xfs: Don't wake xfsbufd when idle
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / linux-2.6 / xfs_buf.c
blob18ae3ba8f78ab78af240cb8f2bc9ad4e147636e4
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_ag.h"
40 #include "xfs_dmapi.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46 STATIC int xfsbufd_wakeup(int, gfp_t);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48 static struct shrinker xfs_buf_shake = {
49 .shrink = xfsbufd_wakeup,
50 .seeks = DEFAULT_SEEKS,
53 static struct workqueue_struct *xfslogd_workqueue;
54 struct workqueue_struct *xfsdatad_workqueue;
55 struct workqueue_struct *xfsconvertd_workqueue;
57 #ifdef XFS_BUF_LOCK_TRACKING
58 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
59 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
60 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
61 #else
62 # define XB_SET_OWNER(bp) do { } while (0)
63 # define XB_CLEAR_OWNER(bp) do { } while (0)
64 # define XB_GET_OWNER(bp) do { } while (0)
65 #endif
67 #define xb_to_gfp(flags) \
68 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
69 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71 #define xb_to_km(flags) \
72 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74 #define xfs_buf_allocate(flags) \
75 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
76 #define xfs_buf_deallocate(bp) \
77 kmem_zone_free(xfs_buf_zone, (bp));
80 * Page Region interfaces.
82 * For pages in filesystems where the blocksize is smaller than the
83 * pagesize, we use the page->private field (long) to hold a bitmap
84 * of uptodate regions within the page.
86 * Each such region is "bytes per page / bits per long" bytes long.
88 * NBPPR == number-of-bytes-per-page-region
89 * BTOPR == bytes-to-page-region (rounded up)
90 * BTOPRT == bytes-to-page-region-truncated (rounded down)
92 #if (BITS_PER_LONG == 32)
93 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
94 #elif (BITS_PER_LONG == 64)
95 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
96 #else
97 #error BITS_PER_LONG must be 32 or 64
98 #endif
99 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
100 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
101 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
103 STATIC unsigned long
104 page_region_mask(
105 size_t offset,
106 size_t length)
108 unsigned long mask;
109 int first, final;
111 first = BTOPR(offset);
112 final = BTOPRT(offset + length - 1);
113 first = min(first, final);
115 mask = ~0UL;
116 mask <<= BITS_PER_LONG - (final - first);
117 mask >>= BITS_PER_LONG - (final);
119 ASSERT(offset + length <= PAGE_CACHE_SIZE);
120 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
122 return mask;
125 STATIC void
126 set_page_region(
127 struct page *page,
128 size_t offset,
129 size_t length)
131 set_page_private(page,
132 page_private(page) | page_region_mask(offset, length));
133 if (page_private(page) == ~0UL)
134 SetPageUptodate(page);
137 STATIC int
138 test_page_region(
139 struct page *page,
140 size_t offset,
141 size_t length)
143 unsigned long mask = page_region_mask(offset, length);
145 return (mask && (page_private(page) & mask) == mask);
149 * Mapping of multi-page buffers into contiguous virtual space
152 typedef struct a_list {
153 void *vm_addr;
154 struct a_list *next;
155 } a_list_t;
157 static a_list_t *as_free_head;
158 static int as_list_len;
159 static DEFINE_SPINLOCK(as_lock);
162 * Try to batch vunmaps because they are costly.
164 STATIC void
165 free_address(
166 void *addr)
168 a_list_t *aentry;
170 #ifdef CONFIG_XEN
172 * Xen needs to be able to make sure it can get an exclusive
173 * RO mapping of pages it wants to turn into a pagetable. If
174 * a newly allocated page is also still being vmap()ed by xfs,
175 * it will cause pagetable construction to fail. This is a
176 * quick workaround to always eagerly unmap pages so that Xen
177 * is happy.
179 vunmap(addr);
180 return;
181 #endif
183 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
184 if (likely(aentry)) {
185 spin_lock(&as_lock);
186 aentry->next = as_free_head;
187 aentry->vm_addr = addr;
188 as_free_head = aentry;
189 as_list_len++;
190 spin_unlock(&as_lock);
191 } else {
192 vunmap(addr);
196 STATIC void
197 purge_addresses(void)
199 a_list_t *aentry, *old;
201 if (as_free_head == NULL)
202 return;
204 spin_lock(&as_lock);
205 aentry = as_free_head;
206 as_free_head = NULL;
207 as_list_len = 0;
208 spin_unlock(&as_lock);
210 while ((old = aentry) != NULL) {
211 vunmap(aentry->vm_addr);
212 aentry = aentry->next;
213 kfree(old);
218 * Internal xfs_buf_t object manipulation
221 STATIC void
222 _xfs_buf_initialize(
223 xfs_buf_t *bp,
224 xfs_buftarg_t *target,
225 xfs_off_t range_base,
226 size_t range_length,
227 xfs_buf_flags_t flags)
230 * We don't want certain flags to appear in b_flags.
232 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
234 memset(bp, 0, sizeof(xfs_buf_t));
235 atomic_set(&bp->b_hold, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_list);
238 INIT_LIST_HEAD(&bp->b_hash_list);
239 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
240 XB_SET_OWNER(bp);
241 bp->b_target = target;
242 bp->b_file_offset = range_base;
244 * Set buffer_length and count_desired to the same value initially.
245 * I/O routines should use count_desired, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
248 bp->b_buffer_length = bp->b_count_desired = range_length;
249 bp->b_flags = flags;
250 bp->b_bn = XFS_BUF_DADDR_NULL;
251 atomic_set(&bp->b_pin_count, 0);
252 init_waitqueue_head(&bp->b_waiters);
254 XFS_STATS_INC(xb_create);
256 trace_xfs_buf_init(bp, _RET_IP_);
260 * Allocate a page array capable of holding a specified number
261 * of pages, and point the page buf at it.
