driver core: add init_name to struct device
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / tty_io.c
bloba27160ba21d7d8cb8eb9636da015075b1bc5b587
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 #ifdef CONFIG_UNIX98_PTYS
140 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *,
149 size_t, loff_t *);
150 static unsigned int tty_poll(struct file *, poll_table *);
151 static int tty_open(struct inode *, struct file *);
152 static int tty_release(struct inode *, struct file *);
153 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file *filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
171 * Locking: none
174 static struct tty_struct *alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
179 static void tty_buffer_free_all(struct tty_struct *);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct *tty)
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
207 * Locking: none
210 char *tty_name(struct tty_struct *tty, char *buf)
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
219 EXPORT_SYMBOL(tty_name);
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
237 #endif
238 return 0;
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
262 #endif
263 return 0;
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
277 * Locking: none
280 static void tty_buffer_free_all(struct tty_struct *tty)
282 struct tty_buffer *thead;
283 while ((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
287 while ((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
302 * Locking: none
305 static void tty_buffer_init(struct tty_struct *tty)
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
328 struct tty_buffer *p;
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if (p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
363 if (b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
372 * __tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
375 * flush all the buffers containing receive data. Caller must
376 * hold the buffer lock and must have ensured no parallel flush to
377 * ldisc is running.
379 * Locking: Caller must hold tty->buf.lock
382 static void __tty_buffer_flush(struct tty_struct *tty)
384 struct tty_buffer *thead;
386 while ((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
390 tty->buf.tail = NULL;
394 * tty_buffer_flush - flush full tty buffers
395 * @tty: tty to flush
397 * flush all the buffers containing receive data. If the buffer is
398 * being processed by flush_to_ldisc then we defer the processing
399 * to that function
401 * Locking: none
404 static void tty_buffer_flush(struct tty_struct *tty)
406 unsigned long flags;
407 spin_lock_irqsave(&tty->buf.lock, flags);
409 /* If the data is being pushed to the tty layer then we can't
410 process it here. Instead set a flag and the flush_to_ldisc
411 path will process the flush request before it exits */
412 if (test_bit(TTY_FLUSHING, &tty->flags)) {
413 set_bit(TTY_FLUSHPENDING, &tty->flags);
414 spin_unlock_irqrestore(&tty->buf.lock, flags);
415 wait_event(tty->read_wait,
416 test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
417 return;
418 } else
419 __tty_buffer_flush(tty);
420 spin_unlock_irqrestore(&tty->buf.lock, flags);
424 * tty_buffer_find - find a free tty buffer
425 * @tty: tty owning the buffer
426 * @size: characters wanted
428 * Locate an existing suitable tty buffer or if we are lacking one then
429 * allocate a new one. We round our buffers off in 256 character chunks
430 * to get better allocation behaviour.
432 * Locking: Caller must hold tty->buf.lock
435 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
437 struct tty_buffer **tbh = &tty->buf.free;
438 while ((*tbh) != NULL) {
439 struct tty_buffer *t = *tbh;
440 if (t->size >= size) {
441 *tbh = t->next;
442 t->next = NULL;
443 t->used = 0;
444 t->commit = 0;
445 t->read = 0;
446 tty->buf.memory_used += t->size;
447 return t;
449 tbh = &((*tbh)->next);
451 /* Round the buffer size out */
452 size = (size + 0xFF) & ~0xFF;
453 return tty_buffer_alloc(tty, size);
454 /* Should possibly check if this fails for the largest buffer we
455 have queued and recycle that ? */
459 * tty_buffer_request_room - grow tty buffer if needed
460 * @tty: tty structure
461 * @size: size desired
463 * Make at least size bytes of linear space available for the tty
464 * buffer. If we fail return the size we managed to find.
