x86_64: remove empty lines from stack traces/oopses
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / traps_64.c
blob8b5b3b81d437e72f76a2a90cc6fd43089457a97e
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
13 #include <linux/moduleparam.h>
14 #include <linux/interrupt.h>
15 #include <linux/kallsyms.h>
16 #include <linux/spinlock.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/utsname.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ptrace.h>
24 #include <linux/string.h>
25 #include <linux/unwind.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
34 #include <linux/mm.h>
36 #if defined(CONFIG_EDAC)
37 #include <linux/edac.h>
38 #endif
40 #include <asm/stacktrace.h>
41 #include <asm/processor.h>
42 #include <asm/debugreg.h>
43 #include <asm/atomic.h>
44 #include <asm/system.h>
45 #include <asm/unwind.h>
46 #include <asm/desc.h>
47 #include <asm/i387.h>
48 #include <asm/nmi.h>
49 #include <asm/smp.h>
50 #include <asm/io.h>
51 #include <asm/pgalloc.h>
52 #include <asm/proto.h>
53 #include <asm/pda.h>
54 #include <asm/traps.h>
56 #include <mach_traps.h>
58 int panic_on_unrecovered_nmi;
59 int kstack_depth_to_print = 12;
60 static unsigned int code_bytes = 64;
61 static int ignore_nmis;
62 static int die_counter;
64 static inline void conditional_sti(struct pt_regs *regs)
66 if (regs->flags & X86_EFLAGS_IF)
67 local_irq_enable();
70 static inline void preempt_conditional_sti(struct pt_regs *regs)
72 inc_preempt_count();
73 if (regs->flags & X86_EFLAGS_IF)
74 local_irq_enable();
77 static inline void preempt_conditional_cli(struct pt_regs *regs)
79 if (regs->flags & X86_EFLAGS_IF)
80 local_irq_disable();
81 /* Make sure to not schedule here because we could be running
82 on an exception stack. */
83 dec_preempt_count();
86 void printk_address(unsigned long address, int reliable)
88 printk(" [<%016lx>] %s%pS\n", address, reliable ? "": "? ", (void *) address);
91 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
92 unsigned *usedp, char **idp)
94 static char ids[][8] = {
95 [DEBUG_STACK - 1] = "#DB",
96 [NMI_STACK - 1] = "NMI",
97 [DOUBLEFAULT_STACK - 1] = "#DF",
98 [STACKFAULT_STACK - 1] = "#SS",
99 [MCE_STACK - 1] = "#MC",
100 #if DEBUG_STKSZ > EXCEPTION_STKSZ
101 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
102 #endif
104 unsigned k;
107 * Iterate over all exception stacks, and figure out whether
108 * 'stack' is in one of them:
110 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
111 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
113 * Is 'stack' above this exception frame's end?
114 * If yes then skip to the next frame.
116 if (stack >= end)
117 continue;
119 * Is 'stack' above this exception frame's start address?
120 * If yes then we found the right frame.