263 STATIC int
264 _xfs_buf_get_pages(
265 xfs_buf_t *bp,
266 int page_count,
267 xfs_buf_flags_t flags)
269 /* Make sure that we have a page list */
270 if (bp->b_pages == NULL) {
271 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
272 bp->b_page_count = page_count;
273 if (page_count <= XB_PAGES) {
274 bp->b_pages = bp->b_page_array;
275 } else {
276 bp->b_pages = kmem_alloc(sizeof(struct page *) *
277 page_count, xb_to_km(flags));
278 if (bp->b_pages == NULL)
279 return -ENOMEM;
281 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 return 0;
287 * Frees b_pages if it was allocated.
289 STATIC void
290 _xfs_buf_free_pages(
291 xfs_buf_t *bp)
293 if (bp->b_pages != bp->b_page_array) {
294 kmem_free(bp->b_pages);
295 bp->b_pages = NULL;
300 * Releases the specified buffer.
302 * The modification state of any associated pages is left unchanged.
303 * The buffer most not be on any hash - use xfs_buf_rele instead for
304 * hashed and refcounted buffers
306 void
307 xfs_buf_free(
308 xfs_buf_t *bp)
310 trace_xfs_buf_free(bp, _RET_IP_);
312 ASSERT(list_empty(&bp->b_hash_list));
314 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
315 uint i;
317 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
318 free_address(bp->b_addr - bp->b_offset);
320 for (i = 0; i < bp->b_page_count; i++) {
321 struct page *page = bp->b_pages[i];
323 if (bp->b_flags & _XBF_PAGE_CACHE)
324 ASSERT(!PagePrivate(page));
325 page_cache_release(page);
328 _xfs_buf_free_pages(bp);
329 xfs_buf_deallocate(bp);
333 * Finds all pages for buffer in question and builds it's page list.
335 STATIC int
336 _xfs_buf_lookup_pages(
337 xfs_buf_t *bp,
338 uint flags)
340 struct address_space *mapping = bp->b_target->bt_mapping;
341 size_t blocksize = bp->b_target->bt_bsize;
342 size_t size = bp->b_count_desired;
343 size_t nbytes, offset;
344 gfp_t gfp_mask = xb_to_gfp(flags);
345 unsigned short page_count, i;
346 pgoff_t first;
347 xfs_off_t end;
348 int error;
350 end = bp->b_file_offset + bp->b_buffer_length;
351 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
353 error = _xfs_buf_get_pages(bp, page_count, flags);
354 if (unlikely(error))
355 return error;
356 bp->b_flags |= _XBF_PAGE_CACHE;
358 offset = bp->b_offset;
359 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
361 for (i = 0; i < bp->b_page_count; i++) {
362 struct page *page;
363 uint retries = 0;
365 retry:
366 page = find_or_create_page(mapping, first + i, gfp_mask);
367 if (unlikely(page == NULL)) {
368 if (flags & XBF_READ_AHEAD) {
369 bp->b_page_count = i;
370 for (i = 0; i < bp->b_page_count; i++)
371 unlock_page(bp->b_pages[i]);
372 return -ENOMEM;
376 * This could deadlock.
378 * But until all the XFS lowlevel code is revamped to
379 * handle buffer allocation failures we can't do much.
381 if (!(++retries % 100))
382 printk(KERN_ERR
383 "XFS: possible memory allocation "
384 "deadlock in %s (mode:0x%x)\n",
385 __func__, gfp_mask);
387 XFS_STATS_INC(xb_page_retries);
388 xfsbufd_wakeup(0, gfp_mask);
389 congestion_wait(BLK_RW_ASYNC, HZ/50);
390 goto retry;
393 XFS_STATS_INC(xb_page_found);
395 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
396 size -= nbytes;
398 ASSERT(!PagePrivate(page));
399 if (!PageUptodate(page)) {
400 page_count--;
401 if (blocksize >= PAGE_CACHE_SIZE) {
402 if (flags & XBF_READ)
403 bp->b_flags |= _XBF_PAGE_LOCKED;
404 } else if (!PagePrivate(page)) {
405 if (test_page_region(page, offset, nbytes))
406 page_count++;
410 bp->b_pages[i] = page;
411 offset = 0;
414 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
415 for (i = 0; i < bp->b_page_count; i++)
416 unlock_page(bp->b_pages[i]);
419 if (page_count == bp->b_page_count)
420 bp->b_flags |= XBF_DONE;
422 return error;
426 * Map buffer into kernel address-space if nessecary.
428 STATIC int
429 _xfs_buf_map_pages(
430 xfs_buf_t *bp,
431 uint flags)
433 /* A single page buffer is always mappable */
434 if (bp->b_page_count == 1) {
435 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
436 bp->b_flags |= XBF_MAPPED;
437 } else if (flags & XBF_MAPPED) {
438 if (as_list_len > 64)
439 purge_addresses();
440 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
441 VM_MAP, PAGE_KERNEL);
442 if (unlikely(bp->b_addr == NULL))
443 return -ENOMEM;
444 bp->b_addr += bp->b_offset;
445 bp->b_flags |= XBF_MAPPED;
448 return 0;
452 * Finding and Reading Buffers
456 * Look up, and creates if absent, a lockable buffer for
457 * a given range of an inode. The buffer is returned
458 * locked. If other overlapping buffers exist, they are
459 * released before the new buffer is created and locked,
460 * which may imply that this call will block until those buffers
461 * are unlocked. No I/O is implied by this call.
463 xfs_buf_t *
464 _xfs_buf_find(
465 xfs_buftarg_t *btp, /* block device target */
466 xfs_off_t ioff, /* starting offset of range */
467 size_t isize, /* length of range */
468 xfs_buf_flags_t flags,
469 xfs_buf_t *new_bp)
471 xfs_off_t range_base;
472 size_t range_length;
473 xfs_bufhash_t *hash;
474 xfs_buf_t *bp, *n;
476 range_base = (ioff << BBSHIFT);
477 range_length = (isize << BBSHIFT);
479 /* Check for IOs smaller than the sector size / not sector aligned */
480 ASSERT(!(range_length < (1 << btp->bt_sshift)));
481 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
483 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
485 spin_lock(&hash->bh_lock);
487 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
488 ASSERT(btp == bp->b_target);
489 if (bp->b_file_offset == range_base &&
490 bp->b_buffer_length == range_length) {
492 * If we look at something, bring it to the
493 * front of the list for next time.
