crypto: Use scatterwalk_crypto_chain
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blob5cf366965d0ca5ec8766781367135838f3b2eac0
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
61 #include <asm/atomic.h>
63 static DEFINE_MUTEX(cgroup_mutex);
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
76 #define MAX_CGROUP_ROOT_NAMELEN 64
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
83 struct cgroupfs_root {
84 struct super_block *sb;
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
90 unsigned long subsys_bits;
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
110 /* Hierarchy-specific flags */
111 unsigned long flags;
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
125 static struct cgroupfs_root rootnode;
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
131 #define CSS_ID_MAX (65535)
132 struct css_id {
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
140 struct cgroup_subsys_state __rcu *css;
142 * ID of this css.
144 unsigned short id;
146 * Depth in hierarchy which this ID belongs to.
148 unsigned short depth;
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
152 struct rcu_head rcu_head;
154 * Hierarchy of CSS ID belongs to.
156 unsigned short stack[0]; /* Array of Length (depth+1) */
160 * cgroup_event represents events which userspace want to recieve.
162 struct cgroup_event {
164 * Cgroup which the event belongs to.
166 struct cgroup *cgrp;
168 * Control file which the event associated.
170 struct cftype *cft;
172 * eventfd to signal userspace about the event.
174 struct eventfd_ctx *eventfd;
176 * Each of these stored in a list by the cgroup.
178 struct list_head list;
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
189 /* The list of hierarchy roots */
191 static LIST_HEAD(roots);
192 static int root_count;
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
206 static int need_forkexit_callback __read_mostly;
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
211 return lockdep_is_held(&cgroup_mutex);
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
216 return mutex_is_locked(&cgroup_mutex);
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
233 static int cgroup_is_releasable(const struct cgroup *cgrp)
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
241 static int notify_on_release(const struct cgroup *cgrp)
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
246 static int clone_children(const struct cgroup *cgrp)
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list);
265 static DEFINE_SPINLOCK(release_list_lock);
266 static void cgroup_release_agent(struct work_struct *work);
267 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268 static void check_for_release(struct cgroup *cgrp);
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link {
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
282 struct list_head cg_link_list;
283 struct css_set *cg;
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
293 static struct css_set init_css_set;
294 static struct cg_cgroup_link init_css_set_link;
296 static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock);
303 static int css_set_count;
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
314 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
326 return &css_set_table[index];
329 static void free_css_set_rcu(struct rcu_head *obj)
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
335 /* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339 static int use_task_css_set_links __read_mostly;
341 static void __put_css_set(struct css_set *cg, int taskexit)
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
369 if (taskexit)
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
374 kfree(link);
377 write_unlock(&css_set_lock);
378 call_rcu(&cg->rcu_head, free_css_set_rcu);
382 * refcounted get/put for css_set objects
384 static inline void get_css_set(struct css_set *cg)
386 atomic_inc(&cg->refcount);
389 static inline void put_css_set(struct css_set *cg)
391 __put_css_set(cg, 0);
394 static inline void put_css_set_taskexit(struct css_set *cg)
396 __put_css_set(cg, 1);
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
409 static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
414 struct list_head *l1, *l2;
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
468 return true;
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
479 * cgrp: the cgroup that we're moving into
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
484 static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
486 struct cgroup *cgrp,
487 struct cgroup_subsys_state *template[])
489 int i;
490 struct cgroupfs_root *root = cgrp->root;
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
501 if (root->subsys_bits & (1UL << i)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
505 template[i] = cgrp->subsys[i];
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
518 /* This css_set matches what we need */
519 return cg;
522 /* No existing cgroup group matched */
523 return NULL;
526 static void free_cg_links(struct list_head *tmp)
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
542 static int allocate_cg_links(int count, struct list_head *tmp)
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
550 free_cg_links(tmp);
551 return -ENOMEM;
553 list_add(&link->cgrp_link_list, tmp);
555 return 0;
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
564 static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
567 struct cg_cgroup_link *link;
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
573 link->cgrp = cgrp;
574 atomic_inc(&cgrp->count);
575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
590 static struct css_set *find_css_set(
591 struct css_set *oldcg, struct cgroup *cgrp)
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
596 struct list_head tmp_cg_links;
598 struct hlist_head *hhead;
599 struct cg_cgroup_link *link;
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
603 read_lock(&css_set_lock);
604 res = find_existing_css_set(oldcg, cgrp, template);
605 if (res)
606 get_css_set(res);
607 read_unlock(&css_set_lock);
609 if (res)
610 return res;
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
622 atomic_set(&res->refcount, 1);
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
625 INIT_HLIST_NODE(&res->hlist);
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
640 BUG_ON(!list_empty(&tmp_cg_links));
642 css_set_count++;
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
648 write_unlock(&css_set_lock);
650 return res;
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
657 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
660 struct css_set *css;
661 struct cgroup *res = NULL;
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
693 * A task must hold cgroup_mutex to modify cgroups.
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
722 * The task_lock() exception
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
739 * cgroup_lock - lock out any changes to cgroup structures
742 void cgroup_lock(void)
744 mutex_lock(&cgroup_mutex);
746 EXPORT_SYMBOL_GPL(cgroup_lock);
749 * cgroup_unlock - release lock on cgroup changes
751 * Undo the lock taken in a previous cgroup_lock() call.
753 void cgroup_unlock(void)
755 mutex_unlock(&cgroup_mutex);
757 EXPORT_SYMBOL_GPL(cgroup_unlock);
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
766 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
768 static int cgroup_populate_dir(struct cgroup *cgrp);
769 static const struct inode_operations cgroup_dir_inode_operations;
770 static const struct file_operations proc_cgroupstats_operations;
772 static struct backing_dev_info cgroup_backing_dev_info = {
773 .name = "cgroup",
774 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
777 static int alloc_css_id(struct cgroup_subsys *ss,
778 struct cgroup *parent, struct cgroup *child);
780 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
782 struct inode *inode = new_inode(sb);
784 if (inode) {
785 inode->i_ino = get_next_ino();
786 inode->i_mode = mode;
787 inode->i_uid = current_fsuid();
788 inode->i_gid = current_fsgid();
789 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
790 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
792 return inode;
796 * Call subsys's pre_destroy handler.
797 * This is called before css refcnt check.
799 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
801 struct cgroup_subsys *ss;
802 int ret = 0;
804 for_each_subsys(cgrp->root, ss)
805 if (ss->pre_destroy) {
806 ret = ss->pre_destroy(ss, cgrp);
807 if (ret)
808 break;
811 return ret;
814 static void free_cgroup_rcu(struct rcu_head *obj)
816 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
818 kfree(cgrp);
821 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
823 /* is dentry a directory ? if so, kfree() associated cgroup */
824 if (S_ISDIR(inode->i_mode)) {
825 struct cgroup *cgrp = dentry->d_fsdata;
826 struct cgroup_subsys *ss;
827 BUG_ON(!(cgroup_is_removed(cgrp)));
828 /* It's possible for external users to be holding css
829 * reference counts on a cgroup; css_put() needs to
830 * be able to access the cgroup after decrementing
831 * the reference count in order to know if it needs to
832 * queue the cgroup to be handled by the release
833 * agent */
834 synchronize_rcu();
836 mutex_lock(&cgroup_mutex);
838 * Release the subsystem state objects.
840 for_each_subsys(cgrp->root, ss)
841 ss->destroy(ss, cgrp);
843 cgrp->root->number_of_cgroups--;
844 mutex_unlock(&cgroup_mutex);
847 * Drop the active superblock reference that we took when we
848 * created the cgroup
850 deactivate_super(cgrp->root->sb);
853 * if we're getting rid of the cgroup, refcount should ensure
854 * that there are no pidlists left.
856 BUG_ON(!list_empty(&cgrp->pidlists));
858 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
860 iput(inode);
863 static void remove_dir(struct dentry *d)
865 struct dentry *parent = dget(d->d_parent);
867 d_delete(d);
868 simple_rmdir(parent->d_inode, d);
869 dput(parent);
872 static void cgroup_clear_directory(struct dentry *dentry)
874 struct list_head *node;
876 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
877 spin_lock(&dcache_lock);
878 node = dentry->d_subdirs.next;
879 while (node != &dentry->d_subdirs) {
880 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
881 list_del_init(node);
882 if (d->d_inode) {
883 /* This should never be called on a cgroup
884 * directory with child cgroups */
885 BUG_ON(d->d_inode->i_mode & S_IFDIR);
886 d = dget_locked(d);
887 spin_unlock(&dcache_lock);
888 d_delete(d);
889 simple_unlink(dentry->d_inode, d);
890 dput(d);
891 spin_lock(&dcache_lock);
893 node = dentry->d_subdirs.next;
895 spin_unlock(&dcache_lock);
899 * NOTE : the dentry must have been dget()'ed
901 static void cgroup_d_remove_dir(struct dentry *dentry)
903 cgroup_clear_directory(dentry);
905 spin_lock(&dcache_lock);
906 list_del_init(&dentry->d_u.d_child);
907 spin_unlock(&dcache_lock);
908 remove_dir(dentry);
912 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
913 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
914 * reference to css->refcnt. In general, this refcnt is expected to goes down
915 * to zero, soon.
917 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
919 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
921 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
923 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
924 wake_up_all(&cgroup_rmdir_waitq);
927 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
929 css_get(css);
932 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
934 cgroup_wakeup_rmdir_waiter(css->cgroup);
935 css_put(css);
939 * Call with cgroup_mutex held. Drops reference counts on modules, including
940 * any duplicate ones that parse_cgroupfs_options took. If this function
941 * returns an error, no reference counts are touched.
943 static int rebind_subsystems(struct cgroupfs_root *root,
944 unsigned long final_bits)
946 unsigned long added_bits, removed_bits;
947 struct cgroup *cgrp = &root->top_cgroup;
948 int i;
950 BUG_ON(!mutex_is_locked(&cgroup_mutex));
952 removed_bits = root->actual_subsys_bits & ~final_bits;
953 added_bits = final_bits & ~root->actual_subsys_bits;
954 /* Check that any added subsystems are currently free */
955 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
956 unsigned long bit = 1UL << i;
957 struct cgroup_subsys *ss = subsys[i];
958 if (!(bit & added_bits))
959 continue;
961 * Nobody should tell us to do a subsys that doesn't exist:
962 * parse_cgroupfs_options should catch that case and refcounts
963 * ensure that subsystems won't disappear once selected.
965 BUG_ON(ss == NULL);
966 if (ss->root != &rootnode) {
967 /* Subsystem isn't free */
968 return -EBUSY;
972 /* Currently we don't handle adding/removing subsystems when
973 * any child cgroups exist. This is theoretically supportable
974 * but involves complex error handling, so it's being left until
975 * later */
976 if (root->number_of_cgroups > 1)
977 return -EBUSY;
979 /* Process each subsystem */
980 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
981 struct cgroup_subsys *ss = subsys[i];
982 unsigned long bit = 1UL << i;
983 if (bit & added_bits) {
984 /* We're binding this subsystem to this hierarchy */
985 BUG_ON(ss == NULL);
986 BUG_ON(cgrp->subsys[i]);
987 BUG_ON(!dummytop->subsys[i]);
988 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
989 mutex_lock(&ss->hierarchy_mutex);
990 cgrp->subsys[i] = dummytop->subsys[i];
991 cgrp->subsys[i]->cgroup = cgrp;
992 list_move(&ss->sibling, &root->subsys_list);
993 ss->root = root;
994 if (ss->bind)
995 ss->bind(ss, cgrp);
996 mutex_unlock(&ss->hierarchy_mutex);
997 /* refcount was already taken, and we're keeping it */
998 } else if (bit & removed_bits) {
999 /* We're removing this subsystem */
1000 BUG_ON(ss == NULL);
1001 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1002 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1003 mutex_lock(&ss->hierarchy_mutex);
1004 if (ss->bind)
1005 ss->bind(ss, dummytop);
1006 dummytop->subsys[i]->cgroup = dummytop;
1007 cgrp->subsys[i] = NULL;
1008 subsys[i]->root = &rootnode;
1009 list_move(&ss->sibling, &rootnode.subsys_list);
1010 mutex_unlock(&ss->hierarchy_mutex);
1011 /* subsystem is now free - drop reference on module */
1012 module_put(ss->module);
1013 } else if (bit & final_bits) {
1014 /* Subsystem state should already exist */
1015 BUG_ON(ss == NULL);
1016 BUG_ON(!cgrp->subsys[i]);
1018 * a refcount was taken, but we already had one, so
1019 * drop the extra reference.
1021 module_put(ss->module);
1022 #ifdef CONFIG_MODULE_UNLOAD
1023 BUG_ON(ss->module && !module_refcount(ss->module));
1024 #endif
1025 } else {
1026 /* Subsystem state shouldn't exist */
1027 BUG_ON(cgrp->subsys[i]);
1030 root->subsys_bits = root->actual_subsys_bits = final_bits;
1031 synchronize_rcu();
1033 return 0;
1036 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1038 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1039 struct cgroup_subsys *ss;
1041 mutex_lock(&cgroup_mutex);
1042 for_each_subsys(root, ss)
1043 seq_printf(seq, ",%s", ss->name);
1044 if (test_bit(ROOT_NOPREFIX, &root->flags))
1045 seq_puts(seq, ",noprefix");
1046 if (strlen(root->release_agent_path))
1047 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1048 if (clone_children(&root->top_cgroup))
1049 seq_puts(seq, ",clone_children");
1050 if (strlen(root->name))
1051 seq_printf(seq, ",name=%s", root->name);
1052 mutex_unlock(&cgroup_mutex);
1053 return 0;
1056 struct cgroup_sb_opts {
1057 unsigned long subsys_bits;
1058 unsigned long flags;
1059 char *release_agent;
1060 bool clone_children;
1061 char *name;
1062 /* User explicitly requested empty subsystem */
1063 bool none;
1065 struct cgroupfs_root *new_root;
1070 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1071 * with cgroup_mutex held to protect the subsys[] array. This function takes
1072 * refcounts on subsystems to be used, unless it returns error, in which case
1073 * no refcounts are taken.