122 if (stack >= end - EXCEPTION_STKSZ) {
124 * Make sure we only iterate through an exception
125 * stack once. If it comes up for the second time
126 * then there's something wrong going on - just
127 * break out and return NULL:
129 if (*usedp & (1U << k))
130 break;
131 *usedp |= 1U << k;
132 *idp = ids[k];
133 return (unsigned long *)end;
136 * If this is a debug stack, and if it has a larger size than
137 * the usual exception stacks, then 'stack' might still
138 * be within the lower portion of the debug stack:
140 #if DEBUG_STKSZ > EXCEPTION_STKSZ
141 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
142 unsigned j = N_EXCEPTION_STACKS - 1;
145 * Black magic. A large debug stack is composed of
146 * multiple exception stack entries, which we
147 * iterate through now. Dont look:
149 do {
150 ++j;
151 end -= EXCEPTION_STKSZ;
152 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
153 } while (stack < end - EXCEPTION_STKSZ);
154 if (*usedp & (1U << j))
155 break;
156 *usedp |= 1U << j;
157 *idp = ids[j];
158 return (unsigned long *)end;
160 #endif
162 return NULL;
166 * x86-64 can have up to three kernel stacks:
167 * process stack
168 * interrupt stack
169 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
172 static inline int valid_stack_ptr(struct thread_info *tinfo,
173 void *p, unsigned int size, void *end)
175 void *t = tinfo;
176 if (end) {
177 if (p < end && p >= (end-THREAD_SIZE))
178 return 1;
179 else
180 return 0;
182 return p > t && p < t + THREAD_SIZE - size;
185 /* The form of the top of the frame on the stack */
186 struct stack_frame {
187 struct stack_frame *next_frame;
188 unsigned long return_address;
191 static inline unsigned long
192 print_context_stack(struct thread_info *tinfo,
193 unsigned long *stack, unsigned long bp,
194 const struct stacktrace_ops *ops, void *data,
195 unsigned long *end)
197 struct stack_frame *frame = (struct stack_frame *)bp;
199 while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
200 unsigned long addr;
202 addr = *stack;
203 if (__kernel_text_address(addr)) {
204 if ((unsigned long) stack == bp + 8) {
205 ops->address(data, addr, 1);
206 frame = frame->next_frame;
207 bp = (unsigned long) frame;
208 } else {
209 ops->address(data, addr, bp == 0);
212 stack++;
214 return bp;
217 void dump_trace(struct task_struct *task, struct pt_regs *regs,
218 unsigned long *stack, unsigned long bp,
219 const struct stacktrace_ops *ops, void *data)
221 const unsigned cpu = get_cpu();
222 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
223 unsigned used = 0;
224 struct thread_info *tinfo;
226 if (!task)
227 task = current;
229 if (!stack) {
230 unsigned long dummy;
231 stack = &dummy;
232 if (task && task != current)
233 stack = (unsigned long *)task->thread.sp;
236 #ifdef CONFIG_FRAME_POINTER
237 if (!bp) {
238 if (task == current) {
239 /* Grab bp right from our regs */
240 asm("movq %%rbp, %0" : "=r" (bp) :);
241 } else {
242 /* bp is the last reg pushed by switch_to */
243 bp = *(unsigned long *) task->thread.sp;
246 #endif
249 * Print function call entries in all stacks, starting at the
250 * current stack address. If the stacks consist of nested
251 * exceptions
253 tinfo = task_thread_info(task);
254 for (;;) {
255 char *id;
256 unsigned long *estack_end;
257 estack_end = in_exception_stack(cpu, (unsigned long)stack,
258 &used, &id);
260 if (estack_end) {
261 if (ops->stack(data, id) < 0)
262 break;
264 bp = print_context_stack(tinfo, stack, bp, ops,
265 data, estack_end);
266 ops->stack(data, "<EOE>");
268 * We link to the next stack via the
269 * second-to-last pointer (index -2 to end) in the
270 * exception stack:
272 stack = (unsigned long *) estack_end[-2];
273 continue;
275 if (irqstack_end) {
276 unsigned long *irqstack;
277 irqstack = irqstack_end -
