block: Initialize ->queue_lock to internal lock at queue allocation time
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-settings.c
blobdf649fa59ded224567387a0f34b6adfa7a1d0966
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
15 #include "blk.h"
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
20 unsigned long blk_max_pfn;
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 q->prep_rq_fn = pfn;
37 EXPORT_SYMBOL(blk_queue_prep_rq);
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 q->unprep_rq_fn = ufn;
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
56 /**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q: queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
74 q->merge_bvec_fn = mbfn;
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
80 q->softirq_done_fn = fn;
82 EXPORT_SYMBOL(blk_queue_softirq_done);
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
86 q->rq_timeout = timeout;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
92 q->rq_timed_out_fn = fn;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
98 q->lld_busy_fn = fn;
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
106 * Description:
107 * Returns a queue_limit struct to its default state. Can be used by
108 * stacking drivers like DM that stage table swaps and reuse an
109 * existing device queue.
111 void blk_set_default_limits(struct queue_limits *lim)
113 lim->max_segments = BLK_MAX_SEGMENTS;
114 lim->max_integrity_segments = 0;
115 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 lim->max_sectors = BLK_DEF_MAX_SECTORS;
118 lim->max_hw_sectors = INT_MAX;
119 lim->max_discard_sectors = 0;
120 lim->discard_granularity = 0;
121 lim->discard_alignment = 0;
122 lim->discard_misaligned = 0;
123 lim->discard_zeroes_data = -1;
124 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 lim->alignment_offset = 0;
127 lim->io_opt = 0;
128 lim->misaligned = 0;
129 lim->cluster = 1;
131 EXPORT_SYMBOL(blk_set_default_limits);
134 * blk_queue_make_request - define an alternate make_request function for a device
135 * @q: the request queue for the device to be affected
136 * @mfn: the alternate make_request function
138 * Description:
139 * The normal way for &struct bios to be passed to a device
140 * driver is for them to be collected into requests on a request
141 * queue, and then to allow the device driver to select requests
142 * off that queue when it is ready. This works well for many block
143 * devices. However some block devices (typically virtual devices
144 * such as md or lvm) do not benefit from the processing on the
145 * request queue, and are served best by having the requests passed
146 * directly to them. This can be achieved by providing a function
147 * to blk_queue_make_request().
149 * Caveat:
150 * The driver that does this *must* be able to deal appropriately
151 * with buffers in "highmemory". This can be accomplished by either calling
152 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153 * blk_queue_bounce() to create a buffer in normal memory.
155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
158 * set defaults
160 q->nr_requests = BLKDEV_MAX_RQ;
162 q->make_request_fn = mfn;
163 blk_queue_dma_alignment(q, 511);
164 blk_queue_congestion_threshold(q);
165 q->nr_batching = BLK_BATCH_REQ;
167 q->unplug_thresh = 4; /* hmm */
168 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
169 if (q->unplug_delay == 0)
170 q->unplug_delay = 1;
172 q->unplug_timer.function = blk_unplug_timeout;
173 q->unplug_timer.data = (unsigned long)q;
175 blk_set_default_limits(&q->limits);
176 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
179 * by default assume old behaviour and bounce for any highmem page
181 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
183 EXPORT_SYMBOL(blk_queue_make_request);
186 * blk_queue_bounce_limit - set bounce buffer limit for queue
187 * @q: the request queue for the device
188 * @dma_mask: the maximum address the device can handle
190 * Description:
191 * Different hardware can have different requirements as to what pages
192 * it can do I/O directly to. A low level driver can call
193 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
194 * buffers for doing I/O to pages residing above @dma_mask.
196 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
198 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
199 int dma = 0;
201 q->bounce_gfp = GFP_NOIO;
202 #if BITS_PER_LONG == 64
204 * Assume anything <= 4GB can be handled by IOMMU. Actually
205 * some IOMMUs can handle everything, but I don't know of a
206 * way to test this here.
208 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
209 dma = 1;
210 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
211 #else
212 if (b_pfn < blk_max_low_pfn)
213 dma = 1;
214 q->limits.bounce_pfn = b_pfn;
215 #endif
216 if (dma) {
217 init_emergency_isa_pool();
218 q->bounce_gfp = GFP_NOIO | GFP_DMA;
219 q->limits.bounce_pfn = b_pfn;
222 EXPORT_SYMBOL(blk_queue_bounce_limit);
225 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
226 * @limits: the queue limits
227 * @max_hw_sectors: max hardware sectors in the usual 512b unit
229 * Description:
230 * Enables a low level driver to set a hard upper limit,
231 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
232 * the device driver based upon the combined capabilities of I/O
233 * controller and storage device.
