes[0];
1651 fi = btrfs_item_ptr(leaf, path->slots[0],
1652 struct btrfs_file_extent_item);
1653 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654 btrfs_set_file_extent_type(leaf, fi, extent_type);
1655 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657 btrfs_set_file_extent_offset(leaf, fi, 0);
1658 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660 btrfs_set_file_extent_compression(leaf, fi, compression);
1661 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1664 btrfs_unlock_up_safe(path, 1);
1665 btrfs_set_lock_blocking(leaf);
1667 btrfs_mark_buffer_dirty(leaf);
1669 inode_add_bytes(inode, num_bytes);
1671 ins.objectid = disk_bytenr;
1672 ins.offset = disk_num_bytes;
1673 ins.type = BTRFS_EXTENT_ITEM_KEY;
1674 ret = btrfs_alloc_reserved_file_extent(trans, root,
1675 root->root_key.objectid,
1676 inode->i_ino, file_pos, &ins);
1677 BUG_ON(ret);
1678 btrfs_free_path(path);
1680 return 0;
1684 * helper function for btrfs_finish_ordered_io, this
1685 * just reads in some of the csum leaves to prime them into ram
1686 * before we start the transaction. It limits the amount of btree
1687 * reads required while inside the transaction.
1689 /* as ordered data IO finishes, this gets called so we can finish
1690 * an ordered extent if the range of bytes in the file it covers are
1691 * fully written.
1693 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1695 struct btrfs_root *root = BTRFS_I(inode)->root;
1696 struct btrfs_trans_handle *trans = NULL;
1697 struct btrfs_ordered_extent *ordered_extent = NULL;
1698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1699 struct extent_state *cached_state = NULL;
1700 int compress_type = 0;
1701 int ret;
1702 bool nolock = false;
1704 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705 end - start + 1);
1706 if (!ret)
1707 return 0;
1708 BUG_ON(!ordered_extent);
1710 nolock = (root == root->fs_info->tree_root);
1712 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713 BUG_ON(!list_empty(&ordered_extent->list));
1714 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715 if (!ret) {
1716 if (nolock)
1717 trans = btrfs_join_transaction_nolock(root, 1);
1718 else
1719 trans = btrfs_join_transaction(root, 1);
1720 BUG_ON(IS_ERR(trans));
1721 btrfs_set_trans_block_group(trans, inode);
1722 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1723 ret = btrfs_update_inode(trans, root, inode);
1724 BUG_ON(ret);
1726 goto out;
1729 lock_extent_bits(io_tree, ordered_extent->file_offset,
1730 ordered_extent->file_offset + ordered_extent->len - 1,
1731 0, &cached_state, GFP_NOFS);
1733 if (nolock)
1734 trans = btrfs_join_transaction_nolock(root, 1);
1735 else
1736 trans = btrfs_join_transaction(root, 1);
1737 BUG_ON(IS_ERR(trans));
1738 btrfs_set_trans_block_group(trans, inode);
1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1742 compress_type = ordered_extent->compress_type;
1743 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1744 BUG_ON(compress_type);
1745 ret = btrfs_mark_extent_written(trans, inode,
1746 ordered_extent->file_offset,
1747 ordered_extent->file_offset +
1748 ordered_extent->len);
1749 BUG_ON(ret);
1750 } else {
1751 BUG_ON(root == root->fs_info->tree_root);
1752 ret = insert_reserved_file_extent(trans, inode,
1753 ordered_extent->file_offset,
1754 ordered_extent->start,
1755 ordered_extent->disk_len,
1756 ordered_extent->len,
1757 ordered_extent->len,
1758 compress_type, 0, 0,
1759 BTRFS_FILE_EXTENT_REG);
1760 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761 ordered_extent->file_offset,
1762 ordered_extent->len);
1763 BUG_ON(ret);
1765 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766 ordered_extent->file_offset +
1767 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769 add_pending_csums(trans, inode, ordered_extent->file_offset,
1770 &ordered_extent->list);
1772 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773 ret = btrfs_update_inode(trans, root, inode);
1774 BUG_ON(ret);
1775 out:
1776 if (nolock) {
1777 if (trans)
1778 btrfs_end_transaction_nolock(trans, root);
1779 } else {
1780 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1781 if (trans)
1782 btrfs_end_transaction(trans, root);
1785 /* once for us */
1786 btrfs_put_ordered_extent(ordered_extent);
1787 /* once for the tree */
1788 btrfs_put_ordered_extent(ordered_extent);
1790 return 0;
1793 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1794 struct extent_state *state, int uptodate)
1796 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1798 ClearPagePrivate2(page);
1799 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1803 * When IO fails, either with EIO or csum verification fails, we
1804 * try other mirrors that might have a good copy of the data. This
1805 * io_failure_record is used to record state as we go through all the
1806 * mirrors. If another mirror has good data, the page is set up to date
1807 * and things continue. If a good mirror can't be found, the original
1808 * bio end_io callback is called to indicate things have failed.
1810 struct io_failure_record {
1811 struct page *page;
1812 u64 start;
1813 u64 len;
1814 u64 logical;
1815 unsigned long bio_flags;
1816 int last_mirror;
1819 static int btrfs_io_failed_hook(struct bio *failed_bio,
1820 struct page *page, u64 start, u64 end,
1821 struct extent_state *state)
1823 struct io_failure_record *failrec = NULL;
1824 u64 private;
1825 struct extent_map *em;
1826 struct inode *inode = page->mapping->host;
1827 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1828 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1829 struct bio *bio;
1830 int num_copies;
1831 int ret;
1832 int rw;
1833 u64 logical;
1835 ret = get_state_private(failure_tree, start, &private);
1836 if (ret) {
1837 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1838 if (!failrec)
1839 return -ENOMEM;
1840 failrec->start = start;
1841 failrec->len = end - start + 1;
1842 failrec->last_mirror = 0;
1843 failrec->bio_flags = 0;
1845 read_lock(&em_tree->lock);
1846 em = lookup_extent_mapping(em_tree, start, failrec->len);
1847 if (em->start > start || em->start + em->len < start) {
1848 free_extent_map(em);
1849 em = NULL;
1851 read_unlock(&em_tree->lock);
1853 if (!em || IS_ERR(em)) {
1854 kfree(failrec);
1855 return -EIO;
1857 logical = start - em->start;
1858 logical = em->block_start + logical;
1859 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1860 logical = em->block_start;
1861 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1862 extent_set_compress_type(&failrec->bio_flags,
1863 em->compress_type);
1865 failrec->logical = logical;
1866 free_extent_map(em);
1867 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1868 EXTENT_DIRTY, GFP_NOFS);
1869 set_state_private(failure_tree, start,
1870 (u64)(unsigned long)failrec);
1871 } else {
1872 failrec = (struct io_failure_record *)(unsigned long)private;
1874 num_copies = btrfs_num_copies(
1875 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1876 failrec->logical, failrec->len);
1877 failrec->last_mirror++;
1878 if (!state) {
1879 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1880 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1881 failrec->start,
1882 EXTENT_LOCKED);
1883 if (state && state->start != failrec->start)
1884 state = NULL;
1885 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1887 if (!state || failrec->last_mirror > num_copies) {
1888 set_state_private(failure_tree, failrec->start, 0);
1889 clear_extent_bits(failure_tree, failrec->start,
1890 failrec->start + failrec->len - 1,
1891 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1892 kfree(failrec);
1893 return -EIO;
1895 bio = bio_alloc(GFP_NOFS, 1);
1896 bio->bi_private = state;
1897 bio->bi_end_io = failed_bio->bi_end_io;
1898 bio->bi_sector = failrec->logical >> 9;
1899 bio->bi_bdev = failed_bio->bi_bdev;
1900 bio->bi_size = 0;
1902 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1903 if (failed_bio->bi_rw & REQ_WRITE)
1904 rw = WRITE;
1905 else
1906 rw = READ;
1908 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1909 failrec->last_mirror,
1910 failrec->bio_flags, 0);
1911 return ret;
1915 * each time an IO finishes, we do a fast check in the IO failure tree
1916 * to see if we need to process or clean up an io_failure_record
1918 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1920 u64 private;
1921 u64 private_failure;
1922 struct io_failure_record *failure;
1923 int ret;
1925 private = 0;
1926 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1927 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1928 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1929 start, &private_failure);
1930 if (ret == 0) {
1931 failure = (struct io_failure_record *)(unsigned long)
1932 private_failure;
1933 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1934 failure->start, 0);
1935 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1936 failure->start,
1937 failure->start + failure->len - 1,
1938 EXTENT_DIRTY | EXTENT_LOCKED,
1939 GFP_NOFS);
1940 kfree(failure);
1943 return 0;
1947 * when reads are done, we need to check csums to verify the data is correct
1948 * if there's a match, we allow the bio to finish. If not, we go through
1949 * the io_failure_record routines to find good copies
1951 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1952 struct extent_state *state)
1954 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1955 struct inode *inode = page->mapping->host;
1956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1957 char *kaddr;
1958 u64 private = ~(u32)0;
1959 int ret;
1960 struct btrfs_root *root = BTRFS_I(inode)->root;
1961 u32 csum = ~(u32)0;
1963 if (PageChecked(page)) {
1964 ClearPageChecked(page);
1965 goto good;
1968 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1969 return 0;
1971 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1972 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1973 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1974 GFP_NOFS);
1975 return 0;
1978 if (state && state->start == start) {
1979 private = state->private;
1980 ret = 0;
1981 } else {
1982 ret = get_state_private(io_tree, start, &private);
1984 kaddr = kmap_atomic(page, KM_USER0);
1985 if (ret)
1986 goto zeroit;
1988 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1989 btrfs_csum_final(csum, (char *)&csum);
1990 if (csum != private)
1991 goto zeroit;
1993 kunmap_atomic(kaddr, KM_USER0);
1994 good:
1995 /* if the io failure tree for this inode is non-empty,
1996 * check to see if we've recovered from a failed IO
1998 btrfs_clean_io_failures(inode, start);
1999 return 0;
2001 zeroit:
2002 if (printk_ratelimit()) {
2003 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2004 "private %llu\n", page->mapping->host->i_ino,
2005 (unsigned long long)start, csum,
2006 (unsigned long long)private);
2008 memset(kaddr + offset, 1, end - start + 1);
2009 flush_dcache_page(page);
2010 kunmap_atomic(kaddr, KM_USER0);
2011 if (private == 0)
2012 return 0;
2013 return -EIO;
2016 struct delayed_iput {
2017 struct list_head list;
2018 struct inode *inode;
2021 void btrfs_add_delayed_iput(struct inode *inode)
2023 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2024 struct delayed_iput *delayed;
2026 if (atomic_add_unless(&inode->i_count, -1, 1))
2027 return;
2029 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2030 delayed->inode = inode;
2032 spin_lock(&fs_info->delayed_iput_lock);
2033 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2034 spin_unlock(&fs_info->delayed_iput_lock);
2037 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2039 LIST_HEAD(list);
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2041 struct delayed_iput *delayed;
2042 int empty;
2044 spin_lock(&fs_info->delayed_iput_lock);
2045 empty = list_empty(&fs_info->delayed_iputs);
2046 spin_unlock(&fs_info->delayed_iput_lock);
2047 if (empty)
2048 return;
2050 down_read(&root->fs_info->cleanup_work_sem);
2051 spin_lock(&fs_info->delayed_iput_lock);
2052 list_splice_init(&fs_info->delayed_iputs, &list);
2053 spin_unlock(&fs_info->delayed_iput_lock);
2055 while (!list_empty(&list)) {
2056 delayed = list_entry(list.next, struct delayed_iput, list);
2057 list_del(&delayed->list);
2058 iput(delayed->inode);
2059 kfree(delayed);
2061 up_read(&root->fs_info->cleanup_work_sem);
2065 * calculate extra metadata reservation when snapshotting a subvolume
2066 * contains orphan files.
2068 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2069 struct btrfs_pending_snapshot *pending,
2070 u64 *bytes_to_reserve)
2072 struct btrfs_root *root;
2073 struct btrfs_block_rsv *block_rsv;
2074 u64 num_bytes;
2075 int index;
2077 root = pending->root;
2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079 return;
2081 block_rsv = root->orphan_block_rsv;
2083 /* orphan block reservation for the snapshot */
2084 num_bytes = block_rsv->size;
2087 * after the snapshot is created, COWing tree blocks may use more
2088 * space than it frees. So we should make sure there is enough
2089 * reserved space.
2091 index = trans->transid & 0x1;
2092 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2093 num_bytes += block_rsv->size -
2094 (block_rsv->reserved + block_rsv->freed[index]);
2097 *bytes_to_reserve += num_bytes;
2100 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2101 struct btrfs_pending_snapshot *pending)
2103 struct btrfs_root *root = pending->root;
2104 struct btrfs_root *snap = pending->snap;
2105 struct btrfs_block_rsv *block_rsv;
2106 u64 num_bytes;
2107 int index;
2108 int ret;
2110 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2111 return;
2113 /* refill source subvolume's orphan block reservation */
2114 block_rsv = root->orphan_block_rsv;
2115 index = trans->transid & 0x1;
2116 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2117 num_bytes = block_rsv->size -
2118 (block_rsv->reserved + block_rsv->freed[index]);
2119 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120 root->orphan_block_rsv,
2121 num_bytes);
2122 BUG_ON(ret);
2125 /* setup orphan block reservation for the snapshot */
2126 block_rsv = btrfs_alloc_block_rsv(snap);
2127 BUG_ON(!block_rsv);
2129 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2130 snap->orphan_block_rsv = block_rsv;
2132 num_bytes = root->orphan_block_rsv->size;
2133 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2134 block_rsv, num_bytes);
2135 BUG_ON(ret);
2137 #if 0
2138 /* insert orphan item for the snapshot */
2139 WARN_ON(!root->orphan_item_inserted);
2140 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2141 snap->root_key.objectid);
2142 BUG_ON(ret);
2143 snap->orphan_item_inserted = 1;
2144 #endif
2147 enum btrfs_orphan_cleanup_state {
2148 ORPHAN_CLEANUP_STARTED = 1,
2149 ORPHAN_CLEANUP_DONE = 2,
2153 * This is called in transaction commmit time. If there are no orphan
2154 * files in the subvolume, it removes orphan item and frees block_rsv
2155 * structure.
2157 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2158 struct btrfs_root *root)
2160 int ret;
2162 if (!list_empty(&root->orphan_list) ||
2163 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2164 return;
2166 if (root->orphan_item_inserted &&
2167 btrfs_root_refs(&root->root_item) > 0) {
2168 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2169 root->root_key.objectid);
2170 BUG_ON(ret);
2171 root->orphan_item_inserted = 0;
2174 if (root->orphan_block_rsv) {
2175 WARN_ON(root->orphan_block_rsv->size > 0);
2176 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2177 root->orphan_block_rsv = NULL;
2182 * This creates an orphan entry for the given inode in case something goes
2183 * wrong in the middle of an unlink/truncate.
2185 * NOTE: caller of this function should reserve 5 units of metadata for
2186 * this function.
2188 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2190 struct btrfs_root *root = BTRFS_I(inode)->root;
2191 struct btrfs_block_rsv *block_rsv = NULL;
2192 int reserve = 0;
2193 int insert = 0;
2194 int ret;
2196 if (!root->orphan_block_rsv) {
2197 block_rsv = btrfs_alloc_block_rsv(root);
2198 BUG_ON(!block_rsv);
2201 spin_lock(&root->orphan_lock);
2202 if (!root->orphan_block_rsv) {
2203 root->orphan_block_rsv = block_rsv;
2204 } else if (block_rsv) {
2205 btrfs_free_block_rsv(root, block_rsv);
2206 block_rsv = NULL;
2209 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2210 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2211 #if 0
2213 * For proper ENOSPC handling, we should do orphan
2214 * cleanup when mounting. But this introduces backward
2215 * compatibility issue.
2217 if (!xchg(&root->orphan_item_inserted, 1))
2218 insert = 2;
2219 else
2220 insert = 1;
2221 #endif
2222 insert = 1;
2225 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2226 BTRFS_I(inode)->orphan_meta_reserved = 1;
2227 reserve = 1;
2229 spin_unlock(&root->orphan_lock);
2231 if (block_rsv)
2232 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2234 /* grab metadata reservation from transaction handle */
2235 if (reserve) {
2236 ret = btrfs_orphan_reserve_metadata(trans, inode);
2237 BUG_ON(ret);
2240 /* insert an orphan item to track this unlinked/truncated file */
2241 if (insert >= 1) {
2242 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2243 BUG_ON(ret);
2246 /* insert an orphan item to track subvolume contains orphan files */
2247 if (insert >= 2) {
2248 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2249 root->root_key.objectid);
2250 BUG_ON(ret);
2252 return 0;
2256 * We have done the truncate/delete so we can go ahead and remove the orphan
2257 * item for this particular inode.
2259 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2261 struct btrfs_root *root = BTRFS_I(inode)->root;
2262 int delete_item = 0;
2263 int release_rsv = 0;
2264 int ret = 0;
2266 spin_lock(&root->orphan_lock);
2267 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2268 list_del_init(&BTRFS_I(inode)->i_orphan);
2269 delete_item = 1;
2272 if (BTRFS_I(inode)->orphan_meta_reserved) {
2273 BTRFS_I(inode)->orphan_meta_reserved = 0;
2274 release_rsv = 1;
2276 spin_unlock(&root->orphan_lock);
2278 if (trans && delete_item) {
2279 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2280 BUG_ON(ret);
2283 if (release_rsv)
2284 btrfs_orphan_release_metadata(inode);
2286 return 0;
2290 * this cleans up any orphans that may be left on the list from the last use
2291 * of this root.
2293 int btrfs_orphan_cleanup(struct btrfs_root *root)
2295 struct btrfs_path *path;
2296 struct extent_buffer *leaf;
2297 struct btrfs_key key, found_key;
2298 struct btrfs_trans_handle *trans;
2299 struct inode *inode;
2300 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2302 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2303 return 0;
2305 path = btrfs_alloc_path();
2306 if (!path) {
2307 ret = -ENOMEM;
2308 goto out;
2310 path->reada = -1;
2312 key.objectid = BTRFS_ORPHAN_OBJECTID;
2313 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2314 key.offset = (u64)-1;
2316 while (1) {
2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318 if (ret < 0)
2319 goto out;
2322 * if ret == 0 means we found what we were searching for, which
2323 * is weird, but possible, so only screw with path if we didnt
2324 * find the key and see if we have stuff that matches
2326 if (ret > 0) {
2327 ret = 0;
2328 if (path->slots[0] == 0)
2329 break;
2330 path->slots[0]--;
2333 /* pull out the item */
2334 leaf = path->nodes[0];
2335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2337 /* make sure the item matches what we want */
2338 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2339 break;
2340 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2341 break;
2343 /* release the path since we're done with it */
2344 btrfs_release_path(root, path);
2347 * this is where we are basically btrfs_lookup, without the
2348 * crossing root thing. we store the inode number in the
2349 * offset of the orphan item.
2351 found_key.objectid = found_key.offset;
2352 found_key.type = BTRFS_INODE_ITEM_KEY;
2353 found_key.offset = 0;
2354 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2355 if (IS_ERR(inode)) {
2356 ret = PTR_ERR(inode);
2357 goto out;
2361 * add this inode to the orphan list so btrfs_orphan_del does
2362 * the proper thing when we hit it
2364 spin_lock(&root->orphan_lock);
2365 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2366 spin_unlock(&root->orphan_lock);
2369 * if this is a bad inode, means we actually succeeded in
2370 * removing the inode, but not the orphan record, which means
2371 * we need to manually delete the orphan since iput will just
2372 * do a destroy_inode
2374 if (is_bad_inode(inode)) {
2375 trans = btrfs_start_transaction(root, 0);
2376 if (IS_ERR(trans)) {
2377 ret = PTR_ERR(trans);
2378 goto out;
2380 btrfs_orphan_del(trans, inode);
2381 btrfs_end_transaction(trans, root);
2382 iput(inode);
2383 continue;
2386 /* if we have links, this was a truncate, lets do that */
2387 if (inode->i_nlink) {
2388 if (!S_ISREG(inode->i_mode)) {
2389 WARN_ON(1);
2390 iput(inode);
2391 continue;
2393 nr_truncate++;
2394 ret = btrfs_truncate(inode);
2395 } else {
2396 nr_unlink++;
2399 /* this will do delete_inode and everything for us */
2400 iput(inode);
2401 if (ret)
2402 goto out;
2404 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2406 if (root->orphan_block_rsv)
2407 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2408 (u64)-1);
2410 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2411 trans = btrfs_join_transaction(root, 1);
2412 if (!IS_ERR(trans))
2413 btrfs_end_transaction(trans, root);
2416 if (nr_unlink)
2417 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2418 if (nr_truncate)
2419 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2421 out:
2422 if (ret)
2423 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2424 btrfs_free_path(path);
2425 return ret;
2429 * very simple check to peek ahead in the leaf looking for xattrs. If we
2430 * don't find any xattrs, we know there can't be any acls.