278 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
280 if (stack >= irqstack && stack < irqstack_end) {
281 if (ops->stack(data, "IRQ") < 0)
282 break;
283 bp = print_context_stack(tinfo, stack, bp,
284 ops, data, irqstack_end);
286 * We link to the next stack (which would be
287 * the process stack normally) the last
288 * pointer (index -1 to end) in the IRQ stack:
290 stack = (unsigned long *) (irqstack_end[-1]);
291 irqstack_end = NULL;
292 ops->stack(data, "EOI");
293 continue;
296 break;
300 * This handles the process stack:
302 bp = print_context_stack(tinfo, stack, bp, ops, data, NULL);
303 put_cpu();
305 EXPORT_SYMBOL(dump_trace);
307 static void
308 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
310 print_symbol(msg, symbol);
311 printk("\n");
314 static void print_trace_warning(void *data, char *msg)
316 printk("%s\n", msg);
319 static int print_trace_stack(void *data, char *name)
321 printk(" <%s> ", name);
322 return 0;
325 static void print_trace_address(void *data, unsigned long addr, int reliable)
327 touch_nmi_watchdog();
328 printk_address(addr, reliable);
331 static const struct stacktrace_ops print_trace_ops = {
332 .warning = print_trace_warning,
333 .warning_symbol = print_trace_warning_symbol,
334 .stack = print_trace_stack,
335 .address = print_trace_address,
338 static void
339 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
340 unsigned long *stack, unsigned long bp, char *log_lvl)
342 printk("Call Trace:\n");
343 dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
346 void show_trace(struct task_struct *task, struct pt_regs *regs,
347 unsigned long *stack, unsigned long bp)
349 show_trace_log_lvl(task, regs, stack, bp, "");
352 static void
353 show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
354 unsigned long *sp, unsigned long bp, char *log_lvl)
356 unsigned long *stack;
357 int i;
358 const int cpu = smp_processor_id();
359 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
360 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
362 // debugging aid: "show_stack(NULL, NULL);" prints the
363 // back trace for this cpu.
365 if (sp == NULL) {
366 if (task)
367 sp = (unsigned long *)task->thread.sp;
368 else
369 sp = (unsigned long *)&sp;
372 stack = sp;
373 for (i = 0; i < kstack_depth_to_print; i++) {
374 if (stack >= irqstack && stack <= irqstack_end) {
375 if (stack == irqstack_end) {
376 stack = (unsigned long *) (irqstack_end[-1]);
377 printk(" <EOI> ");
379 } else {
380 if (((long) stack & (THREAD_SIZE-1)) == 0)
381 break;
383 if (i && ((i % 4) == 0))
384 printk("\n");
385 printk(" %016lx", *stack++);
386 touch_nmi_watchdog();
388 printk("\n");
389 show_trace_log_lvl(task, regs, sp, bp, log_lvl);
392 void show_stack(struct task_struct *task, unsigned long *sp)
394 show_stack_log_lvl(task, NULL, sp, 0, "");
398 * The architecture-independent dump_stack generator
400 void dump_stack(void)
402 unsigned long bp = 0;
403 unsigned long stack;
405 #ifdef CONFIG_FRAME_POINTER
406 if (!bp)
407 asm("movq %%rbp, %0" : "=r" (bp):);
408 #endif
410 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
411 current->pid, current->comm, print_tainted(),
412 init_utsname()->release,
413 (int)strcspn(init_utsname()->version, " "),
414 init_utsname()->version);
415 show_trace(NULL, NULL, &stack, bp);
418 EXPORT_SYMBOL(dump_stack);
420 void show_registers(struct pt_regs *regs)
422 int i;
423 unsigned long sp;
424 const int cpu = smp_processor_id();
425 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
427 sp = regs->sp;
428 printk("CPU %d ", cpu);
429 __show_regs(regs);
430 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
431 cur->comm, cur->pid, task_thread_info(cur), cur);
434 * When in-kernel, we also print out the stack and code at the
435 * time of the fault..
