[PKT_SCHED] RED: Fix overflow in calculation of queue average
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_input.c
blob412e3d214d7cec1974582a83dffe50fbd791433e
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
125 icsk->icsk_ack.last_seg_size = 0;
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
130 len = skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
137 * "len" is invariant segment length, including TCP header.
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
163 static void tcp_incr_quickack(struct sock *sk)
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
168 if (quickacks==0)
169 quickacks=2;
170 if (quickacks > icsk->icsk_ack.quick)
171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 void tcp_enter_quickack_mode(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 tcp_incr_quickack(sk);
178 icsk->icsk_ack.pingpong = 0;
179 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 /* Send ACKs quickly, if "quick" count is not exhausted
183 * and the session is not interactive.
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
188 const struct inet_connection_sock *icsk = inet_csk(sk);
189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 /* Buffer size and advertised window tuning.
194 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 static void tcp_fixup_sndbuf(struct sock *sk)
199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 sizeof(struct sk_buff);
202 if (sk->sk_sndbuf < 3 * sndmem)
203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
208 * All tcp_full_space() is split to two parts: "network" buffer, allocated
209 * forward and advertised in receiver window (tp->rcv_wnd) and
210 * "application buffer", required to isolate scheduling/application
211 * latencies from network.
212 * window_clamp is maximal advertised window. It can be less than
213 * tcp_full_space(), in this case tcp_full_space() - window_clamp
214 * is reserved for "application" buffer. The less window_clamp is
215 * the smoother our behaviour from viewpoint of network, but the lower
216 * throughput and the higher sensitivity of the connection to losses. 8)
218 * rcv_ssthresh is more strict window_clamp used at "slow start"
219 * phase to predict further behaviour of this connection.
220 * It is used for two goals:
221 * - to enforce header prediction at sender, even when application
222 * requires some significant "application buffer". It is check #1.
223 * - to prevent pruning of receive queue because of misprediction
224 * of receiver window. Check #2.
226 * The scheme does not work when sender sends good segments opening
227 * window and then starts to feed us spaghetti. But it should work
228 * in common situations. Otherwise, we have to rely on queue collapsing.
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 const struct sk_buff *skb)
235 /* Optimize this! */
236 int truesize = tcp_win_from_space(skb->truesize)/2;
237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
239 while (tp->rcv_ssthresh <= window) {
240 if (truesize <= skb->len)
241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
243 truesize >>= 1;
244 window >>= 1;
246 return 0;
249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 struct sk_buff *skb)
252 /* Check #1 */
253 if (tp->rcv_ssthresh < tp->window_clamp &&
254 (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 !tcp_memory_pressure) {
256 int incr;
258 /* Check #2. Increase window, if skb with such overhead
259 * will fit to rcvbuf in future.
261 if (tcp_win_from_space(skb->truesize) <= skb->len)
262 incr = 2*tp->advmss;
263 else
264 incr = __tcp_grow_window(sk, tp, skb);
266 if (incr) {
267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 inet_csk(sk)->icsk_ack.quick |= 1;
273 /* 3. Tuning rcvbuf, when connection enters established state. */
275 static void tcp_fixup_rcvbuf(struct sock *sk)
277 struct tcp_sock *tp = tcp_sk(sk);
278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
280 /* Try to select rcvbuf so that 4 mss-sized segments
281 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 * (was 3; 4 is minimum to allow fast retransmit to work.)
284 while (tcp_win_from_space(rcvmem) < tp->advmss)
285 rcvmem += 128;
286 if (sk->sk_rcvbuf < 4 * rcvmem)
287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 /* 4. Try to fixup all. It is made immediately after connection enters
291 * established state.
293 static void tcp_init_buffer_space(struct sock *sk)
295 struct tcp_sock *tp = tcp_sk(sk);
296 int maxwin;
298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 tcp_fixup_rcvbuf(sk);
300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 tcp_fixup_sndbuf(sk);
303 tp->rcvq_space.space = tp->rcv_wnd;
305 maxwin = tcp_full_space(sk);
307 if (tp->window_clamp >= maxwin) {
308 tp->window_clamp = maxwin;
310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 tp->window_clamp = max(maxwin -
312 (maxwin >> sysctl_tcp_app_win),
313 4 * tp->advmss);
316 /* Force reservation of one segment. */
317 if (sysctl_tcp_app_win &&
318 tp->window_clamp > 2 * tp->advmss &&
319 tp->window_clamp + tp->advmss > maxwin)
320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 tp->snd_cwnd_stamp = tcp_time_stamp;
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
329 struct inet_connection_sock *icsk = inet_csk(sk);
331 icsk->icsk_ack.quick = 0;
333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 !tcp_memory_pressure &&
336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 sysctl_tcp_rmem[2]);
340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
345 /* Initialize RCV_MSS value.
346 * RCV_MSS is an our guess about MSS used by the peer.
347 * We haven't any direct information about the MSS.
348 * It's better to underestimate the RCV_MSS rather than overestimate.
349 * Overestimations make us ACKing less frequently than needed.
350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
352 void tcp_initialize_rcv_mss(struct sock *sk)
354 struct tcp_sock *tp = tcp_sk(sk);
355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
357 hint = min(hint, tp->rcv_wnd/2);
358 hint = min(hint, TCP_MIN_RCVMSS);
359 hint = max(hint, TCP_MIN_MSS);
361 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 /* Receiver "autotuning" code.
366 * The algorithm for RTT estimation w/o timestamps is based on
367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
370 * More detail on this code can be found at
371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372 * though this reference is out of date. A new paper
373 * is pending.
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
377 u32 new_sample = tp->rcv_rtt_est.rtt;
378 long m = sample;
380 if (m == 0)
381 m = 1;
383 if (new_sample != 0) {
384 /* If we sample in larger samples in the non-timestamp
385 * case, we could grossly overestimate the RTT especially
386 * with chatty applications or bulk transfer apps which
387 * are stalled on filesystem I/O.
389 * Also, since we are only going for a minimum in the
390 * non-timestamp case, we do not smooth things out
391 * else with timestamps disabled convergence takes too
392 * long.
394 if (!win_dep) {
395 m -= (new_sample >> 3);
396 new_sample += m;
397 } else if (m < new_sample)
398 new_sample = m << 3;
399 } else {
400 /* No previous measure. */
401 new_sample = m << 3;
404 if (tp->rcv_rtt_est.rtt != new_sample)
405 tp->rcv_rtt_est.rtt = new_sample;
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
410 if (tp->rcv_rtt_est.time == 0)
411 goto new_measure;
412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 return;
414 tcp_rcv_rtt_update(tp,
415 jiffies - tp->rcv_rtt_est.time,
418 new_measure:
419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 tp->rcv_rtt_est.time = tcp_time_stamp;
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
425 struct tcp_sock *tp = tcp_sk(sk);
426 if (tp->rx_opt.rcv_tsecr &&
427 (TCP_SKB_CB(skb)->end_seq -
428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
433 * This function should be called every time data is copied to user space.
434 * It calculates the appropriate TCP receive buffer space.
436 void tcp_rcv_space_adjust(struct sock *sk)
438 struct tcp_sock *tp = tcp_sk(sk);
439 int time;
440 int space;
442 if (tp->rcvq_space.time == 0)
443 goto new_measure;
445 time = tcp_time_stamp - tp->rcvq_space.time;
446 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 tp->rcv_rtt_est.rtt == 0)
448 return;
450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
452 space = max(tp->rcvq_space.space, space);
454 if (tp->rcvq_space.space != space) {
455 int rcvmem;
457 tp->rcvq_space.space = space;
459 if (sysctl_tcp_moderate_rcvbuf &&
460 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
461 int new_clamp = space;
463 /* Receive space grows, normalize in order to
464 * take into account packet headers and sk_buff
465 * structure overhead.
467 space /= tp->advmss;
468 if (!space)
469 space = 1;
470 rcvmem = (tp->advmss + MAX_TCP_HEADER +
471 16 + sizeof(struct sk_buff));
472 while (tcp_win_from_space(rcvmem) < tp->advmss)
473 rcvmem += 128;
474 space *= rcvmem;
475 space = min(space, sysctl_tcp_rmem[2]);
476 if (space > sk->sk_rcvbuf) {
477 sk->sk_rcvbuf = space;
479 /* Make the window clamp follow along. */
480 tp->window_clamp = new_clamp;
485 new_measure:
486 tp->rcvq_space.seq = tp->copied_seq;
487 tp->rcvq_space.time = tcp_time_stamp;
490 /* There is something which you must keep in mind when you analyze the
491 * behavior of the tp->ato delayed ack timeout interval. When a
492 * connection starts up, we want to ack as quickly as possible. The
493 * problem is that "good" TCP's do slow start at the beginning of data
494 * transmission. The means that until we send the first few ACK's the
495 * sender will sit on his end and only queue most of his data, because
496 * he can only send snd_cwnd unacked packets at any given time. For
497 * each ACK we send, he increments snd_cwnd and transmits more of his
498 * queue. -DaveM
500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
502 struct inet_connection_sock *icsk = inet_csk(sk);
503 u32 now;
505 inet_csk_schedule_ack(sk);
507 tcp_measure_rcv_mss(sk, skb);
509 tcp_rcv_rtt_measure(tp);
511 now = tcp_time_stamp;
513 if (!icsk->icsk_ack.ato) {
514 /* The _first_ data packet received, initialize
515 * delayed ACK engine.
517 tcp_incr_quickack(sk);
518 icsk->icsk_ack.ato = TCP_ATO_MIN;
519 } else {
520 int m = now - icsk->icsk_ack.lrcvtime;
522 if (m <= TCP_ATO_MIN/2) {
523 /* The fastest case is the first. */
524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
525 } else if (m < icsk->icsk_ack.ato) {
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
527 if (icsk->icsk_ack.ato > icsk->icsk_rto)
528 icsk->icsk_ack.ato = icsk->icsk_rto;
529 } else if (m > icsk->icsk_rto) {
530 /* Too long gap. Apparently sender failed to
531 * restart window, so that we send ACKs quickly.
533 tcp_incr_quickack(sk);
534 sk_stream_mem_reclaim(sk);
537 icsk->icsk_ack.lrcvtime = now;
539 TCP_ECN_check_ce(tp, skb);
541 if (skb->len >= 128)
542 tcp_grow_window(sk, tp, skb);
545 /* Called to compute a smoothed rtt estimate. The data fed to this
546 * routine either comes from timestamps, or from segments that were
547 * known _not_ to have been retransmitted [see Karn/Partridge
548 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
549 * piece by Van Jacobson.
550 * NOTE: the next three routines used to be one big routine.
551 * To save cycles in the RFC 1323 implementation it was better to break
552 * it up into three procedures. -- erics
554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
556 struct tcp_sock *tp = tcp_sk(sk);
557 long m = mrtt; /* RTT */
559 /* The following amusing code comes from Jacobson's
560 * article in SIGCOMM '88. Note that rtt and mdev
561 * are scaled versions of rtt and mean deviation.
562 * This is designed to be as fast as possible
563 * m stands for "measurement".
565 * On a 1990 paper the rto value is changed to:
566 * RTO = rtt + 4 * mdev
568 * Funny. This algorithm seems to be very broken.
569 * These formulae increase RTO, when it should be decreased, increase
570 * too slowly, when it should be increased quickly, decrease too quickly
571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 * does not matter how to _calculate_ it. Seems, it was trap
573 * that VJ failed to avoid. 8)
575 if(m == 0)
576 m = 1;
577 if (tp->srtt != 0) {
578 m -= (tp->srtt >> 3); /* m is now error in rtt est */
579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
580 if (m < 0) {
581 m = -m; /* m is now abs(error) */
582 m -= (tp->mdev >> 2); /* similar update on mdev */
583 /* This is similar to one of Eifel findings.
584 * Eifel blocks mdev updates when rtt decreases.
585 * This solution is a bit different: we use finer gain
586 * for mdev in this case (alpha*beta).
587 * Like Eifel it also prevents growth of rto,
588 * but also it limits too fast rto decreases,
589 * happening in pure Eifel.
591 if (m > 0)
592 m >>= 3;
593 } else {
594 m -= (tp->mdev >> 2); /* similar update on mdev */
596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
597 if (tp->mdev > tp->mdev_max) {
598 tp->mdev_max = tp->mdev;
599 if (tp->mdev_max > tp->rttvar)
600 tp->rttvar = tp->mdev_max;
602 if (after(tp->snd_una, tp->rtt_seq)) {
603 if (tp->mdev_max < tp->rttvar)
604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 tp->rtt_seq = tp->snd_nxt;
606 tp->mdev_max = TCP_RTO_MIN;
608 } else {
609 /* no previous measure. */
610 tp->srtt = m<<3; /* take the measured time to be rtt */
611 tp->mdev = m<<1; /* make sure rto = 3*rtt */
612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 tp->rtt_seq = tp->snd_nxt;
617 /* Calculate rto without backoff. This is the second half of Van Jacobson's
618 * routine referred to above.
620 static inline void tcp_set_rto(struct sock *sk)
622 const struct tcp_sock *tp = tcp_sk(sk);
623 /* Old crap is replaced with new one. 8)
625 * More seriously:
626 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 * It cannot be less due to utterly erratic ACK generation made
628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 * to do with delayed acks, because at cwnd>2 true delack timeout
630 * is invisible. Actually, Linux-2.4 also generates erratic
631 * ACKs in some circumstances.
633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
635 /* 2. Fixups made earlier cannot be right.
636 * If we do not estimate RTO correctly without them,
637 * all the algo is pure shit and should be replaced
638 * with correct one. It is exactly, which we pretend to do.
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643 * guarantees that rto is higher.
645 static inline void tcp_bound_rto(struct sock *sk)
647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 /* Save metrics learned by this TCP session.
652 This function is called only, when TCP finishes successfully
653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
655 void tcp_update_metrics(struct sock *sk)
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct dst_entry *dst = __sk_dst_get(sk);
660 if (sysctl_tcp_nometrics_save)
661 return;
663 dst_confirm(dst);
665 if (dst && (dst->flags&DST_HOST)) {
666 const struct inet_connection_sock *icsk = inet_csk(sk);
667 int m;
669 if (icsk->icsk_backoff || !tp->srtt) {
670 /* This session failed to estimate rtt. Why?
671 * Probably, no packets returned in time.
672 * Reset our results.
674 if (!(dst_metric_locked(dst, RTAX_RTT)))
675 dst->metrics[RTAX_RTT-1] = 0;
676 return;
679 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
681 /* If newly calculated rtt larger than stored one,
682 * store new one. Otherwise, use EWMA. Remember,
683 * rtt overestimation is always better than underestimation.
685 if (!(dst_metric_locked(dst, RTAX_RTT))) {
686 if (m <= 0)
687 dst->metrics[RTAX_RTT-1] = tp->srtt;
688 else
689 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
693 if (m < 0)
694 m = -m;
696 /* Scale deviation to rttvar fixed point */
697 m >>= 1;
698 if (m < tp->mdev)
699 m = tp->mdev;
701 if (m >= dst_metric(dst, RTAX_RTTVAR))
702 dst->metrics[RTAX_RTTVAR-1] = m;
703 else
704 dst->metrics[RTAX_RTTVAR-1] -=
705 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 if (tp->snd_ssthresh >= 0xFFFF) {
709 /* Slow start still did not finish. */
710 if (dst_metric(dst, RTAX_SSTHRESH) &&
711 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
712 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
714 if (!dst_metric_locked(dst, RTAX_CWND) &&
715 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
716 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
717 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
718 icsk->icsk_ca_state == TCP_CA_Open) {
719 /* Cong. avoidance phase, cwnd is reliable. */
720 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
721 dst->metrics[RTAX_SSTHRESH-1] =
722 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
723 if (!dst_metric_locked(dst, RTAX_CWND))
724 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
725 } else {
726 /* Else slow start did not finish, cwnd is non-sense,
727 ssthresh may be also invalid.