2432 * slot is the slot the inode is in, objectid is the objectid of the inode
2434 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2435 int slot, u64 objectid)
2437 u32 nritems = btrfs_header_nritems(leaf);
2438 struct btrfs_key found_key;
2439 int scanned = 0;
2441 slot++;
2442 while (slot < nritems) {
2443 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2445 /* we found a different objectid, there must not be acls */
2446 if (found_key.objectid != objectid)
2447 return 0;
2449 /* we found an xattr, assume we've got an acl */
2450 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2451 return 1;
2454 * we found a key greater than an xattr key, there can't
2455 * be any acls later on
2457 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2458 return 0;
2460 slot++;
2461 scanned++;
2464 * it goes inode, inode backrefs, xattrs, extents,
2465 * so if there are a ton of hard links to an inode there can
2466 * be a lot of backrefs. Don't waste time searching too hard,
2467 * this is just an optimization
2469 if (scanned >= 8)
2470 break;
2472 /* we hit the end of the leaf before we found an xattr or
2473 * something larger than an xattr. We have to assume the inode
2474 * has acls
2476 return 1;
2480 * read an inode from the btree into the in-memory inode
2482 static void btrfs_read_locked_inode(struct inode *inode)
2484 struct btrfs_path *path;
2485 struct extent_buffer *leaf;
2486 struct btrfs_inode_item *inode_item;
2487 struct btrfs_timespec *tspec;
2488 struct btrfs_root *root = BTRFS_I(inode)->root;
2489 struct btrfs_key location;
2490 int maybe_acls;
2491 u64 alloc_group_block;
2492 u32 rdev;
2493 int ret;
2495 path = btrfs_alloc_path();
2496 BUG_ON(!path);
2497 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2499 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2500 if (ret)
2501 goto make_bad;
2503 leaf = path->nodes[0];
2504 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2505 struct btrfs_inode_item);
2507 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2508 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2509 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2510 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2511 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2513 tspec = btrfs_inode_atime(inode_item);
2514 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2517 tspec = btrfs_inode_mtime(inode_item);
2518 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2521 tspec = btrfs_inode_ctime(inode_item);
2522 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2525 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2526 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2527 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2528 inode->i_generation = BTRFS_I(inode)->generation;
2529 inode->i_rdev = 0;
2530 rdev = btrfs_inode_rdev(leaf, inode_item);
2532 BTRFS_I(inode)->index_cnt = (u64)-1;
2533 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2535 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2538 * try to precache a NULL acl entry for files that don't have
2539 * any xattrs or acls
2541 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2542 if (!maybe_acls)
2543 cache_no_acl(inode);
2545 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2546 alloc_group_block, 0);
2547 btrfs_free_path(path);
2548 inode_item = NULL;
2550 switch (inode->i_mode & S_IFMT) {
2551 case S_IFREG:
2552 inode->i_mapping->a_ops = &btrfs_aops;
2553 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2554 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2555 inode->i_fop = &btrfs_file_operations;
2556 inode->i_op = &btrfs_file_inode_operations;
2557 break;
2558 case S_IFDIR:
2559 inode->i_fop = &btrfs_dir_file_operations;
2560 if (root == root->fs_info->tree_root)
2561 inode->i_op = &btrfs_dir_ro_inode_operations;
2562 else
2563 inode->i_op = &btrfs_dir_inode_operations;
2564 break;
2565 case S_IFLNK:
2566 inode->i_op = &btrfs_symlink_inode_operations;
2567 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2568 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2569 break;
2570 default:
2571 inode->i_op = &btrfs_special_inode_operations;
2572 init_special_inode(inode, inode->i_mode, rdev);
2573 break;
2576 btrfs_update_iflags(inode);
2577 return;
2579 make_bad:
2580 btrfs_free_path(path);
2581 make_bad_inode(inode);
2585 * given a leaf and an inode, copy the inode fields into the leaf
2587 static void fill_inode_item(struct btrfs_trans_handle *trans,
2588 struct extent_buffer *leaf,
2589 struct btrfs_inode_item *item,
2590 struct inode *inode)
2592 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2593 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2594 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2595 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2596 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2598 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2599 inode->i_atime.tv_sec);
2600 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2601 inode->i_atime.tv_nsec);
2603 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2604 inode->i_mtime.tv_sec);
2605 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2606 inode->i_mtime.tv_nsec);
2608 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2609 inode->i_ctime.tv_sec);
2610 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2611 inode->i_ctime.tv_nsec);
2613 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2614 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2615 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2616 btrfs_set_inode_transid(leaf, item, trans->transid);
2617 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2618 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2619 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2623 * copy everything in the in-memory inode into the btree.
2625 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2626 struct btrfs_root *root, struct inode *inode)
2628 struct btrfs_inode_item *inode_item;
2629 struct btrfs_path *path;
2630 struct extent_buffer *leaf;
2631 int ret;
2633 path = btrfs_alloc_path();
2634 BUG_ON(!path);
2635 path->leave_spinning = 1;
2636 ret = btrfs_lookup_inode(trans, root, path,
2637 &BTRFS_I(inode)->location, 1);
2638 if (ret) {
2639 if (ret > 0)
2640 ret = -ENOENT;
2641 goto failed;
2644 btrfs_unlock_up_safe(path, 1);
2645 leaf = path->nodes[0];
2646 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2647 struct btrfs_inode_item);
2649 fill_inode_item(trans, leaf, inode_item, inode);
2650 btrfs_mark_buffer_dirty(leaf);
2651 btrfs_set_inode_last_trans(trans, inode);
2652 ret = 0;
2653 failed:
2654 btrfs_free_path(path);
2655 return ret;
2660 * unlink helper that gets used here in inode.c and in the tree logging
2661 * recovery code. It remove a link in a directory with a given name, and
2662 * also drops the back refs in the inode to the directory
2664 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2665 struct btrfs_root *root,
2666 struct inode *dir, struct inode *inode,
2667 const char *name, int name_len)
2669 struct btrfs_path *path;
2670 int ret = 0;
2671 struct extent_buffer *leaf;
2672 struct btrfs_dir_item *di;
2673 struct btrfs_key key;
2674 u64 index;
2676 path = btrfs_alloc_path();
2677 if (!path) {
2678 ret = -ENOMEM;
2679 goto out;
2682 path->leave_spinning = 1;
2683 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2684 name, name_len, -1);
2685 if (IS_ERR(di)) {
2686 ret = PTR_ERR(di);
2687 goto err;
2689 if (!di) {
2690 ret = -ENOENT;
2691 goto err;
2693 leaf = path->nodes[0];
2694 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2695 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2696 if (ret)
2697 goto err;
2698 btrfs_release_path(root, path);
2700 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2701 inode->i_ino,
2702 dir->i_ino, &index);
2703 if (ret) {
2704 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2705 "inode %lu parent %lu\n", name_len, name,
2706 inode->i_ino, dir->i_ino);
2707 goto err;
2710 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2711 index, name, name_len, -1);
2712 if (IS_ERR(di)) {
2713 ret = PTR_ERR(di);
2714 goto err;
2716 if (!di) {
2717 ret = -ENOENT;
2718 goto err;
2720 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2721 btrfs_release_path(root, path);
2723 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2724 inode, dir->i_ino);
2725 BUG_ON(ret != 0 && ret != -ENOENT);
2727 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2728 dir, index);
2729 if (ret == -ENOENT)
2730 ret = 0;
2731 err:
2732 btrfs_free_path(path);
2733 if (ret)
2734 goto out;
2736 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2737 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2738 btrfs_update_inode(trans, root, dir);
2739 out:
2740 return ret;
2743 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2744 struct btrfs_root *root,
2745 struct inode *dir, struct inode *inode,
2746 const char *name, int name_len)
2748 int ret;
2749 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2750 if (!ret) {
2751 btrfs_drop_nlink(inode);
2752 ret = btrfs_update_inode(trans, root, inode);
2754 return ret;
2758 /* helper to check if there is any shared block in the path */
2759 static int check_path_shared(struct btrfs_root *root,
2760 struct btrfs_path *path)
2762 struct extent_buffer *eb;
2763 int level;
2764 u64 refs = 1;
2766 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2767 int ret;
2769 if (!path->nodes[level])
2770 break;
2771 eb = path->nodes[level];
2772 if (!btrfs_block_can_be_shared(root, eb))
2773 continue;
2774 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2775 &refs, NULL);
2776 if (refs > 1)
2777 return 1;
2779 return 0;
2783 * helper to start transaction for unlink and rmdir.
2785 * unlink and rmdir are special in btrfs, they do not always free space.
2786 * so in enospc case, we should make sure they will free space before
2787 * allowing them to use the global metadata reservation.
2789 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2790 struct dentry *dentry)
2792 struct btrfs_trans_handle *trans;
2793 struct btrfs_root *root = BTRFS_I(dir)->root;
2794 struct btrfs_path *path;
2795 struct btrfs_inode_ref *ref;
2796 struct btrfs_dir_item *di;
2797 struct inode *inode = dentry->d_inode;
2798 u64 index;
2799 int check_link = 1;
2800 int err = -ENOSPC;
2801 int ret;
2803 trans = btrfs_start_transaction(root, 10);
2804 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2805 return trans;
2807 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2808 return ERR_PTR(-ENOSPC);
2810 /* check if there is someone else holds reference */
2811 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2812 return ERR_PTR(-ENOSPC);
2814 if (atomic_read(&inode->i_count) > 2)
2815 return ERR_PTR(-ENOSPC);
2817 if (xchg(&root->fs_info->enospc_unlink, 1))
2818 return ERR_PTR(-ENOSPC);
2820 path = btrfs_alloc_path();
2821 if (!path) {
2822 root->fs_info->enospc_unlink = 0;
2823 return ERR_PTR(-ENOMEM);
2826 trans = btrfs_start_transaction(root, 0);
2827 if (IS_ERR(trans)) {
2828 btrfs_free_path(path);
2829 root->fs_info->enospc_unlink = 0;
2830 return trans;
2833 path->skip_locking = 1;
2834 path->search_commit_root = 1;
2836 ret = btrfs_lookup_inode(trans, root, path,
2837 &BTRFS_I(dir)->location, 0);
2838 if (ret < 0) {
2839 err = ret;
2840 goto out;
2842 if (ret == 0) {
2843 if (check_path_shared(root, path))
2844 goto out;
2845 } else {
2846 check_link = 0;
2848 btrfs_release_path(root, path);
2850 ret = btrfs_lookup_inode(trans, root, path,
2851 &BTRFS_I(inode)->location, 0);
2852 if (ret < 0) {
2853 err = ret;
2854 goto out;
2856 if (ret == 0) {
2857 if (check_path_shared(root, path))
2858 goto out;
2859 } else {
2860 check_link = 0;
2862 btrfs_release_path(root, path);
2864 if (ret == 0 && S_ISREG(inode->i_mode)) {
2865 ret = btrfs_lookup_file_extent(trans, root, path,
2866 inode->i_ino, (u64)-1, 0);
2867 if (ret < 0) {
2868 err = ret;
2869 goto out;
2871 BUG_ON(ret == 0);
2872 if (check_path_shared(root, path))
2873 goto out;
2874 btrfs_release_path(root, path);
2877 if (!check_link) {
2878 err = 0;
2879 goto out;
2882 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2883 dentry->d_name.name, dentry->d_name.len, 0);
2884 if (IS_ERR(di)) {
2885 err = PTR_ERR(di);
2886 goto out;
2888 if (di) {
2889 if (check_path_shared(root, path))
2890 goto out;
2891 } else {
2892 err = 0;
2893 goto out;
2895 btrfs_release_path(root, path);
2897 ref = btrfs_lookup_inode_ref(trans, root, path,
2898 dentry->d_name.name, dentry->d_name.len,
2899 inode->i_ino, dir->i_ino, 0);
2900 if (IS_ERR(ref)) {
2901 err = PTR_ERR(ref);
2902 goto out;
2904 BUG_ON(!ref);
2905 if (check_path_shared(root, path))
2906 goto out;
2907 index = btrfs_inode_ref_index(path->nodes[0], ref);
2908 btrfs_release_path(root, path);
2910 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2911 dentry->d_name.name, dentry->d_name.len, 0);
2912 if (IS_ERR(di)) {
2913 err = PTR_ERR(di);
2914 goto out;
2916 BUG_ON(ret == -ENOENT);
2917 if (check_path_shared(root, path))
2918 goto out;
2920 err = 0;
2921 out:
2922 btrfs_free_path(path);
2923 if (err) {
2924 btrfs_end_transaction(trans, root);
2925 root->fs_info->enospc_unlink = 0;
2926 return ERR_PTR(err);
2929 trans->block_rsv = &root->fs_info->global_block_rsv;
2930 return trans;
2933 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root)
2936 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2937 BUG_ON(!root->fs_info->enospc_unlink);
2938 root->fs_info->enospc_unlink = 0;
2940 btrfs_end_transaction_throttle(trans, root);
2943 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2945 struct btrfs_root *root = BTRFS_I(dir)->root;
2946 struct btrfs_trans_handle *trans;
2947 struct inode *inode = dentry->d_inode;
2948 int ret;
2949 unsigned long nr = 0;
2951 trans = __unlink_start_trans(dir, dentry);
2952 if (IS_ERR(trans))
2953 return PTR_ERR(trans);
2955 btrfs_set_trans_block_group(trans, dir);
2957 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2959 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2960 dentry->d_name.name, dentry->d_name.len);
2961 BUG_ON(ret);
2963 if (inode->i_nlink == 0) {
2964 ret = btrfs_orphan_add(trans, inode);
2965 BUG_ON(ret);
2968 nr = trans->blocks_used;
2969 __unlink_end_trans(trans, root);
2970 btrfs_btree_balance_dirty(root, nr);
2971 return ret;
2974 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2975 struct btrfs_root *root,
2976 struct inode *dir, u64 objectid,
2977 const char *name, int name_len)
2979 struct btrfs_path *path;
2980 struct extent_buffer *leaf;
2981 struct btrfs_dir_item *di;
2982 struct btrfs_key key;
2983 u64 index;
2984 int ret;
2986 path = btrfs_alloc_path();
2987 if (!path)
2988 return -ENOMEM;
2990 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2991 name, name_len, -1);
2992 BUG_ON(!di || IS_ERR(di));
2994 leaf = path->nodes[0];
2995 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2996 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2997 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2998 BUG_ON(ret);
2999 btrfs_release_path(root, path);
3001 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3002 objectid, root->root_key.objectid,
3003 dir->i_ino, &index, name, name_len);
3004 if (ret < 0) {
3005 BUG_ON(ret != -ENOENT);
3006 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3007 name, name_len);
3008 BUG_ON(!di || IS_ERR(di));
3010 leaf = path->nodes[0];
3011 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3012 btrfs_release_path(root, path);
3013 index = key.offset;
3016 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3017 index, name, name_len, -1);
3018 BUG_ON(!di || IS_ERR(di));
3020 leaf = path->nodes[0];
3021 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3022 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3023 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3024 BUG_ON(ret);
3025 btrfs_release_path(root, path);
3027 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3028 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3029 ret = btrfs_update_inode(trans, root, dir);
3030 BUG_ON(ret);
3032 btrfs_free_path(path);
3033 return 0;
3036 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3038 struct inode *inode = dentry->d_inode;
3039 int err = 0;
3040 struct btrfs_root *root = BTRFS_I(dir)->root;
3041 struct btrfs_trans_handle *trans;
3042 unsigned long nr = 0;
3044 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3045 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3046 return -ENOTEMPTY;
3048 trans = __unlink_start_trans(dir, dentry);
3049 if (IS_ERR(trans))
3050 return PTR_ERR(trans);
3052 btrfs_set_trans_block_group(trans, dir);
3054 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3055 err = btrfs_unlink_subvol(trans, root, dir,
3056 BTRFS_I(inode)->location.objectid,
3057 dentry->d_name.name,
3058 dentry->d_name.len);
3059 goto out;
3062 err = btrfs_orphan_add(trans, inode);
3063 if (err)
3064 goto out;
3066 /* now the directory is empty */
3067 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3068 dentry->d_name.name, dentry->d_name.len);
3069 if (!err)
3070 btrfs_i_size_write(inode, 0);
3071 out:
3072 nr = trans->blocks_used;
3073 __unlink_end_trans(trans, root);
3074 btrfs_btree_balance_dirty(root, nr);
3076 return err;
3079 #if 0
3081 * when truncating bytes in a file, it is possible to avoid reading
3082 * the leaves that contain only checksum items. This can be the
3083 * majority of the IO required to delete a large file, but it must
3084 * be done carefully.
3086 * The keys in the level just above the leaves are checked to make sure
3087 * the lowest key in a given leaf is a csum key, and starts at an offset
3088 * after the new size.
3090 * Then the key for the next leaf is checked to make sure it also has
3091 * a checksum item for the same file. If it does, we know our target leaf
3092 * contains only checksum items, and it can be safely freed without reading
3093 * it.
3095 * This is just an optimization targeted at large files. It may do
3096 * nothing. It will return 0 unless things went badly.
3098 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3099 struct btrfs_root *root,
3100 struct btrfs_path *path,
3101 struct inode *inode, u64 new_size)
3103 struct btrfs_key key;
3104 int ret;
3105 int nritems;
3106 struct btrfs_key found_key;
3107 struct btrfs_key other_key;
3108 struct btrfs_leaf_ref *ref;
3109 u64 leaf_gen;
3110 u64 leaf_start;
3112 path->lowest_level = 1;
3113 key.objectid = inode->i_ino;
3114 key.type = BTRFS_CSUM_ITEM_KEY;
3115 key.offset = new_size;
3116 again:
3117 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3118 if (ret < 0)
3119 goto out;
3121 if (path->nodes[1] == NULL) {
3122 ret = 0;
3123 goto out;
3125 ret = 0;
3126 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3127 nritems = btrfs_header_nritems(path->nodes[1]);
3129 if (!nritems)
3130 goto out;
3132 if (path->slots[1] >= nritems)
3133 goto next_node;
3135 /* did we find a key greater than anything we want to delete? */
3136 if (found_key.objectid > inode->i_ino ||
3137 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3138 goto out;
3140 /* we check the next key in the node to make sure the leave contains
3141 * only checksum items. This comparison doesn't work if our
3142 * leaf is the last one in the node
3144 if (path->slots[1] + 1 >= nritems) {
3145 next_node:
3146 /* search forward from the last key in the node, this
3147 * will bring us into the next node in the tree
3149 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3151 /* unlikely, but we inc below, so check to be safe */
3152 if (found_key.offset == (u64)-1)
3153 goto out;
3155 /* search_forward needs a path with locks held, do the
3156 * search again for the original key. It is possible
3157 * this will race with a balance and return a path that
3158 * we could modify, but this drop is just an optimization
3159 * and is allowed to miss some leaves.
3161 btrfs_release_path(root, path);
3162 found_key.offset++;
3164 /* setup a max key for search_forward */
3165 other_key.offset = (u64)-1;
3166 other_key.type = key.type;
3167 other_key.objectid = key.objectid;
3169 path->keep_locks = 1;
3170 ret = btrfs_search_forward(root, &found_key, &other_key,
3171 path, 0, 0);
3172 path->keep_locks = 0;
3173 if (ret || found_key.objectid != key.objectid ||
3174 found_key.type != key.type) {
3175 ret = 0;
3176 goto out;
3179 key.offset = found_key.offset;
3180 btrfs_release_path(root, path);
3181 cond_resched();
3182 goto again;
3185 /* we know there's one more slot after us in the tree,
3186 * read that key so we can verify it is also a checksum item
3188 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3190 if (found_key.objectid < inode->i_ino)
3191 goto next_key;
3193 if (found_key.type != key.type || found_key.offset < new_size)
3194 goto next_key;
3197 * if the key for the next leaf isn't a csum key from this objectid,
3198 * we can't be sure there aren't good items inside this leaf.