235 * max_sectors is a soft limit imposed by the block layer for
236 * filesystem type requests. This value can be overridden on a
237 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
238 * The soft limit can not exceed max_hw_sectors.
240 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
242 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
243 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
244 printk(KERN_INFO "%s: set to minimum %d\n",
245 __func__, max_hw_sectors);
248 limits->max_hw_sectors = max_hw_sectors;
249 limits->max_sectors = min_t(unsigned int, max_hw_sectors,
250 BLK_DEF_MAX_SECTORS);
252 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
255 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
256 * @q: the request queue for the device
257 * @max_hw_sectors: max hardware sectors in the usual 512b unit
259 * Description:
260 * See description for blk_limits_max_hw_sectors().
262 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
264 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
266 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
269 * blk_queue_max_discard_sectors - set max sectors for a single discard
270 * @q: the request queue for the device
271 * @max_discard_sectors: maximum number of sectors to discard
273 void blk_queue_max_discard_sectors(struct request_queue *q,
274 unsigned int max_discard_sectors)
276 q->limits.max_discard_sectors = max_discard_sectors;
278 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
281 * blk_queue_max_segments - set max hw segments for a request for this queue
282 * @q: the request queue for the device
283 * @max_segments: max number of segments
285 * Description:
286 * Enables a low level driver to set an upper limit on the number of
287 * hw data segments in a request.
289 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
291 if (!max_segments) {
292 max_segments = 1;
293 printk(KERN_INFO "%s: set to minimum %d\n",
294 __func__, max_segments);
297 q->limits.max_segments = max_segments;
299 EXPORT_SYMBOL(blk_queue_max_segments);
302 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
303 * @q: the request queue for the device
304 * @max_size: max size of segment in bytes
306 * Description:
307 * Enables a low level driver to set an upper limit on the size of a
308 * coalesced segment
310 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
312 if (max_size < PAGE_CACHE_SIZE) {
313 max_size = PAGE_CACHE_SIZE;
314 printk(KERN_INFO "%s: set to minimum %d\n",
315 __func__, max_size);
318 q->limits.max_segment_size = max_size;
320 EXPORT_SYMBOL(blk_queue_max_segment_size);
323 * blk_queue_logical_block_size - set logical block size for the queue
324 * @q: the request queue for the device
325 * @size: the logical block size, in bytes
327 * Description:
328 * This should be set to the lowest possible block size that the
329 * storage device can address. The default of 512 covers most
330 * hardware.
332 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
334 q->limits.logical_block_size = size;
336 if (q->limits.physical_block_size < size)
337 q->limits.physical_block_size = size;
339 if (q->limits.io_min < q->limits.physical_block_size)
340 q->limits.io_min = q->limits.physical_block_size;
342 EXPORT_SYMBOL(blk_queue_logical_block_size);
345 * blk_queue_physical_block_size - set physical block size for the queue
346 * @q: the request queue for the device
347 * @size: the physical block size, in bytes
349 * Description:
350 * This should be set to the lowest possible sector size that the
351 * hardware can operate on without reverting to read-modify-write
352 * operations.
354 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
356 q->limits.physical_block_size = size;
358 if (q->limits.physical_block_size < q->limits.logical_block_size)
359 q->limits.physical_block_size = q->limits.logical_block_size;
361 if (q->limits.io_min < q->limits.physical_block_size)
362 q->limits.io_min = q->limits.physical_block_size;
364 EXPORT_SYMBOL(blk_queue_physical_block_size);
367 * blk_queue_alignment_offset - set physical block alignment offset
368 * @q: the request queue for the device
369 * @offset: alignment offset in bytes
371 * Description:
372 * Some devices are naturally misaligned to compensate for things like
373 * the legacy DOS partition table 63-sector offset. Low-level drivers
374 * should call this function for devices whose first sector is not
375 * naturally aligned.