729 if (!dst_metric_locked(dst, RTAX_CWND))
730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
731 if (dst->metrics[RTAX_SSTHRESH-1] &&
732 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
733 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
734 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
738 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
739 tp->reordering != sysctl_tcp_reordering)
740 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
745 /* Numbers are taken from RFC2414. */
746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
748 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
750 if (!cwnd) {
751 if (tp->mss_cache > 1460)
752 cwnd = 2;
753 else
754 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
756 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 /* Set slow start threshold and cwnd not falling to slow start */
760 void tcp_enter_cwr(struct sock *sk)
762 struct tcp_sock *tp = tcp_sk(sk);
764 tp->prior_ssthresh = 0;
765 tp->bytes_acked = 0;
766 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
767 tp->undo_marker = 0;
768 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
769 tp->snd_cwnd = min(tp->snd_cwnd,
770 tcp_packets_in_flight(tp) + 1U);
771 tp->snd_cwnd_cnt = 0;
772 tp->high_seq = tp->snd_nxt;
773 tp->snd_cwnd_stamp = tcp_time_stamp;
774 TCP_ECN_queue_cwr(tp);
776 tcp_set_ca_state(sk, TCP_CA_CWR);
780 /* Initialize metrics on socket. */
782 static void tcp_init_metrics(struct sock *sk)
784 struct tcp_sock *tp = tcp_sk(sk);
785 struct dst_entry *dst = __sk_dst_get(sk);
787 if (dst == NULL)
788 goto reset;
790 dst_confirm(dst);
792 if (dst_metric_locked(dst, RTAX_CWND))
793 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
794 if (dst_metric(dst, RTAX_SSTHRESH)) {
795 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
796 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
797 tp->snd_ssthresh = tp->snd_cwnd_clamp;
799 if (dst_metric(dst, RTAX_REORDERING) &&
800 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
801 tp->rx_opt.sack_ok &= ~2;
802 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 if (dst_metric(dst, RTAX_RTT) == 0)
806 goto reset;
808 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
809 goto reset;
811 /* Initial rtt is determined from SYN,SYN-ACK.
812 * The segment is small and rtt may appear much
813 * less than real one. Use per-dst memory
814 * to make it more realistic.
816 * A bit of theory. RTT is time passed after "normal" sized packet
817 * is sent until it is ACKed. In normal circumstances sending small
818 * packets force peer to delay ACKs and calculation is correct too.
819 * The algorithm is adaptive and, provided we follow specs, it
820 * NEVER underestimate RTT. BUT! If peer tries to make some clever
821 * tricks sort of "quick acks" for time long enough to decrease RTT
822 * to low value, and then abruptly stops to do it and starts to delay
823 * ACKs, wait for troubles.
825 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
826 tp->srtt = dst_metric(dst, RTAX_RTT);
827 tp->rtt_seq = tp->snd_nxt;
829 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
830 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
831 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
833 tcp_set_rto(sk);
834 tcp_bound_rto(sk);
835 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
836 goto reset;
837 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
838 tp->snd_cwnd_stamp = tcp_time_stamp;
839 return;
841 reset:
842 /* Play conservative. If timestamps are not
843 * supported, TCP will fail to recalculate correct
844 * rtt, if initial rto is too small. FORGET ALL AND RESET!
846 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
847 tp->srtt = 0;
848 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
849 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
856 struct tcp_sock *tp = tcp_sk(sk);
857 if (metric > tp->reordering) {
858 tp->reordering = min(TCP_MAX_REORDERING, metric);
860 /* This exciting event is worth to be remembered. 8) */
861 if (ts)
862 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
863 else if (IsReno(tp))
864 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
865 else if (IsFack(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
867 else
868 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
869 #if FASTRETRANS_DEBUG > 1
870 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
871 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
872 tp->reordering,
873 tp->fackets_out,
874 tp->sacked_out,
875 tp->undo_marker ? tp->undo_retrans : 0);
876 #endif
877 /* Disable FACK yet. */
878 tp->rx_opt.sack_ok &= ~2;
882 /* This procedure tags the retransmission queue when SACKs arrive.
884 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
885 * Packets in queue with these bits set are counted in variables
886 * sacked_out, retrans_out and lost_out, correspondingly.
888 * Valid combinations are:
889 * Tag InFlight Description
890 * 0 1 - orig segment is in flight.
891 * S 0 - nothing flies, orig reached receiver.
892 * L 0 - nothing flies, orig lost by net.
893 * R 2 - both orig and retransmit are in flight.
894 * L|R 1 - orig is lost, retransmit is in flight.
895 * S|R 1 - orig reached receiver, retrans is still in flight.
896 * (L|S|R is logically valid, it could occur when L|R is sacked,
897 * but it is equivalent to plain S and code short-curcuits it to S.
898 * L|S is logically invalid, it would mean -1 packet in flight 8))
900 * These 6 states form finite state machine, controlled by the following events:
901 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
902 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
903 * 3. Loss detection event of one of three flavors:
904 * A. Scoreboard estimator decided the packet is lost.
905 * A'. Reno "three dupacks" marks head of queue lost.
906 * A''. Its FACK modfication, head until snd.fack is lost.
907 * B. SACK arrives sacking data transmitted after never retransmitted
908 * hole was sent out.
909 * C. SACK arrives sacking SND.NXT at the moment, when the
910 * segment was retransmitted.
911 * 4. D-SACK added new rule: D-SACK changes any tag to S.
913 * It is pleasant to note, that state diagram turns out to be commutative,
914 * so that we are allowed not to be bothered by order of our actions,
915 * when multiple events arrive simultaneously. (see the function below).
917 * Reordering detection.
918 * --------------------
919 * Reordering metric is maximal distance, which a packet can be displaced
920 * in packet stream. With SACKs we can estimate it:
922 * 1. SACK fills old hole and the corresponding segment was not
923 * ever retransmitted -> reordering. Alas, we cannot use it
924 * when segment was retransmitted.
925 * 2. The last flaw is solved with D-SACK. D-SACK arrives
926 * for retransmitted and already SACKed segment -> reordering..
927 * Both of these heuristics are not used in Loss state, when we cannot
928 * account for retransmits accurately.
930 static int
931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
933 const struct inet_connection_sock *icsk = inet_csk(sk);
934 struct tcp_sock *tp = tcp_sk(sk);
935 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
936 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
937 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
938 int reord = tp->packets_out;
939 int prior_fackets;
940 u32 lost_retrans = 0;
941 int flag = 0;
942 int dup_sack = 0;
943 int i;
945 if (!tp->sacked_out)
946 tp->fackets_out = 0;
947 prior_fackets = tp->fackets_out;
949 /* SACK fastpath:
950 * if the only SACK change is the increase of the end_seq of
951 * the first block then only apply that SACK block
952 * and use retrans queue hinting otherwise slowpath */
953 flag = 1;
954 for (i = 0; i< num_sacks; i++) {
955 __u32 start_seq = ntohl(sp[i].start_seq);
956 __u32 end_seq = ntohl(sp[i].end_seq);
958 if (i == 0){
959 if (tp->recv_sack_cache[i].start_seq != start_seq)
960 flag = 0;
961 } else {
962 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
963 (tp->recv_sack_cache[i].end_seq != end_seq))
964 flag = 0;
966 tp->recv_sack_cache[i].start_seq = start_seq;
967 tp->recv_sack_cache[i].end_seq = end_seq;
969 /* Check for D-SACK. */
970 if (i == 0) {
971 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
973 if (before(start_seq, ack)) {
974 dup_sack = 1;
975 tp->rx_opt.sack_ok |= 4;
976 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
977 } else if (num_sacks > 1 &&
978 !after(end_seq, ntohl(sp[1].end_seq)) &&
979 !before(start_seq, ntohl(sp[1].start_seq))) {
980 dup_sack = 1;
981 tp->rx_opt.sack_ok |= 4;
982 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
985 /* D-SACK for already forgotten data...
986 * Do dumb counting. */
987 if (dup_sack &&
988 !after(end_seq, prior_snd_una) &&
989 after(end_seq, tp->undo_marker))
990 tp->undo_retrans--;
992 /* Eliminate too old ACKs, but take into
993 * account more or less fresh ones, they can
994 * contain valid SACK info.
996 if (before(ack, prior_snd_una - tp->max_window))
997 return 0;
1001 if (flag)
1002 num_sacks = 1;
1003 else {
1004 int j;
1005 tp->fastpath_skb_hint = NULL;
1007 /* order SACK blocks to allow in order walk of the retrans queue */
1008 for (i = num_sacks-1; i > 0; i--) {
1009 for (j = 0; j < i; j++){
1010 if (after(ntohl(sp[j].start_seq),
1011 ntohl(sp[j+1].start_seq))){
1012 struct tcp_sack_block_wire tmp;
1014 tmp = sp[j];
1015 sp[j] = sp[j+1];
1016 sp[j+1] = tmp;
1023 /* clear flag as used for different purpose in following code */
1024 flag = 0;
1026 for (i=0; i<num_sacks; i++, sp++) {
1027 struct sk_buff *skb;
1028 __u32 start_seq = ntohl(sp->start_seq);
1029 __u32 end_seq = ntohl(sp->end_seq);
1030 int fack_count;
1032 /* Use SACK fastpath hint if valid */
1033 if (tp->fastpath_skb_hint) {
1034 skb = tp->fastpath_skb_hint;
1035 fack_count = tp->fastpath_cnt_hint;
1036 } else {
1037 skb = sk->sk_write_queue.next;
1038 fack_count = 0;
1041 /* Event "B" in the comment above. */
1042 if (after(end_seq, tp->high_seq))
1043 flag |= FLAG_DATA_LOST;
1045 sk_stream_for_retrans_queue_from(skb, sk) {
1046 int in_sack, pcount;
1047 u8 sacked;
1049 tp->fastpath_skb_hint = skb;
1050 tp->fastpath_cnt_hint = fack_count;
1052 /* The retransmission queue is always in order, so
1053 * we can short-circuit the walk early.
1055 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1056 break;
1058 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1059 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1061 pcount = tcp_skb_pcount(skb);
1063 if (pcount > 1 && !in_sack &&
1064 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1065 unsigned int pkt_len;
1067 in_sack = !after(start_seq,
1068 TCP_SKB_CB(skb)->seq);
1070 if (!in_sack)
1071 pkt_len = (start_seq -
1072 TCP_SKB_CB(skb)->seq);
1073 else
1074 pkt_len = (end_seq -
1075 TCP_SKB_CB(skb)->seq);
1076 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1077 break;
1078 pcount = tcp_skb_pcount(skb);
1081 fack_count += pcount;
1083 sacked = TCP_SKB_CB(skb)->sacked;
1085 /* Account D-SACK for retransmitted packet. */
1086 if ((dup_sack && in_sack) &&
1087 (sacked & TCPCB_RETRANS) &&
1088 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1089 tp->undo_retrans--;
1091 /* The frame is ACKed. */
1092 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1093 if (sacked&TCPCB_RETRANS) {
1094 if ((dup_sack && in_sack) &&
1095 (sacked&TCPCB_SACKED_ACKED))
1096 reord = min(fack_count, reord);
1097 } else {
1098 /* If it was in a hole, we detected reordering. */
1099 if (fack_count < prior_fackets &&
1100 !(sacked&TCPCB_SACKED_ACKED))
1101 reord = min(fack_count, reord);
1104 /* Nothing to do; acked frame is about to be dropped. */
1105 continue;
1108 if ((sacked&TCPCB_SACKED_RETRANS) &&
1109 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1110 (!lost_retrans || after(end_seq, lost_retrans)))
1111 lost_retrans = end_seq;
1113 if (!in_sack)
1114 continue;
1116 if (!(sacked&TCPCB_SACKED_ACKED)) {
1117 if (sacked & TCPCB_SACKED_RETRANS) {
1118 /* If the segment is not tagged as lost,
1119 * we do not clear RETRANS, believing
1120 * that retransmission is still in flight.
1122 if (sacked & TCPCB_LOST) {
1123 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1124 tp->lost_out -= tcp_skb_pcount(skb);
1125 tp->retrans_out -= tcp_skb_pcount(skb);
1127 /* clear lost hint */
1128 tp->retransmit_skb_hint = NULL;
1130 } else {
1131 /* New sack for not retransmitted frame,
1132 * which was in hole. It is reordering.
1134 if (!(sacked & TCPCB_RETRANS) &&
1135 fack_count < prior_fackets)
1136 reord = min(fack_count, reord);
1138 if (sacked & TCPCB_LOST) {
1139 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1140 tp->lost_out -= tcp_skb_pcount(skb);
1142 /* clear lost hint */
1143 tp->retransmit_skb_hint = NULL;
1147 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1148 flag |= FLAG_DATA_SACKED;
1149 tp->sacked_out += tcp_skb_pcount(skb);
1151 if (fack_count > tp->fackets_out)
1152 tp->fackets_out = fack_count;
1153 } else {
1154 if (dup_sack && (sacked&TCPCB_RETRANS))
1155 reord = min(fack_count, reord);
1158 /* D-SACK. We can detect redundant retransmission
1159 * in S|R and plain R frames and clear it.
1160 * undo_retrans is decreased above, L|R frames
1161 * are accounted above as well.
1163 if (dup_sack &&
1164 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1165 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1166 tp->retrans_out -= tcp_skb_pcount(skb);
1167 tp->retransmit_skb_hint = NULL;
1172 /* Check for lost retransmit. This superb idea is
1173 * borrowed from "ratehalving". Event "C".
1174 * Later note: FACK people cheated me again 8),
1175 * we have to account for reordering! Ugly,
1176 * but should help.
1178 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1179 struct sk_buff *skb;
1181 sk_stream_for_retrans_queue(skb, sk) {
1182 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1183 break;
1184 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1185 continue;
1186 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1187 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1188 (IsFack(tp) ||
1189 !before(lost_retrans,
1190 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1191 tp->mss_cache))) {
1192 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1193 tp->retrans_out -= tcp_skb_pcount(skb);
1195 /* clear lost hint */
1196 tp->retransmit_skb_hint = NULL;
1198 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1199 tp->lost_out += tcp_skb_pcount(skb);
1200 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1201 flag |= FLAG_DATA_SACKED;
1202 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1208 tp->left_out = tp->sacked_out + tp->lost_out;
1210 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1211 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1213 #if FASTRETRANS_DEBUG > 0
1214 BUG_TRAP((int)tp->sacked_out >= 0);
1215 BUG_TRAP((int)tp->lost_out >= 0);
1216 BUG_TRAP((int)tp->retrans_out >= 0);
1217 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1218 #endif
1219 return flag;
1222 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1223 * segments to see from the next ACKs whether any data was really missing.
1224 * If the RTO was spurious, new ACKs should arrive.