466 * Locking: Takes tty->buf.lock
468 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
470 struct tty_buffer *b, *n;
471 int left;
472 unsigned long flags;
474 spin_lock_irqsave(&tty->buf.lock, flags);
476 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
477 remove this conditional if its worth it. This would be invisible
478 to the callers */
479 if ((b = tty->buf.tail) != NULL)
480 left = b->size - b->used;
481 else
482 left = 0;
484 if (left < size) {
485 /* This is the slow path - looking for new buffers to use */
486 if ((n = tty_buffer_find(tty, size)) != NULL) {
487 if (b != NULL) {
488 b->next = n;
489 b->commit = b->used;
490 } else
491 tty->buf.head = n;
492 tty->buf.tail = n;
493 } else
494 size = left;
497 spin_unlock_irqrestore(&tty->buf.lock, flags);
498 return size;
500 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
503 * tty_insert_flip_string - Add characters to the tty buffer
504 * @tty: tty structure
505 * @chars: characters
506 * @size: size
508 * Queue a series of bytes to the tty buffering. All the characters
509 * passed are marked as without error. Returns the number added.
511 * Locking: Called functions may take tty->buf.lock
514 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
515 size_t size)
517 int copied = 0;
518 do {
519 int space = tty_buffer_request_room(tty, size - copied);
520 struct tty_buffer *tb = tty->buf.tail;
521 /* If there is no space then tb may be NULL */
522 if (unlikely(space == 0))
523 break;
524 memcpy(tb->char_buf_ptr + tb->used, chars, space);
525 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
526 tb->used += space;
527 copied += space;
528 chars += space;
529 /* There is a small chance that we need to split the data over
530 several buffers. If this is the case we must loop */
531 } while (unlikely(size > copied));
532 return copied;
534 EXPORT_SYMBOL(tty_insert_flip_string);
537 * tty_insert_flip_string_flags - Add characters to the tty buffer
538 * @tty: tty structure
539 * @chars: characters
540 * @flags: flag bytes
541 * @size: size
543 * Queue a series of bytes to the tty buffering. For each character
544 * the flags array indicates the status of the character. Returns the
545 * number added.
547 * Locking: Called functions may take tty->buf.lock
550 int tty_insert_flip_string_flags(struct tty_struct *tty,
551 const unsigned char *chars, const char *flags, size_t size)
553 int copied = 0;
554 do {
555 int space = tty_buffer_request_room(tty, size - copied);
556 struct tty_buffer *tb = tty->buf.tail;
557 /* If there is no space then tb may be NULL */
558 if (unlikely(space == 0))
559 break;
560 memcpy(tb->char_buf_ptr + tb->used, chars, space);
561 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
562 tb->used += space;
563 copied += space;
564 chars += space;
565 flags += space;
566 /* There is a small chance that we need to split the data over
567 several buffers. If this is the case we must loop */
568 } while (unlikely(size > copied));
569 return copied;
571 EXPORT_SYMBOL(tty_insert_flip_string_flags);
574 * tty_schedule_flip - push characters to ldisc
575 * @tty: tty to push from
577 * Takes any pending buffers and transfers their ownership to the
578 * ldisc side of the queue. It then schedules those characters for
579 * processing by the line discipline.
581 * Locking: Takes tty->buf.lock
584 void tty_schedule_flip(struct tty_struct *tty)
586 unsigned long flags;
587 spin_lock_irqsave(&tty->buf.lock, flags);
588 if (tty->buf.tail != NULL)
589 tty->buf.tail->commit = tty->buf.tail->used;
590 spin_unlock_irqrestore(&tty->buf.lock, flags);
591 schedule_delayed_work(&tty->buf.work, 1);
593 EXPORT_SYMBOL(tty_schedule_flip);
596 * tty_prepare_flip_string - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @size: desired size
601 * Prepare a block of space in the buffer for data. Returns the length
602 * available and buffer pointer to the space which is now allocated and
603 * accounted for as ready for normal characters. This is used for drivers
604 * that need their own block copy routines into the buffer. There is no
605 * guarantee the buffer is a DMA target!
607 * Locking: May call functions taking tty->buf.lock
610 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
611 size_t size)
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
618 tb->used += space;
620 return space;
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
626 * tty_prepare_flip_string_flags - make room for characters
627 * @tty: tty
628 * @chars: return pointer for character write area
629 * @flags: return pointer for status flag write area
630 * @size: desired size
632 * Prepare a block of space in the buffer for data. Returns the length
633 * available and buffer pointer to the space which is now allocated and
634 * accounted for as ready for characters. This is used for drivers
635 * that need their own block copy routines into the buffer. There is no
636 * guarantee the buffer is a DMA target!