3199 * Bail out
3201 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3202 goto out;
3204 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3205 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3207 * it is safe to delete this leaf, it contains only
3208 * csum items from this inode at an offset >= new_size
3210 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3211 BUG_ON(ret);
3213 if (root->ref_cows && leaf_gen < trans->transid) {
3214 ref = btrfs_alloc_leaf_ref(root, 0);
3215 if (ref) {
3216 ref->root_gen = root->root_key.offset;
3217 ref->bytenr = leaf_start;
3218 ref->owner = 0;
3219 ref->generation = leaf_gen;
3220 ref->nritems = 0;
3222 btrfs_sort_leaf_ref(ref);
3224 ret = btrfs_add_leaf_ref(root, ref, 0);
3225 WARN_ON(ret);
3226 btrfs_free_leaf_ref(root, ref);
3227 } else {
3228 WARN_ON(1);
3231 next_key:
3232 btrfs_release_path(root, path);
3234 if (other_key.objectid == inode->i_ino &&
3235 other_key.type == key.type && other_key.offset > key.offset) {
3236 key.offset = other_key.offset;
3237 cond_resched();
3238 goto again;
3240 ret = 0;
3241 out:
3242 /* fixup any changes we've made to the path */
3243 path->lowest_level = 0;
3244 path->keep_locks = 0;
3245 btrfs_release_path(root, path);
3246 return ret;
3249 #endif
3252 * this can truncate away extent items, csum items and directory items.
3253 * It starts at a high offset and removes keys until it can't find
3254 * any higher than new_size
3256 * csum items that cross the new i_size are truncated to the new size
3257 * as well.
3259 * min_type is the minimum key type to truncate down to. If set to 0, this
3260 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3262 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3263 struct btrfs_root *root,
3264 struct inode *inode,
3265 u64 new_size, u32 min_type)
3267 struct btrfs_path *path;
3268 struct extent_buffer *leaf;
3269 struct btrfs_file_extent_item *fi;
3270 struct btrfs_key key;
3271 struct btrfs_key found_key;
3272 u64 extent_start = 0;
3273 u64 extent_num_bytes = 0;
3274 u64 extent_offset = 0;
3275 u64 item_end = 0;
3276 u64 mask = root->sectorsize - 1;
3277 u32 found_type = (u8)-1;
3278 int found_extent;
3279 int del_item;
3280 int pending_del_nr = 0;
3281 int pending_del_slot = 0;
3282 int extent_type = -1;
3283 int encoding;
3284 int ret;
3285 int err = 0;
3287 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3289 if (root->ref_cows || root == root->fs_info->tree_root)
3290 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3292 path = btrfs_alloc_path();
3293 BUG_ON(!path);
3294 path->reada = -1;
3296 key.objectid = inode->i_ino;
3297 key.offset = (u64)-1;
3298 key.type = (u8)-1;
3300 search_again:
3301 path->leave_spinning = 1;
3302 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3303 if (ret < 0) {
3304 err = ret;
3305 goto out;
3308 if (ret > 0) {
3309 /* there are no items in the tree for us to truncate, we're
3310 * done
3312 if (path->slots[0] == 0)
3313 goto out;
3314 path->slots[0]--;
3317 while (1) {
3318 fi = NULL;
3319 leaf = path->nodes[0];
3320 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3321 found_type = btrfs_key_type(&found_key);
3322 encoding = 0;
3324 if (found_key.objectid != inode->i_ino)
3325 break;
3327 if (found_type < min_type)
3328 break;
3330 item_end = found_key.offset;
3331 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3332 fi = btrfs_item_ptr(leaf, path->slots[0],
3333 struct btrfs_file_extent_item);
3334 extent_type = btrfs_file_extent_type(leaf, fi);
3335 encoding = btrfs_file_extent_compression(leaf, fi);
3336 encoding |= btrfs_file_extent_encryption(leaf, fi);
3337 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3339 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3340 item_end +=
3341 btrfs_file_extent_num_bytes(leaf, fi);
3342 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3343 item_end += btrfs_file_extent_inline_len(leaf,
3344 fi);
3346 item_end--;
3348 if (found_type > min_type) {
3349 del_item = 1;
3350 } else {
3351 if (item_end < new_size)
3352 break;
3353 if (found_key.offset >= new_size)
3354 del_item = 1;
3355 else
3356 del_item = 0;
3358 found_extent = 0;
3359 /* FIXME, shrink the extent if the ref count is only 1 */
3360 if (found_type != BTRFS_EXTENT_DATA_KEY)
3361 goto delete;
3363 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3364 u64 num_dec;
3365 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3366 if (!del_item && !encoding) {
3367 u64 orig_num_bytes =
3368 btrfs_file_extent_num_bytes(leaf, fi);
3369 extent_num_bytes = new_size -
3370 found_key.offset + root->sectorsize - 1;
3371 extent_num_bytes = extent_num_bytes &
3372 ~((u64)root->sectorsize - 1);
3373 btrfs_set_file_extent_num_bytes(leaf, fi,
3374 extent_num_bytes);
3375 num_dec = (orig_num_bytes -
3376 extent_num_bytes);
3377 if (root->ref_cows && extent_start != 0)
3378 inode_sub_bytes(inode, num_dec);
3379 btrfs_mark_buffer_dirty(leaf);
3380 } else {
3381 extent_num_bytes =
3382 btrfs_file_extent_disk_num_bytes(leaf,
3383 fi);
3384 extent_offset = found_key.offset -
3385 btrfs_file_extent_offset(leaf, fi);
3387 /* FIXME blocksize != 4096 */
3388 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3389 if (extent_start != 0) {
3390 found_extent = 1;
3391 if (root->ref_cows)
3392 inode_sub_bytes(inode, num_dec);
3395 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3397 * we can't truncate inline items that have had
3398 * special encodings
3400 if (!del_item &&
3401 btrfs_file_extent_compression(leaf, fi) == 0 &&
3402 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3403 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3404 u32 size = new_size - found_key.offset;
3406 if (root->ref_cows) {
3407 inode_sub_bytes(inode, item_end + 1 -
3408 new_size);
3410 size =
3411 btrfs_file_extent_calc_inline_size(size);
3412 ret = btrfs_truncate_item(trans, root, path,
3413 size, 1);
3414 BUG_ON(ret);
3415 } else if (root->ref_cows) {
3416 inode_sub_bytes(inode, item_end + 1 -
3417 found_key.offset);
3420 delete:
3421 if (del_item) {
3422 if (!pending_del_nr) {
3423 /* no pending yet, add ourselves */
3424 pending_del_slot = path->slots[0];
3425 pending_del_nr = 1;
3426 } else if (pending_del_nr &&
3427 path->slots[0] + 1 == pending_del_slot) {
3428 /* hop on the pending chunk */
3429 pending_del_nr++;
3430 pending_del_slot = path->slots[0];
3431 } else {
3432 BUG();
3434 } else {
3435 break;
3437 if (found_extent && (root->ref_cows ||
3438 root == root->fs_info->tree_root)) {
3439 btrfs_set_path_blocking(path);
3440 ret = btrfs_free_extent(trans, root, extent_start,
3441 extent_num_bytes, 0,
3442 btrfs_header_owner(leaf),
3443 inode->i_ino, extent_offset);
3444 BUG_ON(ret);
3447 if (found_type == BTRFS_INODE_ITEM_KEY)
3448 break;
3450 if (path->slots[0] == 0 ||
3451 path->slots[0] != pending_del_slot) {
3452 if (root->ref_cows) {
3453 err = -EAGAIN;
3454 goto out;
3456 if (pending_del_nr) {
3457 ret = btrfs_del_items(trans, root, path,
3458 pending_del_slot,
3459 pending_del_nr);
3460 BUG_ON(ret);
3461 pending_del_nr = 0;
3463 btrfs_release_path(root, path);
3464 goto search_again;
3465 } else {
3466 path->slots[0]--;
3469 out:
3470 if (pending_del_nr) {
3471 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3472 pending_del_nr);
3473 BUG_ON(ret);
3475 btrfs_free_path(path);
3476 return err;
3480 * taken from block_truncate_page, but does cow as it zeros out
3481 * any bytes left in the last page in the file.
3483 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3485 struct inode *inode = mapping->host;
3486 struct btrfs_root *root = BTRFS_I(inode)->root;
3487 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3488 struct btrfs_ordered_extent *ordered;
3489 struct extent_state *cached_state = NULL;
3490 char *kaddr;
3491 u32 blocksize = root->sectorsize;
3492 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3493 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3494 struct page *page;
3495 int ret = 0;
3496 u64 page_start;
3497 u64 page_end;
3499 if ((offset & (blocksize - 1)) == 0)
3500 goto out;
3501 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3502 if (ret)
3503 goto out;
3505 ret = -ENOMEM;
3506 again:
3507 page = grab_cache_page(mapping, index);
3508 if (!page) {
3509 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3510 goto out;
3513 page_start = page_offset(page);
3514 page_end = page_start + PAGE_CACHE_SIZE - 1;
3516 if (!PageUptodate(page)) {
3517 ret = btrfs_readpage(NULL, page);
3518 lock_page(page);
3519 if (page->mapping != mapping) {
3520 unlock_page(page);
3521 page_cache_release(page);
3522 goto again;
3524 if (!PageUptodate(page)) {
3525 ret = -EIO;
3526 goto out_unlock;
3529 wait_on_page_writeback(page);
3531 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3532 GFP_NOFS);
3533 set_page_extent_mapped(page);
3535 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3536 if (ordered) {
3537 unlock_extent_cached(io_tree, page_start, page_end,
3538 &cached_state, GFP_NOFS);
3539 unlock_page(page);
3540 page_cache_release(page);
3541 btrfs_start_ordered_extent(inode, ordered, 1);
3542 btrfs_put_ordered_extent(ordered);
3543 goto again;
3546 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3547 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3548 0, 0, &cached_state, GFP_NOFS);
3550 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3551 &cached_state);
3552 if (ret) {
3553 unlock_extent_cached(io_tree, page_start, page_end,
3554 &cached_state, GFP_NOFS);
3555 goto out_unlock;
3558 ret = 0;
3559 if (offset != PAGE_CACHE_SIZE) {
3560 kaddr = kmap(page);
3561 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3562 flush_dcache_page(page);
3563 kunmap(page);
3565 ClearPageChecked(page);
3566 set_page_dirty(page);
3567 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3568 GFP_NOFS);
3570 out_unlock:
3571 if (ret)
3572 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3573 unlock_page(page);
3574 page_cache_release(page);
3575 out:
3576 return ret;
3580 * This function puts in dummy file extents for the area we're creating a hole
3581 * for. So if we are truncating this file to a larger size we need to insert
3582 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3583 * the range between oldsize and size
3585 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3587 struct btrfs_trans_handle *trans;
3588 struct btrfs_root *root = BTRFS_I(inode)->root;
3589 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3590 struct extent_map *em = NULL;
3591 struct extent_state *cached_state = NULL;
3592 u64 mask = root->sectorsize - 1;
3593 u64 hole_start = (oldsize + mask) & ~mask;
3594 u64 block_end = (size + mask) & ~mask;
3595 u64 last_byte;
3596 u64 cur_offset;
3597 u64 hole_size;
3598 int err = 0;
3600 if (size <= hole_start)
3601 return 0;
3603 while (1) {
3604 struct btrfs_ordered_extent *ordered;
3605 btrfs_wait_ordered_range(inode, hole_start,
3606 block_end - hole_start);
3607 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3608 &cached_state, GFP_NOFS);
3609 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3610 if (!ordered)
3611 break;
3612 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3613 &cached_state, GFP_NOFS);
3614 btrfs_put_ordered_extent(ordered);
3617 cur_offset = hole_start;
3618 while (1) {
3619 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3620 block_end - cur_offset, 0);
3621 BUG_ON(IS_ERR(em) || !em);
3622 last_byte = min(extent_map_end(em), block_end);
3623 last_byte = (last_byte + mask) & ~mask;
3624 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3625 u64 hint_byte = 0;
3626 hole_size = last_byte - cur_offset;
3628 trans = btrfs_start_transaction(root, 2);
3629 if (IS_ERR(trans)) {
3630 err = PTR_ERR(trans);
3631 break;
3633 btrfs_set_trans_block_group(trans, inode);
3635 err = btrfs_drop_extents(trans, inode, cur_offset,
3636 cur_offset + hole_size,
3637 &hint_byte, 1);
3638 if (err)
3639 break;
3641 err = btrfs_insert_file_extent(trans, root,
3642 inode->i_ino, cur_offset, 0,
3643 0, hole_size, 0, hole_size,
3644 0, 0, 0);
3645 if (err)
3646 break;
3648 btrfs_drop_extent_cache(inode, hole_start,
3649 last_byte - 1, 0);
3651 btrfs_end_transaction(trans, root);
3653 free_extent_map(em);
3654 em = NULL;
3655 cur_offset = last_byte;
3656 if (cur_offset >= block_end)
3657 break;
3660 free_extent_map(em);
3661 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3662 GFP_NOFS);
3663 return err;
3666 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3668 loff_t oldsize = i_size_read(inode);
3669 int ret;
3671 if (newsize == oldsize)
3672 return 0;
3674 if (newsize > oldsize) {
3675 i_size_write(inode, newsize);
3676 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3677 truncate_pagecache(inode, oldsize, newsize);
3678 ret = btrfs_cont_expand(inode, oldsize, newsize);
3679 if (ret) {
3680 btrfs_setsize(inode, oldsize);
3681 return ret;
3684 mark_inode_dirty(inode);
3685 } else {
3688 * We're truncating a file that used to have good data down to
3689 * zero. Make sure it gets into the ordered flush list so that
3690 * any new writes get down to disk quickly.
3692 if (newsize == 0)
3693 BTRFS_I(inode)->ordered_data_close = 1;
3695 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3696 truncate_setsize(inode, newsize);
3697 ret = btrfs_truncate(inode);
3700 return ret;
3703 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3705 struct inode *inode = dentry->d_inode;
3706 struct btrfs_root *root = BTRFS_I(inode)->root;
3707 int err;
3709 if (btrfs_root_readonly(root))
3710 return -EROFS;
3712 err = inode_change_ok(inode, attr);
3713 if (err)
3714 return err;
3716 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3717 err = btrfs_setsize(inode, attr->ia_size);
3718 if (err)
3719 return err;
3722 if (attr->ia_valid) {
3723 setattr_copy(inode, attr);
3724 mark_inode_dirty(inode);
3726 if (attr->ia_valid & ATTR_MODE)
3727 err = btrfs_acl_chmod(inode);
3730 return err;
3733 void btrfs_evict_inode(struct inode *inode)
3735 struct btrfs_trans_handle *trans;
3736 struct btrfs_root *root = BTRFS_I(inode)->root;
3737 unsigned long nr;
3738 int ret;
3740 trace_btrfs_inode_evict(inode);
3742 truncate_inode_pages(&inode->i_data, 0);
3743 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3744 root == root->fs_info->tree_root))
3745 goto no_delete;
3747 if (is_bad_inode(inode)) {
3748 btrfs_orphan_del(NULL, inode);
3749 goto no_delete;
3751 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3752 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3754 if (root->fs_info->log_root_recovering) {
3755 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3756 goto no_delete;
3759 if (inode->i_nlink > 0) {
3760 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3761 goto no_delete;
3764 btrfs_i_size_write(inode, 0);
3766 while (1) {
3767 trans = btrfs_start_transaction(root, 0);
3768 BUG_ON(IS_ERR(trans));
3769 btrfs_set_trans_block_group(trans, inode);
3770 trans->block_rsv = root->orphan_block_rsv;
3772 ret = btrfs_block_rsv_check(trans, root,
3773 root->orphan_block_rsv, 0, 5);
3774 if (ret) {
3775 BUG_ON(ret != -EAGAIN);
3776 ret = btrfs_commit_transaction(trans, root);
3777 BUG_ON(ret);
3778 continue;
3781 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3782 if (ret != -EAGAIN)
3783 break;
3785 nr = trans->blocks_used;
3786 btrfs_end_transaction(trans, root);
3787 trans = NULL;
3788 btrfs_btree_balance_dirty(root, nr);
3792 if (ret == 0) {
3793 ret = btrfs_orphan_del(trans, inode);
3794 BUG_ON(ret);
3797 nr = trans->blocks_used;
3798 btrfs_end_transaction(trans, root);
3799 btrfs_btree_balance_dirty(root, nr);
3800 no_delete:
3801 end_writeback(inode);
3802 return;
3806 * this returns the key found in the dir entry in the location pointer.
3807 * If no dir entries were found, location->objectid is 0.
3809 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3810 struct btrfs_key *location)
3812 const char *name = dentry->d_name.name;
3813 int namelen = dentry->d_name.len;
3814 struct btrfs_dir_item *di;
3815 struct btrfs_path *path;
3816 struct btrfs_root *root = BTRFS_I(dir)->root;
3817 int ret = 0;
3819 path = btrfs_alloc_path();
3820 BUG_ON(!path);
3822 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3823 namelen, 0);
3824 if (IS_ERR(di))
3825 ret = PTR_ERR(di);
3827 if (!di || IS_ERR(di))
3828 goto out_err;
3830 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3831 out:
3832 btrfs_free_path(path);
3833 return ret;
3834 out_err:
3835 location->objectid = 0;
3836 goto out;
3840 * when we hit a tree root in a directory, the btrfs part of the inode
3841 * needs to be changed to reflect the root directory of the tree root. This
3842 * is kind of like crossing a mount point.
3844 static int fixup_tree_root_location(struct btrfs_root *root,
3845 struct inode *dir,
3846 struct dentry *dentry,
3847 struct btrfs_key *location,
3848 struct btrfs_root **sub_root)
3850 struct btrfs_path *path;
3851 struct btrfs_root *new_root;
3852 struct btrfs_root_ref *ref;
3853 struct extent_buffer *leaf;
3854 int ret;
3855 int err = 0;
3857 path = btrfs_alloc_path();
3858 if (!path) {
3859 err = -ENOMEM;
3860 goto out;
3863 err = -ENOENT;
3864 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3865 BTRFS_I(dir)->root->root_key.objectid,
3866 location->objectid);
3867 if (ret) {
3868 if (ret < 0)
3869 err = ret;
3870 goto out;
3873 leaf = path->nodes[0];
3874 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3875 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3876 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3877 goto out;
3879 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3880 (unsigned long)(ref + 1),
3881 dentry->d_name.len);
3882 if (ret)
3883 goto out;
3885 btrfs_release_path(root->fs_info->tree_root, path);
3887 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3888 if (IS_ERR(new_root)) {
3889 err = PTR_ERR(new_root);
3890 goto out;
3893 if (btrfs_root_refs(&new_root->root_item) == 0) {
3894 err = -ENOENT;
3895 goto out;
3898 *sub_root = new_root;
3899 location->objectid = btrfs_root_dirid(&new_root->root_item);
3900 location->type = BTRFS_INODE_ITEM_KEY;
3901 location->offset = 0;
3902 err = 0;
3903 out:
3904 btrfs_free_path(path);
3905 return err;
3908 static void inode_tree_add(struct inode *inode)
3910 struct btrfs_root *root = BTRFS_I(inode)->root;
3911 struct btrfs_inode *entry;
3912 struct rb_node **p;
3913 struct rb_node *parent;
3914 again:
3915 p = &root->inode_tree.rb_node;
3916 parent = NULL;
3918 if (inode_unhashed(inode))
3919 return;
3921 spin_lock(&root->inode_lock);
3922 while (*p) {
3923 parent = *p;
3924 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3926 if (inode->i_ino < entry->vfs_inode.i_ino)
3927 p = &parent->rb_left;
3928 else if (inode->i_ino > entry->vfs_inode.i_ino)
3929 p = &parent->rb_right;
3930 else {
3931 WARN_ON(!(entry->vfs_inode.i_state &
3932 (I_WILL_FREE | I_FREEING)));
3933 rb_erase(parent, &root->inode_tree);
3934 RB_CLEAR_NODE(parent);
3935 spin_unlock(&root->inode_lock);
3936 goto again;
3939 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3940 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3941 spin_unlock(&root->inode_lock);
3944 static void inode_tree_del(struct inode *inode)
3946 struct btrfs_root *root = BTRFS_I(inode)->root;
3947 int empty = 0;
3949 spin_lock(&root->inode_lock);
3950 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3951 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3952 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3953 empty = RB_EMPTY_ROOT(&root->inode_tree);
3955 spin_unlock(&root->inode_lock);
3958 * Free space cache has inodes in the tree root, but the tree root has a
3959 * root_refs of 0, so this could end up dropping the tree root as a
3960 * snapshot, so we need the extra !root->fs_info->tree_root check to
3961 * make sure we don't drop it.