1226 void tcp_enter_frto(struct sock *sk)
1228 const struct inet_connection_sock *icsk = inet_csk(sk);
1229 struct tcp_sock *tp = tcp_sk(sk);
1230 struct sk_buff *skb;
1232 tp->frto_counter = 1;
1234 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1235 tp->snd_una == tp->high_seq ||
1236 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1237 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1238 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1239 tcp_ca_event(sk, CA_EVENT_FRTO);
1242 /* Have to clear retransmission markers here to keep the bookkeeping
1243 * in shape, even though we are not yet in Loss state.
1244 * If something was really lost, it is eventually caught up
1245 * in tcp_enter_frto_loss.
1247 tp->retrans_out = 0;
1248 tp->undo_marker = tp->snd_una;
1249 tp->undo_retrans = 0;
1251 sk_stream_for_retrans_queue(skb, sk) {
1252 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1254 tcp_sync_left_out(tp);
1256 tcp_set_ca_state(sk, TCP_CA_Open);
1257 tp->frto_highmark = tp->snd_nxt;
1260 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1261 * which indicates that we should follow the traditional RTO recovery,
1262 * i.e. mark everything lost and do go-back-N retransmission.
1264 static void tcp_enter_frto_loss(struct sock *sk)
1266 struct tcp_sock *tp = tcp_sk(sk);
1267 struct sk_buff *skb;
1268 int cnt = 0;
1270 tp->sacked_out = 0;
1271 tp->lost_out = 0;
1272 tp->fackets_out = 0;
1274 sk_stream_for_retrans_queue(skb, sk) {
1275 cnt += tcp_skb_pcount(skb);
1276 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1277 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1279 /* Do not mark those segments lost that were
1280 * forward transmitted after RTO
1282 if (!after(TCP_SKB_CB(skb)->end_seq,
1283 tp->frto_highmark)) {
1284 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1285 tp->lost_out += tcp_skb_pcount(skb);
1287 } else {
1288 tp->sacked_out += tcp_skb_pcount(skb);
1289 tp->fackets_out = cnt;
1292 tcp_sync_left_out(tp);
1294 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1295 tp->snd_cwnd_cnt = 0;
1296 tp->snd_cwnd_stamp = tcp_time_stamp;
1297 tp->undo_marker = 0;
1298 tp->frto_counter = 0;
1300 tp->reordering = min_t(unsigned int, tp->reordering,
1301 sysctl_tcp_reordering);
1302 tcp_set_ca_state(sk, TCP_CA_Loss);
1303 tp->high_seq = tp->frto_highmark;
1304 TCP_ECN_queue_cwr(tp);
1306 clear_all_retrans_hints(tp);
1309 void tcp_clear_retrans(struct tcp_sock *tp)
1311 tp->left_out = 0;
1312 tp->retrans_out = 0;
1314 tp->fackets_out = 0;
1315 tp->sacked_out = 0;
1316 tp->lost_out = 0;
1318 tp->undo_marker = 0;
1319 tp->undo_retrans = 0;
1322 /* Enter Loss state. If "how" is not zero, forget all SACK information
1323 * and reset tags completely, otherwise preserve SACKs. If receiver
1324 * dropped its ofo queue, we will know this due to reneging detection.
1326 void tcp_enter_loss(struct sock *sk, int how)
1328 const struct inet_connection_sock *icsk = inet_csk(sk);
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 struct sk_buff *skb;
1331 int cnt = 0;
1333 /* Reduce ssthresh if it has not yet been made inside this window. */
1334 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1335 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1336 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1337 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338 tcp_ca_event(sk, CA_EVENT_LOSS);
1340 tp->snd_cwnd = 1;
1341 tp->snd_cwnd_cnt = 0;
1342 tp->snd_cwnd_stamp = tcp_time_stamp;
1344 tp->bytes_acked = 0;
1345 tcp_clear_retrans(tp);
1347 /* Push undo marker, if it was plain RTO and nothing
1348 * was retransmitted. */
1349 if (!how)
1350 tp->undo_marker = tp->snd_una;
1352 sk_stream_for_retrans_queue(skb, sk) {
1353 cnt += tcp_skb_pcount(skb);
1354 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1355 tp->undo_marker = 0;
1356 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1357 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1358 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1359 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1360 tp->lost_out += tcp_skb_pcount(skb);
1361 } else {
1362 tp->sacked_out += tcp_skb_pcount(skb);
1363 tp->fackets_out = cnt;
1366 tcp_sync_left_out(tp);
1368 tp->reordering = min_t(unsigned int, tp->reordering,
1369 sysctl_tcp_reordering);
1370 tcp_set_ca_state(sk, TCP_CA_Loss);
1371 tp->high_seq = tp->snd_nxt;
1372 TCP_ECN_queue_cwr(tp);
1374 clear_all_retrans_hints(tp);
1377 static int tcp_check_sack_reneging(struct sock *sk)
1379 struct sk_buff *skb;
1381 /* If ACK arrived pointing to a remembered SACK,
1382 * it means that our remembered SACKs do not reflect
1383 * real state of receiver i.e.
1384 * receiver _host_ is heavily congested (or buggy).
1385 * Do processing similar to RTO timeout.
1387 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1388 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1389 struct inet_connection_sock *icsk = inet_csk(sk);
1390 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1392 tcp_enter_loss(sk, 1);
1393 icsk->icsk_retransmits++;
1394 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1395 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1396 icsk->icsk_rto, TCP_RTO_MAX);
1397 return 1;
1399 return 0;
1402 static inline int tcp_fackets_out(struct tcp_sock *tp)
1404 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1407 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1409 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1412 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1414 return tp->packets_out &&
1415 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1418 /* Linux NewReno/SACK/FACK/ECN state machine.
1419 * --------------------------------------
1421 * "Open" Normal state, no dubious events, fast path.
1422 * "Disorder" In all the respects it is "Open",
1423 * but requires a bit more attention. It is entered when
1424 * we see some SACKs or dupacks. It is split of "Open"
1425 * mainly to move some processing from fast path to slow one.
1426 * "CWR" CWND was reduced due to some Congestion Notification event.
1427 * It can be ECN, ICMP source quench, local device congestion.
1428 * "Recovery" CWND was reduced, we are fast-retransmitting.
1429 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1431 * tcp_fastretrans_alert() is entered:
1432 * - each incoming ACK, if state is not "Open"
1433 * - when arrived ACK is unusual, namely:
1434 * * SACK
1435 * * Duplicate ACK.
1436 * * ECN ECE.
1438 * Counting packets in flight is pretty simple.
1440 * in_flight = packets_out - left_out + retrans_out
1442 * packets_out is SND.NXT-SND.UNA counted in packets.
1444 * retrans_out is number of retransmitted segments.
1446 * left_out is number of segments left network, but not ACKed yet.
1448 * left_out = sacked_out + lost_out
1450 * sacked_out: Packets, which arrived to receiver out of order
1451 * and hence not ACKed. With SACKs this number is simply
1452 * amount of SACKed data. Even without SACKs
1453 * it is easy to give pretty reliable estimate of this number,
1454 * counting duplicate ACKs.
1456 * lost_out: Packets lost by network. TCP has no explicit
1457 * "loss notification" feedback from network (for now).
1458 * It means that this number can be only _guessed_.
1459 * Actually, it is the heuristics to predict lossage that
1460 * distinguishes different algorithms.
1462 * F.e. after RTO, when all the queue is considered as lost,
1463 * lost_out = packets_out and in_flight = retrans_out.
1465 * Essentially, we have now two algorithms counting
1466 * lost packets.
1468 * FACK: It is the simplest heuristics. As soon as we decided
1469 * that something is lost, we decide that _all_ not SACKed
1470 * packets until the most forward SACK are lost. I.e.
1471 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1472 * It is absolutely correct estimate, if network does not reorder
1473 * packets. And it loses any connection to reality when reordering
1474 * takes place. We use FACK by default until reordering
1475 * is suspected on the path to this destination.
1477 * NewReno: when Recovery is entered, we assume that one segment
1478 * is lost (classic Reno). While we are in Recovery and
1479 * a partial ACK arrives, we assume that one more packet
1480 * is lost (NewReno). This heuristics are the same in NewReno
1481 * and SACK.
1483 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1484 * deflation etc. CWND is real congestion window, never inflated, changes
1485 * only according to classic VJ rules.
1487 * Really tricky (and requiring careful tuning) part of algorithm
1488 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1489 * The first determines the moment _when_ we should reduce CWND and,
1490 * hence, slow down forward transmission. In fact, it determines the moment
1491 * when we decide that hole is caused by loss, rather than by a reorder.
1493 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1494 * holes, caused by lost packets.
1496 * And the most logically complicated part of algorithm is undo
1497 * heuristics. We detect false retransmits due to both too early
1498 * fast retransmit (reordering) and underestimated RTO, analyzing
1499 * timestamps and D-SACKs. When we detect that some segments were
1500 * retransmitted by mistake and CWND reduction was wrong, we undo
1501 * window reduction and abort recovery phase. This logic is hidden
1502 * inside several functions named tcp_try_undo_<something>.
1505 /* This function decides, when we should leave Disordered state
1506 * and enter Recovery phase, reducing congestion window.
1508 * Main question: may we further continue forward transmission
1509 * with the same cwnd?
1511 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1513 __u32 packets_out;
1515 /* Trick#1: The loss is proven. */
1516 if (tp->lost_out)
1517 return 1;
1519 /* Not-A-Trick#2 : Classic rule... */
1520 if (tcp_fackets_out(tp) > tp->reordering)
1521 return 1;
1523 /* Trick#3 : when we use RFC2988 timer restart, fast
1524 * retransmit can be triggered by timeout of queue head.
1526 if (tcp_head_timedout(sk, tp))
1527 return 1;
1529 /* Trick#4: It is still not OK... But will it be useful to delay
1530 * recovery more?
1532 packets_out = tp->packets_out;
1533 if (packets_out <= tp->reordering &&
1534 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1535 !tcp_may_send_now(sk, tp)) {
1536 /* We have nothing to send. This connection is limited
1537 * either by receiver window or by application.
1539 return 1;
1542 return 0;
1545 /* If we receive more dupacks than we expected counting segments
1546 * in assumption of absent reordering, interpret this as reordering.
1547 * The only another reason could be bug in receiver TCP.
1549 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1551 struct tcp_sock *tp = tcp_sk(sk);
1552 u32 holes;
1554 holes = max(tp->lost_out, 1U);
1555 holes = min(holes, tp->packets_out);
1557 if ((tp->sacked_out + holes) > tp->packets_out) {
1558 tp->sacked_out = tp->packets_out - holes;
1559 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1563 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1565 static void tcp_add_reno_sack(struct sock *sk)
1567 struct tcp_sock *tp = tcp_sk(sk);
1568 tp->sacked_out++;
1569 tcp_check_reno_reordering(sk, 0);
1570 tcp_sync_left_out(tp);
1573 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1575 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1577 if (acked > 0) {
1578 /* One ACK acked hole. The rest eat duplicate ACKs. */
1579 if (acked-1 >= tp->sacked_out)
1580 tp->sacked_out = 0;
1581 else
1582 tp->sacked_out -= acked-1;
1584 tcp_check_reno_reordering(sk, acked);
1585 tcp_sync_left_out(tp);
1588 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1590 tp->sacked_out = 0;
1591 tp->left_out = tp->lost_out;
1594 /* Mark head of queue up as lost. */
1595 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1596 int packets, u32 high_seq)
1598 struct sk_buff *skb;
1599 int cnt;
1601 BUG_TRAP(packets <= tp->packets_out);
1602 if (tp->lost_skb_hint) {
1603 skb = tp->lost_skb_hint;
1604 cnt = tp->lost_cnt_hint;
1605 } else {
1606 skb = sk->sk_write_queue.next;
1607 cnt = 0;
1610 sk_stream_for_retrans_queue_from(skb, sk) {
1611 /* TODO: do this better */
1612 /* this is not the most efficient way to do this... */
1613 tp->lost_skb_hint = skb;
1614 tp->lost_cnt_hint = cnt;
1615 cnt += tcp_skb_pcount(skb);
1616 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1617 break;
1618 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1619 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1620 tp->lost_out += tcp_skb_pcount(skb);
1622 /* clear xmit_retransmit_queue hints
1623 * if this is beyond hint */
1624 if(tp->retransmit_skb_hint != NULL &&
1625 before(TCP_SKB_CB(skb)->seq,
1626 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1628 tp->retransmit_skb_hint = NULL;
1632 tcp_sync_left_out(tp);
1635 /* Account newly detected lost packet(s) */
1637 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1639 if (IsFack(tp)) {
1640 int lost = tp->fackets_out - tp->reordering;
1641 if (lost <= 0)
1642 lost = 1;
1643 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1644 } else {
1645 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1648 /* New heuristics: it is possible only after we switched
1649 * to restart timer each time when something is ACKed.
1650 * Hence, we can detect timed out packets during fast
1651 * retransmit without falling to slow start.
1653 if (tcp_head_timedout(sk, tp)) {
1654 struct sk_buff *skb;
1656 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1657 : sk->sk_write_queue.next;
1659 sk_stream_for_retrans_queue_from(skb, sk) {
1660 if (!tcp_skb_timedout(sk, skb))
1661 break;
1663 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1664 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1665 tp->lost_out += tcp_skb_pcount(skb);
1667 /* clear xmit_retrans hint */
1668 if (tp->retransmit_skb_hint &&
1669 before(TCP_SKB_CB(skb)->seq,
1670 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1672 tp->retransmit_skb_hint = NULL;
1676 tp->scoreboard_skb_hint = skb;
1678 tcp_sync_left_out(tp);
1682 /* CWND moderation, preventing bursts due to too big ACKs
1683 * in dubious situations.
1685 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1687 tp->snd_cwnd = min(tp->snd_cwnd,
1688 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1689 tp->snd_cwnd_stamp = tcp_time_stamp;
1692 /* Decrease cwnd each second ack. */
1693 static void tcp_cwnd_down(struct sock *sk)
1695 const struct inet_connection_sock *icsk = inet_csk(sk);
1696 struct tcp_sock *tp = tcp_sk(sk);
1697 int decr = tp->snd_cwnd_cnt + 1;
1699 tp->snd_cwnd_cnt = decr&1;
1700 decr >>= 1;
1702 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1703 tp->snd_cwnd -= decr;
1705 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1706 tp->snd_cwnd_stamp = tcp_time_stamp;
1709 /* Nothing was retransmitted or returned timestamp is less
1710 * than timestamp of the first retransmission.
1712 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1714 return !tp->retrans_stamp ||
1715 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1716 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1719 /* Undo procedures. */
1721 #if FASTRETRANS_DEBUG > 1
1722 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1724 struct inet_sock *inet = inet_sk(sk);
1725 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1726 msg,
1727 NIPQUAD(inet->daddr), ntohs(inet->dport),
1728 tp->snd_cwnd, tp->left_out,
1729 tp->snd_ssthresh, tp->prior_ssthresh,
1730 tp->packets_out);
1732 #else
1733 #define DBGUNDO(x...) do { } while (0)
1734 #endif
1736 static void tcp_undo_cwr(struct sock *sk, const int undo)
1738 struct tcp_sock *tp = tcp_sk(sk);
1740 if (tp->prior_ssthresh) {
1741 const struct inet_connection_sock *icsk = inet_csk(sk);
1743 if (icsk->icsk_ca_ops->undo_cwnd)
1744 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1745 else
1746 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1748 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1749 tp->snd_ssthresh = tp->prior_ssthresh;
1750 TCP_ECN_withdraw_cwr(tp);
1752 } else {
1753 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1755 tcp_moderate_cwnd(tp);
1756 tp->snd_cwnd_stamp = tcp_time_stamp;
1758 /* There is something screwy going on with the retrans hints after
1759 an undo */
1760 clear_all_retrans_hints(tp);
1763 static inline int tcp_may_undo(struct tcp_sock *tp)
1765 return tp->undo_marker &&
1766 (!tp->undo_retrans || tcp_packet_delayed(tp));
1769 /* People celebrate: "We love our President!" */
1770 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1772 if (tcp_may_undo(tp)) {
1773 /* Happy end! We did not retransmit anything
1774 * or our original transmission succeeded.