638 * Locking: May call functions taking tty->buf.lock
641 int tty_prepare_flip_string_flags(struct tty_struct *tty,
642 unsigned char **chars, char **flags, size_t size)
644 int space = tty_buffer_request_room(tty, size);
645 if (likely(space)) {
646 struct tty_buffer *tb = tty->buf.tail;
647 *chars = tb->char_buf_ptr + tb->used;
648 *flags = tb->flag_buf_ptr + tb->used;
649 tb->used += space;
651 return space;
654 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
659 * get_tty_driver - find device of a tty
660 * @dev_t: device identifier
661 * @index: returns the index of the tty
663 * This routine returns a tty driver structure, given a device number
664 * and also passes back the index number.
666 * Locking: caller must hold tty_mutex
669 static struct tty_driver *get_tty_driver(dev_t device, int *index)
671 struct tty_driver *p;
673 list_for_each_entry(p, &tty_drivers, tty_drivers) {
674 dev_t base = MKDEV(p->major, p->minor_start);
675 if (device < base || device >= base + p->num)
676 continue;
677 *index = device - base;
678 return p;
680 return NULL;
683 #ifdef CONFIG_CONSOLE_POLL
686 * tty_find_polling_driver - find device of a polled tty
687 * @name: name string to match
688 * @line: pointer to resulting tty line nr
690 * This routine returns a tty driver structure, given a name
691 * and the condition that the tty driver is capable of polled
692 * operation.
694 struct tty_driver *tty_find_polling_driver(char *name, int *line)
696 struct tty_driver *p, *res = NULL;
697 int tty_line = 0;
698 char *str;
700 mutex_lock(&tty_mutex);
701 /* Search through the tty devices to look for a match */
702 list_for_each_entry(p, &tty_drivers, tty_drivers) {
703 str = name + strlen(p->name);
704 tty_line = simple_strtoul(str, &str, 10);
705 if (*str == ',')
706 str++;
707 if (*str == '\0')
708 str = NULL;
710 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
711 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
712 res = p;
713 *line = tty_line;
714 break;
717 mutex_unlock(&tty_mutex);
719 return res;
721 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
722 #endif
725 * tty_check_change - check for POSIX terminal changes
726 * @tty: tty to check
728 * If we try to write to, or set the state of, a terminal and we're
729 * not in the foreground, send a SIGTTOU. If the signal is blocked or
730 * ignored, go ahead and perform the operation. (POSIX 7.2)
732 * Locking: ctrl_lock
735 int tty_check_change(struct tty_struct *tty)
737 unsigned long flags;
738 int ret = 0;
740 if (current->signal->tty != tty)
741 return 0;
743 spin_lock_irqsave(&tty->ctrl_lock, flags);
745 if (!tty->pgrp) {
746 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
747 goto out_unlock;
749 if (task_pgrp(current) == tty->pgrp)
750 goto out_unlock;
751 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
752 if (is_ignored(SIGTTOU))
753 goto out;
754 if (is_current_pgrp_orphaned()) {
755 ret = -EIO;
756 goto out;
758 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
759 set_thread_flag(TIF_SIGPENDING);
760 ret = -ERESTARTSYS;
761 out:
762 return ret;
763 out_unlock:
764 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
765 return ret;
768 EXPORT_SYMBOL(tty_check_change);
770 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
771 size_t count, loff_t *ppos)
773 return 0;
776 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
777 size_t count, loff_t *ppos)
779 return -EIO;
782 /* No kernel lock held - none needed ;) */
783 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
785 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
788 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
789 unsigned long arg)
791 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
794 static long hung_up_tty_compat_ioctl(struct file *file,
795 unsigned int cmd, unsigned long arg)
797 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
800 static const struct file_operations tty_fops = {
801 .llseek = no_llseek,
802 .read = tty_read,
803 .write = tty_write,
804 .poll = tty_poll,
805 .unlocked_ioctl = tty_ioctl,
806 .compat_ioctl = tty_compat_ioctl,
807 .open = tty_open,
808 .release = tty_release,
809 .fasync = tty_fasync,
812 #ifdef CONFIG_UNIX98_PTYS
813 static const struct file_operations ptmx_fops = {
814 .llseek = no_llseek,
815 .read = tty_read,
816 .write = tty_write,