1075 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1077 char *token, *o = data;
1078 bool all_ss = false, one_ss = false;
1079 unsigned long mask = (unsigned long)-1;
1080 int i;
1081 bool module_pin_failed = false;
1083 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1085 #ifdef CONFIG_CPUSETS
1086 mask = ~(1UL << cpuset_subsys_id);
1087 #endif
1089 memset(opts, 0, sizeof(*opts));
1091 while ((token = strsep(&o, ",")) != NULL) {
1092 if (!*token)
1093 return -EINVAL;
1094 if (!strcmp(token, "none")) {
1095 /* Explicitly have no subsystems */
1096 opts->none = true;
1097 continue;
1099 if (!strcmp(token, "all")) {
1100 /* Mutually exclusive option 'all' + subsystem name */
1101 if (one_ss)
1102 return -EINVAL;
1103 all_ss = true;
1104 continue;
1106 if (!strcmp(token, "noprefix")) {
1107 set_bit(ROOT_NOPREFIX, &opts->flags);
1108 continue;
1110 if (!strcmp(token, "clone_children")) {
1111 opts->clone_children = true;
1112 continue;
1114 if (!strncmp(token, "release_agent=", 14)) {
1115 /* Specifying two release agents is forbidden */
1116 if (opts->release_agent)
1117 return -EINVAL;
1118 opts->release_agent =
1119 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1120 if (!opts->release_agent)
1121 return -ENOMEM;
1122 continue;
1124 if (!strncmp(token, "name=", 5)) {
1125 const char *name = token + 5;
1126 /* Can't specify an empty name */
1127 if (!strlen(name))
1128 return -EINVAL;
1129 /* Must match [\w.-]+ */
1130 for (i = 0; i < strlen(name); i++) {
1131 char c = name[i];
1132 if (isalnum(c))
1133 continue;
1134 if ((c == '.') || (c == '-') || (c == '_'))
1135 continue;
1136 return -EINVAL;
1138 /* Specifying two names is forbidden */
1139 if (opts->name)
1140 return -EINVAL;
1141 opts->name = kstrndup(name,
1142 MAX_CGROUP_ROOT_NAMELEN - 1,
1143 GFP_KERNEL);
1144 if (!opts->name)
1145 return -ENOMEM;
1147 continue;
1150 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1151 struct cgroup_subsys *ss = subsys[i];
1152 if (ss == NULL)
1153 continue;
1154 if (strcmp(token, ss->name))
1155 continue;
1156 if (ss->disabled)
1157 continue;
1159 /* Mutually exclusive option 'all' + subsystem name */
1160 if (all_ss)
1161 return -EINVAL;
1162 set_bit(i, &opts->subsys_bits);
1163 one_ss = true;
1165 break;
1167 if (i == CGROUP_SUBSYS_COUNT)
1168 return -ENOENT;
1172 * If the 'all' option was specified select all the subsystems,
1173 * otherwise 'all, 'none' and a subsystem name options were not
1174 * specified, let's default to 'all'
1176 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1177 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1178 struct cgroup_subsys *ss = subsys[i];
1179 if (ss == NULL)
1180 continue;
1181 if (ss->disabled)
1182 continue;
1183 set_bit(i, &opts->subsys_bits);
1187 /* Consistency checks */
1190 * Option noprefix was introduced just for backward compatibility
1191 * with the old cpuset, so we allow noprefix only if mounting just
1192 * the cpuset subsystem.
1194 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1195 (opts->subsys_bits & mask))
1196 return -EINVAL;
1199 /* Can't specify "none" and some subsystems */
1200 if (opts->subsys_bits && opts->none)
1201 return -EINVAL;
1204 * We either have to specify by name or by subsystems. (So all
1205 * empty hierarchies must have a name).
1207 if (!opts->subsys_bits && !opts->name)
1208 return -EINVAL;
1211 * Grab references on all the modules we'll need, so the subsystems
1212 * don't dance around before rebind_subsystems attaches them. This may
1213 * take duplicate reference counts on a subsystem that's already used,
1214 * but rebind_subsystems handles this case.
1216 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1217 unsigned long bit = 1UL << i;
1219 if (!(bit & opts->subsys_bits))
1220 continue;
1221 if (!try_module_get(subsys[i]->module)) {
1222 module_pin_failed = true;
1223 break;
1226 if (module_pin_failed) {
1228 * oops, one of the modules was going away. this means that we
1229 * raced with a module_delete call, and to the user this is
1230 * essentially a "subsystem doesn't exist" case.
1232 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1233 /* drop refcounts only on the ones we took */
1234 unsigned long bit = 1UL << i;
1236 if (!(bit & opts->subsys_bits))
1237 continue;
1238 module_put(subsys[i]->module);
1240 return -ENOENT;
1243 return 0;
1246 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1248 int i;
1249 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1250 unsigned long bit = 1UL << i;
1252 if (!(bit & subsys_bits))
1253 continue;
1254 module_put(subsys[i]->module);
1258 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1260 int ret = 0;
1261 struct cgroupfs_root *root = sb->s_fs_info;
1262 struct cgroup *cgrp = &root->top_cgroup;
1263 struct cgroup_sb_opts opts;
1265 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1266 mutex_lock(&cgroup_mutex);
1268 /* See what subsystems are wanted */
1269 ret = parse_cgroupfs_options(data, &opts);
1270 if (ret)
1271 goto out_unlock;
1273 /* Don't allow flags or name to change at remount */
1274 if (opts.flags != root->flags ||
1275 (opts.name && strcmp(opts.name, root->name))) {
1276 ret = -EINVAL;
1277 drop_parsed_module_refcounts(opts.subsys_bits);
1278 goto out_unlock;
1281 ret = rebind_subsystems(root, opts.subsys_bits);
1282 if (ret) {
1283 drop_parsed_module_refcounts(opts.subsys_bits);
1284 goto out_unlock;
1287 /* (re)populate subsystem files */
1288 cgroup_populate_dir(cgrp);
1290 if (opts.release_agent)
1291 strcpy(root->release_agent_path, opts.release_agent);
1292 out_unlock:
1293 kfree(opts.release_agent);
1294 kfree(opts.name);
1295 mutex_unlock(&cgroup_mutex);
1296 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1297 return ret;
1300 static const struct super_operations cgroup_ops = {
1301 .statfs = simple_statfs,
1302 .drop_inode = generic_delete_inode,
1303 .show_options = cgroup_show_options,
1304 .remount_fs = cgroup_remount,
1307 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1309 INIT_LIST_HEAD(&cgrp->sibling);
1310 INIT_LIST_HEAD(&cgrp->children);
1311 INIT_LIST_HEAD(&cgrp->css_sets);
1312 INIT_LIST_HEAD(&cgrp->release_list);
1313 INIT_LIST_HEAD(&cgrp->pidlists);
1314 mutex_init(&cgrp->pidlist_mutex);
1315 INIT_LIST_HEAD(&cgrp->event_list);
1316 spin_lock_init(&cgrp->event_list_lock);
1319 static void init_cgroup_root(struct cgroupfs_root *root)
1321 struct cgroup *cgrp = &root->top_cgroup;
1322 INIT_LIST_HEAD(&root->subsys_list);
1323 INIT_LIST_HEAD(&root->root_list);
1324 root->number_of_cgroups = 1;
1325 cgrp->root = root;
1326 cgrp->top_cgroup = cgrp;
1327 init_cgroup_housekeeping(cgrp);
1330 static bool init_root_id(struct cgroupfs_root *root)
1332 int ret = 0;
1334 do {
1335 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1336 return false;
1337 spin_lock(&hierarchy_id_lock);
1338 /* Try to allocate the next unused ID */
1339 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1340 &root->hierarchy_id);
1341 if (ret == -ENOSPC)
1342 /* Try again starting from 0 */
1343 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1344 if (!ret) {
1345 next_hierarchy_id = root->hierarchy_id + 1;
1346 } else if (ret != -EAGAIN) {
1347 /* Can only get here if the 31-bit IDR is full ... */
1348 BUG_ON(ret);
1350 spin_unlock(&hierarchy_id_lock);
1351 } while (ret);
1352 return true;
1355 static int cgroup_test_super(struct super_block *sb, void *data)
1357 struct cgroup_sb_opts *opts = data;
1358 struct cgroupfs_root *root = sb->s_fs_info;
1360 /* If we asked for a name then it must match */
1361 if (opts->name && strcmp(opts->name, root->name))
1362 return 0;
1365 * If we asked for subsystems (or explicitly for no
1366 * subsystems) then they must match
1368 if ((opts->subsys_bits || opts->none)
1369 && (opts->subsys_bits != root->subsys_bits))
1370 return 0;
1372 return 1;
1375 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1377 struct cgroupfs_root *root;
1379 if (!opts->subsys_bits && !opts->none)
1380 return NULL;
1382 root = kzalloc(sizeof(*root), GFP_KERNEL);
1383 if (!root)
1384 return ERR_PTR(-ENOMEM);
1386 if (!init_root_id(root)) {
1387 kfree(root);
1388 return ERR_PTR(-ENOMEM);
1390 init_cgroup_root(root);
1392 root->subsys_bits = opts->subsys_bits;
1393 root->flags = opts->flags;
1394 if (opts->release_agent)
1395 strcpy(root->release_agent_path, opts->release_agent);
1396 if (opts->name)
1397 strcpy(root->name, opts->name);
1398 if (opts->clone_children)
1399 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1400 return root;
1403 static void cgroup_drop_root(struct cgroupfs_root *root)
1405 if (!root)
1406 return;
1408 BUG_ON(!root->hierarchy_id);
1409 spin_lock(&hierarchy_id_lock);
1410 ida_remove(&hierarchy_ida, root->hierarchy_id);
1411 spin_unlock(&hierarchy_id_lock);
1412 kfree(root);
1415 static int cgroup_set_super(struct super_block *sb, void *data)
1417 int ret;
1418 struct cgroup_sb_opts *opts = data;
1420 /* If we don't have a new root, we can't set up a new sb */
1421 if (!opts->new_root)
1422 return -EINVAL;
1424 BUG_ON(!opts->subsys_bits && !opts->none);
1426 ret = set_anon_super(sb, NULL);
1427 if (ret)
1428 return ret;
1430 sb->s_fs_info = opts->new_root;
1431 opts->new_root->sb = sb;
1433 sb->s_blocksize = PAGE_CACHE_SIZE;
1434 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1435 sb->s_magic = CGROUP_SUPER_MAGIC;
1436 sb->s_op = &cgroup_ops;
1438 return 0;
1441 static int cgroup_get_rootdir(struct super_block *sb)
1443 struct inode *inode =
1444 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1445 struct dentry *dentry;
1447 if (!inode)
1448 return -ENOMEM;
1450 inode->i_fop = &simple_dir_operations;
1451 inode->i_op = &cgroup_dir_inode_operations;
1452 /* directories start off with i_nlink == 2 (for "." entry) */
1453 inc_nlink(inode);
1454 dentry = d_alloc_root(inode);
1455 if (!dentry) {
1456 iput(inode);
1457 return -ENOMEM;
1459 sb->s_root = dentry;
1460 return 0;
1463 static int cgroup_get_sb(struct file_system_type *fs_type,
1464 int flags, const char *unused_dev_name,
1465 void *data, struct vfsmount *mnt)
1467 struct cgroup_sb_opts opts;
1468 struct cgroupfs_root *root;
1469 int ret = 0;
1470 struct super_block *sb;
1471 struct cgroupfs_root *new_root;
1473 /* First find the desired set of subsystems */
1474 mutex_lock(&cgroup_mutex);
1475 ret = parse_cgroupfs_options(data, &opts);
1476 mutex_unlock(&cgroup_mutex);
1477 if (ret)
1478 goto out_err;
1481 * Allocate a new cgroup root. We may not need it if we're
1482 * reusing an existing hierarchy.
1484 new_root = cgroup_root_from_opts(&opts);
1485 if (IS_ERR(new_root)) {
1486 ret = PTR_ERR(new_root);
1487 goto drop_modules;
1489 opts.new_root = new_root;
1491 /* Locate an existing or new sb for this hierarchy */
1492 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1493 if (IS_ERR(sb)) {
1494 ret = PTR_ERR(sb);
1495 cgroup_drop_root(opts.new_root);
1496 goto drop_modules;
1499 root = sb->s_fs_info;
1500 BUG_ON(!root);
1501 if (root == opts.new_root) {
1502 /* We used the new root structure, so this is a new hierarchy */
1503 struct list_head tmp_cg_links;
1504 struct cgroup *root_cgrp = &root->top_cgroup;
1505 struct inode *inode;
1506 struct cgroupfs_root *existing_root;
1507 int i;
1509 BUG_ON(sb->s_root != NULL);
1511 ret = cgroup_get_rootdir(sb);
1512 if (ret)
1513 goto drop_new_super;
1514 inode = sb->s_root->d_inode;
1516 mutex_lock(&inode->i_mutex);
1517 mutex_lock(&cgroup_mutex);
1519 if (strlen(root->name)) {
1520 /* Check for name clashes with existing mounts */
1521 for_each_active_root(existing_root) {
1522 if (!strcmp(existing_root->name, root->name)) {
1523 ret = -EBUSY;
1524 mutex_unlock(&cgroup_mutex);
1525 mutex_unlock(&inode->i_mutex);
1526 goto drop_new_super;
1532 * We're accessing css_set_count without locking
1533 * css_set_lock here, but that's OK - it can only be
1534 * increased by someone holding cgroup_lock, and
1535 * that's us. The worst that can happen is that we
1536 * have some link structures left over
1538 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1539 if (ret) {
1540 mutex_unlock(&cgroup_mutex);
1541 mutex_unlock(&inode->i_mutex);
1542 goto drop_new_super;
1545 ret = rebind_subsystems(root, root->subsys_bits);
1546 if (ret == -EBUSY) {
1547 mutex_unlock(&cgroup_mutex);
1548 mutex_unlock(&inode->i_mutex);
1549 free_cg_links(&tmp_cg_links);
1550 goto drop_new_super;
1553 * There must be no failure case after here, since rebinding
1554 * takes care of subsystems' refcounts, which are explicitly
1555 * dropped in the failure exit path.
1558 /* EBUSY should be the only error here */
1559 BUG_ON(ret);
1561 list_add(&root->root_list, &roots);
1562 root_count++;
1564 sb->s_root->d_fsdata = root_cgrp;
1565 root->top_cgroup.dentry = sb->s_root;
1567 /* Link the top cgroup in this hierarchy into all
1568 * the css_set objects */
1569 write_lock(&css_set_lock);
1570 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1571 struct hlist_head *hhead = &css_set_table[i];
1572 struct hlist_node *node;
1573 struct css_set *cg;
1575 hlist_for_each_entry(cg, node, hhead, hlist)
1576 link_css_set(&tmp_cg_links, cg, root_cgrp);
1578 write_unlock(&css_set_lock);
1580 free_cg_links(&tmp_cg_links);
1582 BUG_ON(!list_empty(&root_cgrp->sibling));
1583 BUG_ON(!list_empty(&root_cgrp->children));
1584 BUG_ON(root->number_of_cgroups != 1);
1586 cgroup_populate_dir(root_cgrp);
1587 mutex_unlock(&cgroup_mutex);
1588 mutex_unlock(&inode->i_mutex);
1589 } else {
1591 * We re-used an existing hierarchy - the new root (if
1592 * any) is not needed
1594 cgroup_drop_root(opts.new_root);
1595 /* no subsys rebinding, so refcounts don't change */
1596 drop_parsed_module_refcounts(opts.subsys_bits);
1599 simple_set_mnt(mnt, sb);
1600 kfree(opts.release_agent);
1601 kfree(opts.name);
1602 return 0;
1604 drop_new_super:
1605 deactivate_locked_super(sb);
1606 drop_modules:
1607 drop_parsed_module_refcounts(opts.subsys_bits);
1608 out_err:
1609 kfree(opts.release_agent);
1610 kfree(opts.name);
1611 return ret;
1614 static void cgroup_kill_sb(struct super_block *sb) {
1615 struct cgroupfs_root *root = sb->s_fs_info;
1616 struct cgroup *cgrp = &root->top_cgroup;
1617 int ret;
1618 struct cg_cgroup_link *link;
1619 struct cg_cgroup_link *saved_link;
1621 BUG_ON(!root);
1623 BUG_ON(root->number_of_cgroups != 1);
1624 BUG_ON(!list_empty(&cgrp->children));
1625 BUG_ON(!list_empty(&cgrp->sibling));
1627 mutex_lock(&cgroup_mutex);
1629 /* Rebind all subsystems back to the default hierarchy */
1630 ret = rebind_subsystems(root, 0);
1631 /* Shouldn't be able to fail ... */
1632 BUG_ON(ret);
1635 * Release all the links from css_sets to this hierarchy's
1636 * root cgroup
1638 write_lock(&css_set_lock);
1640 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1641 cgrp_link_list) {
1642 list_del(&link->cg_link_list);
1643 list_del(&link->cgrp_link_list);
1644 kfree(link);
1646 write_unlock(&css_set_lock);
1648 if (!list_empty(&root->root_list)) {
1649 list_del(&root->root_list);
1650 root_count--;
1653 mutex_unlock(&cgroup_mutex);
1655 kill_litter_super(sb);
1656 cgroup_drop_root(root);
1659 static struct file_system_type cgroup_fs_type = {
1660 .name = "cgroup",
1661 .get_sb = cgroup_get_sb,
1662 .kill_sb = cgroup_kill_sb,
1665 static struct kobject *cgroup_kobj;
1667 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1669 return dentry->d_fsdata;
1672 static inline struct cftype *__d_cft(struct dentry *dentry)
1674 return dentry->d_fsdata;
1678 * cgroup_path - generate the path of a cgroup
1679 * @cgrp: the cgroup in question
1680 * @buf: the buffer to write the path into
1681 * @buflen: the length of the buffer
1683 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1684 * reference. Writes path of cgroup into buf. Returns 0 on success,
1685 * -errno on error.