377 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
379 q->limits.alignment_offset =
380 offset & (q->limits.physical_block_size - 1);
381 q->limits.misaligned = 0;
383 EXPORT_SYMBOL(blk_queue_alignment_offset);
386 * blk_limits_io_min - set minimum request size for a device
387 * @limits: the queue limits
388 * @min: smallest I/O size in bytes
390 * Description:
391 * Some devices have an internal block size bigger than the reported
392 * hardware sector size. This function can be used to signal the
393 * smallest I/O the device can perform without incurring a performance
394 * penalty.
396 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
398 limits->io_min = min;
400 if (limits->io_min < limits->logical_block_size)
401 limits->io_min = limits->logical_block_size;
403 if (limits->io_min < limits->physical_block_size)
404 limits->io_min = limits->physical_block_size;
406 EXPORT_SYMBOL(blk_limits_io_min);
409 * blk_queue_io_min - set minimum request size for the queue
410 * @q: the request queue for the device
411 * @min: smallest I/O size in bytes
413 * Description:
414 * Storage devices may report a granularity or preferred minimum I/O
415 * size which is the smallest request the device can perform without
416 * incurring a performance penalty. For disk drives this is often the
417 * physical block size. For RAID arrays it is often the stripe chunk
418 * size. A properly aligned multiple of minimum_io_size is the
419 * preferred request size for workloads where a high number of I/O
420 * operations is desired.
422 void blk_queue_io_min(struct request_queue *q, unsigned int min)
424 blk_limits_io_min(&q->limits, min);
426 EXPORT_SYMBOL(blk_queue_io_min);
429 * blk_limits_io_opt - set optimal request size for a device
430 * @limits: the queue limits
431 * @opt: smallest I/O size in bytes
433 * Description:
434 * Storage devices may report an optimal I/O size, which is the
435 * device's preferred unit for sustained I/O. This is rarely reported
436 * for disk drives. For RAID arrays it is usually the stripe width or
437 * the internal track size. A properly aligned multiple of
438 * optimal_io_size is the preferred request size for workloads where
439 * sustained throughput is desired.
441 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
443 limits->io_opt = opt;
445 EXPORT_SYMBOL(blk_limits_io_opt);
448 * blk_queue_io_opt - set optimal request size for the queue
449 * @q: the request queue for the device
450 * @opt: optimal request size in bytes
452 * Description:
453 * Storage devices may report an optimal I/O size, which is the
454 * device's preferred unit for sustained I/O. This is rarely reported
455 * for disk drives. For RAID arrays it is usually the stripe width or
456 * the internal track size. A properly aligned multiple of
457 * optimal_io_size is the preferred request size for workloads where
458 * sustained throughput is desired.
460 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
462 blk_limits_io_opt(&q->limits, opt);
464 EXPORT_SYMBOL(blk_queue_io_opt);
467 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
468 * @t: the stacking driver (top)
469 * @b: the underlying device (bottom)
471 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
473 blk_stack_limits(&t->limits, &b->limits, 0);
475 EXPORT_SYMBOL(blk_queue_stack_limits);
478 * blk_stack_limits - adjust queue_limits for stacked devices
479 * @t: the stacking driver limits (top device)
480 * @b: the underlying queue limits (bottom, component device)
481 * @start: first data sector within component device
483 * Description:
484 * This function is used by stacking drivers like MD and DM to ensure
485 * that all component devices have compatible block sizes and
486 * alignments. The stacking driver must provide a queue_limits
487 * struct (top) and then iteratively call the stacking function for
488 * all component (bottom) devices. The stacking function will
489 * attempt to combine the values and ensure proper alignment.
491 * Returns 0 if the top and bottom queue_limits are compatible. The
492 * top device's block sizes and alignment offsets may be adjusted to
493 * ensure alignment with the bottom device. If no compatible sizes
494 * and alignments exist, -1 is returned and the resulting top
495 * queue_limits will have the misaligned flag set to indicate that
496 * the alignment_offset is undefined.
498 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
499 sector_t start)
501 unsigned int top, bottom, alignment, ret = 0;
503 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
504 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
505 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
507 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
508 b->seg_boundary_mask);
510 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
511 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
512 b->max_integrity_segments);
514 t->max_segment_size = min_not_zero(t->max_segment_size,
515 b->max_segment_size);
517 t->misaligned |= b->misaligned;
519 alignment = queue_limit_alignment_offset(b, start);
521 /* Bottom device has different alignment. Check that it is
522 * compatible with the current top alignment.