495 atomic_inc(&bp->b_hold);
496 list_move(&bp->b_hash_list, &hash->bh_list);
497 goto found;
501 /* No match found */
502 if (new_bp) {
503 _xfs_buf_initialize(new_bp, btp, range_base,
504 range_length, flags);
505 new_bp->b_hash = hash;
506 list_add(&new_bp->b_hash_list, &hash->bh_list);
507 } else {
508 XFS_STATS_INC(xb_miss_locked);
511 spin_unlock(&hash->bh_lock);
512 return new_bp;
514 found:
515 spin_unlock(&hash->bh_lock);
517 /* Attempt to get the semaphore without sleeping,
518 * if this does not work then we need to drop the
519 * spinlock and do a hard attempt on the semaphore.
521 if (down_trylock(&bp->b_sema)) {
522 if (!(flags & XBF_TRYLOCK)) {
523 /* wait for buffer ownership */
524 xfs_buf_lock(bp);
525 XFS_STATS_INC(xb_get_locked_waited);
526 } else {
527 /* We asked for a trylock and failed, no need
528 * to look at file offset and length here, we
529 * know that this buffer at least overlaps our
530 * buffer and is locked, therefore our buffer
531 * either does not exist, or is this buffer.
533 xfs_buf_rele(bp);
534 XFS_STATS_INC(xb_busy_locked);
535 return NULL;
537 } else {
538 /* trylock worked */
539 XB_SET_OWNER(bp);
542 if (bp->b_flags & XBF_STALE) {
543 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
544 bp->b_flags &= XBF_MAPPED;
547 trace_xfs_buf_find(bp, flags, _RET_IP_);
548 XFS_STATS_INC(xb_get_locked);
549 return bp;
553 * Assembles a buffer covering the specified range.
554 * Storage in memory for all portions of the buffer will be allocated,
555 * although backing storage may not be.
557 xfs_buf_t *
558 xfs_buf_get(
559 xfs_buftarg_t *target,/* target for buffer */
560 xfs_off_t ioff, /* starting offset of range */
561 size_t isize, /* length of range */
562 xfs_buf_flags_t flags)
564 xfs_buf_t *bp, *new_bp;
565 int error = 0, i;
567 new_bp = xfs_buf_allocate(flags);
568 if (unlikely(!new_bp))
569 return NULL;
571 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
572 if (bp == new_bp) {
573 error = _xfs_buf_lookup_pages(bp, flags);
574 if (error)
575 goto no_buffer;
576 } else {
577 xfs_buf_deallocate(new_bp);
578 if (unlikely(bp == NULL))
579 return NULL;
582 for (i = 0; i < bp->b_page_count; i++)
583 mark_page_accessed(bp->b_pages[i]);
585 if (!(bp->b_flags & XBF_MAPPED)) {
586 error = _xfs_buf_map_pages(bp, flags);
587 if (unlikely(error)) {
588 printk(KERN_WARNING "%s: failed to map pages\n",
589 __func__);
590 goto no_buffer;
594 XFS_STATS_INC(xb_get);
597 * Always fill in the block number now, the mapped cases can do
598 * their own overlay of this later.
600 bp->b_bn = ioff;
601 bp->b_count_desired = bp->b_buffer_length;
603 trace_xfs_buf_get(bp, flags, _RET_IP_);
604 return bp;
606 no_buffer:
607 if (flags & (XBF_LOCK | XBF_TRYLOCK))
608 xfs_buf_unlock(bp);
609 xfs_buf_rele(bp);
610 return NULL;
613 STATIC int
614 _xfs_buf_read(
615 xfs_buf_t *bp,
616 xfs_buf_flags_t flags)
618 int status;
620 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
621 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
623 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
624 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
625 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
626 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
628 status = xfs_buf_iorequest(bp);
629 if (!status && !(flags & XBF_ASYNC))
630 status = xfs_buf_iowait(bp);
631 return status;
634 xfs_buf_t *
635 xfs_buf_read(
636 xfs_buftarg_t *target,
637 xfs_off_t ioff,
638 size_t isize,
639 xfs_buf_flags_t flags)
641 xfs_buf_t *bp;
643 flags |= XBF_READ;
645 bp = xfs_buf_get(target, ioff, isize, flags);
646 if (bp) {
647 trace_xfs_buf_read(bp, flags, _RET_IP_);
649 if (!XFS_BUF_ISDONE(bp)) {
650 XFS_STATS_INC(xb_get_read);
651 _xfs_buf_read(bp, flags);
652 } else if (flags & XBF_ASYNC) {
654 * Read ahead call which is already satisfied,
655 * drop the buffer
657 goto no_buffer;
658 } else {
659 /* We do not want read in the flags */
660 bp->b_flags &= ~XBF_READ;
664 return bp;
666 no_buffer:
667 if (flags & (XBF_LOCK | XBF_TRYLOCK))
668 xfs_buf_unlock(bp);
669 xfs_buf_rele(bp);
670 return NULL;
674 * If we are not low on memory then do the readahead in a deadlock
675 * safe manner.