1687 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1689 char *start;
1690 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1691 rcu_read_lock_held() ||
1692 cgroup_lock_is_held());
1694 if (!dentry || cgrp == dummytop) {
1696 * Inactive subsystems have no dentry for their root
1697 * cgroup
1699 strcpy(buf, "/");
1700 return 0;
1703 start = buf + buflen;
1705 *--start = '\0';
1706 for (;;) {
1707 int len = dentry->d_name.len;
1709 if ((start -= len) < buf)
1710 return -ENAMETOOLONG;
1711 memcpy(start, dentry->d_name.name, len);
1712 cgrp = cgrp->parent;
1713 if (!cgrp)
1714 break;
1716 dentry = rcu_dereference_check(cgrp->dentry,
1717 rcu_read_lock_held() ||
1718 cgroup_lock_is_held());
1719 if (!cgrp->parent)
1720 continue;
1721 if (--start < buf)
1722 return -ENAMETOOLONG;
1723 *start = '/';
1725 memmove(buf, start, buf + buflen - start);
1726 return 0;
1728 EXPORT_SYMBOL_GPL(cgroup_path);
1731 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1732 * @cgrp: the cgroup the task is attaching to
1733 * @tsk: the task to be attached
1735 * Call holding cgroup_mutex. May take task_lock of
1736 * the task 'tsk' during call.
1738 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1740 int retval = 0;
1741 struct cgroup_subsys *ss, *failed_ss = NULL;
1742 struct cgroup *oldcgrp;
1743 struct css_set *cg;
1744 struct css_set *newcg;
1745 struct cgroupfs_root *root = cgrp->root;
1747 /* Nothing to do if the task is already in that cgroup */
1748 oldcgrp = task_cgroup_from_root(tsk, root);
1749 if (cgrp == oldcgrp)
1750 return 0;
1752 for_each_subsys(root, ss) {
1753 if (ss->can_attach) {
1754 retval = ss->can_attach(ss, cgrp, tsk, false);
1755 if (retval) {
1757 * Remember on which subsystem the can_attach()
1758 * failed, so that we only call cancel_attach()
1759 * against the subsystems whose can_attach()
1760 * succeeded. (See below)
1762 failed_ss = ss;
1763 goto out;
1768 task_lock(tsk);
1769 cg = tsk->cgroups;
1770 get_css_set(cg);
1771 task_unlock(tsk);
1773 * Locate or allocate a new css_set for this task,
1774 * based on its final set of cgroups
1776 newcg = find_css_set(cg, cgrp);
1777 put_css_set(cg);
1778 if (!newcg) {
1779 retval = -ENOMEM;
1780 goto out;
1783 task_lock(tsk);
1784 if (tsk->flags & PF_EXITING) {
1785 task_unlock(tsk);
1786 put_css_set(newcg);
1787 retval = -ESRCH;
1788 goto out;
1790 rcu_assign_pointer(tsk->cgroups, newcg);
1791 task_unlock(tsk);
1793 /* Update the css_set linked lists if we're using them */
1794 write_lock(&css_set_lock);
1795 if (!list_empty(&tsk->cg_list)) {
1796 list_del(&tsk->cg_list);
1797 list_add(&tsk->cg_list, &newcg->tasks);
1799 write_unlock(&css_set_lock);
1801 for_each_subsys(root, ss) {
1802 if (ss->attach)
1803 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1805 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1806 synchronize_rcu();
1807 put_css_set(cg);
1810 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1811 * is no longer empty.
1813 cgroup_wakeup_rmdir_waiter(cgrp);
1814 out:
1815 if (retval) {
1816 for_each_subsys(root, ss) {
1817 if (ss == failed_ss)
1819 * This subsystem was the one that failed the
1820 * can_attach() check earlier, so we don't need
1821 * to call cancel_attach() against it or any
1822 * remaining subsystems.
1824 break;
1825 if (ss->cancel_attach)
1826 ss->cancel_attach(ss, cgrp, tsk, false);
1829 return retval;
1833 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1834 * @from: attach to all cgroups of a given task
1835 * @tsk: the task to be attached
1837 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1839 struct cgroupfs_root *root;
1840 int retval = 0;
1842 cgroup_lock();
1843 for_each_active_root(root) {
1844 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1846 retval = cgroup_attach_task(from_cg, tsk);
1847 if (retval)
1848 break;
1850 cgroup_unlock();
1852 return retval;
1854 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1857 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1858 * held. May take task_lock of task
1860 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1862 struct task_struct *tsk;
1863 const struct cred *cred = current_cred(), *tcred;
1864 int ret;
1866 if (pid) {
1867 rcu_read_lock();
1868 tsk = find_task_by_vpid(pid);
1869 if (!tsk || tsk->flags & PF_EXITING) {
1870 rcu_read_unlock();
1871 return -ESRCH;
1874 tcred = __task_cred(tsk);
1875 if (cred->euid &&
1876 cred->euid != tcred->uid &&
1877 cred->euid != tcred->suid) {
1878 rcu_read_unlock();
1879 return -EACCES;
1881 get_task_struct(tsk);
1882 rcu_read_unlock();
1883 } else {
1884 tsk = current;
1885 get_task_struct(tsk);
1888 ret = cgroup_attach_task(cgrp, tsk);
1889 put_task_struct(tsk);
1890 return ret;
1893 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1895 int ret;
1896 if (!cgroup_lock_live_group(cgrp))
1897 return -ENODEV;
1898 ret = attach_task_by_pid(cgrp, pid);
1899 cgroup_unlock();
1900 return ret;
1904 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1905 * @cgrp: the cgroup to be checked for liveness
1907 * On success, returns true; the lock should be later released with
1908 * cgroup_unlock(). On failure returns false with no lock held.
1910 bool cgroup_lock_live_group(struct cgroup *cgrp)
1912 mutex_lock(&cgroup_mutex);
1913 if (cgroup_is_removed(cgrp)) {
1914 mutex_unlock(&cgroup_mutex);
1915 return false;
1917 return true;
1919 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1921 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1922 const char *buffer)
1924 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1925 if (strlen(buffer) >= PATH_MAX)
1926 return -EINVAL;
1927 if (!cgroup_lock_live_group(cgrp))
1928 return -ENODEV;
1929 strcpy(cgrp->root->release_agent_path, buffer);
1930 cgroup_unlock();
1931 return 0;
1934 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1935 struct seq_file *seq)
1937 if (!cgroup_lock_live_group(cgrp))
1938 return -ENODEV;
1939 seq_puts(seq, cgrp->root->release_agent_path);
1940 seq_putc(seq, '\n');
1941 cgroup_unlock();
1942 return 0;
1945 /* A buffer size big enough for numbers or short strings */
1946 #define CGROUP_LOCAL_BUFFER_SIZE 64
1948 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1949 struct file *file,
1950 const char __user *userbuf,
1951 size_t nbytes, loff_t *unused_ppos)
1953 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1954 int retval = 0;
1955 char *end;
1957 if (!nbytes)
1958 return -EINVAL;
1959 if (nbytes >= sizeof(buffer))
1960 return -E2BIG;
1961 if (copy_from_user(buffer, userbuf, nbytes))
1962 return -EFAULT;
1964 buffer[nbytes] = 0; /* nul-terminate */
1965 if (cft->write_u64) {
1966 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1967 if (*end)
1968 return -EINVAL;
1969 retval = cft->write_u64(cgrp, cft, val);
1970 } else {
1971 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1972 if (*end)
1973 return -EINVAL;
1974 retval = cft->write_s64(cgrp, cft, val);
1976 if (!retval)
1977 retval = nbytes;
1978 return retval;
1981 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1982 struct file *file,
1983 const char __user *userbuf,
1984 size_t nbytes, loff_t *unused_ppos)
1986 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1987 int retval = 0;
1988 size_t max_bytes = cft->max_write_len;
1989 char *buffer = local_buffer;
1991 if (!max_bytes)
1992 max_bytes = sizeof(local_buffer) - 1;
1993 if (nbytes >= max_bytes)
1994 return -E2BIG;
1995 /* Allocate a dynamic buffer if we need one */
1996 if (nbytes >= sizeof(local_buffer)) {
1997 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1998 if (buffer == NULL)
1999 return -ENOMEM;
2001 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2002 retval = -EFAULT;
2003 goto out;
2006 buffer[nbytes] = 0; /* nul-terminate */
2007 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2008 if (!retval)
2009 retval = nbytes;
2010 out:
2011 if (buffer != local_buffer)
2012 kfree(buffer);
2013 return retval;
2016 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2017 size_t nbytes, loff_t *ppos)
2019 struct cftype *cft = __d_cft(file->f_dentry);
2020 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2022 if (cgroup_is_removed(cgrp))
2023 return -ENODEV;
2024 if (cft->write)
2025 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2026 if (cft->write_u64 || cft->write_s64)
2027 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2028 if (cft->write_string)
2029 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2030 if (cft->trigger) {
2031 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2032 return ret ? ret : nbytes;
2034 return -EINVAL;
2037 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2038 struct file *file,
2039 char __user *buf, size_t nbytes,
2040 loff_t *ppos)
2042 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2043 u64 val = cft->read_u64(cgrp, cft);
2044 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2046 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2049 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2050 struct file *file,
2051 char __user *buf, size_t nbytes,
2052 loff_t *ppos)
2054 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2055 s64 val = cft->read_s64(cgrp, cft);
2056 int len = sprintf(tmp, "%lld\n", (long long) val);
2058 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2061 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2062 size_t nbytes, loff_t *ppos)
2064 struct cftype *cft = __d_cft(file->f_dentry);
2065 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2067 if (cgroup_is_removed(cgrp))
2068 return -ENODEV;
2070 if (cft->read)
2071 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2072 if (cft->read_u64)
2073 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2074 if (cft->read_s64)
2075 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2076 return -EINVAL;
2080 * seqfile ops/methods for returning structured data. Currently just
2081 * supports string->u64 maps, but can be extended in future.
2084 struct cgroup_seqfile_state {
2085 struct cftype *cft;
2086 struct cgroup *cgroup;
2089 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2091 struct seq_file *sf = cb->state;
2092 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2095 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2097 struct cgroup_seqfile_state *state = m->private;
2098 struct cftype *cft = state->cft;
2099 if (cft->read_map) {
2100 struct cgroup_map_cb cb = {
2101 .fill = cgroup_map_add,
2102 .state = m,
2104 return cft->read_map(state->cgroup, cft, &cb);
2106 return cft->read_seq_string(state->cgroup, cft, m);
2109 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2111 struct seq_file *seq = file->private_data;
2112 kfree(seq->private);
2113 return single_release(inode, file);
2116 static const struct file_operations cgroup_seqfile_operations = {
2117 .read = seq_read,
2118 .write = cgroup_file_write,
2119 .llseek = seq_lseek,
2120 .release = cgroup_seqfile_release,
2123 static int cgroup_file_open(struct inode *inode, struct file *file)
2125 int err;
2126 struct cftype *cft;
2128 err = generic_file_open(inode, file);
2129 if (err)
2130 return err;
2131 cft = __d_cft(file->f_dentry);
2133 if (cft->read_map || cft->read_seq_string) {
2134 struct cgroup_seqfile_state *state =
2135 kzalloc(sizeof(*state), GFP_USER);
2136 if (!state)
2137 return -ENOMEM;
2138 state->cft = cft;
2139 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2140 file->f_op = &cgroup_seqfile_operations;
2141 err = single_open(file, cgroup_seqfile_show, state);
2142 if (err < 0)
2143 kfree(state);
2144 } else if (cft->open)
2145 err = cft->open(inode, file);
2146 else
2147 err = 0;
2149 return err;
2152 static int cgroup_file_release(struct inode *inode, struct file *file)
2154 struct cftype *cft = __d_cft(file->f_dentry);
2155 if (cft->release)
2156 return cft->release(inode, file);
2157 return 0;
2161 * cgroup_rename - Only allow simple rename of directories in place.
2163 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2164 struct inode *new_dir, struct dentry *new_dentry)
2166 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2167 return -ENOTDIR;
2168 if (new_dentry->d_inode)
2169 return -EEXIST;
2170 if (old_dir != new_dir)
2171 return -EIO;
2172 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2175 static const struct file_operations cgroup_file_operations = {
2176 .read = cgroup_file_read,
2177 .write = cgroup_file_write,
2178 .llseek = generic_file_llseek,
2179 .open = cgroup_file_open,
2180 .release = cgroup_file_release,
2183 static const struct inode_operations cgroup_dir_inode_operations = {
2184 .lookup = simple_lookup,
2185 .mkdir = cgroup_mkdir,
2186 .rmdir = cgroup_rmdir,
2187 .rename = cgroup_rename,
2191 * Check if a file is a control file
2193 static inline struct cftype *__file_cft(struct file *file)
2195 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2196 return ERR_PTR(-EINVAL);
2197 return __d_cft(file->f_dentry);
2200 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2201 struct super_block *sb)
2203 static const struct dentry_operations cgroup_dops = {
2204 .d_iput = cgroup_diput,
2207 struct inode *inode;
2209 if (!dentry)
2210 return -ENOENT;
2211 if (dentry->d_inode)
2212 return -EEXIST;
2214 inode = cgroup_new_inode(mode, sb);
2215 if (!inode)
2216 return -ENOMEM;
2218 if (S_ISDIR(mode)) {
2219 inode->i_op = &cgroup_dir_inode_operations;
2220 inode->i_fop = &simple_dir_operations;
2222 /* start off with i_nlink == 2 (for "." entry) */
2223 inc_nlink(inode);
2225 /* start with the directory inode held, so that we can
2226 * populate it without racing with another mkdir */
2227 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2228 } else if (S_ISREG(mode)) {
2229 inode->i_size = 0;
2230 inode->i_fop = &cgroup_file_operations;
2232 dentry->d_op = &cgroup_dops;
2233 d_instantiate(dentry, inode);
2234 dget(dentry); /* Extra count - pin the dentry in core */
2235 return 0;
2239 * cgroup_create_dir - create a directory for an object.