437 if (!user_mode(regs)) {
438 unsigned int code_prologue = code_bytes * 43 / 64;
439 unsigned int code_len = code_bytes;
440 unsigned char c;
441 u8 *ip;
443 printk("Stack: ");
444 show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
445 regs->bp, "");
447 printk(KERN_EMERG "Code: ");
449 ip = (u8 *)regs->ip - code_prologue;
450 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
451 /* try starting at RIP */
452 ip = (u8 *)regs->ip;
453 code_len = code_len - code_prologue + 1;
455 for (i = 0; i < code_len; i++, ip++) {
456 if (ip < (u8 *)PAGE_OFFSET ||
457 probe_kernel_address(ip, c)) {
458 printk(" Bad RIP value.");
459 break;
461 if (ip == (u8 *)regs->ip)
462 printk("<%02x> ", c);
463 else
464 printk("%02x ", c);
467 printk("\n");
470 int is_valid_bugaddr(unsigned long ip)
472 unsigned short ud2;
474 if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
475 return 0;
477 return ud2 == 0x0b0f;
480 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
481 static int die_owner = -1;
482 static unsigned int die_nest_count;
484 unsigned __kprobes long oops_begin(void)
486 int cpu;
487 unsigned long flags;
489 oops_enter();
491 /* racy, but better than risking deadlock. */
492 raw_local_irq_save(flags);
493 cpu = smp_processor_id();
494 if (!__raw_spin_trylock(&die_lock)) {
495 if (cpu == die_owner)
496 /* nested oops. should stop eventually */;
497 else
498 __raw_spin_lock(&die_lock);
500 die_nest_count++;
501 die_owner = cpu;
502 console_verbose();
503 bust_spinlocks(1);
504 return flags;
507 void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
509 die_owner = -1;
510 bust_spinlocks(0);
511 die_nest_count--;
512 if (!die_nest_count)
513 /* Nest count reaches zero, release the lock. */
514 __raw_spin_unlock(&die_lock);
515 raw_local_irq_restore(flags);
516 if (!regs) {
517 oops_exit();
518 return;
520 if (panic_on_oops)
521 panic("Fatal exception");
522 oops_exit();
523 do_exit(signr);
526 int __kprobes __die(const char *str, struct pt_regs *regs, long err)
528 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff, ++die_counter);
529 #ifdef CONFIG_PREEMPT
530 printk("PREEMPT ");
531 #endif
532 #ifdef CONFIG_SMP
533 printk("SMP ");
534 #endif
535 #ifdef CONFIG_DEBUG_PAGEALLOC
536 printk("DEBUG_PAGEALLOC");
537 #endif
538 printk("\n");
539 if (notify_die(DIE_OOPS, str, regs, err,
540 current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
541 return 1;
543 show_registers(regs);
544 add_taint(TAINT_DIE);
545 /* Executive summary in case the oops scrolled away */
546 printk(KERN_ALERT "RIP ");
547 printk_address(regs->ip, 1);
548 printk(" RSP <%016lx>\n", regs->sp);
549 if (kexec_should_crash(current))
550 crash_kexec(regs);
551 return 0;
554 void die(const char *str, struct pt_regs *regs, long err)
556 unsigned long flags = oops_begin();
558 if (!user_mode(regs))
559 report_bug(regs->ip, regs);
561 if (__die(str, regs, err))
562 regs = NULL;
563 oops_end(flags, regs, SIGSEGV);
566 notrace __kprobes void
567 die_nmi(char *str, struct pt_regs *regs, int do_panic)
569 unsigned long flags;
571 if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
572 return;
574 flags = oops_begin();
576 * We are in trouble anyway, lets at least try
577 * to get a message out.
579 printk(KERN_EMERG "%s", str);
580 printk(" on CPU%d, ip %08lx, registers:\n",
581 smp_processor_id(), regs->ip);
582 show_registers(regs);
583 if (kexec_should_crash(current))
584 crash_kexec(regs);
585 if (do_panic || panic_on_oops)
586 panic("Non maskable interrupt");
587 oops_end(flags, NULL, SIGBUS);
588 nmi_exit();
589 local_irq_enable();
590 do_exit(SIGBUS);
593 static void __kprobes
594 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
595 long error_code, siginfo_t *info)
597 struct task_struct *tsk = current;
599 if (!user_mode(regs))
600 goto kernel_trap;
603 * We want error_code and trap_no set for userspace faults and
604 * kernelspace faults which result in die(), but not
605 * kernelspace faults which are fixed up. die() gives the
606 * process no chance to handle the signal and notice the
607 * kernel fault information, so that won't result in polluting
608 * the information about previously queued, but not yet
609 * delivered, faults. See also do_general_protection below.