1776 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1777 tcp_undo_cwr(sk, 1);
1778 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1779 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1780 else
1781 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1782 tp->undo_marker = 0;
1784 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1785 /* Hold old state until something *above* high_seq
1786 * is ACKed. For Reno it is MUST to prevent false
1787 * fast retransmits (RFC2582). SACK TCP is safe. */
1788 tcp_moderate_cwnd(tp);
1789 return 1;
1791 tcp_set_ca_state(sk, TCP_CA_Open);
1792 return 0;
1795 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1796 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1798 if (tp->undo_marker && !tp->undo_retrans) {
1799 DBGUNDO(sk, tp, "D-SACK");
1800 tcp_undo_cwr(sk, 1);
1801 tp->undo_marker = 0;
1802 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1806 /* Undo during fast recovery after partial ACK. */
1808 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1809 int acked)
1811 /* Partial ACK arrived. Force Hoe's retransmit. */
1812 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1814 if (tcp_may_undo(tp)) {
1815 /* Plain luck! Hole if filled with delayed
1816 * packet, rather than with a retransmit.
1818 if (tp->retrans_out == 0)
1819 tp->retrans_stamp = 0;
1821 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1823 DBGUNDO(sk, tp, "Hoe");
1824 tcp_undo_cwr(sk, 0);
1825 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1827 /* So... Do not make Hoe's retransmit yet.
1828 * If the first packet was delayed, the rest
1829 * ones are most probably delayed as well.
1831 failed = 0;
1833 return failed;
1836 /* Undo during loss recovery after partial ACK. */
1837 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1839 if (tcp_may_undo(tp)) {
1840 struct sk_buff *skb;
1841 sk_stream_for_retrans_queue(skb, sk) {
1842 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1845 clear_all_retrans_hints(tp);
1847 DBGUNDO(sk, tp, "partial loss");
1848 tp->lost_out = 0;
1849 tp->left_out = tp->sacked_out;
1850 tcp_undo_cwr(sk, 1);
1851 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1852 inet_csk(sk)->icsk_retransmits = 0;
1853 tp->undo_marker = 0;
1854 if (!IsReno(tp))
1855 tcp_set_ca_state(sk, TCP_CA_Open);
1856 return 1;
1858 return 0;
1861 static inline void tcp_complete_cwr(struct sock *sk)
1863 struct tcp_sock *tp = tcp_sk(sk);
1864 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1865 tp->snd_cwnd_stamp = tcp_time_stamp;
1866 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1869 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1871 tp->left_out = tp->sacked_out;
1873 if (tp->retrans_out == 0)
1874 tp->retrans_stamp = 0;
1876 if (flag&FLAG_ECE)
1877 tcp_enter_cwr(sk);
1879 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1880 int state = TCP_CA_Open;
1882 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1883 state = TCP_CA_Disorder;
1885 if (inet_csk(sk)->icsk_ca_state != state) {
1886 tcp_set_ca_state(sk, state);
1887 tp->high_seq = tp->snd_nxt;
1889 tcp_moderate_cwnd(tp);
1890 } else {
1891 tcp_cwnd_down(sk);
1895 /* Process an event, which can update packets-in-flight not trivially.
1896 * Main goal of this function is to calculate new estimate for left_out,
1897 * taking into account both packets sitting in receiver's buffer and
1898 * packets lost by network.
1900 * Besides that it does CWND reduction, when packet loss is detected
1901 * and changes state of machine.
1903 * It does _not_ decide what to send, it is made in function
1904 * tcp_xmit_retransmit_queue().
1906 static void
1907 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1908 int prior_packets, int flag)
1910 struct inet_connection_sock *icsk = inet_csk(sk);
1911 struct tcp_sock *tp = tcp_sk(sk);
1912 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1914 /* Some technical things:
1915 * 1. Reno does not count dupacks (sacked_out) automatically. */
1916 if (!tp->packets_out)
1917 tp->sacked_out = 0;
1918 /* 2. SACK counts snd_fack in packets inaccurately. */
1919 if (tp->sacked_out == 0)
1920 tp->fackets_out = 0;
1922 /* Now state machine starts.
1923 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1924 if (flag&FLAG_ECE)
1925 tp->prior_ssthresh = 0;
1927 /* B. In all the states check for reneging SACKs. */
1928 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1929 return;
1931 /* C. Process data loss notification, provided it is valid. */
1932 if ((flag&FLAG_DATA_LOST) &&
1933 before(tp->snd_una, tp->high_seq) &&
1934 icsk->icsk_ca_state != TCP_CA_Open &&
1935 tp->fackets_out > tp->reordering) {
1936 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1937 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1940 /* D. Synchronize left_out to current state. */
1941 tcp_sync_left_out(tp);
1943 /* E. Check state exit conditions. State can be terminated
1944 * when high_seq is ACKed. */
1945 if (icsk->icsk_ca_state == TCP_CA_Open) {
1946 if (!sysctl_tcp_frto)
1947 BUG_TRAP(tp->retrans_out == 0);
1948 tp->retrans_stamp = 0;
1949 } else if (!before(tp->snd_una, tp->high_seq)) {
1950 switch (icsk->icsk_ca_state) {
1951 case TCP_CA_Loss:
1952 icsk->icsk_retransmits = 0;
1953 if (tcp_try_undo_recovery(sk, tp))
1954 return;
1955 break;
1957 case TCP_CA_CWR:
1958 /* CWR is to be held something *above* high_seq
1959 * is ACKed for CWR bit to reach receiver. */
1960 if (tp->snd_una != tp->high_seq) {
1961 tcp_complete_cwr(sk);
1962 tcp_set_ca_state(sk, TCP_CA_Open);
1964 break;
1966 case TCP_CA_Disorder:
1967 tcp_try_undo_dsack(sk, tp);
1968 if (!tp->undo_marker ||
1969 /* For SACK case do not Open to allow to undo
1970 * catching for all duplicate ACKs. */
1971 IsReno(tp) || tp->snd_una != tp->high_seq) {
1972 tp->undo_marker = 0;
1973 tcp_set_ca_state(sk, TCP_CA_Open);
1975 break;
1977 case TCP_CA_Recovery:
1978 if (IsReno(tp))
1979 tcp_reset_reno_sack(tp);
1980 if (tcp_try_undo_recovery(sk, tp))
1981 return;
1982 tcp_complete_cwr(sk);
1983 break;
1987 /* F. Process state. */
1988 switch (icsk->icsk_ca_state) {
1989 case TCP_CA_Recovery:
1990 if (prior_snd_una == tp->snd_una) {
1991 if (IsReno(tp) && is_dupack)
1992 tcp_add_reno_sack(sk);
1993 } else {
1994 int acked = prior_packets - tp->packets_out;
1995 if (IsReno(tp))
1996 tcp_remove_reno_sacks(sk, tp, acked);
1997 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1999 break;
2000 case TCP_CA_Loss:
2001 if (flag&FLAG_DATA_ACKED)
2002 icsk->icsk_retransmits = 0;
2003 if (!tcp_try_undo_loss(sk, tp)) {
2004 tcp_moderate_cwnd(tp);
2005 tcp_xmit_retransmit_queue(sk);
2006 return;
2008 if (icsk->icsk_ca_state != TCP_CA_Open)
2009 return;
2010 /* Loss is undone; fall through to processing in Open state. */
2011 default:
2012 if (IsReno(tp)) {
2013 if (tp->snd_una != prior_snd_una)
2014 tcp_reset_reno_sack(tp);
2015 if (is_dupack)
2016 tcp_add_reno_sack(sk);
2019 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2020 tcp_try_undo_dsack(sk, tp);
2022 if (!tcp_time_to_recover(sk, tp)) {
2023 tcp_try_to_open(sk, tp, flag);
2024 return;
2027 /* Otherwise enter Recovery state */
2029 if (IsReno(tp))
2030 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2031 else
2032 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2034 tp->high_seq = tp->snd_nxt;
2035 tp->prior_ssthresh = 0;
2036 tp->undo_marker = tp->snd_una;
2037 tp->undo_retrans = tp->retrans_out;
2039 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2040 if (!(flag&FLAG_ECE))
2041 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2042 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2043 TCP_ECN_queue_cwr(tp);
2046 tp->bytes_acked = 0;
2047 tp->snd_cwnd_cnt = 0;
2048 tcp_set_ca_state(sk, TCP_CA_Recovery);
2051 if (is_dupack || tcp_head_timedout(sk, tp))
2052 tcp_update_scoreboard(sk, tp);
2053 tcp_cwnd_down(sk);
2054 tcp_xmit_retransmit_queue(sk);
2057 /* Read draft-ietf-tcplw-high-performance before mucking
2058 * with this code. (Supersedes RFC1323)
2060 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2062 /* RTTM Rule: A TSecr value received in a segment is used to
2063 * update the averaged RTT measurement only if the segment
2064 * acknowledges some new data, i.e., only if it advances the
2065 * left edge of the send window.
2067 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2068 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2070 * Changed: reset backoff as soon as we see the first valid sample.
2071 * If we do not, we get strongly overestimated rto. With timestamps
2072 * samples are accepted even from very old segments: f.e., when rtt=1
2073 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2074 * answer arrives rto becomes 120 seconds! If at least one of segments
2075 * in window is lost... Voila. --ANK (010210)
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2079 tcp_rtt_estimator(sk, seq_rtt);
2080 tcp_set_rto(sk);
2081 inet_csk(sk)->icsk_backoff = 0;
2082 tcp_bound_rto(sk);
2085 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2087 /* We don't have a timestamp. Can only use
2088 * packets that are not retransmitted to determine
2089 * rtt estimates. Also, we must not reset the
2090 * backoff for rto until we get a non-retransmitted
2091 * packet. This allows us to deal with a situation
2092 * where the network delay has increased suddenly.
2093 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2096 if (flag & FLAG_RETRANS_DATA_ACKED)
2097 return;
2099 tcp_rtt_estimator(sk, seq_rtt);
2100 tcp_set_rto(sk);
2101 inet_csk(sk)->icsk_backoff = 0;
2102 tcp_bound_rto(sk);
2105 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2106 const s32 seq_rtt)
2108 const struct tcp_sock *tp = tcp_sk(sk);
2109 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2110 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2111 tcp_ack_saw_tstamp(sk, flag);
2112 else if (seq_rtt >= 0)
2113 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2116 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2117 u32 in_flight, int good)
2119 const struct inet_connection_sock *icsk = inet_csk(sk);
2120 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2121 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2124 /* Restart timer after forward progress on connection.
2125 * RFC2988 recommends to restart timer to now+rto.
2128 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2130 if (!tp->packets_out) {
2131 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2132 } else {
2133 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2137 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2138 __u32 now, __s32 *seq_rtt)
2140 struct tcp_sock *tp = tcp_sk(sk);
2141 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2142 __u32 seq = tp->snd_una;
2143 __u32 packets_acked;
2144 int acked = 0;
2146 /* If we get here, the whole TSO packet has not been
2147 * acked.
2149 BUG_ON(!after(scb->end_seq, seq));
2151 packets_acked = tcp_skb_pcount(skb);
2152 if (tcp_trim_head(sk, skb, seq - scb->seq))
2153 return 0;
2154 packets_acked -= tcp_skb_pcount(skb);
2156 if (packets_acked) {
2157 __u8 sacked = scb->sacked;
2159 acked |= FLAG_DATA_ACKED;
2160 if (sacked) {
2161 if (sacked & TCPCB_RETRANS) {
2162 if (sacked & TCPCB_SACKED_RETRANS)
2163 tp->retrans_out -= packets_acked;
2164 acked |= FLAG_RETRANS_DATA_ACKED;
2165 *seq_rtt = -1;
2166 } else if (*seq_rtt < 0)
2167 *seq_rtt = now - scb->when;
2168 if (sacked & TCPCB_SACKED_ACKED)
2169 tp->sacked_out -= packets_acked;
2170 if (sacked & TCPCB_LOST)
2171 tp->lost_out -= packets_acked;
2172 if (sacked & TCPCB_URG) {
2173 if (tp->urg_mode &&
2174 !before(seq, tp->snd_up))
2175 tp->urg_mode = 0;
2177 } else if (*seq_rtt < 0)
2178 *seq_rtt = now - scb->when;
2180 if (tp->fackets_out) {
2181 __u32 dval = min(tp->fackets_out, packets_acked);
2182 tp->fackets_out -= dval;
2184 tp->packets_out -= packets_acked;
2186 BUG_ON(tcp_skb_pcount(skb) == 0);
2187 BUG_ON(!before(scb->seq, scb->end_seq));
2190 return acked;
2193 static u32 tcp_usrtt(struct timeval *tv)
2195 struct timeval now;
2197 do_gettimeofday(&now);
2198 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2201 /* Remove acknowledged frames from the retransmission queue. */
2202 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2204 struct tcp_sock *tp = tcp_sk(sk);
2205 const struct inet_connection_sock *icsk = inet_csk(sk);
2206 struct sk_buff *skb;
2207 __u32 now = tcp_time_stamp;
2208 int acked = 0;
2209 __s32 seq_rtt = -1;
2210 u32 pkts_acked = 0;
2211 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2212 = icsk->icsk_ca_ops->rtt_sample;
2213 struct timeval tv;
2215 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2216 skb != sk->sk_send_head) {
2217 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2218 __u8 sacked = scb->sacked;
2220 /* If our packet is before the ack sequence we can
2221 * discard it as it's confirmed to have arrived at
2222 * the other end.
2224 if (after(scb->end_seq, tp->snd_una)) {
2225 if (tcp_skb_pcount(skb) > 1 &&
2226 after(tp->snd_una, scb->seq))
2227 acked |= tcp_tso_acked(sk, skb,
2228 now, &seq_rtt);
2229 break;
2232 /* Initial outgoing SYN's get put onto the write_queue
2233 * just like anything else we transmit. It is not
2234 * true data, and if we misinform our callers that
2235 * this ACK acks real data, we will erroneously exit
2236 * connection startup slow start one packet too
2237 * quickly. This is severely frowned upon behavior.