2240 * @cgrp: the cgroup we create the directory for. It must have a valid
2241 * ->parent field. And we are going to fill its ->dentry field.
2242 * @dentry: dentry of the new cgroup
2243 * @mode: mode to set on new directory.
2245 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2246 mode_t mode)
2248 struct dentry *parent;
2249 int error = 0;
2251 parent = cgrp->parent->dentry;
2252 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2253 if (!error) {
2254 dentry->d_fsdata = cgrp;
2255 inc_nlink(parent->d_inode);
2256 rcu_assign_pointer(cgrp->dentry, dentry);
2257 dget(dentry);
2259 dput(dentry);
2261 return error;
2265 * cgroup_file_mode - deduce file mode of a control file
2266 * @cft: the control file in question
2268 * returns cft->mode if ->mode is not 0
2269 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2270 * returns S_IRUGO if it has only a read handler
2271 * returns S_IWUSR if it has only a write hander
2273 static mode_t cgroup_file_mode(const struct cftype *cft)
2275 mode_t mode = 0;
2277 if (cft->mode)
2278 return cft->mode;
2280 if (cft->read || cft->read_u64 || cft->read_s64 ||
2281 cft->read_map || cft->read_seq_string)
2282 mode |= S_IRUGO;
2284 if (cft->write || cft->write_u64 || cft->write_s64 ||
2285 cft->write_string || cft->trigger)
2286 mode |= S_IWUSR;
2288 return mode;
2291 int cgroup_add_file(struct cgroup *cgrp,
2292 struct cgroup_subsys *subsys,
2293 const struct cftype *cft)
2295 struct dentry *dir = cgrp->dentry;
2296 struct dentry *dentry;
2297 int error;
2298 mode_t mode;
2300 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2301 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2302 strcpy(name, subsys->name);
2303 strcat(name, ".");
2305 strcat(name, cft->name);
2306 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2307 dentry = lookup_one_len(name, dir, strlen(name));
2308 if (!IS_ERR(dentry)) {
2309 mode = cgroup_file_mode(cft);
2310 error = cgroup_create_file(dentry, mode | S_IFREG,
2311 cgrp->root->sb);
2312 if (!error)
2313 dentry->d_fsdata = (void *)cft;
2314 dput(dentry);
2315 } else
2316 error = PTR_ERR(dentry);
2317 return error;
2319 EXPORT_SYMBOL_GPL(cgroup_add_file);
2321 int cgroup_add_files(struct cgroup *cgrp,
2322 struct cgroup_subsys *subsys,
2323 const struct cftype cft[],
2324 int count)
2326 int i, err;
2327 for (i = 0; i < count; i++) {
2328 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2329 if (err)
2330 return err;
2332 return 0;
2334 EXPORT_SYMBOL_GPL(cgroup_add_files);
2337 * cgroup_task_count - count the number of tasks in a cgroup.
2338 * @cgrp: the cgroup in question
2340 * Return the number of tasks in the cgroup.
2342 int cgroup_task_count(const struct cgroup *cgrp)
2344 int count = 0;
2345 struct cg_cgroup_link *link;
2347 read_lock(&css_set_lock);
2348 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2349 count += atomic_read(&link->cg->refcount);
2351 read_unlock(&css_set_lock);
2352 return count;
2356 * Advance a list_head iterator. The iterator should be positioned at
2357 * the start of a css_set
2359 static void cgroup_advance_iter(struct cgroup *cgrp,
2360 struct cgroup_iter *it)
2362 struct list_head *l = it->cg_link;
2363 struct cg_cgroup_link *link;
2364 struct css_set *cg;
2366 /* Advance to the next non-empty css_set */
2367 do {
2368 l = l->next;
2369 if (l == &cgrp->css_sets) {
2370 it->cg_link = NULL;
2371 return;
2373 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2374 cg = link->cg;
2375 } while (list_empty(&cg->tasks));
2376 it->cg_link = l;
2377 it->task = cg->tasks.next;
2381 * To reduce the fork() overhead for systems that are not actually
2382 * using their cgroups capability, we don't maintain the lists running
2383 * through each css_set to its tasks until we see the list actually
2384 * used - in other words after the first call to cgroup_iter_start().
2386 * The tasklist_lock is not held here, as do_each_thread() and
2387 * while_each_thread() are protected by RCU.
2389 static void cgroup_enable_task_cg_lists(void)
2391 struct task_struct *p, *g;
2392 write_lock(&css_set_lock);
2393 use_task_css_set_links = 1;
2394 do_each_thread(g, p) {
2395 task_lock(p);
2397 * We should check if the process is exiting, otherwise
2398 * it will race with cgroup_exit() in that the list
2399 * entry won't be deleted though the process has exited.
2401 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2402 list_add(&p->cg_list, &p->cgroups->tasks);
2403 task_unlock(p);
2404 } while_each_thread(g, p);
2405 write_unlock(&css_set_lock);
2408 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2411 * The first time anyone tries to iterate across a cgroup,
2412 * we need to enable the list linking each css_set to its
2413 * tasks, and fix up all existing tasks.
2415 if (!use_task_css_set_links)
2416 cgroup_enable_task_cg_lists();
2418 read_lock(&css_set_lock);
2419 it->cg_link = &cgrp->css_sets;
2420 cgroup_advance_iter(cgrp, it);
2423 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2424 struct cgroup_iter *it)
2426 struct task_struct *res;
2427 struct list_head *l = it->task;
2428 struct cg_cgroup_link *link;
2430 /* If the iterator cg is NULL, we have no tasks */
2431 if (!it->cg_link)
2432 return NULL;
2433 res = list_entry(l, struct task_struct, cg_list);
2434 /* Advance iterator to find next entry */
2435 l = l->next;
2436 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2437 if (l == &link->cg->tasks) {
2438 /* We reached the end of this task list - move on to
2439 * the next cg_cgroup_link */
2440 cgroup_advance_iter(cgrp, it);
2441 } else {
2442 it->task = l;
2444 return res;
2447 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2449 read_unlock(&css_set_lock);
2452 static inline int started_after_time(struct task_struct *t1,
2453 struct timespec *time,
2454 struct task_struct *t2)
2456 int start_diff = timespec_compare(&t1->start_time, time);
2457 if (start_diff > 0) {
2458 return 1;
2459 } else if (start_diff < 0) {
2460 return 0;
2461 } else {
2463 * Arbitrarily, if two processes started at the same
2464 * time, we'll say that the lower pointer value
2465 * started first. Note that t2 may have exited by now
2466 * so this may not be a valid pointer any longer, but
2467 * that's fine - it still serves to distinguish
2468 * between two tasks started (effectively) simultaneously.
2470 return t1 > t2;
2475 * This function is a callback from heap_insert() and is used to order
2476 * the heap.
2477 * In this case we order the heap in descending task start time.
2479 static inline int started_after(void *p1, void *p2)
2481 struct task_struct *t1 = p1;
2482 struct task_struct *t2 = p2;
2483 return started_after_time(t1, &t2->start_time, t2);
2487 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2488 * @scan: struct cgroup_scanner containing arguments for the scan
2490 * Arguments include pointers to callback functions test_task() and
2491 * process_task().
2492 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2493 * and if it returns true, call process_task() for it also.
2494 * The test_task pointer may be NULL, meaning always true (select all tasks).
2495 * Effectively duplicates cgroup_iter_{start,next,end}()
2496 * but does not lock css_set_lock for the call to process_task().
2497 * The struct cgroup_scanner may be embedded in any structure of the caller's
2498 * creation.
2499 * It is guaranteed that process_task() will act on every task that
2500 * is a member of the cgroup for the duration of this call. This
2501 * function may or may not call process_task() for tasks that exit
2502 * or move to a different cgroup during the call, or are forked or
2503 * move into the cgroup during the call.
2505 * Note that test_task() may be called with locks held, and may in some
2506 * situations be called multiple times for the same task, so it should
2507 * be cheap.
2508 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2509 * pre-allocated and will be used for heap operations (and its "gt" member will
2510 * be overwritten), else a temporary heap will be used (allocation of which
2511 * may cause this function to fail).
2513 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2515 int retval, i;
2516 struct cgroup_iter it;
2517 struct task_struct *p, *dropped;
2518 /* Never dereference latest_task, since it's not refcounted */
2519 struct task_struct *latest_task = NULL;
2520 struct ptr_heap tmp_heap;
2521 struct ptr_heap *heap;
2522 struct timespec latest_time = { 0, 0 };
2524 if (scan->heap) {
2525 /* The caller supplied our heap and pre-allocated its memory */
2526 heap = scan->heap;
2527 heap->gt = &started_after;
2528 } else {
2529 /* We need to allocate our own heap memory */
2530 heap = &tmp_heap;
2531 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2532 if (retval)
2533 /* cannot allocate the heap */
2534 return retval;
2537 again:
2539 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2540 * to determine which are of interest, and using the scanner's
2541 * "process_task" callback to process any of them that need an update.
2542 * Since we don't want to hold any locks during the task updates,
2543 * gather tasks to be processed in a heap structure.
2544 * The heap is sorted by descending task start time.
2545 * If the statically-sized heap fills up, we overflow tasks that
2546 * started later, and in future iterations only consider tasks that
2547 * started after the latest task in the previous pass. This
2548 * guarantees forward progress and that we don't miss any tasks.
2550 heap->size = 0;
2551 cgroup_iter_start(scan->cg, &it);
2552 while ((p = cgroup_iter_next(scan->cg, &it))) {
2554 * Only affect tasks that qualify per the caller's callback,
2555 * if he provided one
2557 if (scan->test_task && !scan->test_task(p, scan))
2558 continue;
2560 * Only process tasks that started after the last task
2561 * we processed
2563 if (!started_after_time(p, &latest_time, latest_task))
2564 continue;
2565 dropped = heap_insert(heap, p);
2566 if (dropped == NULL) {
2568 * The new task was inserted; the heap wasn't
2569 * previously full
2571 get_task_struct(p);
2572 } else if (dropped != p) {
2574 * The new task was inserted, and pushed out a
2575 * different task
2577 get_task_struct(p);
2578 put_task_struct(dropped);
2581 * Else the new task was newer than anything already in
2582 * the heap and wasn't inserted
2585 cgroup_iter_end(scan->cg, &it);
2587 if (heap->size) {
2588 for (i = 0; i < heap->size; i++) {
2589 struct task_struct *q = heap->ptrs[i];
2590 if (i == 0) {
2591 latest_time = q->start_time;
2592 latest_task = q;
2594 /* Process the task per the caller's callback */
2595 scan->process_task(q, scan);
2596 put_task_struct(q);
2599 * If we had to process any tasks at all, scan again
2600 * in case some of them were in the middle of forking
2601 * children that didn't get processed.
2602 * Not the most efficient way to do it, but it avoids
2603 * having to take callback_mutex in the fork path
2605 goto again;
2607 if (heap == &tmp_heap)
2608 heap_free(&tmp_heap);
2609 return 0;
2613 * Stuff for reading the 'tasks'/'procs' files.
2615 * Reading this file can return large amounts of data if a cgroup has
2616 * *lots* of attached tasks. So it may need several calls to read(),
2617 * but we cannot guarantee that the information we produce is correct
2618 * unless we produce it entirely atomically.
2623 * The following two functions "fix" the issue where there are more pids
2624 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2625 * TODO: replace with a kernel-wide solution to this problem
2627 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2628 static void *pidlist_allocate(int count)
2630 if (PIDLIST_TOO_LARGE(count))
2631 return vmalloc(count * sizeof(pid_t));
2632 else
2633 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2635 static void pidlist_free(void *p)
2637 if (is_vmalloc_addr(p))
2638 vfree(p);
2639 else
2640 kfree(p);
2642 static void *pidlist_resize(void *p, int newcount)
2644 void *newlist;
2645 /* note: if new alloc fails, old p will still be valid either way */
2646 if (is_vmalloc_addr(p)) {
2647 newlist = vmalloc(newcount * sizeof(pid_t));
2648 if (!newlist)
2649 return NULL;
2650 memcpy(newlist, p, newcount * sizeof(pid_t));
2651 vfree(p);
2652 } else {
2653 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2655 return newlist;
2659 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2660 * If the new stripped list is sufficiently smaller and there's enough memory
2661 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2662 * number of unique elements.
2664 /* is the size difference enough that we should re-allocate the array? */
2665 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2666 static int pidlist_uniq(pid_t **p, int length)
2668 int src, dest = 1;
2669 pid_t *list = *p;
2670 pid_t *newlist;
2673 * we presume the 0th element is unique, so i starts at 1. trivial
2674 * edge cases first; no work needs to be done for either
2676 if (length == 0 || length == 1)
2677 return length;
2678 /* src and dest walk down the list; dest counts unique elements */
2679 for (src = 1; src < length; src++) {
2680 /* find next unique element */
2681 while (list[src] == list[src-1]) {
2682 src++;
2683 if (src == length)
2684 goto after;
2686 /* dest always points to where the next unique element goes */
2687 list[dest] = list[src];
2688 dest++;
2690 after:
2692 * if the length difference is large enough, we want to allocate a
2693 * smaller buffer to save memory. if this fails due to out of memory,
2694 * we'll just stay with what we've got.
2696 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2697 newlist = pidlist_resize(list, dest);
2698 if (newlist)
2699 *p = newlist;
2701 return dest;
2704 static int cmppid(const void *a, const void *b)
2706 return *(pid_t *)a - *(pid_t *)b;
2710 * find the appropriate pidlist for our purpose (given procs vs tasks)
2711 * returns with the lock on that pidlist already held, and takes care
2712 * of the use count, or returns NULL with no locks held if we're out of
2713 * memory.
2715 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2716 enum cgroup_filetype type)
2718 struct cgroup_pidlist *l;
2719 /* don't need task_nsproxy() if we're looking at ourself */
2720 struct pid_namespace *ns = current->nsproxy->pid_ns;
2723 * We can't drop the pidlist_mutex before taking the l->mutex in case
2724 * the last ref-holder is trying to remove l from the list at the same
2725 * time. Holding the pidlist_mutex precludes somebody taking whichever
2726 * list we find out from under us - compare release_pid_array().
2728 mutex_lock(&cgrp->pidlist_mutex);
2729 list_for_each_entry(l, &cgrp->pidlists, links) {
2730 if (l->key.type == type && l->key.ns == ns) {
2731 /* make sure l doesn't vanish out from under us */
2732 down_write(&l->mutex);
2733 mutex_unlock(&cgrp->pidlist_mutex);
2734 return l;
2737 /* entry not found; create a new one */
2738 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2739 if (!l) {
2740 mutex_unlock(&cgrp->pidlist_mutex);
2741 return l;
2743 init_rwsem(&l->mutex);
2744 down_write(&l->mutex);
2745 l->key.type = type;
2746 l->key.ns = get_pid_ns(ns);
2747 l->use_count = 0; /* don't increment here */
2748 l->list = NULL;
2749 l->owner = cgrp;
2750 list_add(&l->links, &cgrp->pidlists);
2751 mutex_unlock(&cgrp->pidlist_mutex);
2752 return l;
2756 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2758 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2759 struct cgroup_pidlist **lp)
2761 pid_t *array;
2762 int length;
2763 int pid, n = 0; /* used for populating the array */
2764 struct cgroup_iter it;
2765 struct task_struct *tsk;
2766 struct cgroup_pidlist *l;
2769 * If cgroup gets more users after we read count, we won't have
2770 * enough space - tough. This race is indistinguishable to the
2771 * caller from the case that the additional cgroup users didn't
2772 * show up until sometime later on.