611 tsk->thread.error_code = error_code;
612 tsk->thread.trap_no = trapnr;
614 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
615 printk_ratelimit()) {
616 printk(KERN_INFO
617 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
618 tsk->comm, tsk->pid, str,
619 regs->ip, regs->sp, error_code);
620 print_vma_addr(" in ", regs->ip);
621 printk("\n");
624 if (info)
625 force_sig_info(signr, info, tsk);
626 else
627 force_sig(signr, tsk);
628 return;
630 kernel_trap:
631 if (!fixup_exception(regs)) {
632 tsk->thread.error_code = error_code;
633 tsk->thread.trap_no = trapnr;
634 die(str, regs, error_code);
636 return;
639 #define DO_ERROR(trapnr, signr, str, name) \
640 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
642 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
643 == NOTIFY_STOP) \
644 return; \
645 conditional_sti(regs); \
646 do_trap(trapnr, signr, str, regs, error_code, NULL); \
649 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
650 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
652 siginfo_t info; \
653 info.si_signo = signr; \
654 info.si_errno = 0; \
655 info.si_code = sicode; \
656 info.si_addr = (void __user *)siaddr; \
657 trace_hardirqs_fixup(); \
658 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
659 == NOTIFY_STOP) \
660 return; \
661 conditional_sti(regs); \
662 do_trap(trapnr, signr, str, regs, error_code, &info); \
665 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
666 DO_ERROR(4, SIGSEGV, "overflow", overflow)
667 DO_ERROR(5, SIGSEGV, "bounds", bounds)
668 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
669 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
670 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
671 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
672 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
674 /* Runs on IST stack */
675 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
677 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
678 12, SIGBUS) == NOTIFY_STOP)
679 return;
680 preempt_conditional_sti(regs);
681 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
682 preempt_conditional_cli(regs);
685 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
687 static const char str[] = "double fault";
688 struct task_struct *tsk = current;
690 /* Return not checked because double check cannot be ignored */
691 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
693 tsk->thread.error_code = error_code;
694 tsk->thread.trap_no = 8;
696 /* This is always a kernel trap and never fixable (and thus must
697 never return). */
698 for (;;)
699 die(str, regs, error_code);
702 asmlinkage void __kprobes
703 do_general_protection(struct pt_regs *regs, long error_code)
705 struct task_struct *tsk;
707 conditional_sti(regs);
709 tsk = current;
710 if (!user_mode(regs))
711 goto gp_in_kernel;
713 tsk->thread.error_code = error_code;
714 tsk->thread.trap_no = 13;
716 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
717 printk_ratelimit()) {
718 printk(KERN_INFO
719 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
720 tsk->comm, tsk->pid,
721 regs->ip, regs->sp, error_code);
722 print_vma_addr(" in ", regs->ip);
723 printk("\n");
726 force_sig(SIGSEGV, tsk);
727 return;
729 gp_in_kernel:
730 if (fixup_exception(regs))
731 return;
733 tsk->thread.error_code = error_code;
734 tsk->thread.trap_no = 13;
735 if (notify_die(DIE_GPF, "general protection fault", regs,
736 error_code, 13, SIGSEGV) == NOTIFY_STOP)
737 return;
738 die("general protection fault", regs, error_code);
741 static notrace __kprobes void
742 mem_parity_error(unsigned char reason, struct pt_regs *regs)
744 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
745 reason);
746 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
748 #if defined(CONFIG_EDAC)
749 if (edac_handler_set()) {
750 edac_atomic_assert_error();
751 return;
753 #endif
755 if (panic_on_unrecovered_nmi)
756 panic("NMI: Not continuing");
758 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
760 /* Clear and disable the memory parity error line. */
761 reason = (reason & 0xf) | 4;
762 outb(reason, 0x61);
765 static notrace __kprobes void
766 io_check_error(unsigned char reason, struct pt_regs *regs)
768 printk("NMI: IOCK error (debug interrupt?)\n");
769 show_registers(regs);
771 /* Re-enable the IOCK line, wait for a few seconds */
772 reason = (reason & 0xf) | 8;
773 outb(reason, 0x61);
774 mdelay(2000);
775 reason &= ~8;
776 outb(reason, 0x61);
779 static notrace __kprobes void
780 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
782 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
783 return;
784 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
785 reason);
786 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
788 if (panic_on_unrecovered_nmi)
789 panic("NMI: Not continuing");
791 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
794 /* Runs on IST stack. This code must keep interrupts off all the time.