2239 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2240 acked |= FLAG_DATA_ACKED;
2241 ++pkts_acked;
2242 } else {
2243 acked |= FLAG_SYN_ACKED;
2244 tp->retrans_stamp = 0;
2247 if (sacked) {
2248 if (sacked & TCPCB_RETRANS) {
2249 if(sacked & TCPCB_SACKED_RETRANS)
2250 tp->retrans_out -= tcp_skb_pcount(skb);
2251 acked |= FLAG_RETRANS_DATA_ACKED;
2252 seq_rtt = -1;
2253 } else if (seq_rtt < 0) {
2254 seq_rtt = now - scb->when;
2255 skb_get_timestamp(skb, &tv);
2257 if (sacked & TCPCB_SACKED_ACKED)
2258 tp->sacked_out -= tcp_skb_pcount(skb);
2259 if (sacked & TCPCB_LOST)
2260 tp->lost_out -= tcp_skb_pcount(skb);
2261 if (sacked & TCPCB_URG) {
2262 if (tp->urg_mode &&
2263 !before(scb->end_seq, tp->snd_up))
2264 tp->urg_mode = 0;
2266 } else if (seq_rtt < 0) {
2267 seq_rtt = now - scb->when;
2268 skb_get_timestamp(skb, &tv);
2270 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2271 tcp_packets_out_dec(tp, skb);
2272 __skb_unlink(skb, &sk->sk_write_queue);
2273 sk_stream_free_skb(sk, skb);
2274 clear_all_retrans_hints(tp);
2277 if (acked&FLAG_ACKED) {
2278 tcp_ack_update_rtt(sk, acked, seq_rtt);
2279 tcp_ack_packets_out(sk, tp);
2280 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2281 (*rtt_sample)(sk, tcp_usrtt(&tv));
2283 if (icsk->icsk_ca_ops->pkts_acked)
2284 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2287 #if FASTRETRANS_DEBUG > 0
2288 BUG_TRAP((int)tp->sacked_out >= 0);
2289 BUG_TRAP((int)tp->lost_out >= 0);
2290 BUG_TRAP((int)tp->retrans_out >= 0);
2291 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2292 const struct inet_connection_sock *icsk = inet_csk(sk);
2293 if (tp->lost_out) {
2294 printk(KERN_DEBUG "Leak l=%u %d\n",
2295 tp->lost_out, icsk->icsk_ca_state);
2296 tp->lost_out = 0;
2298 if (tp->sacked_out) {
2299 printk(KERN_DEBUG "Leak s=%u %d\n",
2300 tp->sacked_out, icsk->icsk_ca_state);
2301 tp->sacked_out = 0;
2303 if (tp->retrans_out) {
2304 printk(KERN_DEBUG "Leak r=%u %d\n",
2305 tp->retrans_out, icsk->icsk_ca_state);
2306 tp->retrans_out = 0;
2309 #endif
2310 *seq_rtt_p = seq_rtt;
2311 return acked;
2314 static void tcp_ack_probe(struct sock *sk)
2316 const struct tcp_sock *tp = tcp_sk(sk);
2317 struct inet_connection_sock *icsk = inet_csk(sk);
2319 /* Was it a usable window open? */
2321 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2322 tp->snd_una + tp->snd_wnd)) {
2323 icsk->icsk_backoff = 0;
2324 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2325 /* Socket must be waked up by subsequent tcp_data_snd_check().
2326 * This function is not for random using!
2328 } else {
2329 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2330 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2331 TCP_RTO_MAX);
2335 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2337 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2338 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2341 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2343 const struct tcp_sock *tp = tcp_sk(sk);
2344 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2345 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2348 /* Check that window update is acceptable.
2349 * The function assumes that snd_una<=ack<=snd_next.
2351 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2352 const u32 ack_seq, const u32 nwin)
2354 return (after(ack, tp->snd_una) ||
2355 after(ack_seq, tp->snd_wl1) ||
2356 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2359 /* Update our send window.
2361 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2362 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2364 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2365 struct sk_buff *skb, u32 ack, u32 ack_seq)
2367 int flag = 0;
2368 u32 nwin = ntohs(skb->h.th->window);
2370 if (likely(!skb->h.th->syn))
2371 nwin <<= tp->rx_opt.snd_wscale;
2373 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2374 flag |= FLAG_WIN_UPDATE;
2375 tcp_update_wl(tp, ack, ack_seq);
2377 if (tp->snd_wnd != nwin) {
2378 tp->snd_wnd = nwin;
2380 /* Note, it is the only place, where
2381 * fast path is recovered for sending TCP.
2383 tp->pred_flags = 0;
2384 tcp_fast_path_check(sk, tp);
2386 if (nwin > tp->max_window) {
2387 tp->max_window = nwin;
2388 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2393 tp->snd_una = ack;
2395 return flag;
2398 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2400 struct tcp_sock *tp = tcp_sk(sk);
2402 tcp_sync_left_out(tp);
2404 if (tp->snd_una == prior_snd_una ||
2405 !before(tp->snd_una, tp->frto_highmark)) {
2406 /* RTO was caused by loss, start retransmitting in
2407 * go-back-N slow start
2409 tcp_enter_frto_loss(sk);
2410 return;
2413 if (tp->frto_counter == 1) {
2414 /* First ACK after RTO advances the window: allow two new
2415 * segments out.
2417 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2418 } else {
2419 /* Also the second ACK after RTO advances the window.
2420 * The RTO was likely spurious. Reduce cwnd and continue
2421 * in congestion avoidance
2423 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2424 tcp_moderate_cwnd(tp);
2427 /* F-RTO affects on two new ACKs following RTO.
2428 * At latest on third ACK the TCP behavior is back to normal.
2430 tp->frto_counter = (tp->frto_counter + 1) % 3;
2433 /* This routine deals with incoming acks, but not outgoing ones. */
2434 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2436 struct inet_connection_sock *icsk = inet_csk(sk);
2437 struct tcp_sock *tp = tcp_sk(sk);
2438 u32 prior_snd_una = tp->snd_una;
2439 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2440 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2441 u32 prior_in_flight;
2442 s32 seq_rtt;
2443 int prior_packets;
2445 /* If the ack is newer than sent or older than previous acks
2446 * then we can probably ignore it.
2448 if (after(ack, tp->snd_nxt))
2449 goto uninteresting_ack;
2451 if (before(ack, prior_snd_una))
2452 goto old_ack;
2454 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2455 tp->bytes_acked += ack - prior_snd_una;
2457 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2458 /* Window is constant, pure forward advance.
2459 * No more checks are required.
2460 * Note, we use the fact that SND.UNA>=SND.WL2.
2462 tcp_update_wl(tp, ack, ack_seq);
2463 tp->snd_una = ack;
2464 flag |= FLAG_WIN_UPDATE;
2466 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2468 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2469 } else {
2470 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2471 flag |= FLAG_DATA;
2472 else
2473 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2475 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2477 if (TCP_SKB_CB(skb)->sacked)
2478 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2480 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2481 flag |= FLAG_ECE;
2483 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2486 /* We passed data and got it acked, remove any soft error
2487 * log. Something worked...
2489 sk->sk_err_soft = 0;
2490 tp->rcv_tstamp = tcp_time_stamp;
2491 prior_packets = tp->packets_out;
2492 if (!prior_packets)
2493 goto no_queue;
2495 prior_in_flight = tcp_packets_in_flight(tp);
2497 /* See if we can take anything off of the retransmit queue. */
2498 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2500 if (tp->frto_counter)
2501 tcp_process_frto(sk, prior_snd_una);
2503 if (tcp_ack_is_dubious(sk, flag)) {
2504 /* Advance CWND, if state allows this. */
2505 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2506 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2507 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2508 } else {
2509 if ((flag & FLAG_DATA_ACKED))
2510 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2513 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2514 dst_confirm(sk->sk_dst_cache);
2516 return 1;
2518 no_queue:
2519 icsk->icsk_probes_out = 0;
2521 /* If this ack opens up a zero window, clear backoff. It was
2522 * being used to time the probes, and is probably far higher than
2523 * it needs to be for normal retransmission.
2525 if (sk->sk_send_head)
2526 tcp_ack_probe(sk);
2527 return 1;
2529 old_ack:
2530 if (TCP_SKB_CB(skb)->sacked)
2531 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2533 uninteresting_ack:
2534 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2535 return 0;
2539 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2540 * But, this can also be called on packets in the established flow when
2541 * the fast version below fails.
2543 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2545 unsigned char *ptr;
2546 struct tcphdr *th = skb->h.th;
2547 int length=(th->doff*4)-sizeof(struct tcphdr);
2549 ptr = (unsigned char *)(th + 1);
2550 opt_rx->saw_tstamp = 0;
2552 while(length>0) {
2553 int opcode=*ptr++;
2554 int opsize;
2556 switch (opcode) {
2557 case TCPOPT_EOL:
2558 return;
2559 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2560 length--;
2561 continue;
2562 default:
2563 opsize=*ptr++;
2564 if (opsize < 2) /* "silly options" */
2565 return;
2566 if (opsize > length)
2567 return; /* don't parse partial options */
2568 switch(opcode) {
2569 case TCPOPT_MSS:
2570 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2571 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2572 if (in_mss) {
2573 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2574 in_mss = opt_rx->user_mss;
2575 opt_rx->mss_clamp = in_mss;
2578 break;
2579 case TCPOPT_WINDOW:
2580 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2581 if (sysctl_tcp_window_scaling) {
2582 __u8 snd_wscale = *(__u8 *) ptr;
2583 opt_rx->wscale_ok = 1;
2584 if (snd_wscale > 14) {
2585 if(net_ratelimit())
2586 printk(KERN_INFO "tcp_parse_options: Illegal window "
2587 "scaling value %d >14 received.\n",
2588 snd_wscale);
2589 snd_wscale = 14;
2591 opt_rx->snd_wscale = snd_wscale;
2593 break;
2594 case TCPOPT_TIMESTAMP:
2595 if(opsize==TCPOLEN_TIMESTAMP) {
2596 if ((estab && opt_rx->tstamp_ok) ||
2597 (!estab && sysctl_tcp_timestamps)) {
2598 opt_rx->saw_tstamp = 1;
2599 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2600 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2603 break;
2604 case TCPOPT_SACK_PERM:
2605 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2606 if (sysctl_tcp_sack) {
2607 opt_rx->sack_ok = 1;
2608 tcp_sack_reset(opt_rx);
2611 break;
2613 case TCPOPT_SACK:
2614 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2615 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2616 opt_rx->sack_ok) {
2617 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2620 ptr+=opsize-2;
2621 length-=opsize;
2626 /* Fast parse options. This hopes to only see timestamps.
2627 * If it is wrong it falls back on tcp_parse_options().
2629 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2630 struct tcp_sock *tp)
2632 if (th->doff == sizeof(struct tcphdr)>>2) {
2633 tp->rx_opt.saw_tstamp = 0;
2634 return 0;
2635 } else if (tp->rx_opt.tstamp_ok &&
2636 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2637 __u32 *ptr = (__u32 *)(th + 1);
2638 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2639 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2640 tp->rx_opt.saw_tstamp = 1;
2641 ++ptr;
2642 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2643 ++ptr;
2644 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2645 return 1;
2648 tcp_parse_options(skb, &tp->rx_opt, 1);
2649 return 1;
2652 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2654 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2655 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2658 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2660 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2661 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2662 * extra check below makes sure this can only happen
2663 * for pure ACK frames. -DaveM
2665 * Not only, also it occurs for expired timestamps.
2668 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2669 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2670 tcp_store_ts_recent(tp);
2674 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2676 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2677 * it can pass through stack. So, the following predicate verifies that
2678 * this segment is not used for anything but congestion avoidance or
2679 * fast retransmit. Moreover, we even are able to eliminate most of such
2680 * second order effects, if we apply some small "replay" window (~RTO)
2681 * to timestamp space.
2683 * All these measures still do not guarantee that we reject wrapped ACKs
2684 * on networks with high bandwidth, when sequence space is recycled fastly,
2685 * but it guarantees that such events will be very rare and do not affect
2686 * connection seriously. This doesn't look nice, but alas, PAWS is really
2687 * buggy extension.
2689 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2690 * states that events when retransmit arrives after original data are rare.
2691 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2692 * the biggest problem on large power networks even with minor reordering.
2693 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2694 * up to bandwidth of 18Gigabit/sec. 8) ]
2697 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2699 struct tcp_sock *tp = tcp_sk(sk);
2700 struct tcphdr *th = skb->h.th;
2701 u32 seq = TCP_SKB_CB(skb)->seq;
2702 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2704 return (/* 1. Pure ACK with correct sequence number. */
2705 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2707 /* 2. ... and duplicate ACK. */
2708 ack == tp->snd_una &&
2710 /* 3. ... and does not update window. */
2711 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2713 /* 4. ... and sits in replay window. */
2714 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2717 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2719 const struct tcp_sock *tp = tcp_sk(sk);
2720 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2721 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2722 !tcp_disordered_ack(sk, skb));
2725 /* Check segment sequence number for validity.
2727 * Segment controls are considered valid, if the segment
2728 * fits to the window after truncation to the window. Acceptability
2729 * of data (and SYN, FIN, of course) is checked separately.
2730 * See tcp_data_queue(), for example.
2732 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2733 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2734 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2735 * (borrowed from freebsd)
2738 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2740 return !before(end_seq, tp->rcv_wup) &&
2741 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2744 /* When we get a reset we do this. */
2745 static void tcp_reset(struct sock *sk)
2747 /* We want the right error as BSD sees it (and indeed as we do). */
2748 switch (sk->sk_state) {
2749 case TCP_SYN_SENT:
2750 sk->sk_err = ECONNREFUSED;
2751 break;
2752 case TCP_CLOSE_WAIT:
2753 sk->sk_err = EPIPE;
2754 break;
2755 case TCP_CLOSE:
2756 return;
2757 default:
2758 sk->sk_err = ECONNRESET;
2761 if (!sock_flag(sk, SOCK_DEAD))
2762 sk->sk_error_report(sk);
2764 tcp_done(sk);
2768 * Process the FIN bit. This now behaves as it is supposed to work
2769 * and the FIN takes effect when it is validly part of sequence
2770 * space. Not before when we get holes.
2772 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2773 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2774 * TIME-WAIT)
2776 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2777 * close and we go into CLOSING (and later onto TIME-WAIT)
2779 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2781 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2783 struct tcp_sock *tp = tcp_sk(sk);
2785 inet_csk_schedule_ack(sk);
2787 sk->sk_shutdown |= RCV_SHUTDOWN;
2788 sock_set_flag(sk, SOCK_DONE);
2790 switch (sk->sk_state) {
2791 case TCP_SYN_RECV:
2792 case TCP_ESTABLISHED:
2793 /* Move to CLOSE_WAIT */
2794 tcp_set_state(sk, TCP_CLOSE_WAIT);
2795 inet_csk(sk)->icsk_ack.pingpong = 1;
2796 break;
2798 case TCP_CLOSE_WAIT:
2799 case TCP_CLOSING:
2800 /* Received a retransmission of the FIN, do
2801 * nothing.
2803 break;
2804 case TCP_LAST_ACK:
2805 /* RFC793: Remain in the LAST-ACK state. */
2806 break;
2808 case TCP_FIN_WAIT1:
2809 /* This case occurs when a simultaneous close
2810 * happens, we must ack the received FIN and
2811 * enter the CLOSING state.
2813 tcp_send_ack(sk);
2814 tcp_set_state(sk, TCP_CLOSING);
2815 break;
2816 case TCP_FIN_WAIT2:
2817 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2818 tcp_send_ack(sk);
2819 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2820 break;
2821 default:
2822 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2823 * cases we should never reach this piece of code.
2825 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2826 __FUNCTION__, sk->sk_state);
2827 break;
2830 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2831 * Probably, we should reset in this case. For now drop them.