2774 length = cgroup_task_count(cgrp);
2775 array = pidlist_allocate(length);
2776 if (!array)
2777 return -ENOMEM;
2778 /* now, populate the array */
2779 cgroup_iter_start(cgrp, &it);
2780 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2781 if (unlikely(n == length))
2782 break;
2783 /* get tgid or pid for procs or tasks file respectively */
2784 if (type == CGROUP_FILE_PROCS)
2785 pid = task_tgid_vnr(tsk);
2786 else
2787 pid = task_pid_vnr(tsk);
2788 if (pid > 0) /* make sure to only use valid results */
2789 array[n++] = pid;
2791 cgroup_iter_end(cgrp, &it);
2792 length = n;
2793 /* now sort & (if procs) strip out duplicates */
2794 sort(array, length, sizeof(pid_t), cmppid, NULL);
2795 if (type == CGROUP_FILE_PROCS)
2796 length = pidlist_uniq(&array, length);
2797 l = cgroup_pidlist_find(cgrp, type);
2798 if (!l) {
2799 pidlist_free(array);
2800 return -ENOMEM;
2802 /* store array, freeing old if necessary - lock already held */
2803 pidlist_free(l->list);
2804 l->list = array;
2805 l->length = length;
2806 l->use_count++;
2807 up_write(&l->mutex);
2808 *lp = l;
2809 return 0;
2813 * cgroupstats_build - build and fill cgroupstats
2814 * @stats: cgroupstats to fill information into
2815 * @dentry: A dentry entry belonging to the cgroup for which stats have
2816 * been requested.
2818 * Build and fill cgroupstats so that taskstats can export it to user
2819 * space.
2821 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2823 int ret = -EINVAL;
2824 struct cgroup *cgrp;
2825 struct cgroup_iter it;
2826 struct task_struct *tsk;
2829 * Validate dentry by checking the superblock operations,
2830 * and make sure it's a directory.
2832 if (dentry->d_sb->s_op != &cgroup_ops ||
2833 !S_ISDIR(dentry->d_inode->i_mode))
2834 goto err;
2836 ret = 0;
2837 cgrp = dentry->d_fsdata;
2839 cgroup_iter_start(cgrp, &it);
2840 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2841 switch (tsk->state) {
2842 case TASK_RUNNING:
2843 stats->nr_running++;
2844 break;
2845 case TASK_INTERRUPTIBLE:
2846 stats->nr_sleeping++;
2847 break;
2848 case TASK_UNINTERRUPTIBLE:
2849 stats->nr_uninterruptible++;
2850 break;
2851 case TASK_STOPPED:
2852 stats->nr_stopped++;
2853 break;
2854 default:
2855 if (delayacct_is_task_waiting_on_io(tsk))
2856 stats->nr_io_wait++;
2857 break;
2860 cgroup_iter_end(cgrp, &it);
2862 err:
2863 return ret;
2868 * seq_file methods for the tasks/procs files. The seq_file position is the
2869 * next pid to display; the seq_file iterator is a pointer to the pid
2870 * in the cgroup->l->list array.
2873 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2876 * Initially we receive a position value that corresponds to
2877 * one more than the last pid shown (or 0 on the first call or
2878 * after a seek to the start). Use a binary-search to find the
2879 * next pid to display, if any
2881 struct cgroup_pidlist *l = s->private;
2882 int index = 0, pid = *pos;
2883 int *iter;
2885 down_read(&l->mutex);
2886 if (pid) {
2887 int end = l->length;
2889 while (index < end) {
2890 int mid = (index + end) / 2;
2891 if (l->list[mid] == pid) {
2892 index = mid;
2893 break;
2894 } else if (l->list[mid] <= pid)
2895 index = mid + 1;
2896 else
2897 end = mid;
2900 /* If we're off the end of the array, we're done */
2901 if (index >= l->length)
2902 return NULL;
2903 /* Update the abstract position to be the actual pid that we found */
2904 iter = l->list + index;
2905 *pos = *iter;
2906 return iter;
2909 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2911 struct cgroup_pidlist *l = s->private;
2912 up_read(&l->mutex);
2915 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2917 struct cgroup_pidlist *l = s->private;
2918 pid_t *p = v;
2919 pid_t *end = l->list + l->length;
2921 * Advance to the next pid in the array. If this goes off the
2922 * end, we're done
2924 p++;
2925 if (p >= end) {
2926 return NULL;
2927 } else {
2928 *pos = *p;
2929 return p;
2933 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2935 return seq_printf(s, "%d\n", *(int *)v);
2939 * seq_operations functions for iterating on pidlists through seq_file -
2940 * independent of whether it's tasks or procs
2942 static const struct seq_operations cgroup_pidlist_seq_operations = {
2943 .start = cgroup_pidlist_start,
2944 .stop = cgroup_pidlist_stop,
2945 .next = cgroup_pidlist_next,
2946 .show = cgroup_pidlist_show,
2949 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2952 * the case where we're the last user of this particular pidlist will
2953 * have us remove it from the cgroup's list, which entails taking the
2954 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2955 * pidlist_mutex, we have to take pidlist_mutex first.
2957 mutex_lock(&l->owner->pidlist_mutex);
2958 down_write(&l->mutex);
2959 BUG_ON(!l->use_count);
2960 if (!--l->use_count) {
2961 /* we're the last user if refcount is 0; remove and free */
2962 list_del(&l->links);
2963 mutex_unlock(&l->owner->pidlist_mutex);
2964 pidlist_free(l->list);
2965 put_pid_ns(l->key.ns);
2966 up_write(&l->mutex);
2967 kfree(l);
2968 return;
2970 mutex_unlock(&l->owner->pidlist_mutex);
2971 up_write(&l->mutex);
2974 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2976 struct cgroup_pidlist *l;
2977 if (!(file->f_mode & FMODE_READ))
2978 return 0;
2980 * the seq_file will only be initialized if the file was opened for
2981 * reading; hence we check if it's not null only in that case.
2983 l = ((struct seq_file *)file->private_data)->private;
2984 cgroup_release_pid_array(l);
2985 return seq_release(inode, file);
2988 static const struct file_operations cgroup_pidlist_operations = {
2989 .read = seq_read,
2990 .llseek = seq_lseek,
2991 .write = cgroup_file_write,
2992 .release = cgroup_pidlist_release,
2996 * The following functions handle opens on a file that displays a pidlist
2997 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2998 * in the cgroup.
3000 /* helper function for the two below it */
3001 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3003 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3004 struct cgroup_pidlist *l;
3005 int retval;
3007 /* Nothing to do for write-only files */
3008 if (!(file->f_mode & FMODE_READ))
3009 return 0;
3011 /* have the array populated */
3012 retval = pidlist_array_load(cgrp, type, &l);
3013 if (retval)
3014 return retval;
3015 /* configure file information */
3016 file->f_op = &cgroup_pidlist_operations;
3018 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3019 if (retval) {
3020 cgroup_release_pid_array(l);
3021 return retval;
3023 ((struct seq_file *)file->private_data)->private = l;
3024 return 0;
3026 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3028 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3030 static int cgroup_procs_open(struct inode *unused, struct file *file)
3032 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3035 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3036 struct cftype *cft)
3038 return notify_on_release(cgrp);
3041 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3042 struct cftype *cft,
3043 u64 val)
3045 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3046 if (val)
3047 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3048 else
3049 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3050 return 0;
3054 * Unregister event and free resources.
3056 * Gets called from workqueue.
3058 static void cgroup_event_remove(struct work_struct *work)
3060 struct cgroup_event *event = container_of(work, struct cgroup_event,
3061 remove);
3062 struct cgroup *cgrp = event->cgrp;
3064 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3066 eventfd_ctx_put(event->eventfd);
3067 kfree(event);
3068 dput(cgrp->dentry);
3072 * Gets called on POLLHUP on eventfd when user closes it.
3074 * Called with wqh->lock held and interrupts disabled.
3076 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3077 int sync, void *key)
3079 struct cgroup_event *event = container_of(wait,
3080 struct cgroup_event, wait);
3081 struct cgroup *cgrp = event->cgrp;
3082 unsigned long flags = (unsigned long)key;
3084 if (flags & POLLHUP) {
3085 __remove_wait_queue(event->wqh, &event->wait);
3086 spin_lock(&cgrp->event_list_lock);
3087 list_del(&event->list);
3088 spin_unlock(&cgrp->event_list_lock);
3090 * We are in atomic context, but cgroup_event_remove() may
3091 * sleep, so we have to call it in workqueue.
3093 schedule_work(&event->remove);
3096 return 0;
3099 static void cgroup_event_ptable_queue_proc(struct file *file,
3100 wait_queue_head_t *wqh, poll_table *pt)
3102 struct cgroup_event *event = container_of(pt,
3103 struct cgroup_event, pt);
3105 event->wqh = wqh;
3106 add_wait_queue(wqh, &event->wait);
3110 * Parse input and register new cgroup event handler.
3112 * Input must be in format '<event_fd> <control_fd> <args>'.
3113 * Interpretation of args is defined by control file implementation.
3115 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3116 const char *buffer)
3118 struct cgroup_event *event = NULL;
3119 unsigned int efd, cfd;
3120 struct file *efile = NULL;
3121 struct file *cfile = NULL;
3122 char *endp;
3123 int ret;
3125 efd = simple_strtoul(buffer, &endp, 10);
3126 if (*endp != ' ')
3127 return -EINVAL;
3128 buffer = endp + 1;
3130 cfd = simple_strtoul(buffer, &endp, 10);
3131 if ((*endp != ' ') && (*endp != '\0'))
3132 return -EINVAL;
3133 buffer = endp + 1;
3135 event = kzalloc(sizeof(*event), GFP_KERNEL);
3136 if (!event)
3137 return -ENOMEM;
3138 event->cgrp = cgrp;
3139 INIT_LIST_HEAD(&event->list);
3140 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3141 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3142 INIT_WORK(&event->remove, cgroup_event_remove);
3144 efile = eventfd_fget(efd);
3145 if (IS_ERR(efile)) {
3146 ret = PTR_ERR(efile);
3147 goto fail;
3150 event->eventfd = eventfd_ctx_fileget(efile);
3151 if (IS_ERR(event->eventfd)) {
3152 ret = PTR_ERR(event->eventfd);
3153 goto fail;
3156 cfile = fget(cfd);
3157 if (!cfile) {
3158 ret = -EBADF;
3159 goto fail;
3162 /* the process need read permission on control file */
3163 ret = file_permission(cfile, MAY_READ);
3164 if (ret < 0)
3165 goto fail;
3167 event->cft = __file_cft(cfile);
3168 if (IS_ERR(event->cft)) {
3169 ret = PTR_ERR(event->cft);
3170 goto fail;
3173 if (!event->cft->register_event || !event->cft->unregister_event) {
3174 ret = -EINVAL;
3175 goto fail;
3178 ret = event->cft->register_event(cgrp, event->cft,
3179 event->eventfd, buffer);
3180 if (ret)
3181 goto fail;
3183 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3184 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3185 ret = 0;
3186 goto fail;
3190 * Events should be removed after rmdir of cgroup directory, but before
3191 * destroying subsystem state objects. Let's take reference to cgroup
3192 * directory dentry to do that.
3194 dget(cgrp->dentry);
3196 spin_lock(&cgrp->event_list_lock);
3197 list_add(&event->list, &cgrp->event_list);
3198 spin_unlock(&cgrp->event_list_lock);
3200 fput(cfile);
3201 fput(efile);
3203 return 0;
3205 fail:
3206 if (cfile)
3207 fput(cfile);
3209 if (event && event->eventfd && !IS_ERR(event->eventfd))
3210 eventfd_ctx_put(event->eventfd);
3212 if (!IS_ERR_OR_NULL(efile))
3213 fput(efile);
3215 kfree(event);
3217 return ret;
3220 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3221 struct cftype *cft)
3223 return clone_children(cgrp);
3226 static int cgroup_clone_children_write(struct cgroup *cgrp,
3227 struct cftype *cft,
3228 u64 val)
3230 if (val)
3231 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3232 else
3233 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3234 return 0;
3238 * for the common functions, 'private' gives the type of file
3240 /* for hysterical raisins, we can't put this on the older files */
3241 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3242 static struct cftype files[] = {
3244 .name = "tasks",
3245 .open = cgroup_tasks_open,
3246 .write_u64 = cgroup_tasks_write,
3247 .release = cgroup_pidlist_release,
3248 .mode = S_IRUGO | S_IWUSR,
3251 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3252 .open = cgroup_procs_open,
3253 /* .write_u64 = cgroup_procs_write, TODO */
3254 .release = cgroup_pidlist_release,
3255 .mode = S_IRUGO,
3258 .name = "notify_on_release",
3259 .read_u64 = cgroup_read_notify_on_release,
3260 .write_u64 = cgroup_write_notify_on_release,
3263 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3264 .write_string = cgroup_write_event_control,
3265 .mode = S_IWUGO,
3268 .name = "cgroup.clone_children",
3269 .read_u64 = cgroup_clone_children_read,
3270 .write_u64 = cgroup_clone_children_write,
3274 static struct cftype cft_release_agent = {
3275 .name = "release_agent",
3276 .read_seq_string = cgroup_release_agent_show,
3277 .write_string = cgroup_release_agent_write,
3278 .max_write_len = PATH_MAX,
3281 static int cgroup_populate_dir(struct cgroup *cgrp)
3283 int err;
3284 struct cgroup_subsys *ss;
3286 /* First clear out any existing files */
3287 cgroup_clear_directory(cgrp->dentry);
3289 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3290 if (err < 0)
3291 return err;
3293 if (cgrp == cgrp->top_cgroup) {
3294 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3295 return err;
3298 for_each_subsys(cgrp->root, ss) {
3299 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3300 return err;
3302 /* This cgroup is ready now */
3303 for_each_subsys(cgrp->root, ss) {
3304 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3306 * Update id->css pointer and make this css visible from
3307 * CSS ID functions. This pointer will be dereferened
3308 * from RCU-read-side without locks.
3310 if (css->id)
3311 rcu_assign_pointer(css->id->css, css);
3314 return 0;
3317 static void init_cgroup_css(struct cgroup_subsys_state *css,
3318 struct cgroup_subsys *ss,
3319 struct cgroup *cgrp)
3321 css->cgroup = cgrp;
3322 atomic_set(&css->refcnt, 1);
3323 css->flags = 0;
3324 css->id = NULL;
3325 if (cgrp == dummytop)
3326 set_bit(CSS_ROOT, &css->flags);
3327 BUG_ON(cgrp->subsys[ss->subsys_id]);
3328 cgrp->subsys[ss->subsys_id] = css;
3331 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3333 /* We need to take each hierarchy_mutex in a consistent order */
3334 int i;
3337 * No worry about a race with rebind_subsystems that might mess up the
3338 * locking order, since both parties are under cgroup_mutex.