677 void
678 xfs_buf_readahead(
679 xfs_buftarg_t *target,
680 xfs_off_t ioff,
681 size_t isize,
682 xfs_buf_flags_t flags)
684 struct backing_dev_info *bdi;
686 bdi = target->bt_mapping->backing_dev_info;
687 if (bdi_read_congested(bdi))
688 return;
690 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
691 xfs_buf_read(target, ioff, isize, flags);
694 xfs_buf_t *
695 xfs_buf_get_empty(
696 size_t len,
697 xfs_buftarg_t *target)
699 xfs_buf_t *bp;
701 bp = xfs_buf_allocate(0);
702 if (bp)
703 _xfs_buf_initialize(bp, target, 0, len, 0);
704 return bp;
707 static inline struct page *
708 mem_to_page(
709 void *addr)
711 if ((!is_vmalloc_addr(addr))) {
712 return virt_to_page(addr);
713 } else {
714 return vmalloc_to_page(addr);
719 xfs_buf_associate_memory(
720 xfs_buf_t *bp,
721 void *mem,
722 size_t len)
724 int rval;
725 int i = 0;
726 unsigned long pageaddr;
727 unsigned long offset;
728 size_t buflen;
729 int page_count;
731 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
732 offset = (unsigned long)mem - pageaddr;
733 buflen = PAGE_CACHE_ALIGN(len + offset);
734 page_count = buflen >> PAGE_CACHE_SHIFT;
736 /* Free any previous set of page pointers */
737 if (bp->b_pages)
738 _xfs_buf_free_pages(bp);
740 bp->b_pages = NULL;
741 bp->b_addr = mem;
743 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
744 if (rval)
745 return rval;
747 bp->b_offset = offset;
749 for (i = 0; i < bp->b_page_count; i++) {
750 bp->b_pages[i] = mem_to_page((void *)pageaddr);
751 pageaddr += PAGE_CACHE_SIZE;
754 bp->b_count_desired = len;
755 bp->b_buffer_length = buflen;
756 bp->b_flags |= XBF_MAPPED;
757 bp->b_flags &= ~_XBF_PAGE_LOCKED;
759 return 0;
762 xfs_buf_t *
763 xfs_buf_get_noaddr(
764 size_t len,
765 xfs_buftarg_t *target)
767 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
768 int error, i;
769 xfs_buf_t *bp;
771 bp = xfs_buf_allocate(0);
772 if (unlikely(bp == NULL))
773 goto fail;
774 _xfs_buf_initialize(bp, target, 0, len, 0);
776 error = _xfs_buf_get_pages(bp, page_count, 0);
777 if (error)
778 goto fail_free_buf;
780 for (i = 0; i < page_count; i++) {
781 bp->b_pages[i] = alloc_page(GFP_KERNEL);
782 if (!bp->b_pages[i])
783 goto fail_free_mem;
785 bp->b_flags |= _XBF_PAGES;
787 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
788 if (unlikely(error)) {
789 printk(KERN_WARNING "%s: failed to map pages\n",
790 __func__);
791 goto fail_free_mem;
794 xfs_buf_unlock(bp);
796 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
797 return bp;
799 fail_free_mem:
800 while (--i >= 0)
801 __free_page(bp->b_pages[i]);
802 _xfs_buf_free_pages(bp);
803 fail_free_buf:
804 xfs_buf_deallocate(bp);
805 fail:
806 return NULL;
810 * Increment reference count on buffer, to hold the buffer concurrently
811 * with another thread which may release (free) the buffer asynchronously.
812 * Must hold the buffer already to call this function.
814 void
815 xfs_buf_hold(
816 xfs_buf_t *bp)
818 trace_xfs_buf_hold(bp, _RET_IP_);
819 atomic_inc(&bp->b_hold);
823 * Releases a hold on the specified buffer. If the
824 * the hold count is 1, calls xfs_buf_free.
826 void
827 xfs_buf_rele(
828 xfs_buf_t *bp)
830 xfs_bufhash_t *hash = bp->b_hash;
832 trace_xfs_buf_rele(bp, _RET_IP_);
834 if (unlikely(!hash)) {
835 ASSERT(!bp->b_relse);
836 if (atomic_dec_and_test(&bp->b_hold))
837 xfs_buf_free(bp);
838 return;
841 ASSERT(atomic_read(&bp->b_hold) > 0);
842 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
843 if (bp->b_relse) {
844 atomic_inc(&bp->b_hold);
845 spin_unlock(&hash->bh_lock);
846 (*(bp->b_relse)) (bp);
847 } else if (bp->b_flags & XBF_FS_MANAGED) {
848 spin_unlock(&hash->bh_lock);
849 } else {
850 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
851 list_del_init(&bp->b_hash_list);
852 spin_unlock(&hash->bh_lock);
853 xfs_buf_free(bp);
860 * Mutual exclusion on buffers. Locking model:
862 * Buffers associated with inodes for which buffer locking
863 * is not enabled are not protected by semaphores, and are
864 * assumed to be exclusively owned by the caller. There is a
865 * spinlock in the buffer, used by the caller when concurrent
866 * access is possible.
870 * Locks a buffer object, if it is not already locked.
871 * Note that this in no way locks the underlying pages, so it is only
872 * useful for synchronizing concurrent use of buffer objects, not for
873 * synchronizing independent access to the underlying pages.
876 xfs_buf_cond_lock(
877 xfs_buf_t *bp)
879 int locked;
881 locked = down_trylock(&bp->b_sema) == 0;
882 if (locked)
883 XB_SET_OWNER(bp);
885 trace_xfs_buf_cond_lock(bp, _RET_IP_);
886 return locked ? 0 : -EBUSY;
890 xfs_buf_lock_value(
891 xfs_buf_t *bp)
893 return bp->b_sema.count;
897 * Locks a buffer object.
898 * Note that this in no way locks the underlying pages, so it is only
899 * useful for synchronizing concurrent use of buffer objects, not for
900 * synchronizing independent access to the underlying pages.
902 void
903 xfs_buf_lock(
904 xfs_buf_t *bp)
906 trace_xfs_buf_lock(bp, _RET_IP_);
908 if (atomic_read(&bp->b_io_remaining))
909 blk_run_address_space(bp->b_target->bt_mapping);
910 down(&bp->b_sema);
911 XB_SET_OWNER(bp);
913 trace_xfs_buf_lock_done(bp, _RET_IP_);
917 * Releases the lock on the buffer object.
918 * If the buffer is marked delwri but is not queued, do so before we
919 * unlock the buffer as we need to set flags correctly. We also need to
920 * take a reference for the delwri queue because the unlocker is going to
921 * drop their's and they don't know we just queued it.
923 void
924 xfs_buf_unlock(
925 xfs_buf_t *bp)
927 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
928 atomic_inc(&bp->b_hold);
929 bp->b_flags |= XBF_ASYNC;
930 xfs_buf_delwri_queue(bp, 0);
933 XB_CLEAR_OWNER(bp);
934 up(&bp->b_sema);
936 trace_xfs_buf_unlock(bp, _RET_IP_);
941 * Pinning Buffer Storage in Memory
942 * Ensure that no attempt to force a buffer to disk will succeed.