817 .poll = tty_poll,
818 .unlocked_ioctl = tty_ioctl,
819 .compat_ioctl = tty_compat_ioctl,
820 .open = ptmx_open,
821 .release = tty_release,
822 .fasync = tty_fasync,
824 #endif
826 static const struct file_operations console_fops = {
827 .llseek = no_llseek,
828 .read = tty_read,
829 .write = redirected_tty_write,
830 .poll = tty_poll,
831 .unlocked_ioctl = tty_ioctl,
832 .compat_ioctl = tty_compat_ioctl,
833 .open = tty_open,
834 .release = tty_release,
835 .fasync = tty_fasync,
838 static const struct file_operations hung_up_tty_fops = {
839 .llseek = no_llseek,
840 .read = hung_up_tty_read,
841 .write = hung_up_tty_write,
842 .poll = hung_up_tty_poll,
843 .unlocked_ioctl = hung_up_tty_ioctl,
844 .compat_ioctl = hung_up_tty_compat_ioctl,
845 .release = tty_release,
848 static DEFINE_SPINLOCK(redirect_lock);
849 static struct file *redirect;
852 * tty_wakeup - request more data
853 * @tty: terminal
855 * Internal and external helper for wakeups of tty. This function
856 * informs the line discipline if present that the driver is ready
857 * to receive more output data.
860 void tty_wakeup(struct tty_struct *tty)
862 struct tty_ldisc *ld;
864 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
865 ld = tty_ldisc_ref(tty);
866 if (ld) {
867 if (ld->ops->write_wakeup)
868 ld->ops->write_wakeup(tty);
869 tty_ldisc_deref(ld);
872 wake_up_interruptible(&tty->write_wait);
875 EXPORT_SYMBOL_GPL(tty_wakeup);
878 * tty_ldisc_flush - flush line discipline queue
879 * @tty: tty
881 * Flush the line discipline queue (if any) for this tty. If there
882 * is no line discipline active this is a no-op.
885 void tty_ldisc_flush(struct tty_struct *tty)
887 struct tty_ldisc *ld = tty_ldisc_ref(tty);
888 if (ld) {
889 if (ld->ops->flush_buffer)
890 ld->ops->flush_buffer(tty);
891 tty_ldisc_deref(ld);
893 tty_buffer_flush(tty);
896 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
899 * tty_reset_termios - reset terminal state
900 * @tty: tty to reset
902 * Restore a terminal to the driver default state
905 static void tty_reset_termios(struct tty_struct *tty)
907 mutex_lock(&tty->termios_mutex);
908 *tty->termios = tty->driver->init_termios;
909 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
910 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
911 mutex_unlock(&tty->termios_mutex);
915 * do_tty_hangup - actual handler for hangup events
916 * @work: tty device
918 * This can be called by the "eventd" kernel thread. That is process
919 * synchronous but doesn't hold any locks, so we need to make sure we
920 * have the appropriate locks for what we're doing.
922 * The hangup event clears any pending redirections onto the hung up
923 * device. It ensures future writes will error and it does the needed
924 * line discipline hangup and signal delivery. The tty object itself
925 * remains intact.
927 * Locking:
928 * BKL
929 * redirect lock for undoing redirection
930 * file list lock for manipulating list of ttys
931 * tty_ldisc_lock from called functions
932 * termios_mutex resetting termios data
933 * tasklist_lock to walk task list for hangup event
934 * ->siglock to protect ->signal/->sighand
936 static void do_tty_hangup(struct work_struct *work)
938 struct tty_struct *tty =
939 container_of(work, struct tty_struct, hangup_work);
940 struct file *cons_filp = NULL;
941 struct file *filp, *f = NULL;
942 struct task_struct *p;
943 struct tty_ldisc *ld;
944 int closecount = 0, n;
945 unsigned long flags;
947 if (!tty)
948 return;
950 /* inuse_filps is protected by the single kernel lock */
951 lock_kernel();
953 spin_lock(&redirect_lock);
954 if (redirect && redirect->private_data == tty) {
955 f = redirect;
956 redirect = NULL;
958 spin_unlock(&redirect_lock);
960 check_tty_count(tty, "do_tty_hangup");
961 file_list_lock();
962 /* This breaks for file handles being sent over AF_UNIX sockets ? */
963 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
964 if (filp->f_op->write == redirected_tty_write)
965 cons_filp = filp;
966 if (filp->f_op->write != tty_write)
967 continue;
968 closecount++;
969 tty_fasync(-1, filp, 0); /* can't block */
970 filp->f_op = &hung_up_tty_fops;
972 file_list_unlock();
974 * FIXME! What are the locking issues here? This may me overdoing
975 * things... This question is especially important now that we've
976 * removed the irqlock.