3340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3341 struct cgroup_subsys *ss = subsys[i];
3342 if (ss == NULL)
3343 continue;
3344 if (ss->root == root)
3345 mutex_lock(&ss->hierarchy_mutex);
3349 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3351 int i;
3353 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3354 struct cgroup_subsys *ss = subsys[i];
3355 if (ss == NULL)
3356 continue;
3357 if (ss->root == root)
3358 mutex_unlock(&ss->hierarchy_mutex);
3363 * cgroup_create - create a cgroup
3364 * @parent: cgroup that will be parent of the new cgroup
3365 * @dentry: dentry of the new cgroup
3366 * @mode: mode to set on new inode
3368 * Must be called with the mutex on the parent inode held
3370 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3371 mode_t mode)
3373 struct cgroup *cgrp;
3374 struct cgroupfs_root *root = parent->root;
3375 int err = 0;
3376 struct cgroup_subsys *ss;
3377 struct super_block *sb = root->sb;
3379 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3380 if (!cgrp)
3381 return -ENOMEM;
3383 /* Grab a reference on the superblock so the hierarchy doesn't
3384 * get deleted on unmount if there are child cgroups. This
3385 * can be done outside cgroup_mutex, since the sb can't
3386 * disappear while someone has an open control file on the
3387 * fs */
3388 atomic_inc(&sb->s_active);
3390 mutex_lock(&cgroup_mutex);
3392 init_cgroup_housekeeping(cgrp);
3394 cgrp->parent = parent;
3395 cgrp->root = parent->root;
3396 cgrp->top_cgroup = parent->top_cgroup;
3398 if (notify_on_release(parent))
3399 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3401 if (clone_children(parent))
3402 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3404 for_each_subsys(root, ss) {
3405 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3407 if (IS_ERR(css)) {
3408 err = PTR_ERR(css);
3409 goto err_destroy;
3411 init_cgroup_css(css, ss, cgrp);
3412 if (ss->use_id) {
3413 err = alloc_css_id(ss, parent, cgrp);
3414 if (err)
3415 goto err_destroy;
3417 /* At error, ->destroy() callback has to free assigned ID. */
3418 if (clone_children(parent) && ss->post_clone)
3419 ss->post_clone(ss, cgrp);
3422 cgroup_lock_hierarchy(root);
3423 list_add(&cgrp->sibling, &cgrp->parent->children);
3424 cgroup_unlock_hierarchy(root);
3425 root->number_of_cgroups++;
3427 err = cgroup_create_dir(cgrp, dentry, mode);
3428 if (err < 0)
3429 goto err_remove;
3431 /* The cgroup directory was pre-locked for us */
3432 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3434 err = cgroup_populate_dir(cgrp);
3435 /* If err < 0, we have a half-filled directory - oh well ;) */
3437 mutex_unlock(&cgroup_mutex);
3438 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3440 return 0;
3442 err_remove:
3444 cgroup_lock_hierarchy(root);
3445 list_del(&cgrp->sibling);
3446 cgroup_unlock_hierarchy(root);
3447 root->number_of_cgroups--;
3449 err_destroy:
3451 for_each_subsys(root, ss) {
3452 if (cgrp->subsys[ss->subsys_id])
3453 ss->destroy(ss, cgrp);
3456 mutex_unlock(&cgroup_mutex);
3458 /* Release the reference count that we took on the superblock */
3459 deactivate_super(sb);
3461 kfree(cgrp);
3462 return err;
3465 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3467 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3469 /* the vfs holds inode->i_mutex already */
3470 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3473 static int cgroup_has_css_refs(struct cgroup *cgrp)
3475 /* Check the reference count on each subsystem. Since we
3476 * already established that there are no tasks in the
3477 * cgroup, if the css refcount is also 1, then there should
3478 * be no outstanding references, so the subsystem is safe to
3479 * destroy. We scan across all subsystems rather than using
3480 * the per-hierarchy linked list of mounted subsystems since
3481 * we can be called via check_for_release() with no
3482 * synchronization other than RCU, and the subsystem linked
3483 * list isn't RCU-safe */
3484 int i;
3486 * We won't need to lock the subsys array, because the subsystems
3487 * we're concerned about aren't going anywhere since our cgroup root
3488 * has a reference on them.
3490 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3491 struct cgroup_subsys *ss = subsys[i];
3492 struct cgroup_subsys_state *css;
3493 /* Skip subsystems not present or not in this hierarchy */
3494 if (ss == NULL || ss->root != cgrp->root)
3495 continue;
3496 css = cgrp->subsys[ss->subsys_id];
3497 /* When called from check_for_release() it's possible
3498 * that by this point the cgroup has been removed
3499 * and the css deleted. But a false-positive doesn't
3500 * matter, since it can only happen if the cgroup
3501 * has been deleted and hence no longer needs the
3502 * release agent to be called anyway. */
3503 if (css && (atomic_read(&css->refcnt) > 1))
3504 return 1;
3506 return 0;
3510 * Atomically mark all (or else none) of the cgroup's CSS objects as
3511 * CSS_REMOVED. Return true on success, or false if the cgroup has
3512 * busy subsystems. Call with cgroup_mutex held
3515 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3517 struct cgroup_subsys *ss;
3518 unsigned long flags;
3519 bool failed = false;
3520 local_irq_save(flags);
3521 for_each_subsys(cgrp->root, ss) {
3522 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3523 int refcnt;
3524 while (1) {
3525 /* We can only remove a CSS with a refcnt==1 */
3526 refcnt = atomic_read(&css->refcnt);
3527 if (refcnt > 1) {
3528 failed = true;
3529 goto done;
3531 BUG_ON(!refcnt);
3533 * Drop the refcnt to 0 while we check other
3534 * subsystems. This will cause any racing
3535 * css_tryget() to spin until we set the
3536 * CSS_REMOVED bits or abort
3538 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3539 break;
3540 cpu_relax();
3543 done:
3544 for_each_subsys(cgrp->root, ss) {
3545 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3546 if (failed) {
3548 * Restore old refcnt if we previously managed
3549 * to clear it from 1 to 0
3551 if (!atomic_read(&css->refcnt))
3552 atomic_set(&css->refcnt, 1);
3553 } else {
3554 /* Commit the fact that the CSS is removed */
3555 set_bit(CSS_REMOVED, &css->flags);
3558 local_irq_restore(flags);
3559 return !failed;
3562 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3564 struct cgroup *cgrp = dentry->d_fsdata;
3565 struct dentry *d;
3566 struct cgroup *parent;
3567 DEFINE_WAIT(wait);
3568 struct cgroup_event *event, *tmp;
3569 int ret;
3571 /* the vfs holds both inode->i_mutex already */
3572 again:
3573 mutex_lock(&cgroup_mutex);
3574 if (atomic_read(&cgrp->count) != 0) {
3575 mutex_unlock(&cgroup_mutex);
3576 return -EBUSY;
3578 if (!list_empty(&cgrp->children)) {
3579 mutex_unlock(&cgroup_mutex);
3580 return -EBUSY;
3582 mutex_unlock(&cgroup_mutex);
3585 * In general, subsystem has no css->refcnt after pre_destroy(). But
3586 * in racy cases, subsystem may have to get css->refcnt after
3587 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3588 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3589 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3590 * and subsystem's reference count handling. Please see css_get/put
3591 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3593 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3596 * Call pre_destroy handlers of subsys. Notify subsystems
3597 * that rmdir() request comes.
3599 ret = cgroup_call_pre_destroy(cgrp);
3600 if (ret) {
3601 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3602 return ret;
3605 mutex_lock(&cgroup_mutex);
3606 parent = cgrp->parent;
3607 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3608 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3609 mutex_unlock(&cgroup_mutex);
3610 return -EBUSY;
3612 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3613 if (!cgroup_clear_css_refs(cgrp)) {
3614 mutex_unlock(&cgroup_mutex);
3616 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3617 * prepare_to_wait(), we need to check this flag.
3619 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3620 schedule();
3621 finish_wait(&cgroup_rmdir_waitq, &wait);
3622 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3623 if (signal_pending(current))
3624 return -EINTR;
3625 goto again;
3627 /* NO css_tryget() can success after here. */
3628 finish_wait(&cgroup_rmdir_waitq, &wait);
3629 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3631 spin_lock(&release_list_lock);
3632 set_bit(CGRP_REMOVED, &cgrp->flags);
3633 if (!list_empty(&cgrp->release_list))
3634 list_del(&cgrp->release_list);
3635 spin_unlock(&release_list_lock);
3637 cgroup_lock_hierarchy(cgrp->root);
3638 /* delete this cgroup from parent->children */
3639 list_del(&cgrp->sibling);
3640 cgroup_unlock_hierarchy(cgrp->root);
3642 spin_lock(&cgrp->dentry->d_lock);
3643 d = dget(cgrp->dentry);
3644 spin_unlock(&d->d_lock);
3646 cgroup_d_remove_dir(d);
3647 dput(d);
3649 set_bit(CGRP_RELEASABLE, &parent->flags);
3650 check_for_release(parent);
3653 * Unregister events and notify userspace.
3654 * Notify userspace about cgroup removing only after rmdir of cgroup
3655 * directory to avoid race between userspace and kernelspace
3657 spin_lock(&cgrp->event_list_lock);
3658 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3659 list_del(&event->list);
3660 remove_wait_queue(event->wqh, &event->wait);
3661 eventfd_signal(event->eventfd, 1);
3662 schedule_work(&event->remove);
3664 spin_unlock(&cgrp->event_list_lock);
3666 mutex_unlock(&cgroup_mutex);
3667 return 0;
3670 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3672 struct cgroup_subsys_state *css;
3674 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3676 /* Create the top cgroup state for this subsystem */
3677 list_add(&ss->sibling, &rootnode.subsys_list);
3678 ss->root = &rootnode;
3679 css = ss->create(ss, dummytop);
3680 /* We don't handle early failures gracefully */
3681 BUG_ON(IS_ERR(css));
3682 init_cgroup_css(css, ss, dummytop);
3684 /* Update the init_css_set to contain a subsys
3685 * pointer to this state - since the subsystem is
3686 * newly registered, all tasks and hence the
3687 * init_css_set is in the subsystem's top cgroup. */
3688 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3690 need_forkexit_callback |= ss->fork || ss->exit;
3692 /* At system boot, before all subsystems have been
3693 * registered, no tasks have been forked, so we don't
3694 * need to invoke fork callbacks here. */
3695 BUG_ON(!list_empty(&init_task.tasks));
3697 mutex_init(&ss->hierarchy_mutex);
3698 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3699 ss->active = 1;
3701 /* this function shouldn't be used with modular subsystems, since they
3702 * need to register a subsys_id, among other things */
3703 BUG_ON(ss->module);
3707 * cgroup_load_subsys: load and register a modular subsystem at runtime
3708 * @ss: the subsystem to load
3710 * This function should be called in a modular subsystem's initcall. If the
3711 * subsystem is built as a module, it will be assigned a new subsys_id and set
3712 * up for use. If the subsystem is built-in anyway, work is delegated to the
3713 * simpler cgroup_init_subsys.
3715 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3717 int i;
3718 struct cgroup_subsys_state *css;
3720 /* check name and function validity */
3721 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3722 ss->create == NULL || ss->destroy == NULL)
3723 return -EINVAL;
3726 * we don't support callbacks in modular subsystems. this check is
3727 * before the ss->module check for consistency; a subsystem that could
3728 * be a module should still have no callbacks even if the user isn't
3729 * compiling it as one.
3731 if (ss->fork || ss->exit)
3732 return -EINVAL;
3735 * an optionally modular subsystem is built-in: we want to do nothing,
3736 * since cgroup_init_subsys will have already taken care of it.
3738 if (ss->module == NULL) {
3739 /* a few sanity checks */
3740 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3741 BUG_ON(subsys[ss->subsys_id] != ss);
3742 return 0;
3746 * need to register a subsys id before anything else - for example,
3747 * init_cgroup_css needs it.
3749 mutex_lock(&cgroup_mutex);
3750 /* find the first empty slot in the array */
3751 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3752 if (subsys[i] == NULL)
3753 break;
3755 if (i == CGROUP_SUBSYS_COUNT) {
3756 /* maximum number of subsystems already registered! */
3757 mutex_unlock(&cgroup_mutex);
3758 return -EBUSY;
3760 /* assign ourselves the subsys_id */
3761 ss->subsys_id = i;
3762 subsys[i] = ss;
3765 * no ss->create seems to need anything important in the ss struct, so
3766 * this can happen first (i.e. before the rootnode attachment).
3768 css = ss->create(ss, dummytop);
3769 if (IS_ERR(css)) {
3770 /* failure case - need to deassign the subsys[] slot. */
3771 subsys[i] = NULL;
3772 mutex_unlock(&cgroup_mutex);
3773 return PTR_ERR(css);
3776 list_add(&ss->sibling, &rootnode.subsys_list);
3777 ss->root = &rootnode;
3779 /* our new subsystem will be attached to the dummy hierarchy. */
3780 init_cgroup_css(css, ss, dummytop);
3781 /* init_idr must be after init_cgroup_css because it sets css->id. */
3782 if (ss->use_id) {
3783 int ret = cgroup_init_idr(ss, css);
3784 if (ret) {
3785 dummytop->subsys[ss->subsys_id] = NULL;
3786 ss->destroy(ss, dummytop);
3787 subsys[i] = NULL;
3788 mutex_unlock(&cgroup_mutex);
3789 return ret;
3794 * Now we need to entangle the css into the existing css_sets. unlike
3795 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3796 * will need a new pointer to it; done by iterating the css_set_table.
3797 * furthermore, modifying the existing css_sets will corrupt the hash
3798 * table state, so each changed css_set will need its hash recomputed.
3799 * this is all done under the css_set_lock.
3801 write_lock(&css_set_lock);
3802 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3803 struct css_set *cg;
3804 struct hlist_node *node, *tmp;
3805 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3807 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3808 /* skip entries that we already rehashed */
3809 if (cg->subsys[ss->subsys_id])
3810 continue;
3811 /* remove existing entry */
3812 hlist_del(&cg->hlist);
3813 /* set new value */
3814 cg->subsys[ss->subsys_id] = css;
3815 /* recompute hash and restore entry */
3816 new_bucket = css_set_hash(cg->subsys);
3817 hlist_add_head(&cg->hlist, new_bucket);
3820 write_unlock(&css_set_lock);
3822 mutex_init(&ss->hierarchy_mutex);
3823 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3824 ss->active = 1;
3826 /* success! */
3827 mutex_unlock(&cgroup_mutex);
3828 return 0;
3830 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3833 * cgroup_unload_subsys: unload a modular subsystem
3834 * @ss: the subsystem to unload
3836 * This function should be called in a modular subsystem's exitcall. When this
3837 * function is invoked, the refcount on the subsystem's module will be 0, so
3838 * the subsystem will not be attached to any hierarchy.
3840 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3842 struct cg_cgroup_link *link;
3843 struct hlist_head *hhead;
3845 BUG_ON(ss->module == NULL);
3848 * we shouldn't be called if the subsystem is in use, and the use of
3849 * try_module_get in parse_cgroupfs_options should ensure that it
3850 * doesn't start being used while we're killing it off.