944 void
945 xfs_buf_pin(
946 xfs_buf_t *bp)
948 trace_xfs_buf_pin(bp, _RET_IP_);
949 atomic_inc(&bp->b_pin_count);
952 void
953 xfs_buf_unpin(
954 xfs_buf_t *bp)
956 trace_xfs_buf_unpin(bp, _RET_IP_);
958 if (atomic_dec_and_test(&bp->b_pin_count))
959 wake_up_all(&bp->b_waiters);
963 xfs_buf_ispin(
964 xfs_buf_t *bp)
966 return atomic_read(&bp->b_pin_count);
969 STATIC void
970 xfs_buf_wait_unpin(
971 xfs_buf_t *bp)
973 DECLARE_WAITQUEUE (wait, current);
975 if (atomic_read(&bp->b_pin_count) == 0)
976 return;
978 add_wait_queue(&bp->b_waiters, &wait);
979 for (;;) {
980 set_current_state(TASK_UNINTERRUPTIBLE);
981 if (atomic_read(&bp->b_pin_count) == 0)
982 break;
983 if (atomic_read(&bp->b_io_remaining))
984 blk_run_address_space(bp->b_target->bt_mapping);
985 schedule();
987 remove_wait_queue(&bp->b_waiters, &wait);
988 set_current_state(TASK_RUNNING);
992 * Buffer Utility Routines
995 STATIC void
996 xfs_buf_iodone_work(
997 struct work_struct *work)
999 xfs_buf_t *bp =
1000 container_of(work, xfs_buf_t, b_iodone_work);
1003 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1004 * ordered flag and reissue them. Because we can't tell the higher
1005 * layers directly that they should not issue ordered I/O anymore, they
1006 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
1008 if ((bp->b_error == EOPNOTSUPP) &&
1009 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1010 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
1011 bp->b_flags &= ~XBF_ORDERED;
1012 bp->b_flags |= _XFS_BARRIER_FAILED;
1013 xfs_buf_iorequest(bp);
1014 } else if (bp->b_iodone)
1015 (*(bp->b_iodone))(bp);
1016 else if (bp->b_flags & XBF_ASYNC)
1017 xfs_buf_relse(bp);
1020 void
1021 xfs_buf_ioend(
1022 xfs_buf_t *bp,
1023 int schedule)
1025 trace_xfs_buf_iodone(bp, _RET_IP_);
1027 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1028 if (bp->b_error == 0)
1029 bp->b_flags |= XBF_DONE;
1031 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1032 if (schedule) {
1033 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1034 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1035 } else {
1036 xfs_buf_iodone_work(&bp->b_iodone_work);
1038 } else {
1039 complete(&bp->b_iowait);
1043 void
1044 xfs_buf_ioerror(
1045 xfs_buf_t *bp,
1046 int error)
1048 ASSERT(error >= 0 && error <= 0xffff);
1049 bp->b_error = (unsigned short)error;
1050 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1054 xfs_bawrite(
1055 void *mp,
1056 struct xfs_buf *bp)
1058 trace_xfs_buf_bawrite(bp, _RET_IP_);
1060 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
1062 xfs_buf_delwri_dequeue(bp);
1064 bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
1065 bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
1067 bp->b_mount = mp;
1068 bp->b_strat = xfs_bdstrat_cb;
1069 return xfs_bdstrat_cb(bp);
1072 void
1073 xfs_bdwrite(
1074 void *mp,
1075 struct xfs_buf *bp)
1077 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1079 bp->b_strat = xfs_bdstrat_cb;
1080 bp->b_mount = mp;
1082 bp->b_flags &= ~XBF_READ;
1083 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1085 xfs_buf_delwri_queue(bp, 1);
1088 STATIC void
1089 _xfs_buf_ioend(
1090 xfs_buf_t *bp,
1091 int schedule)
1093 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1094 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1095 xfs_buf_ioend(bp, schedule);
1099 STATIC void
1100 xfs_buf_bio_end_io(
1101 struct bio *bio,
1102 int error)
1104 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1105 unsigned int blocksize = bp->b_target->bt_bsize;
1106 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1108 xfs_buf_ioerror(bp, -error);
1110 do {
1111 struct page *page = bvec->bv_page;
1113 ASSERT(!PagePrivate(page));
1114 if (unlikely(bp->b_error)) {
1115 if (bp->b_flags & XBF_READ)
1116 ClearPageUptodate(page);
1117 } else if (blocksize >= PAGE_CACHE_SIZE) {
1118 SetPageUptodate(page);
1119 } else if (!PagePrivate(page) &&
1120 (bp->b_flags & _XBF_PAGE_CACHE)) {
1121 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1124 if (--bvec >= bio->bi_io_vec)
1125 prefetchw(&bvec->bv_page->flags);
1127 if (bp->b_flags & _XBF_PAGE_LOCKED)
1128 unlock_page(page);
1129 } while (bvec >= bio->bi_io_vec);
1131 _xfs_buf_ioend(bp, 1);
1132 bio_put(bio);
1135 STATIC void
1136 _xfs_buf_ioapply(
1137 xfs_buf_t *bp)
1139 int rw, map_i, total_nr_pages, nr_pages;
1140 struct bio *bio;
1141 int offset = bp->b_offset;
1142 int size = bp->b_count_desired;
1143 sector_t sector = bp->b_bn;
1144 unsigned int blocksize = bp->b_target->bt_bsize;
1146 total_nr_pages = bp->b_page_count;
1147 map_i = 0;
1149 if (bp->b_flags & XBF_ORDERED) {
1150 ASSERT(!(bp->b_flags & XBF_READ));
1151 rw = WRITE_BARRIER;
1152 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1153 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1154 bp->b_flags &= ~_XBF_RUN_QUEUES;
1155 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1156 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1157 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1158 bp->b_flags &= ~_XBF_RUN_QUEUES;
1159 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1160 } else {
1161 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1162 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1165 /* Special code path for reading a sub page size buffer in --
1166 * we populate up the whole page, and hence the other metadata
1167 * in the same page. This optimization is only valid when the
1168 * filesystem block size is not smaller than the page size.