978 ld = tty_ldisc_ref(tty);
979 if (ld != NULL) {
980 /* We may have no line discipline at this point */
981 if (ld->ops->flush_buffer)
982 ld->ops->flush_buffer(tty);
983 tty_driver_flush_buffer(tty);
984 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
985 ld->ops->write_wakeup)
986 ld->ops->write_wakeup(tty);
987 if (ld->ops->hangup)
988 ld->ops->hangup(tty);
991 * FIXME: Once we trust the LDISC code better we can wait here for
992 * ldisc completion and fix the driver call race
994 wake_up_interruptible(&tty->write_wait);
995 wake_up_interruptible(&tty->read_wait);
997 * Shutdown the current line discipline, and reset it to
998 * N_TTY.
1000 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1001 tty_reset_termios(tty);
1002 /* Defer ldisc switch */
1003 /* tty_deferred_ldisc_switch(N_TTY);
1005 This should get done automatically when the port closes and
1006 tty_release is called */
1008 read_lock(&tasklist_lock);
1009 if (tty->session) {
1010 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1011 spin_lock_irq(&p->sighand->siglock);
1012 if (p->signal->tty == tty)
1013 p->signal->tty = NULL;
1014 if (!p->signal->leader) {
1015 spin_unlock_irq(&p->sighand->siglock);
1016 continue;
1018 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1019 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1020 put_pid(p->signal->tty_old_pgrp); /* A noop */
1021 spin_lock_irqsave(&tty->ctrl_lock, flags);
1022 if (tty->pgrp)
1023 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1024 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1025 spin_unlock_irq(&p->sighand->siglock);
1026 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1028 read_unlock(&tasklist_lock);
1030 spin_lock_irqsave(&tty->ctrl_lock, flags);
1031 tty->flags = 0;
1032 put_pid(tty->session);
1033 put_pid(tty->pgrp);
1034 tty->session = NULL;
1035 tty->pgrp = NULL;
1036 tty->ctrl_status = 0;
1037 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1040 * If one of the devices matches a console pointer, we
1041 * cannot just call hangup() because that will cause
1042 * tty->count and state->count to go out of sync.
1043 * So we just call close() the right number of times.
1045 if (cons_filp) {
1046 if (tty->ops->close)
1047 for (n = 0; n < closecount; n++)
1048 tty->ops->close(tty, cons_filp);
1049 } else if (tty->ops->hangup)
1050 (tty->ops->hangup)(tty);
1052 * We don't want to have driver/ldisc interactions beyond
1053 * the ones we did here. The driver layer expects no
1054 * calls after ->hangup() from the ldisc side. However we
1055 * can't yet guarantee all that.
1057 set_bit(TTY_HUPPED, &tty->flags);
1058 if (ld) {
1059 tty_ldisc_enable(tty);
1060 tty_ldisc_deref(ld);
1062 unlock_kernel();
1063 if (f)
1064 fput(f);
1068 * tty_hangup - trigger a hangup event
1069 * @tty: tty to hangup
1071 * A carrier loss (virtual or otherwise) has occurred on this like
1072 * schedule a hangup sequence to run after this event.
1075 void tty_hangup(struct tty_struct *tty)
1077 #ifdef TTY_DEBUG_HANGUP
1078 char buf[64];
1079 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1080 #endif
1081 schedule_work(&tty->hangup_work);
1084 EXPORT_SYMBOL(tty_hangup);
1087 * tty_vhangup - process vhangup
1088 * @tty: tty to hangup
1090 * The user has asked via system call for the terminal to be hung up.