3852 BUG_ON(ss->root != &rootnode);
3854 mutex_lock(&cgroup_mutex);
3855 /* deassign the subsys_id */
3856 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3857 subsys[ss->subsys_id] = NULL;
3859 /* remove subsystem from rootnode's list of subsystems */
3860 list_del(&ss->sibling);
3863 * disentangle the css from all css_sets attached to the dummytop. as
3864 * in loading, we need to pay our respects to the hashtable gods.
3866 write_lock(&css_set_lock);
3867 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3868 struct css_set *cg = link->cg;
3870 hlist_del(&cg->hlist);
3871 BUG_ON(!cg->subsys[ss->subsys_id]);
3872 cg->subsys[ss->subsys_id] = NULL;
3873 hhead = css_set_hash(cg->subsys);
3874 hlist_add_head(&cg->hlist, hhead);
3876 write_unlock(&css_set_lock);
3879 * remove subsystem's css from the dummytop and free it - need to free
3880 * before marking as null because ss->destroy needs the cgrp->subsys
3881 * pointer to find their state. note that this also takes care of
3882 * freeing the css_id.
3884 ss->destroy(ss, dummytop);
3885 dummytop->subsys[ss->subsys_id] = NULL;
3887 mutex_unlock(&cgroup_mutex);
3889 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3892 * cgroup_init_early - cgroup initialization at system boot
3894 * Initialize cgroups at system boot, and initialize any
3895 * subsystems that request early init.
3897 int __init cgroup_init_early(void)
3899 int i;
3900 atomic_set(&init_css_set.refcount, 1);
3901 INIT_LIST_HEAD(&init_css_set.cg_links);
3902 INIT_LIST_HEAD(&init_css_set.tasks);
3903 INIT_HLIST_NODE(&init_css_set.hlist);
3904 css_set_count = 1;
3905 init_cgroup_root(&rootnode);
3906 root_count = 1;
3907 init_task.cgroups = &init_css_set;
3909 init_css_set_link.cg = &init_css_set;
3910 init_css_set_link.cgrp = dummytop;
3911 list_add(&init_css_set_link.cgrp_link_list,
3912 &rootnode.top_cgroup.css_sets);
3913 list_add(&init_css_set_link.cg_link_list,
3914 &init_css_set.cg_links);
3916 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3917 INIT_HLIST_HEAD(&css_set_table[i]);
3919 /* at bootup time, we don't worry about modular subsystems */
3920 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3921 struct cgroup_subsys *ss = subsys[i];
3923 BUG_ON(!ss->name);
3924 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3925 BUG_ON(!ss->create);
3926 BUG_ON(!ss->destroy);
3927 if (ss->subsys_id != i) {
3928 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3929 ss->name, ss->subsys_id);
3930 BUG();
3933 if (ss->early_init)
3934 cgroup_init_subsys(ss);
3936 return 0;
3940 * cgroup_init - cgroup initialization
3942 * Register cgroup filesystem and /proc file, and initialize
3943 * any subsystems that didn't request early init.
3945 int __init cgroup_init(void)
3947 int err;
3948 int i;
3949 struct hlist_head *hhead;
3951 err = bdi_init(&cgroup_backing_dev_info);
3952 if (err)
3953 return err;
3955 /* at bootup time, we don't worry about modular subsystems */
3956 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3957 struct cgroup_subsys *ss = subsys[i];
3958 if (!ss->early_init)
3959 cgroup_init_subsys(ss);
3960 if (ss->use_id)
3961 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3964 /* Add init_css_set to the hash table */
3965 hhead = css_set_hash(init_css_set.subsys);
3966 hlist_add_head(&init_css_set.hlist, hhead);
3967 BUG_ON(!init_root_id(&rootnode));
3969 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3970 if (!cgroup_kobj) {
3971 err = -ENOMEM;
3972 goto out;
3975 err = register_filesystem(&cgroup_fs_type);
3976 if (err < 0) {
3977 kobject_put(cgroup_kobj);
3978 goto out;
3981 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3983 out:
3984 if (err)
3985 bdi_destroy(&cgroup_backing_dev_info);
3987 return err;
3991 * proc_cgroup_show()
3992 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3993 * - Used for /proc/<pid>/cgroup.
3994 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3995 * doesn't really matter if tsk->cgroup changes after we read it,
3996 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3997 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3998 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3999 * cgroup to top_cgroup.
4002 /* TODO: Use a proper seq_file iterator */
4003 static int proc_cgroup_show(struct seq_file *m, void *v)
4005 struct pid *pid;
4006 struct task_struct *tsk;
4007 char *buf;
4008 int retval;
4009 struct cgroupfs_root *root;
4011 retval = -ENOMEM;
4012 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4013 if (!buf)
4014 goto out;
4016 retval = -ESRCH;
4017 pid = m->private;
4018 tsk = get_pid_task(pid, PIDTYPE_PID);
4019 if (!tsk)
4020 goto out_free;
4022 retval = 0;
4024 mutex_lock(&cgroup_mutex);
4026 for_each_active_root(root) {
4027 struct cgroup_subsys *ss;
4028 struct cgroup *cgrp;
4029 int count = 0;
4031 seq_printf(m, "%d:", root->hierarchy_id);
4032 for_each_subsys(root, ss)
4033 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4034 if (strlen(root->name))
4035 seq_printf(m, "%sname=%s", count ? "," : "",
4036 root->name);
4037 seq_putc(m, ':');
4038 cgrp = task_cgroup_from_root(tsk, root);
4039 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4040 if (retval < 0)
4041 goto out_unlock;
4042 seq_puts(m, buf);
4043 seq_putc(m, '\n');
4046 out_unlock:
4047 mutex_unlock(&cgroup_mutex);
4048 put_task_struct(tsk);
4049 out_free:
4050 kfree(buf);
4051 out:
4052 return retval;
4055 static int cgroup_open(struct inode *inode, struct file *file)
4057 struct pid *pid = PROC_I(inode)->pid;
4058 return single_open(file, proc_cgroup_show, pid);
4061 const struct file_operations proc_cgroup_operations = {
4062 .open = cgroup_open,
4063 .read = seq_read,
4064 .llseek = seq_lseek,
4065 .release = single_release,
4068 /* Display information about each subsystem and each hierarchy */
4069 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4071 int i;
4073 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4075 * ideally we don't want subsystems moving around while we do this.
4076 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4077 * subsys/hierarchy state.
4079 mutex_lock(&cgroup_mutex);
4080 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4081 struct cgroup_subsys *ss = subsys[i];
4082 if (ss == NULL)
4083 continue;
4084 seq_printf(m, "%s\t%d\t%d\t%d\n",
4085 ss->name, ss->root->hierarchy_id,
4086 ss->root->number_of_cgroups, !ss->disabled);
4088 mutex_unlock(&cgroup_mutex);
4089 return 0;
4092 static int cgroupstats_open(struct inode *inode, struct file *file)
4094 return single_open(file, proc_cgroupstats_show, NULL);
4097 static const struct file_operations proc_cgroupstats_operations = {
4098 .open = cgroupstats_open,
4099 .read = seq_read,
4100 .llseek = seq_lseek,
4101 .release = single_release,
4105 * cgroup_fork - attach newly forked task to its parents cgroup.
4106 * @child: pointer to task_struct of forking parent process.
4108 * Description: A task inherits its parent's cgroup at fork().
4110 * A pointer to the shared css_set was automatically copied in
4111 * fork.c by dup_task_struct(). However, we ignore that copy, since
4112 * it was not made under the protection of RCU or cgroup_mutex, so
4113 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4114 * have already changed current->cgroups, allowing the previously
4115 * referenced cgroup group to be removed and freed.
4117 * At the point that cgroup_fork() is called, 'current' is the parent
4118 * task, and the passed argument 'child' points to the child task.
4120 void cgroup_fork(struct task_struct *child)
4122 task_lock(current);
4123 child->cgroups = current->cgroups;
4124 get_css_set(child->cgroups);
4125 task_unlock(current);
4126 INIT_LIST_HEAD(&child->cg_list);
4130 * cgroup_fork_callbacks - run fork callbacks
4131 * @child: the new task
4133 * Called on a new task very soon before adding it to the
4134 * tasklist. No need to take any locks since no-one can
4135 * be operating on this task.
4137 void cgroup_fork_callbacks(struct task_struct *child)
4139 if (need_forkexit_callback) {
4140 int i;
4142 * forkexit callbacks are only supported for builtin
4143 * subsystems, and the builtin section of the subsys array is
4144 * immutable, so we don't need to lock the subsys array here.
4146 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4147 struct cgroup_subsys *ss = subsys[i];
4148 if (ss->fork)
4149 ss->fork(ss, child);
4155 * cgroup_post_fork - called on a new task after adding it to the task list
4156 * @child: the task in question
4158 * Adds the task to the list running through its css_set if necessary.
4159 * Has to be after the task is visible on the task list in case we race
4160 * with the first call to cgroup_iter_start() - to guarantee that the
4161 * new task ends up on its list.
4163 void cgroup_post_fork(struct task_struct *child)
4165 if (use_task_css_set_links) {
4166 write_lock(&css_set_lock);
4167 task_lock(child);
4168 if (list_empty(&child->cg_list))
4169 list_add(&child->cg_list, &child->cgroups->tasks);
4170 task_unlock(child);
4171 write_unlock(&css_set_lock);
4175 * cgroup_exit - detach cgroup from exiting task
4176 * @tsk: pointer to task_struct of exiting process
4177 * @run_callback: run exit callbacks?
4179 * Description: Detach cgroup from @tsk and release it.
4181 * Note that cgroups marked notify_on_release force every task in
4182 * them to take the global cgroup_mutex mutex when exiting.
4183 * This could impact scaling on very large systems. Be reluctant to
4184 * use notify_on_release cgroups where very high task exit scaling
4185 * is required on large systems.
4187 * the_top_cgroup_hack:
4189 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4191 * We call cgroup_exit() while the task is still competent to
4192 * handle notify_on_release(), then leave the task attached to the
4193 * root cgroup in each hierarchy for the remainder of its exit.
4195 * To do this properly, we would increment the reference count on
4196 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4197 * code we would add a second cgroup function call, to drop that
4198 * reference. This would just create an unnecessary hot spot on
4199 * the top_cgroup reference count, to no avail.
4201 * Normally, holding a reference to a cgroup without bumping its
4202 * count is unsafe. The cgroup could go away, or someone could
4203 * attach us to a different cgroup, decrementing the count on
4204 * the first cgroup that we never incremented. But in this case,
4205 * top_cgroup isn't going away, and either task has PF_EXITING set,
4206 * which wards off any cgroup_attach_task() attempts, or task is a failed
4207 * fork, never visible to cgroup_attach_task.
4209 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4211 int i;
4212 struct css_set *cg;
4214 if (run_callbacks && need_forkexit_callback) {
4216 * modular subsystems can't use callbacks, so no need to lock
4217 * the subsys array
4219 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4220 struct cgroup_subsys *ss = subsys[i];
4221 if (ss->exit)
4222 ss->exit(ss, tsk);
4227 * Unlink from the css_set task list if necessary.
4228 * Optimistically check cg_list before taking
4229 * css_set_lock
4231 if (!list_empty(&tsk->cg_list)) {
4232 write_lock(&css_set_lock);
4233 if (!list_empty(&tsk->cg_list))
4234 list_del(&tsk->cg_list);
4235 write_unlock(&css_set_lock);
4238 /* Reassign the task to the init_css_set. */
4239 task_lock(tsk);
4240 cg = tsk->cgroups;
4241 tsk->cgroups = &init_css_set;
4242 task_unlock(tsk);
4243 if (cg)
4244 put_css_set_taskexit(cg);
4248 * cgroup_clone - clone the cgroup the given subsystem is attached to
4249 * @tsk: the task to be moved
4250 * @subsys: the given subsystem
4251 * @nodename: the name for the new cgroup
4253 * Duplicate the current cgroup in the hierarchy that the given
4254 * subsystem is attached to, and move this task into the new
4255 * child.
4257 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4258 char *nodename)
4260 struct dentry *dentry;
4261 int ret = 0;
4262 struct cgroup *parent, *child;
4263 struct inode *inode;
4264 struct css_set *cg;
4265 struct cgroupfs_root *root;
4266 struct cgroup_subsys *ss;
4268 /* We shouldn't be called by an unregistered subsystem */
4269 BUG_ON(!subsys->active);
4271 /* First figure out what hierarchy and cgroup we're dealing
4272 * with, and pin them so we can drop cgroup_mutex */
4273 mutex_lock(&cgroup_mutex);
4274 again:
4275 root = subsys->root;
4276 if (root == &rootnode) {
4277 mutex_unlock(&cgroup_mutex);
4278 return 0;
4281 /* Pin the hierarchy */
4282 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4283 /* We race with the final deactivate_super() */
4284 mutex_unlock(&cgroup_mutex);
4285 return 0;
4288 /* Keep the cgroup alive */
4289 task_lock(tsk);
4290 parent = task_cgroup(tsk, subsys->subsys_id);
4291 cg = tsk->cgroups;
4292 get_css_set(cg);
4293 task_unlock(tsk);
4295 mutex_unlock(&cgroup_mutex);
4297 /* Now do the VFS work to create a cgroup */
4298 inode = parent->dentry->d_inode;
4300 /* Hold the parent directory mutex across this operation to
4301 * stop anyone else deleting the new cgroup */
4302 mutex_lock(&inode->i_mutex);
4303 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4304 if (IS_ERR(dentry)) {
4305 printk(KERN_INFO
4306 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4307 PTR_ERR(dentry));
4308 ret = PTR_ERR(dentry);
4309 goto out_release;
4312 /* Create the cgroup directory, which also creates the cgroup */
4313 ret = vfs_mkdir(inode, dentry, 0755);
4314 child = __d_cgrp(dentry);
4315 dput(dentry);
4316 if (ret) {
4317 printk(KERN_INFO
4318 "Failed to create cgroup %s: %d\n", nodename,
4319 ret);
4320 goto out_release;
4323 /* The cgroup now exists. Retake cgroup_mutex and check
4324 * that we're still in the same state that we thought we
4325 * were. */
4326 mutex_lock(&cgroup_mutex);
4327 if ((root != subsys->root) ||
4328 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4329 /* Aargh, we raced ... */
4330 mutex_unlock(&inode->i_mutex);
4331 put_css_set(cg);
4333 deactivate_super(root->sb);
4334 /* The cgroup is still accessible in the VFS, but
4335 * we're not going to try to rmdir() it at this
4336 * point. */
4337 printk(KERN_INFO
4338 "Race in cgroup_clone() - leaking cgroup %s\n",
4339 nodename);
4340 goto again;
4343 /* do any required auto-setup */
4344 for_each_subsys(root, ss) {
4345 if (ss->post_clone)
4346 ss->post_clone(ss, child);
4349 /* All seems fine. Finish by moving the task into the new cgroup */
4350 ret = cgroup_attach_task(child, tsk);
4351 mutex_unlock(&cgroup_mutex);
4353 out_release:
4354 mutex_unlock(&inode->i_mutex);
4356 mutex_lock(&cgroup_mutex);
4357 put_css_set(cg);
4358 mutex_unlock(&cgroup_mutex);
4359 deactivate_super(root->sb);
4360 return ret;
4364 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4365 * @cgrp: the cgroup in question
4366 * @task: the task in question
4368 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4369 * hierarchy.
4371 * If we are sending in dummytop, then presumably we are creating
4372 * the top cgroup in the subsystem.