1170 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1171 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1172 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1173 (blocksize >= PAGE_CACHE_SIZE)) {
1174 bio = bio_alloc(GFP_NOIO, 1);
1176 bio->bi_bdev = bp->b_target->bt_bdev;
1177 bio->bi_sector = sector - (offset >> BBSHIFT);
1178 bio->bi_end_io = xfs_buf_bio_end_io;
1179 bio->bi_private = bp;
1181 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1182 size = 0;
1184 atomic_inc(&bp->b_io_remaining);
1186 goto submit_io;
1189 next_chunk:
1190 atomic_inc(&bp->b_io_remaining);
1191 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1192 if (nr_pages > total_nr_pages)
1193 nr_pages = total_nr_pages;
1195 bio = bio_alloc(GFP_NOIO, nr_pages);
1196 bio->bi_bdev = bp->b_target->bt_bdev;
1197 bio->bi_sector = sector;
1198 bio->bi_end_io = xfs_buf_bio_end_io;
1199 bio->bi_private = bp;
1201 for (; size && nr_pages; nr_pages--, map_i++) {
1202 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1204 if (nbytes > size)
1205 nbytes = size;
1207 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1208 if (rbytes < nbytes)
1209 break;
1211 offset = 0;
1212 sector += nbytes >> BBSHIFT;
1213 size -= nbytes;
1214 total_nr_pages--;
1217 submit_io:
1218 if (likely(bio->bi_size)) {
1219 submit_bio(rw, bio);
1220 if (size)
1221 goto next_chunk;
1222 } else {
1223 bio_put(bio);
1224 xfs_buf_ioerror(bp, EIO);
1229 xfs_buf_iorequest(
1230 xfs_buf_t *bp)
1232 trace_xfs_buf_iorequest(bp, _RET_IP_);
1234 if (bp->b_flags & XBF_DELWRI) {
1235 xfs_buf_delwri_queue(bp, 1);
1236 return 0;
1239 if (bp->b_flags & XBF_WRITE) {
1240 xfs_buf_wait_unpin(bp);
1243 xfs_buf_hold(bp);
1245 /* Set the count to 1 initially, this will stop an I/O
1246 * completion callout which happens before we have started
1247 * all the I/O from calling xfs_buf_ioend too early.
1249 atomic_set(&bp->b_io_remaining, 1);
1250 _xfs_buf_ioapply(bp);
1251 _xfs_buf_ioend(bp, 0);
1253 xfs_buf_rele(bp);
1254 return 0;
1258 * Waits for I/O to complete on the buffer supplied.
1259 * It returns immediately if no I/O is pending.
1260 * It returns the I/O error code, if any, or 0 if there was no error.
1263 xfs_buf_iowait(
1264 xfs_buf_t *bp)
1266 trace_xfs_buf_iowait(bp, _RET_IP_);
1268 if (atomic_read(&bp->b_io_remaining))
1269 blk_run_address_space(bp->b_target->bt_mapping);
1270 wait_for_completion(&bp->b_iowait);
1272 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1273 return bp->b_error;
1276 xfs_caddr_t
1277 xfs_buf_offset(
1278 xfs_buf_t *bp,
1279 size_t offset)
1281 struct page *page;
1283 if (bp->b_flags & XBF_MAPPED)
1284 return XFS_BUF_PTR(bp) + offset;
1286 offset += bp->b_offset;
1287 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1288 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1292 * Move data into or out of a buffer.
1294 void
1295 xfs_buf_iomove(
1296 xfs_buf_t *bp, /* buffer to process */
1297 size_t boff, /* starting buffer offset */
1298 size_t bsize, /* length to copy */
1299 caddr_t data, /* data address */
1300 xfs_buf_rw_t mode) /* read/write/zero flag */
1302 size_t bend, cpoff, csize;
1303 struct page *page;
1305 bend = boff + bsize;
1306 while (boff < bend) {
1307 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1308 cpoff = xfs_buf_poff(boff + bp->b_offset);
1309 csize = min_t(size_t,
1310 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1312 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1314 switch (mode) {
1315 case XBRW_ZERO:
1316 memset(page_address(page) + cpoff, 0, csize);
1317 break;
1318 case XBRW_READ:
1319 memcpy(data, page_address(page) + cpoff, csize);
1320 break;
1321 case XBRW_WRITE:
1322 memcpy(page_address(page) + cpoff, data, csize);
1325 boff += csize;
1326 data += csize;
1331 * Handling of buffer targets (buftargs).
1335 * Wait for any bufs with callbacks that have been submitted but
1336 * have not yet returned... walk the hash list for the target.
1338 void
1339 xfs_wait_buftarg(
1340 xfs_buftarg_t *btp)
1342 xfs_buf_t *bp, *n;
1343 xfs_bufhash_t *hash;
1344 uint i;
1346 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1347 hash = &btp->bt_hash[i];
1348 again:
1349 spin_lock(&hash->bh_lock);
1350 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1351 ASSERT(btp == bp->b_target);
1352 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1353 spin_unlock(&hash->bh_lock);
1355 * Catch superblock reference count leaks
1356 * immediately
1358 BUG_ON(bp->b_bn == 0);
1359 delay(100);
1360 goto again;
1363 spin_unlock(&hash->bh_lock);
1368 * Allocate buffer hash table for a given target.
1369 * For devices containing metadata (i.e. not the log/realtime devices)
1370 * we need to allocate a much larger hash table.