3963 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3964 root != root->fs_info->tree_root) {
3965 synchronize_srcu(&root->fs_info->subvol_srcu);
3966 spin_lock(&root->inode_lock);
3967 empty = RB_EMPTY_ROOT(&root->inode_tree);
3968 spin_unlock(&root->inode_lock);
3969 if (empty)
3970 btrfs_add_dead_root(root);
3974 int btrfs_invalidate_inodes(struct btrfs_root *root)
3976 struct rb_node *node;
3977 struct rb_node *prev;
3978 struct btrfs_inode *entry;
3979 struct inode *inode;
3980 u64 objectid = 0;
3982 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3984 spin_lock(&root->inode_lock);
3985 again:
3986 node = root->inode_tree.rb_node;
3987 prev = NULL;
3988 while (node) {
3989 prev = node;
3990 entry = rb_entry(node, struct btrfs_inode, rb_node);
3992 if (objectid < entry->vfs_inode.i_ino)
3993 node = node->rb_left;
3994 else if (objectid > entry->vfs_inode.i_ino)
3995 node = node->rb_right;
3996 else
3997 break;
3999 if (!node) {
4000 while (prev) {
4001 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4002 if (objectid <= entry->vfs_inode.i_ino) {
4003 node = prev;
4004 break;
4006 prev = rb_next(prev);
4009 while (node) {
4010 entry = rb_entry(node, struct btrfs_inode, rb_node);
4011 objectid = entry->vfs_inode.i_ino + 1;
4012 inode = igrab(&entry->vfs_inode);
4013 if (inode) {
4014 spin_unlock(&root->inode_lock);
4015 if (atomic_read(&inode->i_count) > 1)
4016 d_prune_aliases(inode);
4018 * btrfs_drop_inode will have it removed from
4019 * the inode cache when its usage count
4020 * hits zero.
4022 iput(inode);
4023 cond_resched();
4024 spin_lock(&root->inode_lock);
4025 goto again;
4028 if (cond_resched_lock(&root->inode_lock))
4029 goto again;
4031 node = rb_next(node);
4033 spin_unlock(&root->inode_lock);
4034 return 0;
4037 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4039 struct btrfs_iget_args *args = p;
4040 inode->i_ino = args->ino;
4041 BTRFS_I(inode)->root = args->root;
4042 btrfs_set_inode_space_info(args->root, inode);
4043 return 0;
4046 static int btrfs_find_actor(struct inode *inode, void *opaque)
4048 struct btrfs_iget_args *args = opaque;
4049 return args->ino == inode->i_ino &&
4050 args->root == BTRFS_I(inode)->root;
4053 static struct inode *btrfs_iget_locked(struct super_block *s,
4054 u64 objectid,
4055 struct btrfs_root *root)
4057 struct inode *inode;
4058 struct btrfs_iget_args args;
4059 args.ino = objectid;
4060 args.root = root;
4062 inode = iget5_locked(s, objectid, btrfs_find_actor,
4063 btrfs_init_locked_inode,
4064 (void *)&args);
4065 return inode;
4068 /* Get an inode object given its location and corresponding root.
4069 * Returns in *is_new if the inode was read from disk
4071 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4072 struct btrfs_root *root, int *new)
4074 struct inode *inode;
4076 inode = btrfs_iget_locked(s, location->objectid, root);
4077 if (!inode)
4078 return ERR_PTR(-ENOMEM);
4080 if (inode->i_state & I_NEW) {
4081 BTRFS_I(inode)->root = root;
4082 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4083 btrfs_read_locked_inode(inode);
4084 inode_tree_add(inode);
4085 unlock_new_inode(inode);
4086 if (new)
4087 *new = 1;
4090 return inode;
4093 static struct inode *new_simple_dir(struct super_block *s,
4094 struct btrfs_key *key,
4095 struct btrfs_root *root)
4097 struct inode *inode = new_inode(s);
4099 if (!inode)
4100 return ERR_PTR(-ENOMEM);
4102 BTRFS_I(inode)->root = root;
4103 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4104 BTRFS_I(inode)->dummy_inode = 1;
4106 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4107 inode->i_op = &simple_dir_inode_operations;
4108 inode->i_fop = &simple_dir_operations;
4109 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4110 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4112 return inode;
4115 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4117 struct inode *inode;
4118 struct btrfs_root *root = BTRFS_I(dir)->root;
4119 struct btrfs_root *sub_root = root;
4120 struct btrfs_key location;
4121 int index;
4122 int ret;
4124 if (dentry->d_name.len > BTRFS_NAME_LEN)
4125 return ERR_PTR(-ENAMETOOLONG);
4127 ret = btrfs_inode_by_name(dir, dentry, &location);
4129 if (ret < 0)
4130 return ERR_PTR(ret);
4132 if (location.objectid == 0)
4133 return NULL;
4135 if (location.type == BTRFS_INODE_ITEM_KEY) {
4136 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4137 return inode;
4140 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4142 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4143 ret = fixup_tree_root_location(root, dir, dentry,
4144 &location, &sub_root);
4145 if (ret < 0) {
4146 if (ret != -ENOENT)
4147 inode = ERR_PTR(ret);
4148 else
4149 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4150 } else {
4151 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4153 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4155 if (!IS_ERR(inode) && root != sub_root) {
4156 down_read(&root->fs_info->cleanup_work_sem);
4157 if (!(inode->i_sb->s_flags & MS_RDONLY))
4158 ret = btrfs_orphan_cleanup(sub_root);
4159 up_read(&root->fs_info->cleanup_work_sem);
4160 if (ret)
4161 inode = ERR_PTR(ret);
4164 return inode;
4167 static int btrfs_dentry_delete(const struct dentry *dentry)
4169 struct btrfs_root *root;
4171 if (!dentry->d_inode && !IS_ROOT(dentry))
4172 dentry = dentry->d_parent;
4174 if (dentry->d_inode) {
4175 root = BTRFS_I(dentry->d_inode)->root;
4176 if (btrfs_root_refs(&root->root_item) == 0)
4177 return 1;
4179 return 0;
4182 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4183 struct nameidata *nd)
4185 struct inode *inode;
4187 inode = btrfs_lookup_dentry(dir, dentry);
4188 if (IS_ERR(inode))
4189 return ERR_CAST(inode);
4191 return d_splice_alias(inode, dentry);
4194 static unsigned char btrfs_filetype_table[] = {
4195 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4198 static int btrfs_real_readdir(struct file *filp, void *dirent,
4199 filldir_t filldir)
4201 struct inode *inode = filp->f_dentry->d_inode;
4202 struct btrfs_root *root = BTRFS_I(inode)->root;
4203 struct btrfs_item *item;
4204 struct btrfs_dir_item *di;
4205 struct btrfs_key key;
4206 struct btrfs_key found_key;
4207 struct btrfs_path *path;
4208 int ret;
4209 u32 nritems;
4210 struct extent_buffer *leaf;
4211 int slot;
4212 int advance;
4213 unsigned char d_type;
4214 int over = 0;
4215 u32 di_cur;
4216 u32 di_total;
4217 u32 di_len;
4218 int key_type = BTRFS_DIR_INDEX_KEY;
4219 char tmp_name[32];
4220 char *name_ptr;
4221 int name_len;
4223 /* FIXME, use a real flag for deciding about the key type */
4224 if (root->fs_info->tree_root == root)
4225 key_type = BTRFS_DIR_ITEM_KEY;
4227 /* special case for "." */
4228 if (filp->f_pos == 0) {
4229 over = filldir(dirent, ".", 1,
4230 1, inode->i_ino,
4231 DT_DIR);
4232 if (over)
4233 return 0;
4234 filp->f_pos = 1;
4236 /* special case for .., just use the back ref */
4237 if (filp->f_pos == 1) {
4238 u64 pino = parent_ino(filp->f_path.dentry);
4239 over = filldir(dirent, "..", 2,
4240 2, pino, DT_DIR);
4241 if (over)
4242 return 0;
4243 filp->f_pos = 2;
4245 path = btrfs_alloc_path();
4246 path->reada = 2;
4248 btrfs_set_key_type(&key, key_type);
4249 key.offset = filp->f_pos;
4250 key.objectid = inode->i_ino;
4252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4253 if (ret < 0)
4254 goto err;
4255 advance = 0;
4257 while (1) {
4258 leaf = path->nodes[0];
4259 nritems = btrfs_header_nritems(leaf);
4260 slot = path->slots[0];
4261 if (advance || slot >= nritems) {
4262 if (slot >= nritems - 1) {
4263 ret = btrfs_next_leaf(root, path);
4264 if (ret)
4265 break;
4266 leaf = path->nodes[0];
4267 nritems = btrfs_header_nritems(leaf);
4268 slot = path->slots[0];
4269 } else {
4270 slot++;
4271 path->slots[0]++;
4275 advance = 1;
4276 item = btrfs_item_nr(leaf, slot);
4277 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4279 if (found_key.objectid != key.objectid)
4280 break;
4281 if (btrfs_key_type(&found_key) != key_type)
4282 break;
4283 if (found_key.offset < filp->f_pos)
4284 continue;
4286 filp->f_pos = found_key.offset;
4288 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4289 di_cur = 0;
4290 di_total = btrfs_item_size(leaf, item);
4292 while (di_cur < di_total) {
4293 struct btrfs_key location;
4295 if (verify_dir_item(root, leaf, di))
4296 break;
4298 name_len = btrfs_dir_name_len(leaf, di);
4299 if (name_len <= sizeof(tmp_name)) {
4300 name_ptr = tmp_name;
4301 } else {
4302 name_ptr = kmalloc(name_len, GFP_NOFS);
4303 if (!name_ptr) {
4304 ret = -ENOMEM;
4305 goto err;
4308 read_extent_buffer(leaf, name_ptr,
4309 (unsigned long)(di + 1), name_len);
4311 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4312 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4314 /* is this a reference to our own snapshot? If so
4315 * skip it
4317 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4318 location.objectid == root->root_key.objectid) {
4319 over = 0;
4320 goto skip;
4322 over = filldir(dirent, name_ptr, name_len,
4323 found_key.offset, location.objectid,
4324 d_type);
4326 skip:
4327 if (name_ptr != tmp_name)
4328 kfree(name_ptr);
4330 if (over)
4331 goto nopos;
4332 di_len = btrfs_dir_name_len(leaf, di) +
4333 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4334 di_cur += di_len;
4335 di = (struct btrfs_dir_item *)((char *)di + di_len);
4339 /* Reached end of directory/root. Bump pos past the last item. */
4340 if (key_type == BTRFS_DIR_INDEX_KEY)
4342 * 32-bit glibc will use getdents64, but then strtol -
4343 * so the last number we can serve is this.
4345 filp->f_pos = 0x7fffffff;
4346 else
4347 filp->f_pos++;
4348 nopos:
4349 ret = 0;
4350 err:
4351 btrfs_free_path(path);
4352 return ret;
4355 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4357 struct btrfs_root *root = BTRFS_I(inode)->root;
4358 struct btrfs_trans_handle *trans;
4359 int ret = 0;
4360 bool nolock = false;
4362 if (BTRFS_I(inode)->dummy_inode)
4363 return 0;
4365 smp_mb();
4366 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4368 if (wbc->sync_mode == WB_SYNC_ALL) {
4369 if (nolock)
4370 trans = btrfs_join_transaction_nolock(root, 1);
4371 else
4372 trans = btrfs_join_transaction(root, 1);
4373 if (IS_ERR(trans))
4374 return PTR_ERR(trans);
4375 btrfs_set_trans_block_group(trans, inode);
4376 if (nolock)
4377 ret = btrfs_end_transaction_nolock(trans, root);
4378 else
4379 ret = btrfs_commit_transaction(trans, root);
4381 return ret;
4385 * This is somewhat expensive, updating the tree every time the
4386 * inode changes. But, it is most likely to find the inode in cache.
4387 * FIXME, needs more benchmarking...there are no reasons other than performance
4388 * to keep or drop this code.
4390 void btrfs_dirty_inode(struct inode *inode)
4392 struct btrfs_root *root = BTRFS_I(inode)->root;
4393 struct btrfs_trans_handle *trans;
4394 int ret;
4396 if (BTRFS_I(inode)->dummy_inode)
4397 return;
4399 trans = btrfs_join_transaction(root, 1);
4400 BUG_ON(IS_ERR(trans));
4401 btrfs_set_trans_block_group(trans, inode);
4403 ret = btrfs_update_inode(trans, root, inode);
4404 if (ret && ret == -ENOSPC) {
4405 /* whoops, lets try again with the full transaction */
4406 btrfs_end_transaction(trans, root);
4407 trans = btrfs_start_transaction(root, 1);
4408 if (IS_ERR(trans)) {
4409 if (printk_ratelimit()) {
4410 printk(KERN_ERR "btrfs: fail to "
4411 "dirty inode %lu error %ld\n",
4412 inode->i_ino, PTR_ERR(trans));
4414 return;
4416 btrfs_set_trans_block_group(trans, inode);
4418 ret = btrfs_update_inode(trans, root, inode);
4419 if (ret) {
4420 if (printk_ratelimit()) {
4421 printk(KERN_ERR "btrfs: fail to "
4422 "dirty inode %lu error %d\n",
4423 inode->i_ino, ret);
4427 btrfs_end_transaction(trans, root);
4431 * find the highest existing sequence number in a directory
4432 * and then set the in-memory index_cnt variable to reflect
4433 * free sequence numbers
4435 static int btrfs_set_inode_index_count(struct inode *inode)
4437 struct btrfs_root *root = BTRFS_I(inode)->root;
4438 struct btrfs_key key, found_key;
4439 struct btrfs_path *path;
4440 struct extent_buffer *leaf;
4441 int ret;
4443 key.objectid = inode->i_ino;
4444 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4445 key.offset = (u64)-1;
4447 path = btrfs_alloc_path();
4448 if (!path)
4449 return -ENOMEM;
4451 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4452 if (ret < 0)
4453 goto out;
4454 /* FIXME: we should be able to handle this */
4455 if (ret == 0)
4456 goto out;
4457 ret = 0;
4460 * MAGIC NUMBER EXPLANATION:
4461 * since we search a directory based on f_pos we have to start at 2
4462 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4463 * else has to start at 2
4465 if (path->slots[0] == 0) {
4466 BTRFS_I(inode)->index_cnt = 2;
4467 goto out;
4470 path->slots[0]--;
4472 leaf = path->nodes[0];
4473 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4475 if (found_key.objectid != inode->i_ino ||
4476 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4477 BTRFS_I(inode)->index_cnt = 2;
4478 goto out;
4481 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4482 out:
4483 btrfs_free_path(path);
4484 return ret;
4488 * helper to find a free sequence number in a given directory. This current
4489 * code is very simple, later versions will do smarter things in the btree
4491 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4493 int ret = 0;
4495 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4496 ret = btrfs_set_inode_index_count(dir);
4497 if (ret)
4498 return ret;
4501 *index = BTRFS_I(dir)->index_cnt;
4502 BTRFS_I(dir)->index_cnt++;
4504 return ret;
4507 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4508 struct btrfs_root *root,
4509 struct inode *dir,
4510 const char *name, int name_len,
4511 u64 ref_objectid, u64 objectid,
4512 u64 alloc_hint, int mode, u64 *index)
4514 struct inode *inode;
4515 struct btrfs_inode_item *inode_item;
4516 struct btrfs_key *location;
4517 struct btrfs_path *path;
4518 struct btrfs_inode_ref *ref;
4519 struct btrfs_key key[2];
4520 u32 sizes[2];
4521 unsigned long ptr;
4522 int ret;
4523 int owner;
4525 path = btrfs_alloc_path();
4526 BUG_ON(!path);
4528 inode = new_inode(root->fs_info->sb);
4529 if (!inode)
4530 return ERR_PTR(-ENOMEM);
4532 if (dir) {
4533 trace_btrfs_inode_request(dir);
4535 ret = btrfs_set_inode_index(dir, index);
4536 if (ret) {
4537 iput(inode);
4538 return ERR_PTR(ret);
4542 * index_cnt is ignored for everything but a dir,
4543 * btrfs_get_inode_index_count has an explanation for the magic
4544 * number
4546 BTRFS_I(inode)->index_cnt = 2;
4547 BTRFS_I(inode)->root = root;
4548 BTRFS_I(inode)->generation = trans->transid;
4549 inode->i_generation = BTRFS_I(inode)->generation;
4550 btrfs_set_inode_space_info(root, inode);
4552 if (mode & S_IFDIR)
4553 owner = 0;
4554 else
4555 owner = 1;
4556 BTRFS_I(inode)->block_group =
4557 btrfs_find_block_group(root, 0, alloc_hint, owner);
4559 key[0].objectid = objectid;
4560 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4561 key[0].offset = 0;
4563 key[1].objectid = objectid;
4564 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4565 key[1].offset = ref_objectid;
4567 sizes[0] = sizeof(struct btrfs_inode_item);
4568 sizes[1] = name_len + sizeof(*ref);
4570 path->leave_spinning = 1;
4571 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4572 if (ret != 0)
4573 goto fail;
4575 inode_init_owner(inode, dir, mode);
4576 inode->i_ino = objectid;
4577 inode_set_bytes(inode, 0);
4578 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4579 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4580 struct btrfs_inode_item);
4581 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4583 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4584 struct btrfs_inode_ref);
4585 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4586 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4587 ptr = (unsigned long)(ref + 1);
4588 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4590 btrfs_mark_buffer_dirty(path->nodes[0]);
4591 btrfs_free_path(path);
4593 location = &BTRFS_I(inode)->location;
4594 location->objectid = objectid;
4595 location->offset = 0;
4596 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4598 btrfs_inherit_iflags(inode, dir);
4600 if ((mode & S_IFREG)) {
4601 if (btrfs_test_opt(root, NODATASUM))
4602 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4603 if (btrfs_test_opt(root, NODATACOW) ||
4604 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4605 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4608 insert_inode_hash(inode);
4609 inode_tree_add(inode);
4611 trace_btrfs_inode_new(inode);
4613 return inode;
4614 fail:
4615 if (dir)
4616 BTRFS_I(dir)->index_cnt--;
4617 btrfs_free_path(path);
4618 iput(inode);
4619 return ERR_PTR(ret);
4622 static inline u8 btrfs_inode_type(struct inode *inode)
4624 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4628 * utility function to add 'inode' into 'parent_inode' with
4629 * a give name and a given sequence number.
4630 * if 'add_backref' is true, also insert a backref from the
4631 * inode to the parent directory.