4374 * Called only by the ns (nsproxy) cgroup.
4376 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4378 int ret;
4379 struct cgroup *target;
4381 if (cgrp == dummytop)
4382 return 1;
4384 target = task_cgroup_from_root(task, cgrp->root);
4385 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4386 cgrp = cgrp->parent;
4387 ret = (cgrp == target);
4388 return ret;
4391 static void check_for_release(struct cgroup *cgrp)
4393 /* All of these checks rely on RCU to keep the cgroup
4394 * structure alive */
4395 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4396 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4397 /* Control Group is currently removeable. If it's not
4398 * already queued for a userspace notification, queue
4399 * it now */
4400 int need_schedule_work = 0;
4401 spin_lock(&release_list_lock);
4402 if (!cgroup_is_removed(cgrp) &&
4403 list_empty(&cgrp->release_list)) {
4404 list_add(&cgrp->release_list, &release_list);
4405 need_schedule_work = 1;
4407 spin_unlock(&release_list_lock);
4408 if (need_schedule_work)
4409 schedule_work(&release_agent_work);
4413 /* Caller must verify that the css is not for root cgroup */
4414 void __css_put(struct cgroup_subsys_state *css, int count)
4416 struct cgroup *cgrp = css->cgroup;
4417 int val;
4418 rcu_read_lock();
4419 val = atomic_sub_return(count, &css->refcnt);
4420 if (val == 1) {
4421 if (notify_on_release(cgrp)) {
4422 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4423 check_for_release(cgrp);
4425 cgroup_wakeup_rmdir_waiter(cgrp);
4427 rcu_read_unlock();
4428 WARN_ON_ONCE(val < 1);
4430 EXPORT_SYMBOL_GPL(__css_put);
4433 * Notify userspace when a cgroup is released, by running the
4434 * configured release agent with the name of the cgroup (path
4435 * relative to the root of cgroup file system) as the argument.
4437 * Most likely, this user command will try to rmdir this cgroup.
4439 * This races with the possibility that some other task will be
4440 * attached to this cgroup before it is removed, or that some other
4441 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4442 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4443 * unused, and this cgroup will be reprieved from its death sentence,
4444 * to continue to serve a useful existence. Next time it's released,
4445 * we will get notified again, if it still has 'notify_on_release' set.
4447 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4448 * means only wait until the task is successfully execve()'d. The
4449 * separate release agent task is forked by call_usermodehelper(),
4450 * then control in this thread returns here, without waiting for the
4451 * release agent task. We don't bother to wait because the caller of
4452 * this routine has no use for the exit status of the release agent
4453 * task, so no sense holding our caller up for that.
4455 static void cgroup_release_agent(struct work_struct *work)
4457 BUG_ON(work != &release_agent_work);
4458 mutex_lock(&cgroup_mutex);
4459 spin_lock(&release_list_lock);
4460 while (!list_empty(&release_list)) {
4461 char *argv[3], *envp[3];
4462 int i;
4463 char *pathbuf = NULL, *agentbuf = NULL;
4464 struct cgroup *cgrp = list_entry(release_list.next,
4465 struct cgroup,
4466 release_list);
4467 list_del_init(&cgrp->release_list);
4468 spin_unlock(&release_list_lock);
4469 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4470 if (!pathbuf)
4471 goto continue_free;
4472 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4473 goto continue_free;
4474 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4475 if (!agentbuf)
4476 goto continue_free;
4478 i = 0;
4479 argv[i++] = agentbuf;
4480 argv[i++] = pathbuf;
4481 argv[i] = NULL;
4483 i = 0;
4484 /* minimal command environment */
4485 envp[i++] = "HOME=/";
4486 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4487 envp[i] = NULL;
4489 /* Drop the lock while we invoke the usermode helper,
4490 * since the exec could involve hitting disk and hence
4491 * be a slow process */
4492 mutex_unlock(&cgroup_mutex);
4493 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4494 mutex_lock(&cgroup_mutex);
4495 continue_free:
4496 kfree(pathbuf);
4497 kfree(agentbuf);
4498 spin_lock(&release_list_lock);
4500 spin_unlock(&release_list_lock);
4501 mutex_unlock(&cgroup_mutex);
4504 static int __init cgroup_disable(char *str)
4506 int i;
4507 char *token;
4509 while ((token = strsep(&str, ",")) != NULL) {
4510 if (!*token)
4511 continue;
4513 * cgroup_disable, being at boot time, can't know about module
4514 * subsystems, so we don't worry about them.
4516 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4517 struct cgroup_subsys *ss = subsys[i];
4519 if (!strcmp(token, ss->name)) {
4520 ss->disabled = 1;
4521 printk(KERN_INFO "Disabling %s control group"
4522 " subsystem\n", ss->name);
4523 break;
4527 return 1;
4529 __setup("cgroup_disable=", cgroup_disable);
4532 * Functons for CSS ID.
4536 *To get ID other than 0, this should be called when !cgroup_is_removed().
4538 unsigned short css_id(struct cgroup_subsys_state *css)
4540 struct css_id *cssid;
4543 * This css_id() can return correct value when somone has refcnt
4544 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4545 * it's unchanged until freed.
4547 cssid = rcu_dereference_check(css->id,
4548 rcu_read_lock_held() || atomic_read(&css->refcnt));
4550 if (cssid)
4551 return cssid->id;
4552 return 0;
4554 EXPORT_SYMBOL_GPL(css_id);
4556 unsigned short css_depth(struct cgroup_subsys_state *css)
4558 struct css_id *cssid;
4560 cssid = rcu_dereference_check(css->id,
4561 rcu_read_lock_held() || atomic_read(&css->refcnt));
4563 if (cssid)
4564 return cssid->depth;
4565 return 0;
4567 EXPORT_SYMBOL_GPL(css_depth);
4570 * css_is_ancestor - test "root" css is an ancestor of "child"
4571 * @child: the css to be tested.
4572 * @root: the css supporsed to be an ancestor of the child.
4574 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4575 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4576 * But, considering usual usage, the csses should be valid objects after test.
4577 * Assuming that the caller will do some action to the child if this returns
4578 * returns true, the caller must take "child";s reference count.
4579 * If "child" is valid object and this returns true, "root" is valid, too.
4582 bool css_is_ancestor(struct cgroup_subsys_state *child,
4583 const struct cgroup_subsys_state *root)
4585 struct css_id *child_id;
4586 struct css_id *root_id;
4587 bool ret = true;
4589 rcu_read_lock();
4590 child_id = rcu_dereference(child->id);
4591 root_id = rcu_dereference(root->id);
4592 if (!child_id
4593 || !root_id
4594 || (child_id->depth < root_id->depth)
4595 || (child_id->stack[root_id->depth] != root_id->id))
4596 ret = false;
4597 rcu_read_unlock();
4598 return ret;
4601 static void __free_css_id_cb(struct rcu_head *head)
4603 struct css_id *id;
4605 id = container_of(head, struct css_id, rcu_head);
4606 kfree(id);
4609 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4611 struct css_id *id = css->id;
4612 /* When this is called before css_id initialization, id can be NULL */
4613 if (!id)
4614 return;
4616 BUG_ON(!ss->use_id);
4618 rcu_assign_pointer(id->css, NULL);
4619 rcu_assign_pointer(css->id, NULL);
4620 spin_lock(&ss->id_lock);
4621 idr_remove(&ss->idr, id->id);
4622 spin_unlock(&ss->id_lock);
4623 call_rcu(&id->rcu_head, __free_css_id_cb);
4625 EXPORT_SYMBOL_GPL(free_css_id);
4628 * This is called by init or create(). Then, calls to this function are
4629 * always serialized (By cgroup_mutex() at create()).
4632 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4634 struct css_id *newid;
4635 int myid, error, size;
4637 BUG_ON(!ss->use_id);
4639 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4640 newid = kzalloc(size, GFP_KERNEL);
4641 if (!newid)
4642 return ERR_PTR(-ENOMEM);
4643 /* get id */
4644 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4645 error = -ENOMEM;
4646 goto err_out;
4648 spin_lock(&ss->id_lock);
4649 /* Don't use 0. allocates an ID of 1-65535 */
4650 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4651 spin_unlock(&ss->id_lock);
4653 /* Returns error when there are no free spaces for new ID.*/
4654 if (error) {
4655 error = -ENOSPC;
4656 goto err_out;
4658 if (myid > CSS_ID_MAX)
4659 goto remove_idr;
4661 newid->id = myid;
4662 newid->depth = depth;
4663 return newid;
4664 remove_idr:
4665 error = -ENOSPC;
4666 spin_lock(&ss->id_lock);
4667 idr_remove(&ss->idr, myid);
4668 spin_unlock(&ss->id_lock);
4669 err_out:
4670 kfree(newid);
4671 return ERR_PTR(error);
4675 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4676 struct cgroup_subsys_state *rootcss)
4678 struct css_id *newid;
4680 spin_lock_init(&ss->id_lock);
4681 idr_init(&ss->idr);
4683 newid = get_new_cssid(ss, 0);
4684 if (IS_ERR(newid))
4685 return PTR_ERR(newid);
4687 newid->stack[0] = newid->id;
4688 newid->css = rootcss;
4689 rootcss->id = newid;
4690 return 0;
4693 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4694 struct cgroup *child)
4696 int subsys_id, i, depth = 0;
4697 struct cgroup_subsys_state *parent_css, *child_css;
4698 struct css_id *child_id, *parent_id;
4700 subsys_id = ss->subsys_id;
4701 parent_css = parent->subsys[subsys_id];
4702 child_css = child->subsys[subsys_id];
4703 parent_id = parent_css->id;
4704 depth = parent_id->depth + 1;
4706 child_id = get_new_cssid(ss, depth);
4707 if (IS_ERR(child_id))
4708 return PTR_ERR(child_id);
4710 for (i = 0; i < depth; i++)
4711 child_id->stack[i] = parent_id->stack[i];
4712 child_id->stack[depth] = child_id->id;
4714 * child_id->css pointer will be set after this cgroup is available
4715 * see cgroup_populate_dir()
4717 rcu_assign_pointer(child_css->id, child_id);
4719 return 0;
4723 * css_lookup - lookup css by id
4724 * @ss: cgroup subsys to be looked into.
4725 * @id: the id
4727 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4728 * NULL if not. Should be called under rcu_read_lock()
4730 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4732 struct css_id *cssid = NULL;
4734 BUG_ON(!ss->use_id);
4735 cssid = idr_find(&ss->idr, id);
4737 if (unlikely(!cssid))
4738 return NULL;
4740 return rcu_dereference(cssid->css);
4742 EXPORT_SYMBOL_GPL(css_lookup);
4745 * css_get_next - lookup next cgroup under specified hierarchy.
4746 * @ss: pointer to subsystem
4747 * @id: current position of iteration.
4748 * @root: pointer to css. search tree under this.
4749 * @foundid: position of found object.
4751 * Search next css under the specified hierarchy of rootid. Calling under
4752 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4754 struct cgroup_subsys_state *
4755 css_get_next(struct cgroup_subsys *ss, int id,
4756 struct cgroup_subsys_state *root, int *foundid)
4758 struct cgroup_subsys_state *ret = NULL;
4759 struct css_id *tmp;
4760 int tmpid;
4761 int rootid = css_id(root);
4762 int depth = css_depth(root);
4764 if (!rootid)
4765 return NULL;
4767 BUG_ON(!ss->use_id);
4768 /* fill start point for scan */
4769 tmpid = id;
4770 while (1) {
4772 * scan next entry from bitmap(tree), tmpid is updated after
4773 * idr_get_next().
4775 spin_lock(&ss->id_lock);
4776 tmp = idr_get_next(&ss->idr, &tmpid);
4777 spin_unlock(&ss->id_lock);
4779 if (!tmp)
4780 break;
4781 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4782 ret = rcu_dereference(tmp->css);
4783 if (ret) {
4784 *foundid = tmpid;
4785 break;
4788 /* continue to scan from next id */
4789 tmpid = tmpid + 1;
4791 return ret;
4794 #ifdef CONFIG_CGROUP_DEBUG
4795 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4796 struct cgroup *cont)
4798 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4800 if (!css)
4801 return ERR_PTR(-ENOMEM);
4803 return css;
4806 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4808 kfree(cont->subsys[debug_subsys_id]);
4811 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4813 return atomic_read(&cont->count);
4816 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4818 return cgroup_task_count(cont);
4821 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4823 return (u64)(unsigned long)current->cgroups;
4826 static u64 current_css_set_refcount_read(struct cgroup *cont,
4827 struct cftype *cft)
4829 u64 count;
4831 rcu_read_lock();
4832 count = atomic_read(&current->cgroups->refcount);
4833 rcu_read_unlock();
4834 return count;
4837 static int current_css_set_cg_links_read(struct cgroup *cont,
4838 struct cftype *cft,
4839 struct seq_file *seq)
4841 struct cg_cgroup_link *link;
4842 struct css_set *cg;
4844 read_lock(&css_set_lock);
4845 rcu_read_lock();
4846 cg = rcu_dereference(current->cgroups);
4847 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4848 struct cgroup *c = link->cgrp;
4849 const char *name;
4851 if (c->dentry)
4852 name = c->dentry->d_name.name;
4853 else
4854 name = "?";
4855 seq_printf(seq, "Root %d group %s\n",
4856 c->root->hierarchy_id, name);
4858 rcu_read_unlock();
4859 read_unlock(&css_set_lock);
4860 return 0;
4863 #define MAX_TASKS_SHOWN_PER_CSS 25
4864 static int cgroup_css_links_read(struct cgroup *cont,
4865 struct cftype *cft,
4866 struct seq_file *seq)
4868 struct cg_cgroup_link *link;
4870 read_lock(&css_set_lock);
4871 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4872 struct css_set *cg = link->cg;
4873 struct task_struct *task;
4874 int count = 0;
4875 seq_printf(seq, "css_set %p\n", cg);
4876 list_for_each_entry(task, &cg->tasks, cg_list) {
4877 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4878 seq_puts(seq, " ...\n");
4879 break;
4880 } else {
4881 seq_printf(seq, " task %d\n",
4882 task_pid_vnr(task));
4886 read_unlock(&css_set_lock);
4887 return 0;
4890 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4892 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4895 static struct cftype debug_files[] = {
4897 .name = "cgroup_refcount",
4898 .read_u64 = cgroup_refcount_read,
4901 .name = "taskcount",
4902 .read_u64 = debug_taskcount_read,
4906 .name = "current_css_set",
4907 .read_u64 = current_css_set_read,
4911 .name = "current_css_set_refcount",
4912 .read_u64 = current_css_set_refcount_read,
4916 .name = "current_css_set_cg_links",
4917 .read_seq_string = current_css_set_cg_links_read,
4921 .name = "cgroup_css_links",
4922 .read_seq_string = cgroup_css_links_read,
4926 .name = "releasable",
4927 .read_u64 = releasable_read,
4931 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4933 return cgroup_add_files(cont, ss, debug_files,
4934 ARRAY_SIZE(debug_files));
4937 struct cgroup_subsys debug_subsys = {
4938 .name = "debug",
4939 .create = debug_create,
4940 .destroy = debug_destroy,
4941 .populate = debug_populate,
4942 .subsys_id = debug_subsys_id,
4944 #endif /* CONFIG_CGROUP_DEBUG */