2833 __skb_queue_purge(&tp->out_of_order_queue);
2834 if (tp->rx_opt.sack_ok)
2835 tcp_sack_reset(&tp->rx_opt);
2836 sk_stream_mem_reclaim(sk);
2838 if (!sock_flag(sk, SOCK_DEAD)) {
2839 sk->sk_state_change(sk);
2841 /* Do not send POLL_HUP for half duplex close. */
2842 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2843 sk->sk_state == TCP_CLOSE)
2844 sk_wake_async(sk, 1, POLL_HUP);
2845 else
2846 sk_wake_async(sk, 1, POLL_IN);
2850 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2852 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2853 if (before(seq, sp->start_seq))
2854 sp->start_seq = seq;
2855 if (after(end_seq, sp->end_seq))
2856 sp->end_seq = end_seq;
2857 return 1;
2859 return 0;
2862 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2864 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2865 if (before(seq, tp->rcv_nxt))
2866 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2867 else
2868 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2870 tp->rx_opt.dsack = 1;
2871 tp->duplicate_sack[0].start_seq = seq;
2872 tp->duplicate_sack[0].end_seq = end_seq;
2873 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2877 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2879 if (!tp->rx_opt.dsack)
2880 tcp_dsack_set(tp, seq, end_seq);
2881 else
2882 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2885 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2887 struct tcp_sock *tp = tcp_sk(sk);
2889 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2890 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2891 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2892 tcp_enter_quickack_mode(sk);
2894 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2895 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2897 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2898 end_seq = tp->rcv_nxt;
2899 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2903 tcp_send_ack(sk);
2906 /* These routines update the SACK block as out-of-order packets arrive or
2907 * in-order packets close up the sequence space.
2909 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2911 int this_sack;
2912 struct tcp_sack_block *sp = &tp->selective_acks[0];
2913 struct tcp_sack_block *swalk = sp+1;
2915 /* See if the recent change to the first SACK eats into
2916 * or hits the sequence space of other SACK blocks, if so coalesce.
2918 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2919 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2920 int i;
2922 /* Zap SWALK, by moving every further SACK up by one slot.
2923 * Decrease num_sacks.
2925 tp->rx_opt.num_sacks--;
2926 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2927 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2928 sp[i] = sp[i+1];
2929 continue;
2931 this_sack++, swalk++;
2935 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2937 __u32 tmp;
2939 tmp = sack1->start_seq;
2940 sack1->start_seq = sack2->start_seq;
2941 sack2->start_seq = tmp;
2943 tmp = sack1->end_seq;
2944 sack1->end_seq = sack2->end_seq;
2945 sack2->end_seq = tmp;
2948 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2950 struct tcp_sock *tp = tcp_sk(sk);
2951 struct tcp_sack_block *sp = &tp->selective_acks[0];
2952 int cur_sacks = tp->rx_opt.num_sacks;
2953 int this_sack;
2955 if (!cur_sacks)
2956 goto new_sack;
2958 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2959 if (tcp_sack_extend(sp, seq, end_seq)) {
2960 /* Rotate this_sack to the first one. */
2961 for (; this_sack>0; this_sack--, sp--)
2962 tcp_sack_swap(sp, sp-1);
2963 if (cur_sacks > 1)
2964 tcp_sack_maybe_coalesce(tp);
2965 return;
2969 /* Could not find an adjacent existing SACK, build a new one,
2970 * put it at the front, and shift everyone else down. We
2971 * always know there is at least one SACK present already here.
2973 * If the sack array is full, forget about the last one.
2975 if (this_sack >= 4) {
2976 this_sack--;
2977 tp->rx_opt.num_sacks--;
2978 sp--;
2980 for(; this_sack > 0; this_sack--, sp--)
2981 *sp = *(sp-1);
2983 new_sack:
2984 /* Build the new head SACK, and we're done. */
2985 sp->start_seq = seq;
2986 sp->end_seq = end_seq;
2987 tp->rx_opt.num_sacks++;
2988 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2991 /* RCV.NXT advances, some SACKs should be eaten. */
2993 static void tcp_sack_remove(struct tcp_sock *tp)
2995 struct tcp_sack_block *sp = &tp->selective_acks[0];
2996 int num_sacks = tp->rx_opt.num_sacks;
2997 int this_sack;
2999 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3000 if (skb_queue_empty(&tp->out_of_order_queue)) {
3001 tp->rx_opt.num_sacks = 0;
3002 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3003 return;
3006 for(this_sack = 0; this_sack < num_sacks; ) {
3007 /* Check if the start of the sack is covered by RCV.NXT. */
3008 if (!before(tp->rcv_nxt, sp->start_seq)) {
3009 int i;
3011 /* RCV.NXT must cover all the block! */
3012 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3014 /* Zap this SACK, by moving forward any other SACKS. */
3015 for (i=this_sack+1; i < num_sacks; i++)
3016 tp->selective_acks[i-1] = tp->selective_acks[i];
3017 num_sacks--;
3018 continue;
3020 this_sack++;
3021 sp++;
3023 if (num_sacks != tp->rx_opt.num_sacks) {
3024 tp->rx_opt.num_sacks = num_sacks;
3025 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3029 /* This one checks to see if we can put data from the
3030 * out_of_order queue into the receive_queue.
3032 static void tcp_ofo_queue(struct sock *sk)
3034 struct tcp_sock *tp = tcp_sk(sk);
3035 __u32 dsack_high = tp->rcv_nxt;
3036 struct sk_buff *skb;
3038 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3039 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3040 break;
3042 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3043 __u32 dsack = dsack_high;
3044 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3045 dsack_high = TCP_SKB_CB(skb)->end_seq;
3046 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3049 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3050 SOCK_DEBUG(sk, "ofo packet was already received \n");
3051 __skb_unlink(skb, &tp->out_of_order_queue);
3052 __kfree_skb(skb);
3053 continue;
3055 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3056 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3057 TCP_SKB_CB(skb)->end_seq);
3059 __skb_unlink(skb, &tp->out_of_order_queue);
3060 __skb_queue_tail(&sk->sk_receive_queue, skb);
3061 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3062 if(skb->h.th->fin)
3063 tcp_fin(skb, sk, skb->h.th);
3067 static int tcp_prune_queue(struct sock *sk);
3069 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3071 struct tcphdr *th = skb->h.th;
3072 struct tcp_sock *tp = tcp_sk(sk);
3073 int eaten = -1;
3075 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3076 goto drop;
3078 __skb_pull(skb, th->doff*4);
3080 TCP_ECN_accept_cwr(tp, skb);
3082 if (tp->rx_opt.dsack) {
3083 tp->rx_opt.dsack = 0;
3084 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3085 4 - tp->rx_opt.tstamp_ok);
3088 /* Queue data for delivery to the user.
3089 * Packets in sequence go to the receive queue.
3090 * Out of sequence packets to the out_of_order_queue.
3092 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3093 if (tcp_receive_window(tp) == 0)
3094 goto out_of_window;
3096 /* Ok. In sequence. In window. */
3097 if (tp->ucopy.task == current &&
3098 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3099 sock_owned_by_user(sk) && !tp->urg_data) {
3100 int chunk = min_t(unsigned int, skb->len,
3101 tp->ucopy.len);
3103 __set_current_state(TASK_RUNNING);
3105 local_bh_enable();
3106 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3107 tp->ucopy.len -= chunk;
3108 tp->copied_seq += chunk;
3109 eaten = (chunk == skb->len && !th->fin);
3110 tcp_rcv_space_adjust(sk);
3112 local_bh_disable();
3115 if (eaten <= 0) {
3116 queue_and_out:
3117 if (eaten < 0 &&
3118 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3119 !sk_stream_rmem_schedule(sk, skb))) {
3120 if (tcp_prune_queue(sk) < 0 ||
3121 !sk_stream_rmem_schedule(sk, skb))
3122 goto drop;
3124 sk_stream_set_owner_r(skb, sk);
3125 __skb_queue_tail(&sk->sk_receive_queue, skb);
3127 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3128 if(skb->len)
3129 tcp_event_data_recv(sk, tp, skb);
3130 if(th->fin)
3131 tcp_fin(skb, sk, th);
3133 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3134 tcp_ofo_queue(sk);
3136 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3137 * gap in queue is filled.
3139 if (skb_queue_empty(&tp->out_of_order_queue))
3140 inet_csk(sk)->icsk_ack.pingpong = 0;
3143 if (tp->rx_opt.num_sacks)
3144 tcp_sack_remove(tp);
3146 tcp_fast_path_check(sk, tp);
3148 if (eaten > 0)
3149 __kfree_skb(skb);
3150 else if (!sock_flag(sk, SOCK_DEAD))
3151 sk->sk_data_ready(sk, 0);
3152 return;
3155 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3156 /* A retransmit, 2nd most common case. Force an immediate ack. */
3157 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3158 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3160 out_of_window:
3161 tcp_enter_quickack_mode(sk);
3162 inet_csk_schedule_ack(sk);
3163 drop:
3164 __kfree_skb(skb);
3165 return;
3168 /* Out of window. F.e. zero window probe. */
3169 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3170 goto out_of_window;
3172 tcp_enter_quickack_mode(sk);
3174 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3175 /* Partial packet, seq < rcv_next < end_seq */
3176 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3177 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3178 TCP_SKB_CB(skb)->end_seq);
3180 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3182 /* If window is closed, drop tail of packet. But after
3183 * remembering D-SACK for its head made in previous line.
3185 if (!tcp_receive_window(tp))
3186 goto out_of_window;
3187 goto queue_and_out;
3190 TCP_ECN_check_ce(tp, skb);
3192 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3193 !sk_stream_rmem_schedule(sk, skb)) {
3194 if (tcp_prune_queue(sk) < 0 ||
3195 !sk_stream_rmem_schedule(sk, skb))
3196 goto drop;
3199 /* Disable header prediction. */
3200 tp->pred_flags = 0;
3201 inet_csk_schedule_ack(sk);
3203 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3204 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3206 sk_stream_set_owner_r(skb, sk);
3208 if (!skb_peek(&tp->out_of_order_queue)) {
3209 /* Initial out of order segment, build 1 SACK. */
3210 if (tp->rx_opt.sack_ok) {
3211 tp->rx_opt.num_sacks = 1;
3212 tp->rx_opt.dsack = 0;
3213 tp->rx_opt.eff_sacks = 1;
3214 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3215 tp->selective_acks[0].end_seq =
3216 TCP_SKB_CB(skb)->end_seq;
3218 __skb_queue_head(&tp->out_of_order_queue,skb);
3219 } else {
3220 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3221 u32 seq = TCP_SKB_CB(skb)->seq;
3222 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3224 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3225 __skb_append(skb1, skb, &tp->out_of_order_queue);
3227 if (!tp->rx_opt.num_sacks ||
3228 tp->selective_acks[0].end_seq != seq)
3229 goto add_sack;
3231 /* Common case: data arrive in order after hole. */
3232 tp->selective_acks[0].end_seq = end_seq;
3233 return;
3236 /* Find place to insert this segment. */
3237 do {
3238 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3239 break;
3240 } while ((skb1 = skb1->prev) !=
3241 (struct sk_buff*)&tp->out_of_order_queue);
3243 /* Do skb overlap to previous one? */
3244 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3245 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3246 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3247 /* All the bits are present. Drop. */
3248 __kfree_skb(skb);
3249 tcp_dsack_set(tp, seq, end_seq);
3250 goto add_sack;
3252 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3253 /* Partial overlap. */
3254 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3255 } else {
3256 skb1 = skb1->prev;
3259 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3261 /* And clean segments covered by new one as whole. */
3262 while ((skb1 = skb->next) !=
3263 (struct sk_buff*)&tp->out_of_order_queue &&
3264 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3265 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3266 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3267 break;
3269 __skb_unlink(skb1, &tp->out_of_order_queue);
3270 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3271 __kfree_skb(skb1);
3274 add_sack:
3275 if (tp->rx_opt.sack_ok)
3276 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3280 /* Collapse contiguous sequence of skbs head..tail with
3281 * sequence numbers start..end.
3282 * Segments with FIN/SYN are not collapsed (only because this
3283 * simplifies code)
3285 static void
3286 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3287 struct sk_buff *head, struct sk_buff *tail,
3288 u32 start, u32 end)
3290 struct sk_buff *skb;
3292 /* First, check that queue is collapsible and find
3293 * the point where collapsing can be useful. */
3294 for (skb = head; skb != tail; ) {
3295 /* No new bits? It is possible on ofo queue. */
3296 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3297 struct sk_buff *next = skb->next;
3298 __skb_unlink(skb, list);
3299 __kfree_skb(skb);
3300 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3301 skb = next;
3302 continue;
3305 /* The first skb to collapse is:
3306 * - not SYN/FIN and
3307 * - bloated or contains data before "start" or
3308 * overlaps to the next one.
3310 if (!skb->h.th->syn && !skb->h.th->fin &&
3311 (tcp_win_from_space(skb->truesize) > skb->len ||
3312 before(TCP_SKB_CB(skb)->seq, start) ||
3313 (skb->next != tail &&
3314 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3315 break;
3317 /* Decided to skip this, advance start seq. */
3318 start = TCP_SKB_CB(skb)->end_seq;
3319 skb = skb->next;
3321 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3322 return;
3324 while (before(start, end)) {
3325 struct sk_buff *nskb;
3326 int header = skb_headroom(skb);
3327 int copy = SKB_MAX_ORDER(header, 0);
3329 /* Too big header? This can happen with IPv6. */
3330 if (copy < 0)
3331 return;
3332 if (end-start < copy)
3333 copy = end-start;
3334 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3335 if (!nskb)
3336 return;
3337 skb_reserve(nskb, header);
3338 memcpy(nskb->head, skb->head, header);
3339 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3340 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3341 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3342 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3343 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3344 __skb_insert(nskb, skb->prev, skb, list);
3345 sk_stream_set_owner_r(nskb, sk);
3347 /* Copy data, releasing collapsed skbs. */
3348 while (copy > 0) {
3349 int offset = start - TCP_SKB_CB(skb)->seq;
3350 int size = TCP_SKB_CB(skb)->end_seq - start;
3352 BUG_ON(offset < 0);
3353 if (size > 0) {
3354 size = min(copy, size);
3355 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3356 BUG();
3357 TCP_SKB_CB(nskb)->end_seq += size;
3358 copy -= size;
3359 start += size;
3361 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3362 struct sk_buff *next = skb->next;
3363 __skb_unlink(skb, list);
3364 __kfree_skb(skb);
3365 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3366 skb = next;
3367 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3368 return;
3374 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3375 * and tcp_collapse() them until all the queue is collapsed.
3377 static void tcp_collapse_ofo_queue(struct sock *sk)
3379 struct tcp_sock *tp = tcp_sk(sk);
3380 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3381 struct sk_buff *head;
3382 u32 start, end;
3384 if (skb == NULL)
3385 return;
3387 start = TCP_SKB_CB(skb)->seq;
3388 end = TCP_SKB_CB(skb)->end_seq;
3389 head = skb;
3391 for (;;) {
3392 skb = skb->next;
3394 /* Segment is terminated when we see gap or when
3395 * we are at the end of all the queue. */
3396 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3397 after(TCP_SKB_CB(skb)->seq, end) ||
3398 before(TCP_SKB_CB(skb)->end_seq, start)) {
3399 tcp_collapse(sk, &tp->out_of_order_queue,
3400 head, skb, start, end);
3401 head = skb;
3402 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3403 break;
3404 /* Start new segment */
3405 start = TCP_SKB_CB(skb)->seq;
3406 end = TCP_SKB_CB(skb)->end_seq;
3407 } else {
3408 if (before(TCP_SKB_CB(skb)->seq, start))
3409 start = TCP_SKB_CB(skb)->seq;
3410 if (after(TCP_SKB_CB(skb)->end_seq, end))
3411 end = TCP_SKB_CB(skb)->end_seq;
3416 /* Reduce allocated memory if we can, trying to get
3417 * the socket within its memory limits again.