4633 int btrfs_add_link(struct btrfs_trans_handle *trans,
4634 struct inode *parent_inode, struct inode *inode,
4635 const char *name, int name_len, int add_backref, u64 index)
4637 int ret = 0;
4638 struct btrfs_key key;
4639 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4641 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4642 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4643 } else {
4644 key.objectid = inode->i_ino;
4645 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4646 key.offset = 0;
4649 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4650 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4651 key.objectid, root->root_key.objectid,
4652 parent_inode->i_ino,
4653 index, name, name_len);
4654 } else if (add_backref) {
4655 ret = btrfs_insert_inode_ref(trans, root,
4656 name, name_len, inode->i_ino,
4657 parent_inode->i_ino, index);
4660 if (ret == 0) {
4661 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4662 parent_inode->i_ino, &key,
4663 btrfs_inode_type(inode), index);
4664 BUG_ON(ret);
4666 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4667 name_len * 2);
4668 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4669 ret = btrfs_update_inode(trans, root, parent_inode);
4671 return ret;
4674 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4675 struct inode *dir, struct dentry *dentry,
4676 struct inode *inode, int backref, u64 index)
4678 int err = btrfs_add_link(trans, dir, inode,
4679 dentry->d_name.name, dentry->d_name.len,
4680 backref, index);
4681 if (!err) {
4682 d_instantiate(dentry, inode);
4683 return 0;
4685 if (err > 0)
4686 err = -EEXIST;
4687 return err;
4690 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4691 int mode, dev_t rdev)
4693 struct btrfs_trans_handle *trans;
4694 struct btrfs_root *root = BTRFS_I(dir)->root;
4695 struct inode *inode = NULL;
4696 int err;
4697 int drop_inode = 0;
4698 u64 objectid;
4699 unsigned long nr = 0;
4700 u64 index = 0;
4702 if (!new_valid_dev(rdev))
4703 return -EINVAL;
4705 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4706 if (err)
4707 return err;
4710 * 2 for inode item and ref
4711 * 2 for dir items
4712 * 1 for xattr if selinux is on
4714 trans = btrfs_start_transaction(root, 5);
4715 if (IS_ERR(trans))
4716 return PTR_ERR(trans);
4718 btrfs_set_trans_block_group(trans, dir);
4720 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4721 dentry->d_name.len, dir->i_ino, objectid,
4722 BTRFS_I(dir)->block_group, mode, &index);
4723 err = PTR_ERR(inode);
4724 if (IS_ERR(inode))
4725 goto out_unlock;
4727 err = btrfs_init_inode_security(trans, inode, dir);
4728 if (err) {
4729 drop_inode = 1;
4730 goto out_unlock;
4733 btrfs_set_trans_block_group(trans, inode);
4734 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4735 if (err)
4736 drop_inode = 1;
4737 else {
4738 inode->i_op = &btrfs_special_inode_operations;
4739 init_special_inode(inode, inode->i_mode, rdev);
4740 btrfs_update_inode(trans, root, inode);
4742 btrfs_update_inode_block_group(trans, inode);
4743 btrfs_update_inode_block_group(trans, dir);
4744 out_unlock:
4745 nr = trans->blocks_used;
4746 btrfs_end_transaction_throttle(trans, root);
4747 btrfs_btree_balance_dirty(root, nr);
4748 if (drop_inode) {
4749 inode_dec_link_count(inode);
4750 iput(inode);
4752 return err;
4755 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4756 int mode, struct nameidata *nd)
4758 struct btrfs_trans_handle *trans;
4759 struct btrfs_root *root = BTRFS_I(dir)->root;
4760 struct inode *inode = NULL;
4761 int drop_inode = 0;
4762 int err;
4763 unsigned long nr = 0;
4764 u64 objectid;
4765 u64 index = 0;
4767 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4768 if (err)
4769 return err;
4771 * 2 for inode item and ref
4772 * 2 for dir items
4773 * 1 for xattr if selinux is on
4775 trans = btrfs_start_transaction(root, 5);
4776 if (IS_ERR(trans))
4777 return PTR_ERR(trans);
4779 btrfs_set_trans_block_group(trans, dir);
4781 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4782 dentry->d_name.len, dir->i_ino, objectid,
4783 BTRFS_I(dir)->block_group, mode, &index);
4784 err = PTR_ERR(inode);
4785 if (IS_ERR(inode))
4786 goto out_unlock;
4788 err = btrfs_init_inode_security(trans, inode, dir);
4789 if (err) {
4790 drop_inode = 1;
4791 goto out_unlock;
4794 btrfs_set_trans_block_group(trans, inode);
4795 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4796 if (err)
4797 drop_inode = 1;
4798 else {
4799 inode->i_mapping->a_ops = &btrfs_aops;
4800 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4801 inode->i_fop = &btrfs_file_operations;
4802 inode->i_op = &btrfs_file_inode_operations;
4803 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4805 btrfs_update_inode_block_group(trans, inode);
4806 btrfs_update_inode_block_group(trans, dir);
4807 out_unlock:
4808 nr = trans->blocks_used;
4809 btrfs_end_transaction_throttle(trans, root);
4810 if (drop_inode) {
4811 inode_dec_link_count(inode);
4812 iput(inode);
4814 btrfs_btree_balance_dirty(root, nr);
4815 return err;
4818 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4819 struct dentry *dentry)
4821 struct btrfs_trans_handle *trans;
4822 struct btrfs_root *root = BTRFS_I(dir)->root;
4823 struct inode *inode = old_dentry->d_inode;
4824 u64 index;
4825 unsigned long nr = 0;
4826 int err;
4827 int drop_inode = 0;
4829 if (inode->i_nlink == 0)
4830 return -ENOENT;
4832 /* do not allow sys_link's with other subvols of the same device */
4833 if (root->objectid != BTRFS_I(inode)->root->objectid)
4834 return -EXDEV;
4836 if (inode->i_nlink == ~0U)
4837 return -EMLINK;
4839 btrfs_inc_nlink(inode);
4840 inode->i_ctime = CURRENT_TIME;
4842 err = btrfs_set_inode_index(dir, &index);
4843 if (err)
4844 goto fail;
4847 * 2 items for inode and inode ref
4848 * 2 items for dir items
4849 * 1 item for parent inode
4851 trans = btrfs_start_transaction(root, 5);
4852 if (IS_ERR(trans)) {
4853 err = PTR_ERR(trans);
4854 goto fail;
4857 btrfs_set_trans_block_group(trans, dir);
4858 ihold(inode);
4860 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4862 if (err) {
4863 drop_inode = 1;
4864 } else {
4865 struct dentry *parent = dget_parent(dentry);
4866 btrfs_update_inode_block_group(trans, dir);
4867 err = btrfs_update_inode(trans, root, inode);
4868 BUG_ON(err);
4869 btrfs_log_new_name(trans, inode, NULL, parent);
4870 dput(parent);
4873 nr = trans->blocks_used;
4874 btrfs_end_transaction_throttle(trans, root);
4875 fail:
4876 if (drop_inode) {
4877 inode_dec_link_count(inode);
4878 iput(inode);
4880 btrfs_btree_balance_dirty(root, nr);
4881 return err;
4884 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4886 struct inode *inode = NULL;
4887 struct btrfs_trans_handle *trans;
4888 struct btrfs_root *root = BTRFS_I(dir)->root;
4889 int err = 0;
4890 int drop_on_err = 0;
4891 u64 objectid = 0;
4892 u64 index = 0;
4893 unsigned long nr = 1;
4895 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4896 if (err)
4897 return err;
4900 * 2 items for inode and ref
4901 * 2 items for dir items
4902 * 1 for xattr if selinux is on
4904 trans = btrfs_start_transaction(root, 5);
4905 if (IS_ERR(trans))
4906 return PTR_ERR(trans);
4907 btrfs_set_trans_block_group(trans, dir);
4909 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4910 dentry->d_name.len, dir->i_ino, objectid,
4911 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4912 &index);
4913 if (IS_ERR(inode)) {
4914 err = PTR_ERR(inode);
4915 goto out_fail;
4918 drop_on_err = 1;
4920 err = btrfs_init_inode_security(trans, inode, dir);
4921 if (err)
4922 goto out_fail;
4924 inode->i_op = &btrfs_dir_inode_operations;
4925 inode->i_fop = &btrfs_dir_file_operations;
4926 btrfs_set_trans_block_group(trans, inode);
4928 btrfs_i_size_write(inode, 0);
4929 err = btrfs_update_inode(trans, root, inode);
4930 if (err)
4931 goto out_fail;
4933 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4934 dentry->d_name.len, 0, index);
4935 if (err)
4936 goto out_fail;
4938 d_instantiate(dentry, inode);
4939 drop_on_err = 0;
4940 btrfs_update_inode_block_group(trans, inode);
4941 btrfs_update_inode_block_group(trans, dir);
4943 out_fail:
4944 nr = trans->blocks_used;
4945 btrfs_end_transaction_throttle(trans, root);
4946 if (drop_on_err)
4947 iput(inode);
4948 btrfs_btree_balance_dirty(root, nr);
4949 return err;
4952 /* helper for btfs_get_extent. Given an existing extent in the tree,
4953 * and an extent that you want to insert, deal with overlap and insert
4954 * the new extent into the tree.
4956 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4957 struct extent_map *existing,
4958 struct extent_map *em,
4959 u64 map_start, u64 map_len)
4961 u64 start_diff;
4963 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4964 start_diff = map_start - em->start;
4965 em->start = map_start;
4966 em->len = map_len;
4967 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4968 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4969 em->block_start += start_diff;
4970 em->block_len -= start_diff;
4972 return add_extent_mapping(em_tree, em);
4975 static noinline int uncompress_inline(struct btrfs_path *path,
4976 struct inode *inode, struct page *page,
4977 size_t pg_offset, u64 extent_offset,
4978 struct btrfs_file_extent_item *item)
4980 int ret;
4981 struct extent_buffer *leaf = path->nodes[0];
4982 char *tmp;
4983 size_t max_size;
4984 unsigned long inline_size;
4985 unsigned long ptr;
4986 int compress_type;
4988 WARN_ON(pg_offset != 0);
4989 compress_type = btrfs_file_extent_compression(leaf, item);
4990 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4991 inline_size = btrfs_file_extent_inline_item_len(leaf,
4992 btrfs_item_nr(leaf, path->slots[0]));
4993 tmp = kmalloc(inline_size, GFP_NOFS);
4994 ptr = btrfs_file_extent_inline_start(item);
4996 read_extent_buffer(leaf, tmp, ptr, inline_size);
4998 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4999 ret = btrfs_decompress(compress_type, tmp, page,
5000 extent_offset, inline_size, max_size);
5001 if (ret) {
5002 char *kaddr = kmap_atomic(page, KM_USER0);
5003 unsigned long copy_size = min_t(u64,
5004 PAGE_CACHE_SIZE - pg_offset,
5005 max_size - extent_offset);
5006 memset(kaddr + pg_offset, 0, copy_size);
5007 kunmap_atomic(kaddr, KM_USER0);
5009 kfree(tmp);
5010 return 0;
5014 * a bit scary, this does extent mapping from logical file offset to the disk.
5015 * the ugly parts come from merging extents from the disk with the in-ram
5016 * representation. This gets more complex because of the data=ordered code,
5017 * where the in-ram extents might be locked pending data=ordered completion.
5019 * This also copies inline extents directly into the page.
5022 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5023 size_t pg_offset, u64 start, u64 len,
5024 int create)
5026 int ret;
5027 int err = 0;
5028 u64 bytenr;
5029 u64 extent_start = 0;
5030 u64 extent_end = 0;
5031 u64 objectid = inode->i_ino;
5032 u32 found_type;
5033 struct btrfs_path *path = NULL;
5034 struct btrfs_root *root = BTRFS_I(inode)->root;
5035 struct btrfs_file_extent_item *item;
5036 struct extent_buffer *leaf;
5037 struct btrfs_key found_key;
5038 struct extent_map *em = NULL;
5039 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5040 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5041 struct btrfs_trans_handle *trans = NULL;
5042 int compress_type;
5044 again:
5045 read_lock(&em_tree->lock);
5046 em = lookup_extent_mapping(em_tree, start, len);
5047 if (em)
5048 em->bdev = root->fs_info->fs_devices->latest_bdev;
5049 read_unlock(&em_tree->lock);
5051 if (em) {
5052 if (em->start > start || em->start + em->len <= start)
5053 free_extent_map(em);
5054 else if (em->block_start == EXTENT_MAP_INLINE && page)
5055 free_extent_map(em);
5056 else
5057 goto out;
5059 em = alloc_extent_map(GFP_NOFS);
5060 if (!em) {
5061 err = -ENOMEM;
5062 goto out;
5064 em->bdev = root->fs_info->fs_devices->latest_bdev;
5065 em->start = EXTENT_MAP_HOLE;
5066 em->orig_start = EXTENT_MAP_HOLE;
5067 em->len = (u64)-1;
5068 em->block_len = (u64)-1;
5070 if (!path) {
5071 path = btrfs_alloc_path();
5072 BUG_ON(!path);
5075 ret = btrfs_lookup_file_extent(trans, root, path,
5076 objectid, start, trans != NULL);
5077 if (ret < 0) {
5078 err = ret;
5079 goto out;
5082 if (ret != 0) {
5083 if (path->slots[0] == 0)
5084 goto not_found;
5085 path->slots[0]--;
5088 leaf = path->nodes[0];
5089 item = btrfs_item_ptr(leaf, path->slots[0],
5090 struct btrfs_file_extent_item);
5091 /* are we inside the extent that was found? */
5092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5093 found_type = btrfs_key_type(&found_key);
5094 if (found_key.objectid != objectid ||
5095 found_type != BTRFS_EXTENT_DATA_KEY) {
5096 goto not_found;
5099 found_type = btrfs_file_extent_type(leaf, item);
5100 extent_start = found_key.offset;
5101 compress_type = btrfs_file_extent_compression(leaf, item);
5102 if (found_type == BTRFS_FILE_EXTENT_REG ||
5103 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5104 extent_end = extent_start +
5105 btrfs_file_extent_num_bytes(leaf, item);
5106 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5107 size_t size;
5108 size = btrfs_file_extent_inline_len(leaf, item);
5109 extent_end = (extent_start + size + root->sectorsize - 1) &
5110 ~((u64)root->sectorsize - 1);
5113 if (start >= extent_end) {
5114 path->slots[0]++;
5115 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5116 ret = btrfs_next_leaf(root, path);
5117 if (ret < 0) {
5118 err = ret;
5119 goto out;
5121 if (ret > 0)
5122 goto not_found;
5123 leaf = path->nodes[0];
5125 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5126 if (found_key.objectid != objectid ||
5127 found_key.type != BTRFS_EXTENT_DATA_KEY)
5128 goto not_found;
5129 if (start + len <= found_key.offset)
5130 goto not_found;
5131 em->start = start;
5132 em->len = found_key.offset - start;
5133 goto not_found_em;
5136 if (found_type == BTRFS_FILE_EXTENT_REG ||
5137 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5138 em->start = extent_start;
5139 em->len = extent_end - extent_start;
5140 em->orig_start = extent_start -
5141 btrfs_file_extent_offset(leaf, item);
5142 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5143 if (bytenr == 0) {
5144 em->block_start = EXTENT_MAP_HOLE;
5145 goto insert;
5147 if (compress_type != BTRFS_COMPRESS_NONE) {
5148 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5149 em->compress_type = compress_type;
5150 em->block_start = bytenr;
5151 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5152 item);
5153 } else {
5154 bytenr += btrfs_file_extent_offset(leaf, item);
5155 em->block_start = bytenr;
5156 em->block_len = em->len;
5157 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5158 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5160 goto insert;
5161 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5162 unsigned long ptr;
5163 char *map;
5164 size_t size;
5165 size_t extent_offset;
5166 size_t copy_size;
5168 em->block_start = EXTENT_MAP_INLINE;
5169 if (!page || create) {
5170 em->start = extent_start;
5171 em->len = extent_end - extent_start;
5172 goto out;
5175 size = btrfs_file_extent_inline_len(leaf, item);
5176 extent_offset = page_offset(page) + pg_offset - extent_start;
5177 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5178 size - extent_offset);
5179 em->start = extent_start + extent_offset;
5180 em->len = (copy_size + root->sectorsize - 1) &
5181 ~((u64)root->sectorsize - 1);
5182 em->orig_start = EXTENT_MAP_INLINE;
5183 if (compress_type) {
5184 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5185 em->compress_type = compress_type;
5187 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5188 if (create == 0 && !PageUptodate(page)) {
5189 if (btrfs_file_extent_compression(leaf, item) !=
5190 BTRFS_COMPRESS_NONE) {
5191 ret = uncompress_inline(path, inode, page,
5192 pg_offset,
5193 extent_offset, item);
5194 BUG_ON(ret);
5195 } else {
5196 map = kmap(page);
5197 read_extent_buffer(leaf, map + pg_offset, ptr,
5198 copy_size);
5199 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5200 memset(map + pg_offset + copy_size, 0,
5201 PAGE_CACHE_SIZE - pg_offset -
5202 copy_size);
5204 kunmap(page);
5206 flush_dcache_page(page);
5207 } else if (create && PageUptodate(page)) {
5208 WARN_ON(1);
5209 if (!trans) {
5210 kunmap(page);
5211 free_extent_map(em);
5212 em = NULL;
5213 btrfs_release_path(root, path);
5214 trans = btrfs_join_transaction(root, 1);
5215 if (IS_ERR(trans))
5216 return ERR_CAST(trans);
5217 goto again;
5219 map = kmap(page);
5220 write_extent_buffer(leaf, map + pg_offset, ptr,
5221 copy_size);
5222 kunmap(page);
5223 btrfs_mark_buffer_dirty(leaf);
5225 set_extent_uptodate(io_tree, em->start,
5226 extent_map_end(em) - 1, GFP_NOFS);
5227 goto insert;
5228 } else {
5229 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5230 WARN_ON(1);
5232 not_found:
5233 em->start = start;
5234 em->len = len;
5235 not_found_em:
5236 em->block_start = EXTENT_MAP_HOLE;
5237 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5238 insert:
5239 btrfs_release_path(root, path);
5240 if (em->start > start || extent_map_end(em) <= start) {
5241 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5242 "[%llu %llu]\n", (unsigned long long)em->start,
5243 (unsigned long long)em->len,
5244 (unsigned long long)start,
5245 (unsigned long long)len);
5246 err = -EIO;
5247 goto out;
5250 err = 0;
5251 write_lock(&em_tree->lock);
5252 ret = add_extent_mapping(em_tree, em);
5253 /* it is possible that someone inserted the extent into the tree
5254 * while we had the lock dropped. It is also possible that
5255 * an overlapping map exists in the tree
5257 if (ret == -EEXIST) {
5258 struct extent_map *existing;
5260 ret = 0;
5262 existing = lookup_extent_mapping(em_tree, start, len);
5263 if (existing && (existing->start > start ||
5264 existing->start + existing->len <= start)) {
5265 free_extent_map(existing);
5266 existing = NULL;
5268 if (!existing) {
5269 existing = lookup_extent_mapping(em_tree, em->start,
5270 em->len);
5271 if (existing) {
5272 err = merge_extent_mapping(em_tree, existing,
5273 em, start,
5274 root->sectorsize);
5275 free_extent_map(existing);
5276 if (err) {
5277 free_extent_map(em);
5278 em = NULL;
5280 } else {
5281 err = -EIO;
5282 free_extent_map(em);
5283 em = NULL;
5285 } else {
5286 free_extent_map(em);
5287 em = existing;
5288 err = 0;
5291 write_unlock(&em_tree->lock);
5292 out:
5294 trace_btrfs_get_extent(root, em);
5296 if (path)
5297 btrfs_free_path(path);
5298 if (trans) {
5299 ret = btrfs_end_transaction(trans, root);
5300 if (!err)
5301 err = ret;
5303 if (err) {
5304 free_extent_map(em);
5305 return ERR_PTR(err);
5307 return em;
5310 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5311 size_t pg_offset, u64 start, u64 len,
5312 int create)
5314 struct extent_map *em;
5315 struct extent_map *hole_em = NULL;
5316 u64 range_start = start;
5317 u64 end;
5318 u64 found;
5319 u64 found_end;
5320 int err = 0;
5322 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5323 if (IS_ERR(em))
5324 return em;
5325 if (em) {
5327 * if our em maps to a hole, there might
5328 * actually be delalloc bytes behind it
5330 if (em->block_start != EXTENT_MAP_HOLE)
5331 return em;
5332 else
5333 hole_em = em;
5336 /* check to see if we've wrapped (len == -1 or similar) */
5337 end = start + len;
5338 if (end < start)
5339 end = (u64)-1;
5340 else
5341 end -= 1;
5343 em = NULL;
5345 /* ok, we didn't find anything, lets look for delalloc */
5346 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5347 end, len, EXTENT_DELALLOC, 1);
5348 found_end = range_start + found;
5349 if (found_end < range_start)
5350 found_end = (u64)-1;
5353 * we didn't find anything useful, return
5354 * the original results from get_extent()
5356 if (range_start > end || found_end <= start) {
5357 em = hole_em;
5358 hole_em = NULL;
5359 goto out;
5362 /* adjust the range_start to make sure it doesn't
5363 * go backwards from the start they passed in
5365 range_start = max(start,range_start);
5366 found = found_end - range_start;
5368 if (found > 0) {
5369 u64 hole_start = start;
5370 u64 hole_len = len;
5372 em = alloc_extent_map(GFP_NOFS);
5373 if (!em) {
5374 err = -ENOMEM;
5375 goto out;
5378 * when btrfs_get_extent can't find anything it
5379 * returns one huge hole
5381 * make sure what it found really fits our range, and
5382 * adjust to make sure it is based on the start from
5383 * the caller
5385 if (hole_em) {
5386 u64 calc_end = extent_map_end(hole_em);
5388 if (calc_end <= start || (hole_em->start > end)) {
5389 free_extent_map(hole_em);
5390 hole_em = NULL;
5391 } else {
5392 hole_start = max(hole_em->start, start);
5393 hole_len = calc_end - hole_start;
5396 em->bdev = NULL;
5397 if (hole_em && range_start > hole_start) {
5398 /* our hole starts before our delalloc, so we
5399 * have to return just the parts of the hole
5400 * that go until the delalloc starts
5402 em->len = min(hole_len,
5403 range_start - hole_start);
5404 em->start = hole_start;
5405 em->orig_start = hole_start;
5407 * don't adjust block start at all,
5408 * it is fixed at EXTENT_MAP_HOLE
5410 em->block_start = hole_em->block_start;
5411 em->block_len = hole_len;
5412 } else {
5413 em->start = range_start;
5414 em->len = found;
5415 em->orig_start = range_start;
5416 em->block_start = EXTENT_MAP_DELALLOC;
5417 em->block_len = found;
5419 } else if (hole_em) {
5420 return hole_em;
5422 out:
5424 free_extent_map(hole_em);
5425 if (err) {
5426 free_extent_map(em);
5427 return ERR_PTR(err);
5429 return em;
5432 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5433 u64 start, u64 len)
5435 struct btrfs_root *root = BTRFS_I(inode)->root;
5436 struct btrfs_trans_handle *trans;
5437 struct extent_map *em;
5438 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5439 struct btrfs_key ins;
5440 u64 alloc_hint;
5441 int ret;
5443 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5445 trans = btrfs_join_transaction(root, 0);
5446 if (IS_ERR(trans))
5447 return ERR_CAST(trans);
5449 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5451 alloc_hint = get_extent_allocation_hint(inode, start, len);
5452 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5453 alloc_hint, (u64)-1, &ins, 1);
5454 if (ret) {
5455 em = ERR_PTR(ret);
5456 goto out;
5459 em = alloc_extent_map(GFP_NOFS);
5460 if (!em) {
5461 em = ERR_PTR(-ENOMEM);
5462 goto out;
5465 em->start = start;
5466 em->orig_start = em->start;
5467 em->len = ins.offset;
5469 em->block_start = ins.objectid;
5470 em->block_len = ins.offset;
5471 em->bdev = root->fs_info->fs_devices->latest_bdev;
5472 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5474 while (1) {
5475 write_lock(&em_tree->lock);
5476 ret = add_extent_mapping(em_tree, em);
5477 write_unlock(&em_tree->lock);
5478 if (ret != -EEXIST)
5479 break;
5480 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5483 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5484 ins.offset, ins.offset, 0);
5485 if (ret) {
5486 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5487 em = ERR_PTR(ret);
5489 out:
5490 btrfs_end_transaction(trans, root);
5491 return em;
5495 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5496 * block must be cow'd
5498 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5499 struct inode *inode, u64 offset, u64 len)
5501 struct btrfs_path *path;
5502 int ret;
5503 struct extent_buffer *leaf;
5504 struct btrfs_root *root = BTRFS_I(inode)->root;
5505 struct btrfs_file_extent_item *fi;
5506 struct btrfs_key key;
5507 u64 disk_bytenr;
5508 u64 backref_offset;
5509 u64 extent_end;
5510 u64 num_bytes;
5511 int slot;
5512 int found_type;
5514 path = btrfs_alloc_path();
5515 if (!path)
5516 return -ENOMEM;
5518 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5519 offset, 0);
5520 if (ret < 0)
5521 goto out;
5523 slot = path->slots[0];
5524 if (ret == 1) {
5525 if (slot == 0) {
5526 /* can't find the item, must cow */
5527 ret = 0;
5528 goto out;
5530 slot--;
5532 ret = 0;
5533 leaf = path->nodes[0];
5534 btrfs_item_key_to_cpu(leaf, &key, slot);
5535 if (key.objectid != inode->i_ino ||
5536 key.type != BTRFS_EXTENT_DATA_KEY) {
5537 /* not our file or wrong item type, must cow */
5538 goto out;
5541 if (key.offset > offset) {
5542 /* Wrong offset, must cow */
5543 goto out;
5546 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5547 found_type = btrfs_file_extent_type(leaf, fi);
5548 if (found_type != BTRFS_FILE_EXTENT_REG &&
5549 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5550 /* not a regular extent, must cow */
5551 goto out;
5553 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5554 backref_offset = btrfs_file_extent_offset(leaf, fi);
5556 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5557 if (extent_end < offset + len) {
5558 /* extent doesn't include our full range, must cow */
5559 goto out;
5562 if (btrfs_extent_readonly(root, disk_bytenr))
5563 goto out;
5566 * look for other files referencing this extent, if we
5567 * find any we must cow
5569 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5570 key.offset - backref_offset, disk_bytenr))
5571 goto out;
5574 * adjust disk_bytenr and num_bytes to cover just the bytes
5575 * in this extent we are about to write. If there
5576 * are any csums in that range we have to cow in order
5577 * to keep the csums correct
5579 disk_bytenr += backref_offset;
5580 disk_bytenr += offset - key.offset;
5581 num_bytes = min(offset + len, extent_end) - offset;
5582 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5583 goto out;
5585 * all of the above have passed, it is safe to overwrite this extent
5586 * without cow
5588 ret = 1;
5589 out:
5590 btrfs_free_path(path);
5591 return ret;
5594 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5595 struct buffer_head *bh_result, int create)
5597 struct extent_map *em;
5598 struct btrfs_root *root = BTRFS_I(inode)->root;
5599 u64 start = iblock << inode->i_blkbits;
5600 u64 len = bh_result->b_size;
5601 struct btrfs_trans_handle *trans;
5603 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5604 if (IS_ERR(em))
5605 return PTR_ERR(em);
5608 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5609 * io. INLINE is special, and we could probably kludge it in here, but
5610 * it's still buffered so for safety lets just fall back to the generic
5611 * buffered path.