1091 * We do this synchronously so that when the syscall returns the process
1092 * is complete. That guarantee is necessary for security reasons.
1095 void tty_vhangup(struct tty_struct *tty)
1097 #ifdef TTY_DEBUG_HANGUP
1098 char buf[64];
1100 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1101 #endif
1102 do_tty_hangup(&tty->hangup_work);
1105 EXPORT_SYMBOL(tty_vhangup);
1108 * tty_hung_up_p - was tty hung up
1109 * @filp: file pointer of tty
1111 * Return true if the tty has been subject to a vhangup or a carrier
1112 * loss
1115 int tty_hung_up_p(struct file *filp)
1117 return (filp->f_op == &hung_up_tty_fops);
1120 EXPORT_SYMBOL(tty_hung_up_p);
1122 static void session_clear_tty(struct pid *session)
1124 struct task_struct *p;
1125 do_each_pid_task(session, PIDTYPE_SID, p) {
1126 proc_clear_tty(p);
1127 } while_each_pid_task(session, PIDTYPE_SID, p);
1131 * disassociate_ctty - disconnect controlling tty
1132 * @on_exit: true if exiting so need to "hang up" the session
1134 * This function is typically called only by the session leader, when
1135 * it wants to disassociate itself from its controlling tty.
1137 * It performs the following functions:
1138 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1139 * (2) Clears the tty from being controlling the session
1140 * (3) Clears the controlling tty for all processes in the
1141 * session group.
1143 * The argument on_exit is set to 1 if called when a process is
1144 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1146 * Locking:
1147 * BKL is taken for hysterical raisins
1148 * tty_mutex is taken to protect tty
1149 * ->siglock is taken to protect ->signal/->sighand
1150 * tasklist_lock is taken to walk process list for sessions
1151 * ->siglock is taken to protect ->signal/->sighand
1154 void disassociate_ctty(int on_exit)
1156 struct tty_struct *tty;
1157 struct pid *tty_pgrp = NULL;
1160 mutex_lock(&tty_mutex);
1161 tty = get_current_tty();
1162 if (tty) {
1163 tty_pgrp = get_pid(tty->pgrp);
1164 lock_kernel();
1165 mutex_unlock(&tty_mutex);
1166 /* XXX: here we race, there is nothing protecting tty */
1167 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1168 tty_vhangup(tty);
1169 unlock_kernel();
1170 } else if (on_exit) {
1171 struct pid *old_pgrp;
1172 spin_lock_irq(&current->sighand->siglock);
1173 old_pgrp = current->signal->tty_old_pgrp;
1174 current->signal->tty_old_pgrp = NULL;
1175 spin_unlock_irq(&current->sighand->siglock);
1176 if (old_pgrp) {
1177 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1178 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1179 put_pid(old_pgrp);
1181 mutex_unlock(&tty_mutex);
1182 return;
1184 if (tty_pgrp) {
1185 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1186 if (!on_exit)
1187 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1188 put_pid(tty_pgrp);
1191 spin_lock_irq(&current->sighand->siglock);
1192 put_pid(current->signal->tty_old_pgrp);
1193 current->signal->tty_old_pgrp = NULL;
1194 spin_unlock_irq(&current->sighand->siglock);
1196 mutex_lock(&tty_mutex);
1197 /* It is possible that do_tty_hangup has free'd this tty */
1198 tty = get_current_tty();
1199 if (tty) {
1200 unsigned long flags;
1201 spin_lock_irqsave(&tty->ctrl_lock, flags);
1202 put_pid(tty->session);
1203 put_pid(tty->pgrp);
1204 tty->session = NULL;
1205 tty->pgrp = NULL;
1206 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1207 } else {
1208 #ifdef TTY_DEBUG_HANGUP
1209 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1210 " = NULL", tty);
1211 #endif
1213 mutex_unlock(&tty_mutex);
1215 /* Now clear signal->tty under the lock */
1216 read_lock(&tasklist_lock);
1217 session_clear_tty(task_session(current));
1218 read_unlock(&tasklist_lock);
1223 * no_tty - Ensure the current process does not have a controlling tty
1225 void no_tty(void)
1227 struct task_struct *tsk = current;
1228 lock_kernel();
1229 if (tsk->signal->leader)
1230 disassociate_ctty(0);
1231 unlock_kernel();
1232 proc_clear_tty(tsk);
1237 * stop_tty - propagate flow control
1238 * @tty: tty to stop
1240 * Perform flow control to the driver. For PTY/TTY pairs we
1241 * must also propagate the TIOCKPKT status. May be called
1242 * on an already stopped device and will not re-call the driver
1243 * method.