3419 * Return less than zero if we should start dropping frames
3420 * until the socket owning process reads some of the data
3421 * to stabilize the situation.
3423 static int tcp_prune_queue(struct sock *sk)
3425 struct tcp_sock *tp = tcp_sk(sk);
3427 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3429 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3431 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3432 tcp_clamp_window(sk, tp);
3433 else if (tcp_memory_pressure)
3434 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3436 tcp_collapse_ofo_queue(sk);
3437 tcp_collapse(sk, &sk->sk_receive_queue,
3438 sk->sk_receive_queue.next,
3439 (struct sk_buff*)&sk->sk_receive_queue,
3440 tp->copied_seq, tp->rcv_nxt);
3441 sk_stream_mem_reclaim(sk);
3443 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3444 return 0;
3446 /* Collapsing did not help, destructive actions follow.
3447 * This must not ever occur. */
3449 /* First, purge the out_of_order queue. */
3450 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3451 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3452 __skb_queue_purge(&tp->out_of_order_queue);
3454 /* Reset SACK state. A conforming SACK implementation will
3455 * do the same at a timeout based retransmit. When a connection
3456 * is in a sad state like this, we care only about integrity
3457 * of the connection not performance.
3459 if (tp->rx_opt.sack_ok)
3460 tcp_sack_reset(&tp->rx_opt);
3461 sk_stream_mem_reclaim(sk);
3464 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3465 return 0;
3467 /* If we are really being abused, tell the caller to silently
3468 * drop receive data on the floor. It will get retransmitted
3469 * and hopefully then we'll have sufficient space.
3471 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3473 /* Massive buffer overcommit. */
3474 tp->pred_flags = 0;
3475 return -1;
3479 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3480 * As additional protections, we do not touch cwnd in retransmission phases,
3481 * and if application hit its sndbuf limit recently.
3483 void tcp_cwnd_application_limited(struct sock *sk)
3485 struct tcp_sock *tp = tcp_sk(sk);
3487 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3488 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3489 /* Limited by application or receiver window. */
3490 u32 win_used = max(tp->snd_cwnd_used, 2U);
3491 if (win_used < tp->snd_cwnd) {
3492 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3493 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3495 tp->snd_cwnd_used = 0;
3497 tp->snd_cwnd_stamp = tcp_time_stamp;
3500 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3502 /* If the user specified a specific send buffer setting, do
3503 * not modify it.
3505 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3506 return 0;
3508 /* If we are under global TCP memory pressure, do not expand. */
3509 if (tcp_memory_pressure)
3510 return 0;
3512 /* If we are under soft global TCP memory pressure, do not expand. */
3513 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3514 return 0;
3516 /* If we filled the congestion window, do not expand. */
3517 if (tp->packets_out >= tp->snd_cwnd)
3518 return 0;
3520 return 1;
3523 /* When incoming ACK allowed to free some skb from write_queue,
3524 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3525 * on the exit from tcp input handler.
3527 * PROBLEM: sndbuf expansion does not work well with largesend.
3529 static void tcp_new_space(struct sock *sk)
3531 struct tcp_sock *tp = tcp_sk(sk);
3533 if (tcp_should_expand_sndbuf(sk, tp)) {
3534 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3535 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3536 demanded = max_t(unsigned int, tp->snd_cwnd,
3537 tp->reordering + 1);
3538 sndmem *= 2*demanded;
3539 if (sndmem > sk->sk_sndbuf)
3540 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3541 tp->snd_cwnd_stamp = tcp_time_stamp;
3544 sk->sk_write_space(sk);
3547 static void tcp_check_space(struct sock *sk)
3549 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3550 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3551 if (sk->sk_socket &&
3552 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3553 tcp_new_space(sk);
3557 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3559 tcp_push_pending_frames(sk, tp);
3560 tcp_check_space(sk);
3564 * Check if sending an ack is needed.
3566 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3568 struct tcp_sock *tp = tcp_sk(sk);
3570 /* More than one full frame received... */
3571 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3572 /* ... and right edge of window advances far enough.
3573 * (tcp_recvmsg() will send ACK otherwise). Or...
3575 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3576 /* We ACK each frame or... */
3577 tcp_in_quickack_mode(sk) ||
3578 /* We have out of order data. */
3579 (ofo_possible &&
3580 skb_peek(&tp->out_of_order_queue))) {
3581 /* Then ack it now */
3582 tcp_send_ack(sk);
3583 } else {
3584 /* Else, send delayed ack. */
3585 tcp_send_delayed_ack(sk);
3589 static inline void tcp_ack_snd_check(struct sock *sk)
3591 if (!inet_csk_ack_scheduled(sk)) {
3592 /* We sent a data segment already. */
3593 return;
3595 __tcp_ack_snd_check(sk, 1);
3599 * This routine is only called when we have urgent data
3600 * signaled. Its the 'slow' part of tcp_urg. It could be
3601 * moved inline now as tcp_urg is only called from one
3602 * place. We handle URGent data wrong. We have to - as
3603 * BSD still doesn't use the correction from RFC961.
3604 * For 1003.1g we should support a new option TCP_STDURG to permit
3605 * either form (or just set the sysctl tcp_stdurg).
3608 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3610 struct tcp_sock *tp = tcp_sk(sk);
3611 u32 ptr = ntohs(th->urg_ptr);
3613 if (ptr && !sysctl_tcp_stdurg)
3614 ptr--;
3615 ptr += ntohl(th->seq);
3617 /* Ignore urgent data that we've already seen and read. */
3618 if (after(tp->copied_seq, ptr))
3619 return;
3621 /* Do not replay urg ptr.
3623 * NOTE: interesting situation not covered by specs.
3624 * Misbehaving sender may send urg ptr, pointing to segment,
3625 * which we already have in ofo queue. We are not able to fetch
3626 * such data and will stay in TCP_URG_NOTYET until will be eaten
3627 * by recvmsg(). Seems, we are not obliged to handle such wicked
3628 * situations. But it is worth to think about possibility of some
3629 * DoSes using some hypothetical application level deadlock.
3631 if (before(ptr, tp->rcv_nxt))
3632 return;
3634 /* Do we already have a newer (or duplicate) urgent pointer? */
3635 if (tp->urg_data && !after(ptr, tp->urg_seq))
3636 return;
3638 /* Tell the world about our new urgent pointer. */
3639 sk_send_sigurg(sk);
3641 /* We may be adding urgent data when the last byte read was
3642 * urgent. To do this requires some care. We cannot just ignore
3643 * tp->copied_seq since we would read the last urgent byte again
3644 * as data, nor can we alter copied_seq until this data arrives
3645 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3647 * NOTE. Double Dutch. Rendering to plain English: author of comment
3648 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3649 * and expect that both A and B disappear from stream. This is _wrong_.
3650 * Though this happens in BSD with high probability, this is occasional.
3651 * Any application relying on this is buggy. Note also, that fix "works"
3652 * only in this artificial test. Insert some normal data between A and B and we will
3653 * decline of BSD again. Verdict: it is better to remove to trap
3654 * buggy users.
3656 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3657 !sock_flag(sk, SOCK_URGINLINE) &&
3658 tp->copied_seq != tp->rcv_nxt) {
3659 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3660 tp->copied_seq++;
3661 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3662 __skb_unlink(skb, &sk->sk_receive_queue);
3663 __kfree_skb(skb);
3667 tp->urg_data = TCP_URG_NOTYET;
3668 tp->urg_seq = ptr;
3670 /* Disable header prediction. */
3671 tp->pred_flags = 0;
3674 /* This is the 'fast' part of urgent handling. */
3675 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3677 struct tcp_sock *tp = tcp_sk(sk);
3679 /* Check if we get a new urgent pointer - normally not. */
3680 if (th->urg)
3681 tcp_check_urg(sk,th);
3683 /* Do we wait for any urgent data? - normally not... */
3684 if (tp->urg_data == TCP_URG_NOTYET) {
3685 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3686 th->syn;
3688 /* Is the urgent pointer pointing into this packet? */
3689 if (ptr < skb->len) {
3690 u8 tmp;
3691 if (skb_copy_bits(skb, ptr, &tmp, 1))
3692 BUG();
3693 tp->urg_data = TCP_URG_VALID | tmp;
3694 if (!sock_flag(sk, SOCK_DEAD))
3695 sk->sk_data_ready(sk, 0);
3700 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3702 struct tcp_sock *tp = tcp_sk(sk);
3703 int chunk = skb->len - hlen;
3704 int err;
3706 local_bh_enable();
3707 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3708 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3709 else
3710 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3711 tp->ucopy.iov);
3713 if (!err) {
3714 tp->ucopy.len -= chunk;
3715 tp->copied_seq += chunk;
3716 tcp_rcv_space_adjust(sk);
3719 local_bh_disable();
3720 return err;
3723 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3725 int result;
3727 if (sock_owned_by_user(sk)) {
3728 local_bh_enable();
3729 result = __tcp_checksum_complete(skb);
3730 local_bh_disable();
3731 } else {
3732 result = __tcp_checksum_complete(skb);
3734 return result;
3737 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3739 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3740 __tcp_checksum_complete_user(sk, skb);
3744 * TCP receive function for the ESTABLISHED state.
3746 * It is split into a fast path and a slow path. The fast path is
3747 * disabled when:
3748 * - A zero window was announced from us - zero window probing
3749 * is only handled properly in the slow path.
3750 * - Out of order segments arrived.
3751 * - Urgent data is expected.
3752 * - There is no buffer space left
3753 * - Unexpected TCP flags/window values/header lengths are received
3754 * (detected by checking the TCP header against pred_flags)
3755 * - Data is sent in both directions. Fast path only supports pure senders
3756 * or pure receivers (this means either the sequence number or the ack
3757 * value must stay constant)
3758 * - Unexpected TCP option.
3760 * When these conditions are not satisfied it drops into a standard
3761 * receive procedure patterned after RFC793 to handle all cases.
3762 * The first three cases are guaranteed by proper pred_flags setting,
3763 * the rest is checked inline. Fast processing is turned on in
3764 * tcp_data_queue when everything is OK.
3766 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3767 struct tcphdr *th, unsigned len)
3769 struct tcp_sock *tp = tcp_sk(sk);
3772 * Header prediction.
3773 * The code loosely follows the one in the famous
3774 * "30 instruction TCP receive" Van Jacobson mail.
3776 * Van's trick is to deposit buffers into socket queue
3777 * on a device interrupt, to call tcp_recv function
3778 * on the receive process context and checksum and copy
3779 * the buffer to user space. smart...
3781 * Our current scheme is not silly either but we take the
3782 * extra cost of the net_bh soft interrupt processing...
3783 * We do checksum and copy also but from device to kernel.
3786 tp->rx_opt.saw_tstamp = 0;
3788 /* pred_flags is 0xS?10 << 16 + snd_wnd
3789 * if header_prediction is to be made
3790 * 'S' will always be tp->tcp_header_len >> 2
3791 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3792 * turn it off (when there are holes in the receive
3793 * space for instance)
3794 * PSH flag is ignored.
3797 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3798 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3799 int tcp_header_len = tp->tcp_header_len;
3801 /* Timestamp header prediction: tcp_header_len
3802 * is automatically equal to th->doff*4 due to pred_flags
3803 * match.
3806 /* Check timestamp */
3807 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3808 __u32 *ptr = (__u32 *)(th + 1);
3810 /* No? Slow path! */
3811 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3812 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3813 goto slow_path;
3815 tp->rx_opt.saw_tstamp = 1;
3816 ++ptr;
3817 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3818 ++ptr;
3819 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3821 /* If PAWS failed, check it more carefully in slow path */
3822 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3823 goto slow_path;
3825 /* DO NOT update ts_recent here, if checksum fails
3826 * and timestamp was corrupted part, it will result
3827 * in a hung connection since we will drop all
3828 * future packets due to the PAWS test.
3832 if (len <= tcp_header_len) {
3833 /* Bulk data transfer: sender */
3834 if (len == tcp_header_len) {
3835 /* Predicted packet is in window by definition.
3836 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3837 * Hence, check seq<=rcv_wup reduces to:
3839 if (tcp_header_len ==
3840 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3841 tp->rcv_nxt == tp->rcv_wup)
3842 tcp_store_ts_recent(tp);
3844 tcp_rcv_rtt_measure_ts(sk, skb);
3846 /* We know that such packets are checksummed
3847 * on entry.
3849 tcp_ack(sk, skb, 0);
3850 __kfree_skb(skb);
3851 tcp_data_snd_check(sk, tp);
3852 return 0;
3853 } else { /* Header too small */
3854 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3855 goto discard;
3857 } else {
3858 int eaten = 0;
3860 if (tp->ucopy.task == current &&
3861 tp->copied_seq == tp->rcv_nxt &&
3862 len - tcp_header_len <= tp->ucopy.len &&
3863 sock_owned_by_user(sk)) {
3864 __set_current_state(TASK_RUNNING);
3866 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3867 /* Predicted packet is in window by definition.
3868 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3869 * Hence, check seq<=rcv_wup reduces to:
3871 if (tcp_header_len ==
3872 (sizeof(struct tcphdr) +
3873 TCPOLEN_TSTAMP_ALIGNED) &&
3874 tp->rcv_nxt == tp->rcv_wup)
3875 tcp_store_ts_recent(tp);
3877 tcp_rcv_rtt_measure_ts(sk, skb);
3879 __skb_pull(skb, tcp_header_len);
3880 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3881 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3882 eaten = 1;
3885 if (!eaten) {
3886 if (tcp_checksum_complete_user(sk, skb))
3887 goto csum_error;
3889 /* Predicted packet is in window by definition.
3890 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3891 * Hence, check seq<=rcv_wup reduces to:
3893 if (tcp_header_len ==
3894 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3895 tp->rcv_nxt == tp->rcv_wup)
3896 tcp_store_ts_recent(tp);
3898 tcp_rcv_rtt_measure_ts(sk, skb);
3900 if ((int)skb->truesize > sk->sk_forward_alloc)
3901 goto step5;
3903 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3905 /* Bulk data transfer: receiver */
3906 __skb_pull(skb,tcp_header_len);
3907 __skb_queue_tail(&sk->sk_receive_queue, skb);
3908 sk_stream_set_owner_r(skb, sk);
3909 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3912 tcp_event_data_recv(sk, tp, skb);
3914 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3915 /* Well, only one small jumplet in fast path... */
3916 tcp_ack(sk, skb, FLAG_DATA);
3917 tcp_data_snd_check(sk, tp);
3918 if (!inet_csk_ack_scheduled(sk))
3919 goto no_ack;
3922 __tcp_ack_snd_check(sk, 0);
3923 no_ack:
3924 if (eaten)
3925 __kfree_skb(skb);
3926 else
3927 sk->sk_data_ready(sk, 0);
3928 return 0;
3932 slow_path:
3933 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3934 goto csum_error;
3937 * RFC1323: H1. Apply PAWS check first.
3939 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3940 tcp_paws_discard(sk, skb)) {
3941 if (!th->rst) {
3942 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3943 tcp_send_dupack(sk, skb);
3944 goto discard;
3946 /* Resets are accepted even if PAWS failed.
3948 ts_recent update must be made after we are sure
3949 that the packet is in window.
3954 * Standard slow path.