795 Nested NMIs are prevented by the CPU. */
796 asmlinkage notrace __kprobes void default_do_nmi(struct pt_regs *regs)
798 unsigned char reason = 0;
799 int cpu;
801 cpu = smp_processor_id();
803 /* Only the BSP gets external NMIs from the system. */
804 if (!cpu)
805 reason = get_nmi_reason();
807 if (!(reason & 0xc0)) {
808 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
809 == NOTIFY_STOP)
810 return;
812 * Ok, so this is none of the documented NMI sources,
813 * so it must be the NMI watchdog.
815 if (nmi_watchdog_tick(regs, reason))
816 return;
817 if (!do_nmi_callback(regs, cpu))
818 unknown_nmi_error(reason, regs);
820 return;
822 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
823 return;
825 /* AK: following checks seem to be broken on modern chipsets. FIXME */
826 if (reason & 0x80)
827 mem_parity_error(reason, regs);
828 if (reason & 0x40)
829 io_check_error(reason, regs);
832 asmlinkage notrace __kprobes void
833 do_nmi(struct pt_regs *regs, long error_code)
835 nmi_enter();
837 add_pda(__nmi_count, 1);
839 if (!ignore_nmis)
840 default_do_nmi(regs);
842 nmi_exit();
845 void stop_nmi(void)
847 acpi_nmi_disable();
848 ignore_nmis++;
851 void restart_nmi(void)
853 ignore_nmis--;
854 acpi_nmi_enable();
857 /* runs on IST stack. */
858 asmlinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
860 trace_hardirqs_fixup();
862 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
863 == NOTIFY_STOP)
864 return;
866 preempt_conditional_sti(regs);
867 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
868 preempt_conditional_cli(regs);
871 /* Help handler running on IST stack to switch back to user stack
872 for scheduling or signal handling. The actual stack switch is done in
873 entry.S */
874 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
876 struct pt_regs *regs = eregs;
877 /* Did already sync */
878 if (eregs == (struct pt_regs *)eregs->sp)
880 /* Exception from user space */
881 else if (user_mode(eregs))
882 regs = task_pt_regs(current);
883 /* Exception from kernel and interrupts are enabled. Move to
884 kernel process stack. */
885 else if (eregs->flags & X86_EFLAGS_IF)
886 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
887 if (eregs != regs)
888 *regs = *eregs;
889 return regs;
892 /* runs on IST stack. */
893 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
894 unsigned long error_code)
896 struct task_struct *tsk = current;
897 unsigned long condition;
898 siginfo_t info;
900 trace_hardirqs_fixup();
902 get_debugreg(condition, 6);
905 * The processor cleared BTF, so don't mark that we need it set.
907 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
908 tsk->thread.debugctlmsr = 0;
910 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
911 SIGTRAP) == NOTIFY_STOP)
912 return;
914 preempt_conditional_sti(regs);
916 /* Mask out spurious debug traps due to lazy DR7 setting */
917 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
918 if (!tsk->thread.debugreg7)
919 goto clear_dr7;
922 tsk->thread.debugreg6 = condition;
925 * Single-stepping through TF: make sure we ignore any events in
926 * kernel space (but re-enable TF when returning to user mode).