5613 * For COMPRESSED we _have_ to read the entire extent in so we can
5614 * decompress it, so there will be buffering required no matter what we
5615 * do, so go ahead and fallback to buffered.
5617 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5618 * to buffered IO. Don't blame me, this is the price we pay for using
5619 * the generic code.
5621 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5622 em->block_start == EXTENT_MAP_INLINE) {
5623 free_extent_map(em);
5624 return -ENOTBLK;
5627 /* Just a good old fashioned hole, return */
5628 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5629 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5630 free_extent_map(em);
5631 /* DIO will do one hole at a time, so just unlock a sector */
5632 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5633 start + root->sectorsize - 1, GFP_NOFS);
5634 return 0;
5638 * We don't allocate a new extent in the following cases
5640 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5641 * existing extent.
5642 * 2) The extent is marked as PREALLOC. We're good to go here and can
5643 * just use the extent.
5646 if (!create) {
5647 len = em->len - (start - em->start);
5648 goto map;
5651 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5652 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5653 em->block_start != EXTENT_MAP_HOLE)) {
5654 int type;
5655 int ret;
5656 u64 block_start;
5658 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5659 type = BTRFS_ORDERED_PREALLOC;
5660 else
5661 type = BTRFS_ORDERED_NOCOW;
5662 len = min(len, em->len - (start - em->start));
5663 block_start = em->block_start + (start - em->start);
5666 * we're not going to log anything, but we do need
5667 * to make sure the current transaction stays open
5668 * while we look for nocow cross refs
5670 trans = btrfs_join_transaction(root, 0);
5671 if (IS_ERR(trans))
5672 goto must_cow;
5674 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5675 ret = btrfs_add_ordered_extent_dio(inode, start,
5676 block_start, len, len, type);
5677 btrfs_end_transaction(trans, root);
5678 if (ret) {
5679 free_extent_map(em);
5680 return ret;
5682 goto unlock;
5684 btrfs_end_transaction(trans, root);
5686 must_cow:
5688 * this will cow the extent, reset the len in case we changed
5689 * it above
5691 len = bh_result->b_size;
5692 free_extent_map(em);
5693 em = btrfs_new_extent_direct(inode, start, len);
5694 if (IS_ERR(em))
5695 return PTR_ERR(em);
5696 len = min(len, em->len - (start - em->start));
5697 unlock:
5698 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5699 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5700 0, NULL, GFP_NOFS);
5701 map:
5702 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5703 inode->i_blkbits;
5704 bh_result->b_size = len;
5705 bh_result->b_bdev = em->bdev;
5706 set_buffer_mapped(bh_result);
5707 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5708 set_buffer_new(bh_result);
5710 free_extent_map(em);
5712 return 0;
5715 struct btrfs_dio_private {
5716 struct inode *inode;
5717 u64 logical_offset;
5718 u64 disk_bytenr;
5719 u64 bytes;
5720 u32 *csums;
5721 void *private;
5723 /* number of bios pending for this dio */
5724 atomic_t pending_bios;
5726 /* IO errors */
5727 int errors;
5729 struct bio *orig_bio;
5732 static void btrfs_endio_direct_read(struct bio *bio, int err)
5734 struct btrfs_dio_private *dip = bio->bi_private;
5735 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5736 struct bio_vec *bvec = bio->bi_io_vec;
5737 struct inode *inode = dip->inode;
5738 struct btrfs_root *root = BTRFS_I(inode)->root;
5739 u64 start;
5740 u32 *private = dip->csums;
5742 start = dip->logical_offset;
5743 do {
5744 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5745 struct page *page = bvec->bv_page;
5746 char *kaddr;
5747 u32 csum = ~(u32)0;
5748 unsigned long flags;
5750 local_irq_save(flags);
5751 kaddr = kmap_atomic(page, KM_IRQ0);
5752 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5753 csum, bvec->bv_len);
5754 btrfs_csum_final(csum, (char *)&csum);
5755 kunmap_atomic(kaddr, KM_IRQ0);
5756 local_irq_restore(flags);
5758 flush_dcache_page(bvec->bv_page);
5759 if (csum != *private) {
5760 printk(KERN_ERR "btrfs csum failed ino %lu off"
5761 " %llu csum %u private %u\n",
5762 inode->i_ino, (unsigned long long)start,
5763 csum, *private);
5764 err = -EIO;
5768 start += bvec->bv_len;
5769 private++;
5770 bvec++;
5771 } while (bvec <= bvec_end);
5773 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5774 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5775 bio->bi_private = dip->private;
5777 kfree(dip->csums);
5778 kfree(dip);
5780 /* If we had a csum failure make sure to clear the uptodate flag */
5781 if (err)
5782 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5783 dio_end_io(bio, err);
5786 static void btrfs_endio_direct_write(struct bio *bio, int err)
5788 struct btrfs_dio_private *dip = bio->bi_private;
5789 struct inode *inode = dip->inode;
5790 struct btrfs_root *root = BTRFS_I(inode)->root;
5791 struct btrfs_trans_handle *trans;
5792 struct btrfs_ordered_extent *ordered = NULL;
5793 struct extent_state *cached_state = NULL;
5794 u64 ordered_offset = dip->logical_offset;
5795 u64 ordered_bytes = dip->bytes;
5796 int ret;
5798 if (err)
5799 goto out_done;
5800 again:
5801 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5802 &ordered_offset,
5803 ordered_bytes);
5804 if (!ret)
5805 goto out_test;
5807 BUG_ON(!ordered);
5809 trans = btrfs_join_transaction(root, 1);
5810 if (IS_ERR(trans)) {
5811 err = -ENOMEM;
5812 goto out;
5814 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5816 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5817 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5818 if (!ret)
5819 ret = btrfs_update_inode(trans, root, inode);
5820 err = ret;
5821 goto out;
5824 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5825 ordered->file_offset + ordered->len - 1, 0,
5826 &cached_state, GFP_NOFS);
5828 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5829 ret = btrfs_mark_extent_written(trans, inode,
5830 ordered->file_offset,
5831 ordered->file_offset +
5832 ordered->len);
5833 if (ret) {
5834 err = ret;
5835 goto out_unlock;
5837 } else {
5838 ret = insert_reserved_file_extent(trans, inode,
5839 ordered->file_offset,
5840 ordered->start,
5841 ordered->disk_len,
5842 ordered->len,
5843 ordered->len,
5844 0, 0, 0,
5845 BTRFS_FILE_EXTENT_REG);
5846 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5847 ordered->file_offset, ordered->len);
5848 if (ret) {
5849 err = ret;
5850 WARN_ON(1);
5851 goto out_unlock;
5855 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5856 btrfs_ordered_update_i_size(inode, 0, ordered);
5857 btrfs_update_inode(trans, root, inode);
5858 out_unlock:
5859 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5860 ordered->file_offset + ordered->len - 1,
5861 &cached_state, GFP_NOFS);
5862 out:
5863 btrfs_delalloc_release_metadata(inode, ordered->len);
5864 btrfs_end_transaction(trans, root);
5865 ordered_offset = ordered->file_offset + ordered->len;
5866 btrfs_put_ordered_extent(ordered);
5867 btrfs_put_ordered_extent(ordered);
5869 out_test:
5871 * our bio might span multiple ordered extents. If we haven't
5872 * completed the accounting for the whole dio, go back and try again
5874 if (ordered_offset < dip->logical_offset + dip->bytes) {
5875 ordered_bytes = dip->logical_offset + dip->bytes -
5876 ordered_offset;
5877 goto again;
5879 out_done:
5880 bio->bi_private = dip->private;
5882 kfree(dip->csums);
5883 kfree(dip);
5885 /* If we had an error make sure to clear the uptodate flag */
5886 if (err)
5887 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5888 dio_end_io(bio, err);
5891 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5892 struct bio *bio, int mirror_num,
5893 unsigned long bio_flags, u64 offset)
5895 int ret;
5896 struct btrfs_root *root = BTRFS_I(inode)->root;
5897 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5898 BUG_ON(ret);
5899 return 0;
5902 static void btrfs_end_dio_bio(struct bio *bio, int err)
5904 struct btrfs_dio_private *dip = bio->bi_private;
5906 if (err) {
5907 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5908 "sector %#Lx len %u err no %d\n",
5909 dip->inode->i_ino, bio->bi_rw,
5910 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5911 dip->errors = 1;
5914 * before atomic variable goto zero, we must make sure
5915 * dip->errors is perceived to be set.
5917 smp_mb__before_atomic_dec();
5920 /* if there are more bios still pending for this dio, just exit */
5921 if (!atomic_dec_and_test(&dip->pending_bios))
5922 goto out;
5924 if (dip->errors)
5925 bio_io_error(dip->orig_bio);
5926 else {
5927 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5928 bio_endio(dip->orig_bio, 0);
5930 out:
5931 bio_put(bio);
5934 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5935 u64 first_sector, gfp_t gfp_flags)
5937 int nr_vecs = bio_get_nr_vecs(bdev);
5938 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5941 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5942 int rw, u64 file_offset, int skip_sum,
5943 u32 *csums)
5945 int write = rw & REQ_WRITE;
5946 struct btrfs_root *root = BTRFS_I(inode)->root;
5947 int ret;
5949 bio_get(bio);
5950 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5951 if (ret)
5952 goto err;
5954 if (write && !skip_sum) {
5955 ret = btrfs_wq_submit_bio(root->fs_info,
5956 inode, rw, bio, 0, 0,
5957 file_offset,
5958 __btrfs_submit_bio_start_direct_io,
5959 __btrfs_submit_bio_done);
5960 goto err;
5961 } else if (!skip_sum) {
5962 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5963 file_offset, csums);
5964 if (ret)
5965 goto err;
5968 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5969 err:
5970 bio_put(bio);
5971 return ret;
5974 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5975 int skip_sum)
5977 struct inode *inode = dip->inode;
5978 struct btrfs_root *root = BTRFS_I(inode)->root;
5979 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5980 struct bio *bio;
5981 struct bio *orig_bio = dip->orig_bio;
5982 struct bio_vec *bvec = orig_bio->bi_io_vec;
5983 u64 start_sector = orig_bio->bi_sector;
5984 u64 file_offset = dip->logical_offset;
5985 u64 submit_len = 0;
5986 u64 map_length;
5987 int nr_pages = 0;
5988 u32 *csums = dip->csums;
5989 int ret = 0;
5990 int write = rw & REQ_WRITE;
5992 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5993 if (!bio)
5994 return -ENOMEM;
5995 bio->bi_private = dip;
5996 bio->bi_end_io = btrfs_end_dio_bio;
5997 atomic_inc(&dip->pending_bios);
5999 map_length = orig_bio->bi_size;
6000 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6001 &map_length, NULL, 0);
6002 if (ret) {
6003 bio_put(bio);
6004 return -EIO;
6007 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6008 if (unlikely(map_length < submit_len + bvec->bv_len ||
6009 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6010 bvec->bv_offset) < bvec->bv_len)) {
6012 * inc the count before we submit the bio so
6013 * we know the end IO handler won't happen before
6014 * we inc the count. Otherwise, the dip might get freed
6015 * before we're done setting it up
6017 atomic_inc(&dip->pending_bios);
6018 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6019 file_offset, skip_sum,
6020 csums);
6021 if (ret) {
6022 bio_put(bio);
6023 atomic_dec(&dip->pending_bios);
6024 goto out_err;
6027 /* Write's use the ordered csums */
6028 if (!write && !skip_sum)
6029 csums = csums + nr_pages;
6030 start_sector += submit_len >> 9;
6031 file_offset += submit_len;
6033 submit_len = 0;
6034 nr_pages = 0;
6036 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6037 start_sector, GFP_NOFS);
6038 if (!bio)
6039 goto out_err;
6040 bio->bi_private = dip;
6041 bio->bi_end_io = btrfs_end_dio_bio;
6043 map_length = orig_bio->bi_size;
6044 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6045 &map_length, NULL, 0);
6046 if (ret) {
6047 bio_put(bio);
6048 goto out_err;
6050 } else {
6051 submit_len += bvec->bv_len;
6052 nr_pages ++;
6053 bvec++;
6057 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6058 csums);
6059 if (!ret)
6060 return 0;
6062 bio_put(bio);
6063 out_err:
6064 dip->errors = 1;
6066 * before atomic variable goto zero, we must
6067 * make sure dip->errors is perceived to be set.
6069 smp_mb__before_atomic_dec();
6070 if (atomic_dec_and_test(&dip->pending_bios))
6071 bio_io_error(dip->orig_bio);
6073 /* bio_end_io() will handle error, so we needn't return it */
6074 return 0;
6077 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6078 loff_t file_offset)
6080 struct btrfs_root *root = BTRFS_I(inode)->root;
6081 struct btrfs_dio_private *dip;
6082 struct bio_vec *bvec = bio->bi_io_vec;
6083 int skip_sum;
6084 int write = rw & REQ_WRITE;
6085 int ret = 0;
6087 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6089 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6090 if (!dip) {
6091 ret = -ENOMEM;
6092 goto free_ordered;
6094 dip->csums = NULL;
6096 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6097 if (!write && !skip_sum) {
6098 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6099 if (!dip->csums) {
6100 kfree(dip);
6101 ret = -ENOMEM;
6102 goto free_ordered;
6106 dip->private = bio->bi_private;
6107 dip->inode = inode;
6108 dip->logical_offset = file_offset;
6110 dip->bytes = 0;
6111 do {
6112 dip->bytes += bvec->bv_len;
6113 bvec++;
6114 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6116 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6117 bio->bi_private = dip;
6118 dip->errors = 0;
6119 dip->orig_bio = bio;
6120 atomic_set(&dip->pending_bios, 0);
6122 if (write)
6123 bio->bi_end_io = btrfs_endio_direct_write;
6124 else
6125 bio->bi_end_io = btrfs_endio_direct_read;
6127 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6128 if (!ret)
6129 return;
6130 free_ordered:
6132 * If this is a write, we need to clean up the reserved space and kill
6133 * the ordered extent.