1372 STATIC void
1373 xfs_alloc_bufhash(
1374 xfs_buftarg_t *btp,
1375 int external)
1377 unsigned int i;
1379 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1380 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1381 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1382 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1383 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1384 spin_lock_init(&btp->bt_hash[i].bh_lock);
1385 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1389 STATIC void
1390 xfs_free_bufhash(
1391 xfs_buftarg_t *btp)
1393 kmem_free(btp->bt_hash);
1394 btp->bt_hash = NULL;
1398 * buftarg list for delwrite queue processing
1400 static LIST_HEAD(xfs_buftarg_list);
1401 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1403 STATIC void
1404 xfs_register_buftarg(
1405 xfs_buftarg_t *btp)
1407 spin_lock(&xfs_buftarg_lock);
1408 list_add(&btp->bt_list, &xfs_buftarg_list);
1409 spin_unlock(&xfs_buftarg_lock);
1412 STATIC void
1413 xfs_unregister_buftarg(
1414 xfs_buftarg_t *btp)
1416 spin_lock(&xfs_buftarg_lock);
1417 list_del(&btp->bt_list);
1418 spin_unlock(&xfs_buftarg_lock);
1421 void
1422 xfs_free_buftarg(
1423 struct xfs_mount *mp,
1424 struct xfs_buftarg *btp)
1426 xfs_flush_buftarg(btp, 1);
1427 if (mp->m_flags & XFS_MOUNT_BARRIER)
1428 xfs_blkdev_issue_flush(btp);
1429 xfs_free_bufhash(btp);
1430 iput(btp->bt_mapping->host);
1432 /* Unregister the buftarg first so that we don't get a
1433 * wakeup finding a non-existent task
1435 xfs_unregister_buftarg(btp);
1436 kthread_stop(btp->bt_task);
1438 kmem_free(btp);
1441 STATIC int
1442 xfs_setsize_buftarg_flags(
1443 xfs_buftarg_t *btp,
1444 unsigned int blocksize,
1445 unsigned int sectorsize,
1446 int verbose)
1448 btp->bt_bsize = blocksize;
1449 btp->bt_sshift = ffs(sectorsize) - 1;
1450 btp->bt_smask = sectorsize - 1;
1452 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1453 printk(KERN_WARNING
1454 "XFS: Cannot set_blocksize to %u on device %s\n",
1455 sectorsize, XFS_BUFTARG_NAME(btp));
1456 return EINVAL;
1459 if (verbose &&
1460 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1461 printk(KERN_WARNING
1462 "XFS: %u byte sectors in use on device %s. "
1463 "This is suboptimal; %u or greater is ideal.\n",
1464 sectorsize, XFS_BUFTARG_NAME(btp),
1465 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1468 return 0;
1472 * When allocating the initial buffer target we have not yet
1473 * read in the superblock, so don't know what sized sectors
1474 * are being used is at this early stage. Play safe.
1476 STATIC int
1477 xfs_setsize_buftarg_early(
1478 xfs_buftarg_t *btp,
1479 struct block_device *bdev)
1481 return xfs_setsize_buftarg_flags(btp,
1482 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1486 xfs_setsize_buftarg(
1487 xfs_buftarg_t *btp,
1488 unsigned int blocksize,
1489 unsigned int sectorsize)
1491 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1494 STATIC int
1495 xfs_mapping_buftarg(
1496 xfs_buftarg_t *btp,
1497 struct block_device *bdev)
1499 struct backing_dev_info *bdi;
1500 struct inode *inode;
1501 struct address_space *mapping;
1502 static const struct address_space_operations mapping_aops = {
1503 .sync_page = block_sync_page,
1504 .migratepage = fail_migrate_page,
1507 inode = new_inode(bdev->bd_inode->i_sb);
1508 if (!inode) {
1509 printk(KERN_WARNING
1510 "XFS: Cannot allocate mapping inode for device %s\n",
1511 XFS_BUFTARG_NAME(btp));
1512 return ENOMEM;
1514 inode->i_mode = S_IFBLK;
1515 inode->i_bdev = bdev;
1516 inode->i_rdev = bdev->bd_dev;
1517 bdi = blk_get_backing_dev_info(bdev);
1518 if (!bdi)
1519 bdi = &default_backing_dev_info;
1520 mapping = &inode->i_data;
1521 mapping->a_ops = &mapping_aops;
1522 mapping->backing_dev_info = bdi;
1523 mapping_set_gfp_mask(mapping, GFP_NOFS);
1524 btp->bt_mapping = mapping;
1525 return 0;
1528 STATIC int
1529 xfs_alloc_delwrite_queue(
1530 xfs_buftarg_t *btp)
1532 int error = 0;
1534 INIT_LIST_HEAD(&btp->bt_list);
1535 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1536 spin_lock_init(&btp->bt_delwrite_lock);
1537 btp->bt_flags = 0;
1538 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1539 if (IS_ERR(btp->bt_task)) {
1540 error = PTR_ERR(btp->bt_task);
1541 goto out_error;
1543 xfs_register_buftarg(btp);
1544 out_error:
1545 return error;
1548 xfs_buftarg_t *
1549 xfs_alloc_buftarg(
1550 struct block_device *bdev,
1551 int external)
1553 xfs_buftarg_t *btp;
1555 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1557 btp->bt_dev = bdev->bd_dev;
1558 btp->bt_bdev = bdev;
1559 if (xfs_setsize_buftarg_early(btp, bdev))
1560 goto error;
1561 if (xfs_mapping_buftarg(btp, bdev))
1562 goto error;
1563 if (xfs_alloc_delwrite_queue(btp))
1564 goto error;
1565 xfs_alloc_bufhash(btp, external);
1566 return btp;
1568 error:
1569 kmem_free(btp);
1570 return NULL;
1575 * Delayed write buffer handling
1577 STATIC void
1578 xfs_buf_delwri_queue(
1579 xfs_buf_t *bp,
1580 int unlock)
1582 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1583 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1585 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1587 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1589 spin_lock(dwlk);
1590 /* If already in the queue, dequeue and place at tail */
1591 if (!list_empty(&bp->b_list)) {
1592 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1593 if (unlock)
1594 atomic_dec(&bp->b_hold);
1595 list_del(&bp->b_list);
1598 if (list_empty(dwq)) {
1599 /* start xfsbufd as it is about to have something to do */
1600 wake_up_process(bp->b_target->bt_task);
1603 bp->b_flags |= _XBF_DELWRI_Q;
1604 list_add_tail(&bp->b_list, dwq);
1605 bp->b_queuetime = jiffies;
1606 spin_unlock(dwlk);
1608 if (unlock)
1609 xfs_buf_unlock(bp);
1612 void
1613 xfs_buf_delwri_dequeue(
1614 xfs_buf_t *bp)
1616 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1617 int dequeued = 0;
1619 spin_lock(dwlk);
1620 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1621 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1622 list_del_init(&bp->b_list);
1623 dequeued = 1;
1625 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1626 spin_unlock(dwlk);
1628 if (dequeued)
1629 xfs_buf_rele(bp);
1631 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1634 STATIC void
1635 xfs_buf_runall_queues(
1636 struct workqueue_struct *queue)
1638 flush_workqueue(queue);
1641 STATIC int
1642 xfsbufd_wakeup(
1643 int priority,
1644 gfp_t mask)
1646 xfs_buftarg_t *btp;
1648 spin_lock(&xfs_buftarg_lock);
1649 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1650 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1651 continue;
1652 if (list_empty(&btp->bt_delwrite_queue))
1653 continue;
1654 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1655 wake_up_process(btp->bt_task);
1657 spin_unlock(&xfs_buftarg_lock);
1658 return 0;
1662 * Move as many buffers as specified to the supplied list
1663 * idicating if we skipped any buffers to prevent deadlocks.