1245 * This functionality is used by both the line disciplines for
1246 * halting incoming flow and by the driver. It may therefore be
1247 * called from any context, may be under the tty atomic_write_lock
1248 * but not always.
1250 * Locking:
1251 * Uses the tty control lock internally
1254 void stop_tty(struct tty_struct *tty)
1256 unsigned long flags;
1257 spin_lock_irqsave(&tty->ctrl_lock, flags);
1258 if (tty->stopped) {
1259 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1260 return;
1262 tty->stopped = 1;
1263 if (tty->link && tty->link->packet) {
1264 tty->ctrl_status &= ~TIOCPKT_START;
1265 tty->ctrl_status |= TIOCPKT_STOP;
1266 wake_up_interruptible(&tty->link->read_wait);
1268 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1269 if (tty->ops->stop)
1270 (tty->ops->stop)(tty);
1273 EXPORT_SYMBOL(stop_tty);
1276 * start_tty - propagate flow control
1277 * @tty: tty to start
1279 * Start a tty that has been stopped if at all possible. Perform
1280 * any necessary wakeups and propagate the TIOCPKT status. If this
1281 * is the tty was previous stopped and is being started then the
1282 * driver start method is invoked and the line discipline woken.
1284 * Locking:
1285 * ctrl_lock
1288 void start_tty(struct tty_struct *tty)
1290 unsigned long flags;
1291 spin_lock_irqsave(&tty->ctrl_lock, flags);
1292 if (!tty->stopped || tty->flow_stopped) {
1293 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1294 return;
1296 tty->stopped = 0;
1297 if (tty->link && tty->link->packet) {
1298 tty->ctrl_status &= ~TIOCPKT_STOP;
1299 tty->ctrl_status |= TIOCPKT_START;
1300 wake_up_interruptible(&tty->link->read_wait);
1302 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1303 if (tty->ops->start)
1304 (tty->ops->start)(tty);
1305 /* If we have a running line discipline it may need kicking */
1306 tty_wakeup(tty);
1309 EXPORT_SYMBOL(start_tty);
1312 * tty_read - read method for tty device files
1313 * @file: pointer to tty file
1314 * @buf: user buffer
1315 * @count: size of user buffer
1316 * @ppos: unused
1318 * Perform the read system call function on this terminal device. Checks
1319 * for hung up devices before calling the line discipline method.
1321 * Locking:
1322 * Locks the line discipline internally while needed. Multiple
1323 * read calls may be outstanding in parallel.
1326 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1327 loff_t *ppos)
1329 int i;
1330 struct tty_struct *tty;
1331 struct inode *inode;
1332 struct tty_ldisc *ld;
1334 tty = (struct tty_struct *)file->private_data;
1335 inode = file->f_path.dentry->d_inode;
1336 if (tty_paranoia_check(tty, inode, "tty_read"))
1337 return -EIO;
1338 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1339 return -EIO;
1341 /* We want to wait for the line discipline to sort out in this
1342 situation */
1343 ld = tty_ldisc_ref_wait(tty);
1344 if (ld->ops->read)
1345 i = (ld->ops->read)(tty, file, buf, count);
1346 else
1347 i = -EIO;
1348 tty_ldisc_deref(ld);
1349 if (i > 0)
1350 inode->i_atime = current_fs_time(inode->i_sb);
1351 return i;
1354 void tty_write_unlock(struct tty_struct *tty)
1356 mutex_unlock(&tty->atomic_write_lock);
1357 wake_up_interruptible(&tty->write_wait);
1360 int tty_write_lock(struct tty_struct *tty, int ndelay)
1362 if (!mutex_trylock(&tty->atomic_write_lock)) {
1363 if (ndelay)
1364 return -EAGAIN;
1365 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1366 return -ERESTARTSYS;
1368 return 0;
1372 * Split writes up in sane blocksizes to avoid
1373 * denial-of-service type attacks
1375 static inline ssize_t do_tty_write(
1376 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1377 struct tty_struct *tty,
1378 struct file *file,
1379 const char __user *buf,
1380 size_t count)
1382 ssize_t ret, written = 0;
1383 unsigned int chunk;
1385 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1386 if (ret < 0)
1387 return ret;
1390 * We chunk up writes into a temporary buffer. This
1391 * simplifies low-level drivers immensely, since they
1392 * don't have locking issues and user mode accesses.