6135 if (write) {
6136 struct btrfs_ordered_extent *ordered;
6137 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6138 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6139 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6140 btrfs_free_reserved_extent(root, ordered->start,
6141 ordered->disk_len);
6142 btrfs_put_ordered_extent(ordered);
6143 btrfs_put_ordered_extent(ordered);
6145 bio_endio(bio, ret);
6148 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6149 const struct iovec *iov, loff_t offset,
6150 unsigned long nr_segs)
6152 int seg;
6153 size_t size;
6154 unsigned long addr;
6155 unsigned blocksize_mask = root->sectorsize - 1;
6156 ssize_t retval = -EINVAL;
6157 loff_t end = offset;
6159 if (offset & blocksize_mask)
6160 goto out;
6162 /* Check the memory alignment. Blocks cannot straddle pages */
6163 for (seg = 0; seg < nr_segs; seg++) {
6164 addr = (unsigned long)iov[seg].iov_base;
6165 size = iov[seg].iov_len;
6166 end += size;
6167 if ((addr & blocksize_mask) || (size & blocksize_mask))
6168 goto out;
6170 retval = 0;
6171 out:
6172 return retval;
6174 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6175 const struct iovec *iov, loff_t offset,
6176 unsigned long nr_segs)
6178 struct file *file = iocb->ki_filp;
6179 struct inode *inode = file->f_mapping->host;
6180 struct btrfs_ordered_extent *ordered;
6181 struct extent_state *cached_state = NULL;
6182 u64 lockstart, lockend;
6183 ssize_t ret;
6184 int writing = rw & WRITE;
6185 int write_bits = 0;
6186 size_t count = iov_length(iov, nr_segs);
6188 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6189 offset, nr_segs)) {
6190 return 0;
6193 lockstart = offset;
6194 lockend = offset + count - 1;
6196 if (writing) {
6197 ret = btrfs_delalloc_reserve_space(inode, count);
6198 if (ret)
6199 goto out;
6202 while (1) {
6203 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6204 0, &cached_state, GFP_NOFS);
6206 * We're concerned with the entire range that we're going to be
6207 * doing DIO to, so we need to make sure theres no ordered
6208 * extents in this range.
6210 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6211 lockend - lockstart + 1);
6212 if (!ordered)
6213 break;
6214 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6215 &cached_state, GFP_NOFS);
6216 btrfs_start_ordered_extent(inode, ordered, 1);
6217 btrfs_put_ordered_extent(ordered);
6218 cond_resched();
6222 * we don't use btrfs_set_extent_delalloc because we don't want
6223 * the dirty or uptodate bits
6225 if (writing) {
6226 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6227 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6228 EXTENT_DELALLOC, 0, NULL, &cached_state,
6229 GFP_NOFS);
6230 if (ret) {
6231 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6232 lockend, EXTENT_LOCKED | write_bits,
6233 1, 0, &cached_state, GFP_NOFS);
6234 goto out;
6238 free_extent_state(cached_state);
6239 cached_state = NULL;
6241 ret = __blockdev_direct_IO(rw, iocb, inode,
6242 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6243 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6244 btrfs_submit_direct, 0);
6246 if (ret < 0 && ret != -EIOCBQUEUED) {
6247 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6248 offset + iov_length(iov, nr_segs) - 1,
6249 EXTENT_LOCKED | write_bits, 1, 0,
6250 &cached_state, GFP_NOFS);
6251 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6253 * We're falling back to buffered, unlock the section we didn't
6254 * do IO on.
6256 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6257 offset + iov_length(iov, nr_segs) - 1,
6258 EXTENT_LOCKED | write_bits, 1, 0,
6259 &cached_state, GFP_NOFS);
6261 out:
6262 free_extent_state(cached_state);
6263 return ret;
6266 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6267 __u64 start, __u64 len)
6269 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6272 int btrfs_readpage(struct file *file, struct page *page)
6274 struct extent_io_tree *tree;
6275 tree = &BTRFS_I(page->mapping->host)->io_tree;
6276 return extent_read_full_page(tree, page, btrfs_get_extent);
6279 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6281 struct extent_io_tree *tree;
6284 if (current->flags & PF_MEMALLOC) {
6285 redirty_page_for_writepage(wbc, page);
6286 unlock_page(page);
6287 return 0;
6289 tree = &BTRFS_I(page->mapping->host)->io_tree;
6290 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6293 int btrfs_writepages(struct address_space *mapping,
6294 struct writeback_control *wbc)
6296 struct extent_io_tree *tree;
6298 tree = &BTRFS_I(mapping->host)->io_tree;
6299 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6302 static int
6303 btrfs_readpages(struct file *file, struct address_space *mapping,
6304 struct list_head *pages, unsigned nr_pages)
6306 struct extent_io_tree *tree;
6307 tree = &BTRFS_I(mapping->host)->io_tree;
6308 return extent_readpages(tree, mapping, pages, nr_pages,
6309 btrfs_get_extent);
6311 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6313 struct extent_io_tree *tree;
6314 struct extent_map_tree *map;
6315 int ret;
6317 tree = &BTRFS_I(page->mapping->host)->io_tree;
6318 map = &BTRFS_I(page->mapping->host)->extent_tree;
6319 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6320 if (ret == 1) {
6321 ClearPagePrivate(page);
6322 set_page_private(page, 0);
6323 page_cache_release(page);
6325 return ret;
6328 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6330 if (PageWriteback(page) || PageDirty(page))
6331 return 0;
6332 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6335 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6337 struct extent_io_tree *tree;
6338 struct btrfs_ordered_extent *ordered;
6339 struct extent_state *cached_state = NULL;
6340 u64 page_start = page_offset(page);
6341 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6345 * we have the page locked, so new writeback can't start,
6346 * and the dirty bit won't be cleared while we are here.
6348 * Wait for IO on this page so that we can safely clear
6349 * the PagePrivate2 bit and do ordered accounting
6351 wait_on_page_writeback(page);
6353 tree = &BTRFS_I(page->mapping->host)->io_tree;
6354 if (offset) {
6355 btrfs_releasepage(page, GFP_NOFS);
6356 return;
6358 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6359 GFP_NOFS);
6360 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6361 page_offset(page));
6362 if (ordered) {
6364 * IO on this page will never be started, so we need
6365 * to account for any ordered extents now
6367 clear_extent_bit(tree, page_start, page_end,
6368 EXTENT_DIRTY | EXTENT_DELALLOC |
6369 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6370 &cached_state, GFP_NOFS);
6372 * whoever cleared the private bit is responsible
6373 * for the finish_ordered_io
6375 if (TestClearPagePrivate2(page)) {
6376 btrfs_finish_ordered_io(page->mapping->host,
6377 page_start, page_end);
6379 btrfs_put_ordered_extent(ordered);
6380 cached_state = NULL;
6381 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6382 GFP_NOFS);
6384 clear_extent_bit(tree, page_start, page_end,
6385 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6386 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6387 __btrfs_releasepage(page, GFP_NOFS);
6389 ClearPageChecked(page);
6390 if (PagePrivate(page)) {
6391 ClearPagePrivate(page);
6392 set_page_private(page, 0);
6393 page_cache_release(page);
6398 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6399 * called from a page fault handler when a page is first dirtied. Hence we must
6400 * be careful to check for EOF conditions here. We set the page up correctly
6401 * for a written page which means we get ENOSPC checking when writing into
6402 * holes and correct delalloc and unwritten extent mapping on filesystems that
6403 * support these features.
6405 * We are not allowed to take the i_mutex here so we have to play games to
6406 * protect against truncate races as the page could now be beyond EOF. Because
6407 * vmtruncate() writes the inode size before removing pages, once we have the
6408 * page lock we can determine safely if the page is beyond EOF. If it is not
6409 * beyond EOF, then the page is guaranteed safe against truncation until we
6410 * unlock the page.
6412 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6414 struct page *page = vmf->page;
6415 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6416 struct btrfs_root *root = BTRFS_I(inode)->root;
6417 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6418 struct btrfs_ordered_extent *ordered;
6419 struct extent_state *cached_state = NULL;
6420 char *kaddr;
6421 unsigned long zero_start;
6422 loff_t size;
6423 int ret;
6424 u64 page_start;
6425 u64 page_end;
6427 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6428 if (ret) {
6429 if (ret == -ENOMEM)
6430 ret = VM_FAULT_OOM;
6431 else /* -ENOSPC, -EIO, etc */
6432 ret = VM_FAULT_SIGBUS;
6433 goto out;
6436 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6437 again:
6438 lock_page(page);
6439 size = i_size_read(inode);
6440 page_start = page_offset(page);
6441 page_end = page_start + PAGE_CACHE_SIZE - 1;
6443 if ((page->mapping != inode->i_mapping) ||
6444 (page_start >= size)) {
6445 /* page got truncated out from underneath us */
6446 goto out_unlock;
6448 wait_on_page_writeback(page);
6450 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6451 GFP_NOFS);
6452 set_page_extent_mapped(page);
6455 * we can't set the delalloc bits if there are pending ordered
6456 * extents. Drop our locks and wait for them to finish
6458 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6459 if (ordered) {
6460 unlock_extent_cached(io_tree, page_start, page_end,
6461 &cached_state, GFP_NOFS);
6462 unlock_page(page);
6463 btrfs_start_ordered_extent(inode, ordered, 1);
6464 btrfs_put_ordered_extent(ordered);
6465 goto again;
6469 * XXX - page_mkwrite gets called every time the page is dirtied, even
6470 * if it was already dirty, so for space accounting reasons we need to
6471 * clear any delalloc bits for the range we are fixing to save. There
6472 * is probably a better way to do this, but for now keep consistent with
6473 * prepare_pages in the normal write path.
6475 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6476 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6477 0, 0, &cached_state, GFP_NOFS);
6479 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6480 &cached_state);
6481 if (ret) {
6482 unlock_extent_cached(io_tree, page_start, page_end,
6483 &cached_state, GFP_NOFS);
6484 ret = VM_FAULT_SIGBUS;
6485 goto out_unlock;
6487 ret = 0;
6489 /* page is wholly or partially inside EOF */
6490 if (page_start + PAGE_CACHE_SIZE > size)
6491 zero_start = size & ~PAGE_CACHE_MASK;
6492 else
6493 zero_start = PAGE_CACHE_SIZE;
6495 if (zero_start != PAGE_CACHE_SIZE) {
6496 kaddr = kmap(page);
6497 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6498 flush_dcache_page(page);
6499 kunmap(page);
6501 ClearPageChecked(page);
6502 set_page_dirty(page);
6503 SetPageUptodate(page);
6505 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6506 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6508 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6510 out_unlock:
6511 if (!ret)
6512 return VM_FAULT_LOCKED;
6513 unlock_page(page);
6514 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6515 out:
6516 return ret;
6519 static int btrfs_truncate(struct inode *inode)
6521 struct btrfs_root *root = BTRFS_I(inode)->root;
6522 int ret;
6523 int err = 0;
6524 struct btrfs_trans_handle *trans;
6525 unsigned long nr;
6526 u64 mask = root->sectorsize - 1;
6528 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6529 if (ret)
6530 return ret;
6532 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6533 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6535 trans = btrfs_start_transaction(root, 5);
6536 if (IS_ERR(trans))
6537 return PTR_ERR(trans);
6539 btrfs_set_trans_block_group(trans, inode);
6541 ret = btrfs_orphan_add(trans, inode);
6542 if (ret) {
6543 btrfs_end_transaction(trans, root);
6544 return ret;
6547 nr = trans->blocks_used;
6548 btrfs_end_transaction(trans, root);
6549 btrfs_btree_balance_dirty(root, nr);
6551 /* Now start a transaction for the truncate */
6552 trans = btrfs_start_transaction(root, 0);
6553 if (IS_ERR(trans))
6554 return PTR_ERR(trans);
6555 btrfs_set_trans_block_group(trans, inode);
6556 trans->block_rsv = root->orphan_block_rsv;
6559 * setattr is responsible for setting the ordered_data_close flag,
6560 * but that is only tested during the last file release. That
6561 * could happen well after the next commit, leaving a great big
6562 * window where new writes may get lost if someone chooses to write
6563 * to this file after truncating to zero
6565 * The inode doesn't have any dirty data here, and so if we commit
6566 * this is a noop. If someone immediately starts writing to the inode
6567 * it is very likely we'll catch some of their writes in this
6568 * transaction, and the commit will find this file on the ordered
6569 * data list with good things to send down.
6571 * This is a best effort solution, there is still a window where
6572 * using truncate to replace the contents of the file will
6573 * end up with a zero length file after a crash.
6575 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6576 btrfs_add_ordered_operation(trans, root, inode);
6578 while (1) {
6579 if (!trans) {
6580 trans = btrfs_start_transaction(root, 0);
6581 if (IS_ERR(trans))
6582 return PTR_ERR(trans);
6583 btrfs_set_trans_block_group(trans, inode);
6584 trans->block_rsv = root->orphan_block_rsv;
6587 ret = btrfs_block_rsv_check(trans, root,
6588 root->orphan_block_rsv, 0, 5);
6589 if (ret == -EAGAIN) {
6590 ret = btrfs_commit_transaction(trans, root);
6591 if (ret)
6592 return ret;
6593 trans = NULL;
6594 continue;
6595 } else if (ret) {
6596 err = ret;
6597 break;
6600 ret = btrfs_truncate_inode_items(trans, root, inode,
6601 inode->i_size,
6602 BTRFS_EXTENT_DATA_KEY);
6603 if (ret != -EAGAIN) {
6604 err = ret;
6605 break;
6608 ret = btrfs_update_inode(trans, root, inode);
6609 if (ret) {
6610 err = ret;
6611 break;
6614 nr = trans->blocks_used;
6615 btrfs_end_transaction(trans, root);
6616 trans = NULL;
6617 btrfs_btree_balance_dirty(root, nr);
6620 if (ret == 0 && inode->i_nlink > 0) {
6621 ret = btrfs_orphan_del(trans, inode);
6622 if (ret)
6623 err = ret;
6624 } else if (ret && inode->i_nlink > 0) {
6626 * Failed to do the truncate, remove us from the in memory
6627 * orphan list.
6629 ret = btrfs_orphan_del(NULL, inode);
6632 ret = btrfs_update_inode(trans, root, inode);
6633 if (ret && !err)
6634 err = ret;
6636 nr = trans->blocks_used;
6637 ret = btrfs_end_transaction_throttle(trans, root);
6638 if (ret && !err)
6639 err = ret;
6640 btrfs_btree_balance_dirty(root, nr);
6642 return err;
6646 * create a new subvolume directory/inode (helper for the ioctl).
6648 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6649 struct btrfs_root *new_root,
6650 u64 new_dirid, u64 alloc_hint)
6652 struct inode *inode;
6653 int err;
6654 u64 index = 0;
6656 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6657 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6658 if (IS_ERR(inode))
6659 return PTR_ERR(inode);
6660 inode->i_op = &btrfs_dir_inode_operations;
6661 inode->i_fop = &btrfs_dir_file_operations;
6663 inode->i_nlink = 1;
6664 btrfs_i_size_write(inode, 0);
6666 err = btrfs_update_inode(trans, new_root, inode);
6667 BUG_ON(err);
6669 iput(inode);
6670 return 0;
6673 /* helper function for file defrag and space balancing. This
6674 * forces readahead on a given range of bytes in an inode
6676 unsigned long btrfs_force_ra(struct address_space *mapping,
6677 struct file_ra_state *ra, struct file *file,
6678 pgoff_t offset, pgoff_t last_index)
6680 pgoff_t req_size = last_index - offset + 1;
6682 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6683 return offset + req_size;
6686 struct inode *btrfs_alloc_inode(struct super_block *sb)
6688 struct btrfs_inode *ei;
6689 struct inode *inode;
6691 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6692 if (!ei)
6693 return NULL;
6695 ei->root = NULL;
6696 ei->space_info = NULL;
6697 ei->generation = 0;
6698 ei->sequence = 0;
6699 ei->last_trans = 0;
6700 ei->last_sub_trans = 0;
6701 ei->logged_trans = 0;
6702 ei->delalloc_bytes = 0;
6703 ei->reserved_bytes = 0;
6704 ei->disk_i_size = 0;
6705 ei->flags = 0;
6706 ei->index_cnt = (u64)-1;
6707 ei->last_unlink_trans = 0;
6709 atomic_set(&ei->outstanding_extents, 0);
6710 atomic_set(&ei->reserved_extents, 0);
6712 ei->ordered_data_close = 0;
6713 ei->orphan_meta_reserved = 0;
6714 ei->dummy_inode = 0;
6715 ei->force_compress = BTRFS_COMPRESS_NONE;
6717 inode = &ei->vfs_inode;
6718 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6719 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6720 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6721 mutex_init(&ei->log_mutex);
6722 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6723 INIT_LIST_HEAD(&ei->i_orphan);
6724 INIT_LIST_HEAD(&ei->delalloc_inodes);
6725 INIT_LIST_HEAD(&ei->ordered_operations);
6726 RB_CLEAR_NODE(&ei->rb_node);
6728 return inode;
6731 static void btrfs_i_callback(struct rcu_head *head)
6733 struct inode *inode = container_of(head, struct inode, i_rcu);
6734 INIT_LIST_HEAD(&inode->i_dentry);
6735 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6738 void btrfs_destroy_inode(struct inode *inode)
6740 struct btrfs_ordered_extent *ordered;
6741 struct btrfs_root *root = BTRFS_I(inode)->root;
6743 WARN_ON(!list_empty(&inode->i_dentry));
6744 WARN_ON(inode->i_data.nrpages);
6745 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6746 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6749 * This can happen where we create an inode, but somebody else also
6750 * created the same inode and we need to destroy the one we already
6751 * created.
6753 if (!root)
6754 goto free;
6757 * Make sure we're properly removed from the ordered operation
6758 * lists.
6760 smp_mb();
6761 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6762 spin_lock(&root->fs_info->ordered_extent_lock);
6763 list_del_init(&BTRFS_I(inode)->ordered_operations);
6764 spin_unlock(&root->fs_info->ordered_extent_lock);
6767 if (root == root->fs_info->tree_root) {
6768 struct btrfs_block_group_cache *block_group;
6770 block_group = btrfs_lookup_block_group(root->fs_info,
6771 BTRFS_I(inode)->block_group);
6772 if (block_group && block_group->inode == inode) {
6773 spin_lock(&block_group->lock);
6774 block_group->inode = NULL;
6775 spin_unlock(&block_group->lock);
6776 btrfs_put_block_group(block_group);
6777 } else if (block_group) {
6778 btrfs_put_block_group(block_group);
6782 spin_lock(&root->orphan_lock);
6783 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6784 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6785 inode->i_ino);
6786 list_del_init(&BTRFS_I(inode)->i_orphan);
6788 spin_unlock(&root->orphan_lock);
6790 while (1) {
6791 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6792 if (!ordered)
6793 break;
6794 else {
6795 printk(KERN_ERR "btrfs found ordered "
6796 "extent %llu %llu on inode cleanup\n",
6797 (unsigned long long)ordered->file_offset,
6798 (unsigned long long)ordered->len);
6799 btrfs_remove_ordered_extent(inode, ordered);
6800 btrfs_put_ordered_extent(ordered);
6801 btrfs_put_ordered_extent(ordered);
6804 inode_tree_del(inode);
6805 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6806 free:
6807 call_rcu(&inode->i_rcu, btrfs_i_callback);
6810 int btrfs_drop_inode(struct inode *inode)
6812 struct btrfs_root *root = BTRFS_I(inode)->root;
6814 if (btrfs_root_refs(&root->root_item) == 0 &&
6815 root != root->fs_info->tree_root)
6816 return 1;
6817 else
6818 return generic_drop_inode(inode);
6821 static void init_once(void *foo)
6823 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6825 inode_init_once(&ei->vfs_inode);
6828 void btrfs_destroy_cachep(void)
6830 if (btrfs_inode_cachep)
6831 kmem_cache_destroy(btrfs_inode_cachep);
6832 if (btrfs_trans_handle_cachep)
6833 kmem_cache_destroy(btrfs_trans_handle_cachep);
6834 if (btrfs_transaction_cachep)
6835 kmem_cache_destroy(btrfs_transaction_cachep);
6836 if (btrfs_path_cachep)
6837 kmem_cache_destroy(btrfs_path_cachep);
6838 if (btrfs_free_space_cachep)
6839 kmem_cache_destroy(btrfs_free_space_cachep);
6842 int btrfs_init_cachep(void)
6844 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6845 sizeof(struct btrfs_inode), 0,
6846 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6847 if (!btrfs_inode_cachep)
6848 goto fail;
6850 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6851 sizeof(struct btrfs_trans_handle), 0,
6852 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6853 if (!btrfs_trans_handle_cachep)
6854 goto fail;
6856 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6857 sizeof(struct btrfs_transaction), 0,
6858 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6859 if (!btrfs_transaction_cachep)
6860 goto fail;
6862 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6863 sizeof(struct btrfs_path), 0,
6864 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6865 if (!btrfs_path_cachep)
6866 goto fail;
6868 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6869 sizeof(struct btrfs_free_space), 0,
6870 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6871 if (!btrfs_free_space_cachep)
6872 goto fail;
6874 return 0;
6875 fail:
6876 btrfs_destroy_cachep();
6877 return -ENOMEM;
6880 static int btrfs_getattr(struct vfsmount *mnt,
6881 struct dentry *dentry, struct kstat *stat)
6883 struct inode *inode = dentry->d_inode;
6884 generic_fillattr(inode, stat);
6885 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6886 stat->blksize = PAGE_CACHE_SIZE;
6887 stat->blocks = (inode_get_bytes(inode) +
6888 BTRFS_I(inode)->delalloc_bytes) >> 9;
6889 return 0;
6893 * If a file is moved, it will inherit the cow and compression flags of the new
6894 * directory.