928 if (condition & DR_STEP) {
929 if (!user_mode(regs))
930 goto clear_TF_reenable;
933 /* Ok, finally something we can handle */
934 tsk->thread.trap_no = 1;
935 tsk->thread.error_code = error_code;
936 info.si_signo = SIGTRAP;
937 info.si_errno = 0;
938 info.si_code = TRAP_BRKPT;
939 info.si_addr = user_mode(regs) ? (void __user *)regs->ip : NULL;
940 force_sig_info(SIGTRAP, &info, tsk);
942 clear_dr7:
943 set_debugreg(0, 7);
944 preempt_conditional_cli(regs);
945 return;
947 clear_TF_reenable:
948 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
949 regs->flags &= ~X86_EFLAGS_TF;
950 preempt_conditional_cli(regs);
951 return;
954 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
956 if (fixup_exception(regs))
957 return 1;
959 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
960 /* Illegal floating point operation in the kernel */
961 current->thread.trap_no = trapnr;
962 die(str, regs, 0);
963 return 0;
967 * Note that we play around with the 'TS' bit in an attempt to get
968 * the correct behaviour even in the presence of the asynchronous
969 * IRQ13 behaviour
971 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
973 void __user *ip = (void __user *)(regs->ip);
974 struct task_struct *task;
975 siginfo_t info;
976 unsigned short cwd, swd;
978 conditional_sti(regs);
979 if (!user_mode(regs) &&
980 kernel_math_error(regs, "kernel x87 math error", 16))
981 return;
984 * Save the info for the exception handler and clear the error.
986 task = current;
987 save_init_fpu(task);
988 task->thread.trap_no = 16;
989 task->thread.error_code = 0;
990 info.si_signo = SIGFPE;
991 info.si_errno = 0;
992 info.si_code = __SI_FAULT;
993 info.si_addr = ip;
995 * (~cwd & swd) will mask out exceptions that are not set to unmasked
996 * status. 0x3f is the exception bits in these regs, 0x200 is the
997 * C1 reg you need in case of a stack fault, 0x040 is the stack
998 * fault bit. We should only be taking one exception at a time,
999 * so if this combination doesn't produce any single exception,
1000 * then we have a bad program that isn't synchronizing its FPU usage
1001 * and it will suffer the consequences since we won't be able to
1002 * fully reproduce the context of the exception
1004 cwd = get_fpu_cwd(task);
1005 swd = get_fpu_swd(task);
1006 switch (swd & ~cwd & 0x3f) {
1007 case 0x000: /* No unmasked exception */
1008 default: /* Multiple exceptions */
1009 break;
1010 case 0x001: /* Invalid Op */
1012 * swd & 0x240 == 0x040: Stack Underflow
1013 * swd & 0x240 == 0x240: Stack Overflow
1014 * User must clear the SF bit (0x40) if set
1016 info.si_code = FPE_FLTINV;
1017 break;
1018 case 0x002: /* Denormalize */
1019 case 0x010: /* Underflow */
1020 info.si_code = FPE_FLTUND;
1021 break;
1022 case 0x004: /* Zero Divide */
1023 info.si_code = FPE_FLTDIV;
1024 break;
1025 case 0x008: /* Overflow */
1026 info.si_code = FPE_FLTOVF;
1027 break;
1028 case 0x020: /* Precision */
1029 info.si_code = FPE_FLTRES;
1030 break;
1032 force_sig_info(SIGFPE, &info, task);
1035 asmlinkage void bad_intr(void)
1037 printk("bad interrupt");
1040 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1042 void __user *ip = (void __user *)(regs->ip);
1043 struct task_struct *task;
1044 siginfo_t info;
1045 unsigned short mxcsr;
1047 conditional_sti(regs);
1048 if (!user_mode(regs) &&
1049 kernel_math_error(regs, "kernel simd math error", 19))
1050 return;
1053 * Save the info for the exception handler and clear the error.