524 if (t->alignment_offset != alignment) {
526 top = max(t->physical_block_size, t->io_min)
527 + t->alignment_offset;
528 bottom = max(b->physical_block_size, b->io_min) + alignment;
530 /* Verify that top and bottom intervals line up */
531 if (max(top, bottom) & (min(top, bottom) - 1)) {
532 t->misaligned = 1;
533 ret = -1;
537 t->logical_block_size = max(t->logical_block_size,
538 b->logical_block_size);
540 t->physical_block_size = max(t->physical_block_size,
541 b->physical_block_size);
543 t->io_min = max(t->io_min, b->io_min);
544 t->io_opt = lcm(t->io_opt, b->io_opt);
546 t->cluster &= b->cluster;
547 t->discard_zeroes_data &= b->discard_zeroes_data;
549 /* Physical block size a multiple of the logical block size? */
550 if (t->physical_block_size & (t->logical_block_size - 1)) {
551 t->physical_block_size = t->logical_block_size;
552 t->misaligned = 1;
553 ret = -1;
556 /* Minimum I/O a multiple of the physical block size? */
557 if (t->io_min & (t->physical_block_size - 1)) {
558 t->io_min = t->physical_block_size;
559 t->misaligned = 1;
560 ret = -1;
563 /* Optimal I/O a multiple of the physical block size? */
564 if (t->io_opt & (t->physical_block_size - 1)) {
565 t->io_opt = 0;
566 t->misaligned = 1;
567 ret = -1;
570 /* Find lowest common alignment_offset */
571 t->alignment_offset = lcm(t->alignment_offset, alignment)
572 & (max(t->physical_block_size, t->io_min) - 1);
574 /* Verify that new alignment_offset is on a logical block boundary */
575 if (t->alignment_offset & (t->logical_block_size - 1)) {
576 t->misaligned = 1;
577 ret = -1;
580 /* Discard alignment and granularity */
581 if (b->discard_granularity) {
582 alignment = queue_limit_discard_alignment(b, start);
584 if (t->discard_granularity != 0 &&
585 t->discard_alignment != alignment) {
586 top = t->discard_granularity + t->discard_alignment;
587 bottom = b->discard_granularity + alignment;
589 /* Verify that top and bottom intervals line up */
590 if (max(top, bottom) & (min(top, bottom) - 1))
591 t->discard_misaligned = 1;
594 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
595 b->max_discard_sectors);
596 t->discard_granularity = max(t->discard_granularity,
597 b->discard_granularity);
598 t->discard_alignment = lcm(t->discard_alignment, alignment) &
599 (t->discard_granularity - 1);
602 return ret;
604 EXPORT_SYMBOL(blk_stack_limits);
607 * bdev_stack_limits - adjust queue limits for stacked drivers
608 * @t: the stacking driver limits (top device)
609 * @bdev: the component block_device (bottom)
610 * @start: first data sector within component device
612 * Description:
613 * Merges queue limits for a top device and a block_device. Returns
614 * 0 if alignment didn't change. Returns -1 if adding the bottom
615 * device caused misalignment.
617 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
618 sector_t start)
620 struct request_queue *bq = bdev_get_queue(bdev);
622 start += get_start_sect(bdev);
624 return blk_stack_limits(t, &bq->limits, start);
626 EXPORT_SYMBOL(bdev_stack_limits);
629 * disk_stack_limits - adjust queue limits for stacked drivers
630 * @disk: MD/DM gendisk (top)
631 * @bdev: the underlying block device (bottom)
632 * @offset: offset to beginning of data within component device
634 * Description:
635 * Merges the limits for a top level gendisk and a bottom level
636 * block_device.
638 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
639 sector_t offset)
641 struct request_queue *t = disk->queue;
643 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
644 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
646 disk_name(disk, 0, top);
647 bdevname(bdev, bottom);
649 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
650 top, bottom);
653 EXPORT_SYMBOL(disk_stack_limits);
656 * blk_queue_dma_pad - set pad mask
657 * @q: the request queue for the device
658 * @mask: pad mask
660 * Set dma pad mask.
662 * Appending pad buffer to a request modifies the last entry of a
663 * scatter list such that it includes the pad buffer.