6896 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6898 struct btrfs_inode *b_dir = BTRFS_I(dir);
6899 struct btrfs_inode *b_inode = BTRFS_I(inode);
6901 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6902 b_inode->flags |= BTRFS_INODE_NODATACOW;
6903 else
6904 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6906 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6907 b_inode->flags |= BTRFS_INODE_COMPRESS;
6908 else
6909 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6912 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6913 struct inode *new_dir, struct dentry *new_dentry)
6915 struct btrfs_trans_handle *trans;
6916 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6917 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6918 struct inode *new_inode = new_dentry->d_inode;
6919 struct inode *old_inode = old_dentry->d_inode;
6920 struct timespec ctime = CURRENT_TIME;
6921 u64 index = 0;
6922 u64 root_objectid;
6923 int ret;
6925 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6926 return -EPERM;
6928 /* we only allow rename subvolume link between subvolumes */
6929 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6930 return -EXDEV;
6932 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6933 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6934 return -ENOTEMPTY;
6936 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6937 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6938 return -ENOTEMPTY;
6940 * we're using rename to replace one file with another.
6941 * and the replacement file is large. Start IO on it now so
6942 * we don't add too much work to the end of the transaction
6944 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6945 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6946 filemap_flush(old_inode->i_mapping);
6948 /* close the racy window with snapshot create/destroy ioctl */
6949 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6950 down_read(&root->fs_info->subvol_sem);
6952 * We want to reserve the absolute worst case amount of items. So if
6953 * both inodes are subvols and we need to unlink them then that would
6954 * require 4 item modifications, but if they are both normal inodes it
6955 * would require 5 item modifications, so we'll assume their normal
6956 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6957 * should cover the worst case number of items we'll modify.
6959 trans = btrfs_start_transaction(root, 20);
6960 if (IS_ERR(trans)) {
6961 ret = PTR_ERR(trans);
6962 goto out_notrans;
6965 btrfs_set_trans_block_group(trans, new_dir);
6967 if (dest != root)
6968 btrfs_record_root_in_trans(trans, dest);
6970 ret = btrfs_set_inode_index(new_dir, &index);
6971 if (ret)
6972 goto out_fail;
6974 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6975 /* force full log commit if subvolume involved. */
6976 root->fs_info->last_trans_log_full_commit = trans->transid;
6977 } else {
6978 ret = btrfs_insert_inode_ref(trans, dest,
6979 new_dentry->d_name.name,
6980 new_dentry->d_name.len,
6981 old_inode->i_ino,
6982 new_dir->i_ino, index);
6983 if (ret)
6984 goto out_fail;
6986 * this is an ugly little race, but the rename is required
6987 * to make sure that if we crash, the inode is either at the
6988 * old name or the new one. pinning the log transaction lets
6989 * us make sure we don't allow a log commit to come in after
6990 * we unlink the name but before we add the new name back in.
6992 btrfs_pin_log_trans(root);
6995 * make sure the inode gets flushed if it is replacing
6996 * something.
6998 if (new_inode && new_inode->i_size &&
6999 old_inode && S_ISREG(old_inode->i_mode)) {
7000 btrfs_add_ordered_operation(trans, root, old_inode);
7003 old_dir->i_ctime = old_dir->i_mtime = ctime;
7004 new_dir->i_ctime = new_dir->i_mtime = ctime;
7005 old_inode->i_ctime = ctime;
7007 if (old_dentry->d_parent != new_dentry->d_parent)
7008 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7010 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7011 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7012 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7013 old_dentry->d_name.name,
7014 old_dentry->d_name.len);
7015 } else {
7016 ret = __btrfs_unlink_inode(trans, root, old_dir,
7017 old_dentry->d_inode,
7018 old_dentry->d_name.name,
7019 old_dentry->d_name.len);
7020 if (!ret)
7021 ret = btrfs_update_inode(trans, root, old_inode);
7023 BUG_ON(ret);
7025 if (new_inode) {
7026 new_inode->i_ctime = CURRENT_TIME;
7027 if (unlikely(new_inode->i_ino ==
7028 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7029 root_objectid = BTRFS_I(new_inode)->location.objectid;
7030 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7031 root_objectid,
7032 new_dentry->d_name.name,
7033 new_dentry->d_name.len);
7034 BUG_ON(new_inode->i_nlink == 0);
7035 } else {
7036 ret = btrfs_unlink_inode(trans, dest, new_dir,
7037 new_dentry->d_inode,
7038 new_dentry->d_name.name,
7039 new_dentry->d_name.len);
7041 BUG_ON(ret);
7042 if (new_inode->i_nlink == 0) {
7043 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7044 BUG_ON(ret);
7048 fixup_inode_flags(new_dir, old_inode);
7050 ret = btrfs_add_link(trans, new_dir, old_inode,
7051 new_dentry->d_name.name,
7052 new_dentry->d_name.len, 0, index);
7053 BUG_ON(ret);
7055 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7056 struct dentry *parent = dget_parent(new_dentry);
7057 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7058 dput(parent);
7059 btrfs_end_log_trans(root);
7061 out_fail:
7062 btrfs_end_transaction_throttle(trans, root);
7063 out_notrans:
7064 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7065 up_read(&root->fs_info->subvol_sem);
7067 return ret;
7071 * some fairly slow code that needs optimization. This walks the list
7072 * of all the inodes with pending delalloc and forces them to disk.
7074 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7076 struct list_head *head = &root->fs_info->delalloc_inodes;
7077 struct btrfs_inode *binode;
7078 struct inode *inode;
7080 if (root->fs_info->sb->s_flags & MS_RDONLY)
7081 return -EROFS;
7083 spin_lock(&root->fs_info->delalloc_lock);
7084 while (!list_empty(head)) {
7085 binode = list_entry(head->next, struct btrfs_inode,
7086 delalloc_inodes);
7087 inode = igrab(&binode->vfs_inode);
7088 if (!inode)
7089 list_del_init(&binode->delalloc_inodes);
7090 spin_unlock(&root->fs_info->delalloc_lock);
7091 if (inode) {
7092 filemap_flush(inode->i_mapping);
7093 if (delay_iput)
7094 btrfs_add_delayed_iput(inode);
7095 else
7096 iput(inode);
7098 cond_resched();
7099 spin_lock(&root->fs_info->delalloc_lock);
7101 spin_unlock(&root->fs_info->delalloc_lock);
7103 /* the filemap_flush will queue IO into the worker threads, but
7104 * we have to make sure the IO is actually started and that
7105 * ordered extents get created before we return
7107 atomic_inc(&root->fs_info->async_submit_draining);
7108 while (atomic_read(&root->fs_info->nr_async_submits) ||
7109 atomic_read(&root->fs_info->async_delalloc_pages)) {
7110 wait_event(root->fs_info->async_submit_wait,
7111 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7112 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7114 atomic_dec(&root->fs_info->async_submit_draining);
7115 return 0;
7118 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7119 int sync)
7121 struct btrfs_inode *binode;
7122 struct inode *inode = NULL;
7124 spin_lock(&root->fs_info->delalloc_lock);
7125 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7126 binode = list_entry(root->fs_info->delalloc_inodes.next,
7127 struct btrfs_inode, delalloc_inodes);
7128 inode = igrab(&binode->vfs_inode);
7129 if (inode) {
7130 list_move_tail(&binode->delalloc_inodes,
7131 &root->fs_info->delalloc_inodes);
7132 break;
7135 list_del_init(&binode->delalloc_inodes);
7136 cond_resched_lock(&root->fs_info->delalloc_lock);
7138 spin_unlock(&root->fs_info->delalloc_lock);
7140 if (inode) {
7141 if (sync) {
7142 filemap_write_and_wait(inode->i_mapping);
7144 * We have to do this because compression doesn't
7145 * actually set PG_writeback until it submits the pages
7146 * for IO, which happens in an async thread, so we could
7147 * race and not actually wait for any writeback pages
7148 * because they've not been submitted yet. Technically
7149 * this could still be the case for the ordered stuff
7150 * since the async thread may not have started to do its
7151 * work yet. If this becomes the case then we need to
7152 * figure out a way to make sure that in writepage we
7153 * wait for any async pages to be submitted before
7154 * returning so that fdatawait does what its supposed to
7155 * do.
7157 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7158 } else {
7159 filemap_flush(inode->i_mapping);
7161 if (delay_iput)
7162 btrfs_add_delayed_iput(inode);
7163 else
7164 iput(inode);
7165 return 1;
7167 return 0;
7170 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7171 const char *symname)
7173 struct btrfs_trans_handle *trans;
7174 struct btrfs_root *root = BTRFS_I(dir)->root;
7175 struct btrfs_path *path;
7176 struct btrfs_key key;
7177 struct inode *inode = NULL;
7178 int err;
7179 int drop_inode = 0;
7180 u64 objectid;
7181 u64 index = 0 ;
7182 int name_len;
7183 int datasize;
7184 unsigned long ptr;
7185 struct btrfs_file_extent_item *ei;
7186 struct extent_buffer *leaf;
7187 unsigned long nr = 0;
7189 name_len = strlen(symname) + 1;
7190 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7191 return -ENAMETOOLONG;
7193 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7194 if (err)
7195 return err;
7197 * 2 items for inode item and ref
7198 * 2 items for dir items
7199 * 1 item for xattr if selinux is on
7201 trans = btrfs_start_transaction(root, 5);
7202 if (IS_ERR(trans))
7203 return PTR_ERR(trans);
7205 btrfs_set_trans_block_group(trans, dir);
7207 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7208 dentry->d_name.len, dir->i_ino, objectid,
7209 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7210 &index);
7211 err = PTR_ERR(inode);
7212 if (IS_ERR(inode))
7213 goto out_unlock;
7215 err = btrfs_init_inode_security(trans, inode, dir);
7216 if (err) {
7217 drop_inode = 1;
7218 goto out_unlock;
7221 btrfs_set_trans_block_group(trans, inode);
7222 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7223 if (err)
7224 drop_inode = 1;
7225 else {
7226 inode->i_mapping->a_ops = &btrfs_aops;
7227 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7228 inode->i_fop = &btrfs_file_operations;
7229 inode->i_op = &btrfs_file_inode_operations;
7230 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7232 btrfs_update_inode_block_group(trans, inode);
7233 btrfs_update_inode_block_group(trans, dir);
7234 if (drop_inode)
7235 goto out_unlock;
7237 path = btrfs_alloc_path();
7238 BUG_ON(!path);
7239 key.objectid = inode->i_ino;
7240 key.offset = 0;
7241 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7242 datasize = btrfs_file_extent_calc_inline_size(name_len);
7243 err = btrfs_insert_empty_item(trans, root, path, &key,
7244 datasize);
7245 if (err) {
7246 drop_inode = 1;
7247 goto out_unlock;
7249 leaf = path->nodes[0];
7250 ei = btrfs_item_ptr(leaf, path->slots[0],
7251 struct btrfs_file_extent_item);
7252 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7253 btrfs_set_file_extent_type(leaf, ei,
7254 BTRFS_FILE_EXTENT_INLINE);
7255 btrfs_set_file_extent_encryption(leaf, ei, 0);
7256 btrfs_set_file_extent_compression(leaf, ei, 0);
7257 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7258 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7260 ptr = btrfs_file_extent_inline_start(ei);
7261 write_extent_buffer(leaf, symname, ptr, name_len);
7262 btrfs_mark_buffer_dirty(leaf);
7263 btrfs_free_path(path);
7265 inode->i_op = &btrfs_symlink_inode_operations;
7266 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7267 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7268 inode_set_bytes(inode, name_len);
7269 btrfs_i_size_write(inode, name_len - 1);
7270 err = btrfs_update_inode(trans, root, inode);
7271 if (err)
7272 drop_inode = 1;
7274 out_unlock:
7275 nr = trans->blocks_used;
7276 btrfs_end_transaction_throttle(trans, root);
7277 if (drop_inode) {
7278 inode_dec_link_count(inode);
7279 iput(inode);
7281 btrfs_btree_balance_dirty(root, nr);
7282 return err;
7285 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7286 u64 start, u64 num_bytes, u64 min_size,
7287 loff_t actual_len, u64 *alloc_hint,
7288 struct btrfs_trans_handle *trans)
7290 struct btrfs_root *root = BTRFS_I(inode)->root;
7291 struct btrfs_key ins;
7292 u64 cur_offset = start;
7293 u64 i_size;
7294 int ret = 0;
7295 bool own_trans = true;
7297 if (trans)
7298 own_trans = false;
7299 while (num_bytes > 0) {
7300 if (own_trans) {
7301 trans = btrfs_start_transaction(root, 3);
7302 if (IS_ERR(trans)) {
7303 ret = PTR_ERR(trans);
7304 break;
7308 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7309 0, *alloc_hint, (u64)-1, &ins, 1);
7310 if (ret) {
7311 if (own_trans)
7312 btrfs_end_transaction(trans, root);
7313 break;
7316 ret = insert_reserved_file_extent(trans, inode,
7317 cur_offset, ins.objectid,
7318 ins.offset, ins.offset,
7319 ins.offset, 0, 0, 0,
7320 BTRFS_FILE_EXTENT_PREALLOC);
7321 BUG_ON(ret);
7322 btrfs_drop_extent_cache(inode, cur_offset,
7323 cur_offset + ins.offset -1, 0);
7325 num_bytes -= ins.offset;
7326 cur_offset += ins.offset;
7327 *alloc_hint = ins.objectid + ins.offset;
7329 inode->i_ctime = CURRENT_TIME;
7330 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7331 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7332 (actual_len > inode->i_size) &&
7333 (cur_offset > inode->i_size)) {
7334 if (cur_offset > actual_len)
7335 i_size = actual_len;
7336 else
7337 i_size = cur_offset;
7338 i_size_write(inode, i_size);
7339 btrfs_ordered_update_i_size(inode, i_size, NULL);
7342 ret = btrfs_update_inode(trans, root, inode);
7343 BUG_ON(ret);
7345 if (own_trans)
7346 btrfs_end_transaction(trans, root);
7348 return ret;
7351 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7352 u64 start, u64 num_bytes, u64 min_size,
7353 loff_t actual_len, u64 *alloc_hint)
7355 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7356 min_size, actual_len, alloc_hint,
7357 NULL);
7360 int btrfs_prealloc_file_range_trans(struct inode *inode,
7361 struct btrfs_trans_handle *trans, int mode,
7362 u64 start, u64 num_bytes, u64 min_size,
7363 loff_t actual_len, u64 *alloc_hint)
7365 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7366 min_size, actual_len, alloc_hint, trans);
7369 static int btrfs_set_page_dirty(struct page *page)
7371 return __set_page_dirty_nobuffers(page);
7374 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7376 struct btrfs_root *root = BTRFS_I(inode)->root;
7378 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7379 return -EROFS;
7380 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7381 return -EACCES;
7382 return generic_permission(inode, mask, flags, btrfs_check_acl);
7385 static const struct inode_operations btrfs_dir_inode_operations = {
7386 .getattr = btrfs_getattr,
7387 .lookup = btrfs_lookup,
7388 .create = btrfs_create,
7389 .unlink = btrfs_unlink,
7390 .link = btrfs_link,
7391 .mkdir = btrfs_mkdir,
7392 .rmdir = btrfs_rmdir,
7393 .rename = btrfs_rename,
7394 .symlink = btrfs_symlink,
7395 .setattr = btrfs_setattr,
7396 .mknod = btrfs_mknod,
7397 .setxattr = btrfs_setxattr,
7398 .getxattr = btrfs_getxattr,
7399 .listxattr = btrfs_listxattr,
7400 .removexattr = btrfs_removexattr,
7401 .permission = btrfs_permission,
7403 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7404 .lookup = btrfs_lookup,
7405 .permission = btrfs_permission,
7408 static const struct file_operations btrfs_dir_file_operations = {
7409 .llseek = generic_file_llseek,
7410 .read = generic_read_dir,
7411 .readdir = btrfs_real_readdir,
7412 .unlocked_ioctl = btrfs_ioctl,
7413 #ifdef CONFIG_COMPAT
7414 .compat_ioctl = btrfs_ioctl,
7415 #endif
7416 .release = btrfs_release_file,
7417 .fsync = btrfs_sync_file,
7420 static struct extent_io_ops btrfs_extent_io_ops = {
7421 .fill_delalloc = run_delalloc_range,
7422 .submit_bio_hook = btrfs_submit_bio_hook,
7423 .merge_bio_hook = btrfs_merge_bio_hook,
7424 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7425 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7426 .writepage_start_hook = btrfs_writepage_start_hook,
7427 .readpage_io_failed_hook = btrfs_io_failed_hook,
7428 .set_bit_hook = btrfs_set_bit_hook,
7429 .clear_bit_hook = btrfs_clear_bit_hook,
7430 .merge_extent_hook = btrfs_merge_extent_hook,
7431 .split_extent_hook = btrfs_split_extent_hook,
7435 * btrfs doesn't support the bmap operation because swapfiles
7436 * use bmap to make a mapping of extents in the file. They assume
7437 * these extents won't change over the life of the file and they
7438 * use the bmap result to do IO directly to the drive.
7440 * the btrfs bmap call would return logical addresses that aren't
7441 * suitable for IO and they also will change frequently as COW
7442 * operations happen. So, swapfile + btrfs == corruption.
7444 * For now we're avoiding this by dropping bmap.
7446 static const struct address_space_operations btrfs_aops = {
7447 .readpage = btrfs_readpage,
7448 .writepage = btrfs_writepage,
7449 .writepages = btrfs_writepages,
7450 .readpages = btrfs_readpages,
7451 .sync_page = block_sync_page,
7452 .direct_IO = btrfs_direct_IO,
7453 .invalidatepage = btrfs_invalidatepage,
7454 .releasepage = btrfs_releasepage,
7455 .set_page_dirty = btrfs_set_page_dirty,
7456 .error_remove_page = generic_error_remove_page,
7459 static const struct address_space_operations btrfs_symlink_aops = {
7460 .readpage = btrfs_readpage,
7461 .writepage = btrfs_writepage,
7462 .invalidatepage = btrfs_invalidatepage,
7463 .releasepage = btrfs_releasepage,
7466 static const struct inode_operations btrfs_file_inode_operations = {
7467 .getattr = btrfs_getattr,
7468 .setattr = btrfs_setattr,
7469 .setxattr = btrfs_setxattr,
7470 .getxattr = btrfs_getxattr,
7471 .listxattr = btrfs_listxattr,
7472 .removexattr = btrfs_removexattr,
7473 .permission = btrfs_permission,
7474 .fiemap = btrfs_fiemap,
7476 static const struct inode_operations btrfs_special_inode_operations = {
7477 .getattr = btrfs_getattr,
7478 .setattr = btrfs_setattr,
7479 .permission = btrfs_permission,
7480 .setxattr = btrfs_setxattr,
7481 .getxattr = btrfs_getxattr,
7482 .listxattr = btrfs_listxattr,
7483 .removexattr = btrfs_removexattr,
7485 static const struct inode_operations btrfs_symlink_inode_operations = {
7486 .readlink = generic_readlink,
7487 .follow_link = page_follow_link_light,
7488 .put_link = page_put_link,
7489 .getattr = btrfs_getattr,
7490 .permission = btrfs_permission,
7491 .setxattr = btrfs_setxattr,
7492 .getxattr = btrfs_getxattr,
7493 .listxattr = btrfs_listxattr,
7494 .removexattr = btrfs_removexattr,
7497 const struct dentry_operations btrfs_dentry_operations = {
7498 .d_delete = btrfs_dentry_delete,