1055 task = current;
1056 save_init_fpu(task);
1057 task->thread.trap_no = 19;
1058 task->thread.error_code = 0;
1059 info.si_signo = SIGFPE;
1060 info.si_errno = 0;
1061 info.si_code = __SI_FAULT;
1062 info.si_addr = ip;
1064 * The SIMD FPU exceptions are handled a little differently, as there
1065 * is only a single status/control register. Thus, to determine which
1066 * unmasked exception was caught we must mask the exception mask bits
1067 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1069 mxcsr = get_fpu_mxcsr(task);
1070 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1071 case 0x000:
1072 default:
1073 break;
1074 case 0x001: /* Invalid Op */
1075 info.si_code = FPE_FLTINV;
1076 break;
1077 case 0x002: /* Denormalize */
1078 case 0x010: /* Underflow */
1079 info.si_code = FPE_FLTUND;
1080 break;
1081 case 0x004: /* Zero Divide */
1082 info.si_code = FPE_FLTDIV;
1083 break;
1084 case 0x008: /* Overflow */
1085 info.si_code = FPE_FLTOVF;
1086 break;
1087 case 0x020: /* Precision */
1088 info.si_code = FPE_FLTRES;
1089 break;
1091 force_sig_info(SIGFPE, &info, task);
1094 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1098 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1102 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1107 * 'math_state_restore()' saves the current math information in the
1108 * old math state array, and gets the new ones from the current task
1110 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1111 * Don't touch unless you *really* know how it works.
1113 asmlinkage void math_state_restore(void)
1115 struct task_struct *me = current;
1117 if (!used_math()) {
1118 local_irq_enable();
1120 * does a slab alloc which can sleep
1122 if (init_fpu(me)) {
1124 * ran out of memory!
1126 do_group_exit(SIGKILL);
1127 return;
1129 local_irq_disable();
1132 clts(); /* Allow maths ops (or we recurse) */
1133 restore_fpu_checking(&me->thread.xstate->fxsave);
1134 task_thread_info(me)->status |= TS_USEDFPU;
1135 me->fpu_counter++;
1137 EXPORT_SYMBOL_GPL(math_state_restore);
1139 void __init trap_init(void)
1141 set_intr_gate(0, &divide_error);
1142 set_intr_gate_ist(1, &debug, DEBUG_STACK);
1143 set_intr_gate_ist(2, &nmi, NMI_STACK);
1144 set_system_gate_ist(3, &int3, DEBUG_STACK); /* int3 can be called from all */
1145 set_system_gate(4, &overflow); /* int4 can be called from all */
1146 set_intr_gate(5, &bounds);
1147 set_intr_gate(6, &invalid_op);
1148 set_intr_gate(7, &device_not_available);
1149 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
1150 set_intr_gate(9, &coprocessor_segment_overrun);
1151 set_intr_gate(10, &invalid_TSS);
1152 set_intr_gate(11, &segment_not_present);
1153 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
1154 set_intr_gate(13, &general_protection);
1155 set_intr_gate(14, &page_fault);
1156 set_intr_gate(15, &spurious_interrupt_bug);
1157 set_intr_gate(16, &coprocessor_error);
1158 set_intr_gate(17, &alignment_check);
1159 #ifdef CONFIG_X86_MCE
1160 set_intr_gate_ist(18, &machine_check, MCE_STACK);
1161 #endif
1162 set_intr_gate(19, &simd_coprocessor_error);
1164 #ifdef CONFIG_IA32_EMULATION
1165 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1166 #endif
1168 * initialize the per thread extended state:
1170 init_thread_xstate();
1172 * Should be a barrier for any external CPU state:
1174 cpu_init();
1177 static int __init oops_setup(char *s)
1179 if (!s)
1180 return -EINVAL;
1181 if (!strcmp(s, "panic"))
1182 panic_on_oops = 1;
1183 return 0;
1185 early_param("oops", oops_setup);
1187 static int __init kstack_setup(char *s)
1189 if (!s)
1190 return -EINVAL;
1191 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1192 return 0;
1194 early_param("kstack", kstack_setup);
1196 static int __init code_bytes_setup(char *s)
1198 code_bytes = simple_strtoul(s, NULL, 0);
1199 if (code_bytes > 8192)
1200 code_bytes = 8192;
1202 return 1;
1204 __setup("code_bytes=", code_bytes_setup);