1665 STATIC int
1666 xfs_buf_delwri_split(
1667 xfs_buftarg_t *target,
1668 struct list_head *list,
1669 unsigned long age)
1671 xfs_buf_t *bp, *n;
1672 struct list_head *dwq = &target->bt_delwrite_queue;
1673 spinlock_t *dwlk = &target->bt_delwrite_lock;
1674 int skipped = 0;
1675 int force;
1677 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1678 INIT_LIST_HEAD(list);
1679 spin_lock(dwlk);
1680 list_for_each_entry_safe(bp, n, dwq, b_list) {
1681 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1682 ASSERT(bp->b_flags & XBF_DELWRI);
1684 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1685 if (!force &&
1686 time_before(jiffies, bp->b_queuetime + age)) {
1687 xfs_buf_unlock(bp);
1688 break;
1691 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1692 _XBF_RUN_QUEUES);
1693 bp->b_flags |= XBF_WRITE;
1694 list_move_tail(&bp->b_list, list);
1695 } else
1696 skipped++;
1698 spin_unlock(dwlk);
1700 return skipped;
1704 STATIC int
1705 xfsbufd(
1706 void *data)
1708 struct list_head tmp;
1709 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1710 int count;
1711 xfs_buf_t *bp;
1713 current->flags |= PF_MEMALLOC;
1715 set_freezable();
1717 do {
1718 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1719 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1721 if (unlikely(freezing(current))) {
1722 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1723 refrigerator();
1724 } else {
1725 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1728 /* sleep for a long time if there is nothing to do. */
1729 if (list_empty(&target->bt_delwrite_queue))
1730 tout = MAX_SCHEDULE_TIMEOUT;
1731 schedule_timeout_interruptible(tout);
1733 xfs_buf_delwri_split(target, &tmp, age);
1734 count = 0;
1735 while (!list_empty(&tmp)) {
1736 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1737 ASSERT(target == bp->b_target);
1739 list_del_init(&bp->b_list);
1740 xfs_buf_iostrategy(bp);
1741 count++;
1744 if (as_list_len > 0)
1745 purge_addresses();
1746 if (count)
1747 blk_run_address_space(target->bt_mapping);
1749 } while (!kthread_should_stop());
1751 return 0;
1755 * Go through all incore buffers, and release buffers if they belong to
1756 * the given device. This is used in filesystem error handling to
1757 * preserve the consistency of its metadata.
1760 xfs_flush_buftarg(
1761 xfs_buftarg_t *target,
1762 int wait)
1764 struct list_head tmp;
1765 xfs_buf_t *bp, *n;
1766 int pincount = 0;
1768 xfs_buf_runall_queues(xfsconvertd_workqueue);
1769 xfs_buf_runall_queues(xfsdatad_workqueue);
1770 xfs_buf_runall_queues(xfslogd_workqueue);
1772 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1773 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1776 * Dropped the delayed write list lock, now walk the temporary list
1778 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1779 ASSERT(target == bp->b_target);
1780 if (wait)
1781 bp->b_flags &= ~XBF_ASYNC;
1782 else
1783 list_del_init(&bp->b_list);
1785 xfs_buf_iostrategy(bp);
1788 if (wait)
1789 blk_run_address_space(target->bt_mapping);
1792 * Remaining list items must be flushed before returning
1794 while (!list_empty(&tmp)) {
1795 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1797 list_del_init(&bp->b_list);
1798 xfs_iowait(bp);
1799 xfs_buf_relse(bp);
1802 return pincount;
1805 int __init
1806 xfs_buf_init(void)
1808 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1809 KM_ZONE_HWALIGN, NULL);
1810 if (!xfs_buf_zone)
1811 goto out;
1813 xfslogd_workqueue = create_workqueue("xfslogd");
1814 if (!xfslogd_workqueue)
1815 goto out_free_buf_zone;
1817 xfsdatad_workqueue = create_workqueue("xfsdatad");
1818 if (!xfsdatad_workqueue)
1819 goto out_destroy_xfslogd_workqueue;
1821 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1822 if (!xfsconvertd_workqueue)
1823 goto out_destroy_xfsdatad_workqueue;
1825 register_shrinker(&xfs_buf_shake);
1826 return 0;
1828 out_destroy_xfsdatad_workqueue:
1829 destroy_workqueue(xfsdatad_workqueue);
1830 out_destroy_xfslogd_workqueue:
1831 destroy_workqueue(xfslogd_workqueue);
1832 out_free_buf_zone:
1833 kmem_zone_destroy(xfs_buf_zone);
1834 out:
1835 return -ENOMEM;
1838 void
1839 xfs_buf_terminate(void)
1841 unregister_shrinker(&xfs_buf_shake);
1842 destroy_workqueue(xfsconvertd_workqueue);
1843 destroy_workqueue(xfsdatad_workqueue);
1844 destroy_workqueue(xfslogd_workqueue);
1845 kmem_zone_destroy(xfs_buf_zone);
1848 #ifdef CONFIG_KDB_MODULES
1849 struct list_head *
1850 xfs_get_buftarg_list(void)
1852 return &xfs_buftarg_list;
1854 #endif