3957 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3958 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3959 * (RST) segments are validated by checking their SEQ-fields."
3960 * And page 69: "If an incoming segment is not acceptable,
3961 * an acknowledgment should be sent in reply (unless the RST bit
3962 * is set, if so drop the segment and return)".
3964 if (!th->rst)
3965 tcp_send_dupack(sk, skb);
3966 goto discard;
3969 if(th->rst) {
3970 tcp_reset(sk);
3971 goto discard;
3974 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3976 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3977 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3978 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3979 tcp_reset(sk);
3980 return 1;
3983 step5:
3984 if(th->ack)
3985 tcp_ack(sk, skb, FLAG_SLOWPATH);
3987 tcp_rcv_rtt_measure_ts(sk, skb);
3989 /* Process urgent data. */
3990 tcp_urg(sk, skb, th);
3992 /* step 7: process the segment text */
3993 tcp_data_queue(sk, skb);
3995 tcp_data_snd_check(sk, tp);
3996 tcp_ack_snd_check(sk);
3997 return 0;
3999 csum_error:
4000 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4002 discard:
4003 __kfree_skb(skb);
4004 return 0;
4007 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4008 struct tcphdr *th, unsigned len)
4010 struct tcp_sock *tp = tcp_sk(sk);
4011 struct inet_connection_sock *icsk = inet_csk(sk);
4012 int saved_clamp = tp->rx_opt.mss_clamp;
4014 tcp_parse_options(skb, &tp->rx_opt, 0);
4016 if (th->ack) {
4017 /* rfc793:
4018 * "If the state is SYN-SENT then
4019 * first check the ACK bit
4020 * If the ACK bit is set
4021 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4022 * a reset (unless the RST bit is set, if so drop
4023 * the segment and return)"
4025 * We do not send data with SYN, so that RFC-correct
4026 * test reduces to:
4028 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4029 goto reset_and_undo;
4031 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4032 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4033 tcp_time_stamp)) {
4034 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4035 goto reset_and_undo;
4038 /* Now ACK is acceptable.
4040 * "If the RST bit is set
4041 * If the ACK was acceptable then signal the user "error:
4042 * connection reset", drop the segment, enter CLOSED state,
4043 * delete TCB, and return."
4046 if (th->rst) {
4047 tcp_reset(sk);
4048 goto discard;
4051 /* rfc793:
4052 * "fifth, if neither of the SYN or RST bits is set then
4053 * drop the segment and return."
4055 * See note below!
4056 * --ANK(990513)
4058 if (!th->syn)
4059 goto discard_and_undo;
4061 /* rfc793:
4062 * "If the SYN bit is on ...
4063 * are acceptable then ...
4064 * (our SYN has been ACKed), change the connection
4065 * state to ESTABLISHED..."
4068 TCP_ECN_rcv_synack(tp, th);
4069 if (tp->ecn_flags&TCP_ECN_OK)
4070 sock_set_flag(sk, SOCK_NO_LARGESEND);
4072 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4073 tcp_ack(sk, skb, FLAG_SLOWPATH);
4075 /* Ok.. it's good. Set up sequence numbers and
4076 * move to established.
4078 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4079 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4081 /* RFC1323: The window in SYN & SYN/ACK segments is
4082 * never scaled.
4084 tp->snd_wnd = ntohs(th->window);
4085 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4087 if (!tp->rx_opt.wscale_ok) {
4088 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4089 tp->window_clamp = min(tp->window_clamp, 65535U);
4092 if (tp->rx_opt.saw_tstamp) {
4093 tp->rx_opt.tstamp_ok = 1;
4094 tp->tcp_header_len =
4095 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4096 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4097 tcp_store_ts_recent(tp);
4098 } else {
4099 tp->tcp_header_len = sizeof(struct tcphdr);
4102 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4103 tp->rx_opt.sack_ok |= 2;
4105 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4106 tcp_initialize_rcv_mss(sk);
4108 /* Remember, tcp_poll() does not lock socket!
4109 * Change state from SYN-SENT only after copied_seq
4110 * is initialized. */
4111 tp->copied_seq = tp->rcv_nxt;
4112 mb();
4113 tcp_set_state(sk, TCP_ESTABLISHED);
4115 /* Make sure socket is routed, for correct metrics. */
4116 icsk->icsk_af_ops->rebuild_header(sk);
4118 tcp_init_metrics(sk);
4120 tcp_init_congestion_control(sk);
4122 /* Prevent spurious tcp_cwnd_restart() on first data
4123 * packet.
4125 tp->lsndtime = tcp_time_stamp;
4127 tcp_init_buffer_space(sk);
4129 if (sock_flag(sk, SOCK_KEEPOPEN))
4130 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4132 if (!tp->rx_opt.snd_wscale)
4133 __tcp_fast_path_on(tp, tp->snd_wnd);
4134 else
4135 tp->pred_flags = 0;
4137 if (!sock_flag(sk, SOCK_DEAD)) {
4138 sk->sk_state_change(sk);
4139 sk_wake_async(sk, 0, POLL_OUT);
4142 if (sk->sk_write_pending ||
4143 icsk->icsk_accept_queue.rskq_defer_accept ||
4144 icsk->icsk_ack.pingpong) {
4145 /* Save one ACK. Data will be ready after
4146 * several ticks, if write_pending is set.
4148 * It may be deleted, but with this feature tcpdumps
4149 * look so _wonderfully_ clever, that I was not able
4150 * to stand against the temptation 8) --ANK
4152 inet_csk_schedule_ack(sk);
4153 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4154 icsk->icsk_ack.ato = TCP_ATO_MIN;
4155 tcp_incr_quickack(sk);
4156 tcp_enter_quickack_mode(sk);
4157 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4158 TCP_DELACK_MAX, TCP_RTO_MAX);
4160 discard:
4161 __kfree_skb(skb);
4162 return 0;
4163 } else {
4164 tcp_send_ack(sk);
4166 return -1;
4169 /* No ACK in the segment */
4171 if (th->rst) {
4172 /* rfc793:
4173 * "If the RST bit is set
4175 * Otherwise (no ACK) drop the segment and return."
4178 goto discard_and_undo;
4181 /* PAWS check. */
4182 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4183 goto discard_and_undo;
4185 if (th->syn) {
4186 /* We see SYN without ACK. It is attempt of
4187 * simultaneous connect with crossed SYNs.
4188 * Particularly, it can be connect to self.
4190 tcp_set_state(sk, TCP_SYN_RECV);
4192 if (tp->rx_opt.saw_tstamp) {
4193 tp->rx_opt.tstamp_ok = 1;
4194 tcp_store_ts_recent(tp);
4195 tp->tcp_header_len =
4196 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4197 } else {
4198 tp->tcp_header_len = sizeof(struct tcphdr);
4201 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4202 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4204 /* RFC1323: The window in SYN & SYN/ACK segments is
4205 * never scaled.
4207 tp->snd_wnd = ntohs(th->window);
4208 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4209 tp->max_window = tp->snd_wnd;
4211 TCP_ECN_rcv_syn(tp, th);
4212 if (tp->ecn_flags&TCP_ECN_OK)
4213 sock_set_flag(sk, SOCK_NO_LARGESEND);
4215 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4216 tcp_initialize_rcv_mss(sk);
4219 tcp_send_synack(sk);
4220 #if 0
4221 /* Note, we could accept data and URG from this segment.
4222 * There are no obstacles to make this.
4224 * However, if we ignore data in ACKless segments sometimes,
4225 * we have no reasons to accept it sometimes.
4226 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4227 * is not flawless. So, discard packet for sanity.
4228 * Uncomment this return to process the data.
4230 return -1;
4231 #else
4232 goto discard;
4233 #endif
4235 /* "fifth, if neither of the SYN or RST bits is set then
4236 * drop the segment and return."
4239 discard_and_undo:
4240 tcp_clear_options(&tp->rx_opt);
4241 tp->rx_opt.mss_clamp = saved_clamp;
4242 goto discard;
4244 reset_and_undo:
4245 tcp_clear_options(&tp->rx_opt);
4246 tp->rx_opt.mss_clamp = saved_clamp;
4247 return 1;
4252 * This function implements the receiving procedure of RFC 793 for
4253 * all states except ESTABLISHED and TIME_WAIT.
4254 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4255 * address independent.
4258 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4259 struct tcphdr *th, unsigned len)
4261 struct tcp_sock *tp = tcp_sk(sk);
4262 struct inet_connection_sock *icsk = inet_csk(sk);
4263 int queued = 0;
4265 tp->rx_opt.saw_tstamp = 0;
4267 switch (sk->sk_state) {
4268 case TCP_CLOSE:
4269 goto discard;
4271 case TCP_LISTEN:
4272 if(th->ack)
4273 return 1;
4275 if(th->rst)
4276 goto discard;
4278 if(th->syn) {
4279 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4280 return 1;
4282 /* Now we have several options: In theory there is
4283 * nothing else in the frame. KA9Q has an option to
4284 * send data with the syn, BSD accepts data with the
4285 * syn up to the [to be] advertised window and
4286 * Solaris 2.1 gives you a protocol error. For now
4287 * we just ignore it, that fits the spec precisely
4288 * and avoids incompatibilities. It would be nice in
4289 * future to drop through and process the data.
4291 * Now that TTCP is starting to be used we ought to
4292 * queue this data.
4293 * But, this leaves one open to an easy denial of
4294 * service attack, and SYN cookies can't defend
4295 * against this problem. So, we drop the data
4296 * in the interest of security over speed unless
4297 * it's still in use.
4299 kfree_skb(skb);
4300 return 0;
4302 goto discard;
4304 case TCP_SYN_SENT:
4305 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4306 if (queued >= 0)
4307 return queued;
4309 /* Do step6 onward by hand. */
4310 tcp_urg(sk, skb, th);
4311 __kfree_skb(skb);
4312 tcp_data_snd_check(sk, tp);
4313 return 0;
4316 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4317 tcp_paws_discard(sk, skb)) {
4318 if (!th->rst) {
4319 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4320 tcp_send_dupack(sk, skb);
4321 goto discard;
4323 /* Reset is accepted even if it did not pass PAWS. */
4326 /* step 1: check sequence number */
4327 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4328 if (!th->rst)
4329 tcp_send_dupack(sk, skb);
4330 goto discard;
4333 /* step 2: check RST bit */
4334 if(th->rst) {
4335 tcp_reset(sk);
4336 goto discard;
4339 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4341 /* step 3: check security and precedence [ignored] */
4343 /* step 4:
4345 * Check for a SYN in window.
4347 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4348 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4349 tcp_reset(sk);
4350 return 1;
4353 /* step 5: check the ACK field */
4354 if (th->ack) {
4355 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4357 switch(sk->sk_state) {
4358 case TCP_SYN_RECV:
4359 if (acceptable) {
4360 tp->copied_seq = tp->rcv_nxt;
4361 mb();
4362 tcp_set_state(sk, TCP_ESTABLISHED);
4363 sk->sk_state_change(sk);
4365 /* Note, that this wakeup is only for marginal
4366 * crossed SYN case. Passively open sockets
4367 * are not waked up, because sk->sk_sleep ==
4368 * NULL and sk->sk_socket == NULL.
4370 if (sk->sk_socket) {
4371 sk_wake_async(sk,0,POLL_OUT);
4374 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4375 tp->snd_wnd = ntohs(th->window) <<
4376 tp->rx_opt.snd_wscale;
4377 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4378 TCP_SKB_CB(skb)->seq);
4380 /* tcp_ack considers this ACK as duplicate
4381 * and does not calculate rtt.
4382 * Fix it at least with timestamps.
4384 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4385 !tp->srtt)
4386 tcp_ack_saw_tstamp(sk, 0);
4388 if (tp->rx_opt.tstamp_ok)
4389 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4391 /* Make sure socket is routed, for
4392 * correct metrics.
4394 icsk->icsk_af_ops->rebuild_header(sk);
4396 tcp_init_metrics(sk);
4398 tcp_init_congestion_control(sk);
4400 /* Prevent spurious tcp_cwnd_restart() on
4401 * first data packet.
4403 tp->lsndtime = tcp_time_stamp;
4405 tcp_initialize_rcv_mss(sk);
4406 tcp_init_buffer_space(sk);
4407 tcp_fast_path_on(tp);
4408 } else {
4409 return 1;
4411 break;
4413 case TCP_FIN_WAIT1:
4414 if (tp->snd_una == tp->write_seq) {
4415 tcp_set_state(sk, TCP_FIN_WAIT2);
4416 sk->sk_shutdown |= SEND_SHUTDOWN;
4417 dst_confirm(sk->sk_dst_cache);
4419 if (!sock_flag(sk, SOCK_DEAD))
4420 /* Wake up lingering close() */
4421 sk->sk_state_change(sk);
4422 else {
4423 int tmo;
4425 if (tp->linger2 < 0 ||
4426 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4427 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4428 tcp_done(sk);
4429 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4430 return 1;
4433 tmo = tcp_fin_time(sk);
4434 if (tmo > TCP_TIMEWAIT_LEN) {
4435 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4436 } else if (th->fin || sock_owned_by_user(sk)) {
4437 /* Bad case. We could lose such FIN otherwise.
4438 * It is not a big problem, but it looks confusing
4439 * and not so rare event. We still can lose it now,
4440 * if it spins in bh_lock_sock(), but it is really
4441 * marginal case.
4443 inet_csk_reset_keepalive_timer(sk, tmo);
4444 } else {
4445 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4446 goto discard;
4450 break;
4452 case TCP_CLOSING:
4453 if (tp->snd_una == tp->write_seq) {
4454 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4455 goto discard;
4457 break;
4459 case TCP_LAST_ACK:
4460 if (tp->snd_una == tp->write_seq) {
4461 tcp_update_metrics(sk);
4462 tcp_done(sk);
4463 goto discard;
4465 break;
4467 } else
4468 goto discard;
4470 /* step 6: check the URG bit */
4471 tcp_urg(sk, skb, th);
4473 /* step 7: process the segment text */
4474 switch (sk->sk_state) {
4475 case TCP_CLOSE_WAIT:
4476 case TCP_CLOSING:
4477 case TCP_LAST_ACK:
4478 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4479 break;
4480 case TCP_FIN_WAIT1:
4481 case TCP_FIN_WAIT2:
4482 /* RFC 793 says to queue data in these states,
4483 * RFC 1122 says we MUST send a reset.
4484 * BSD 4.4 also does reset.
4486 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4487 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4488 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4489 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4490 tcp_reset(sk);
4491 return 1;
4494 /* Fall through */
4495 case TCP_ESTABLISHED:
4496 tcp_data_queue(sk, skb);
4497 queued = 1;
4498 break;
4501 /* tcp_data could move socket to TIME-WAIT */
4502 if (sk->sk_state != TCP_CLOSE) {
4503 tcp_data_snd_check(sk, tp);
4504 tcp_ack_snd_check(sk);
4507 if (!queued) {
4508 discard:
4509 __kfree_skb(skb);
4511 return 0;
4514 EXPORT_SYMBOL(sysctl_tcp_ecn);
4515 EXPORT_SYMBOL(sysctl_tcp_reordering);
4516 EXPORT_SYMBOL(sysctl_tcp_abc);
4517 EXPORT_SYMBOL(tcp_parse_options);
4518 EXPORT_SYMBOL(tcp_rcv_established);
4519 EXPORT_SYMBOL(tcp_rcv_state_process);
4520 EXPORT_SYMBOL(tcp_initialize_rcv_mss);