665 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
667 q->dma_pad_mask = mask;
669 EXPORT_SYMBOL(blk_queue_dma_pad);
672 * blk_queue_update_dma_pad - update pad mask
673 * @q: the request queue for the device
674 * @mask: pad mask
676 * Update dma pad mask.
678 * Appending pad buffer to a request modifies the last entry of a
679 * scatter list such that it includes the pad buffer.
681 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
683 if (mask > q->dma_pad_mask)
684 q->dma_pad_mask = mask;
686 EXPORT_SYMBOL(blk_queue_update_dma_pad);
689 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
690 * @q: the request queue for the device
691 * @dma_drain_needed: fn which returns non-zero if drain is necessary
692 * @buf: physically contiguous buffer
693 * @size: size of the buffer in bytes
695 * Some devices have excess DMA problems and can't simply discard (or
696 * zero fill) the unwanted piece of the transfer. They have to have a
697 * real area of memory to transfer it into. The use case for this is
698 * ATAPI devices in DMA mode. If the packet command causes a transfer
699 * bigger than the transfer size some HBAs will lock up if there
700 * aren't DMA elements to contain the excess transfer. What this API
701 * does is adjust the queue so that the buf is always appended
702 * silently to the scatterlist.
704 * Note: This routine adjusts max_hw_segments to make room for appending
705 * the drain buffer. If you call blk_queue_max_segments() after calling
706 * this routine, you must set the limit to one fewer than your device
707 * can support otherwise there won't be room for the drain buffer.
709 int blk_queue_dma_drain(struct request_queue *q,
710 dma_drain_needed_fn *dma_drain_needed,
711 void *buf, unsigned int size)
713 if (queue_max_segments(q) < 2)
714 return -EINVAL;
715 /* make room for appending the drain */
716 blk_queue_max_segments(q, queue_max_segments(q) - 1);
717 q->dma_drain_needed = dma_drain_needed;
718 q->dma_drain_buffer = buf;
719 q->dma_drain_size = size;
721 return 0;
723 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
726 * blk_queue_segment_boundary - set boundary rules for segment merging
727 * @q: the request queue for the device
728 * @mask: the memory boundary mask
730 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
732 if (mask < PAGE_CACHE_SIZE - 1) {
733 mask = PAGE_CACHE_SIZE - 1;
734 printk(KERN_INFO "%s: set to minimum %lx\n",
735 __func__, mask);
738 q->limits.seg_boundary_mask = mask;
740 EXPORT_SYMBOL(blk_queue_segment_boundary);
743 * blk_queue_dma_alignment - set dma length and memory alignment
744 * @q: the request queue for the device
745 * @mask: alignment mask
747 * description:
748 * set required memory and length alignment for direct dma transactions.
749 * this is used when building direct io requests for the queue.
752 void blk_queue_dma_alignment(struct request_queue *q, int mask)
754 q->dma_alignment = mask;
756 EXPORT_SYMBOL(blk_queue_dma_alignment);
759 * blk_queue_update_dma_alignment - update dma length and memory alignment
760 * @q: the request queue for the device
761 * @mask: alignment mask
763 * description:
764 * update required memory and length alignment for direct dma transactions.
765 * If the requested alignment is larger than the current alignment, then
766 * the current queue alignment is updated to the new value, otherwise it
767 * is left alone. The design of this is to allow multiple objects
768 * (driver, device, transport etc) to set their respective
769 * alignments without having them interfere.
772 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
774 BUG_ON(mask > PAGE_SIZE);
776 if (mask > q->dma_alignment)
777 q->dma_alignment = mask;
779 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
782 * blk_queue_flush - configure queue's cache flush capability
783 * @q: the request queue for the device
784 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
786 * Tell block layer cache flush capability of @q. If it supports
787 * flushing, REQ_FLUSH should be set. If it supports bypassing
788 * write cache for individual writes, REQ_FUA should be set.
790 void blk_queue_flush(struct request_queue *q, unsigned int flush)
792 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
794 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
795 flush &= ~REQ_FUA;
797 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
799 EXPORT_SYMBOL_GPL(blk_queue_flush);
801 static int __init blk_settings_init(void)
803 blk_max_low_pfn = max_low_pfn - 1;
804 blk_max_pfn = max_pfn - 1;
805 return 0;
807 subsys_initcall(blk_settings_init);