1394 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1395 * big chunk-size..
1397 * The default chunk-size is 2kB, because the NTTY
1398 * layer has problems with bigger chunks. It will
1399 * claim to be able to handle more characters than
1400 * it actually does.
1402 * FIXME: This can probably go away now except that 64K chunks
1403 * are too likely to fail unless switched to vmalloc...
1405 chunk = 2048;
1406 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1407 chunk = 65536;
1408 if (count < chunk)
1409 chunk = count;
1411 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1412 if (tty->write_cnt < chunk) {
1413 unsigned char *buf;
1415 if (chunk < 1024)
1416 chunk = 1024;
1418 buf = kmalloc(chunk, GFP_KERNEL);
1419 if (!buf) {
1420 ret = -ENOMEM;
1421 goto out;
1423 kfree(tty->write_buf);
1424 tty->write_cnt = chunk;
1425 tty->write_buf = buf;
1428 /* Do the write .. */
1429 for (;;) {
1430 size_t size = count;
1431 if (size > chunk)
1432 size = chunk;
1433 ret = -EFAULT;
1434 if (copy_from_user(tty->write_buf, buf, size))
1435 break;
1436 ret = write(tty, file, tty->write_buf, size);
1437 if (ret <= 0)
1438 break;
1439 written += ret;
1440 buf += ret;
1441 count -= ret;
1442 if (!count)
1443 break;
1444 ret = -ERESTARTSYS;
1445 if (signal_pending(current))
1446 break;
1447 cond_resched();
1449 if (written) {
1450 struct inode *inode = file->f_path.dentry->d_inode;
1451 inode->i_mtime = current_fs_time(inode->i_sb);
1452 ret = written;
1454 out:
1455 tty_write_unlock(tty);
1456 return ret;
1461 * tty_write - write method for tty device file
1462 * @file: tty file pointer
1463 * @buf: user data to write
1464 * @count: bytes to write
1465 * @ppos: unused
1467 * Write data to a tty device via the line discipline.
1469 * Locking:
1470 * Locks the line discipline as required
1471 * Writes to the tty driver are serialized by the atomic_write_lock
1472 * and are then processed in chunks to the device. The line discipline
1473 * write method will not be involked in parallel for each device
1474 * The line discipline write method is called under the big
1475 * kernel lock for historical reasons. New code should not rely on this.
1478 static ssize_t tty_write(struct file *file, const char __user *buf,
1479 size_t count, loff_t *ppos)
1481 struct tty_struct *tty;
1482 struct inode *inode = file->f_path.dentry->d_inode;
1483 ssize_t ret;
1484 struct tty_ldisc *ld;
1486 tty = (struct tty_struct *)file->private_data;
1487 if (tty_paranoia_check(tty, inode, "tty_write"))
1488 return -EIO;
1489 if (!tty || !tty->ops->write ||
1490 (test_bit(TTY_IO_ERROR, &tty->flags)))
1491 return -EIO;
1492 /* Short term debug to catch buggy drivers */
1493 if (tty->ops->write_room == NULL)
1494 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1495 tty->driver->name);
1496 ld = tty_ldisc_ref_wait(tty);
1497 if (!ld->ops->write)
1498 ret = -EIO;
1499 else
1500 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1501 tty_ldisc_deref(ld);
1502 return ret;
1505 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1506 size_t count, loff_t *ppos)
1508 struct file *p = NULL;
1510 spin_lock(&redirect_lock);
1511 if (redirect) {
1512 get_file(redirect);
1513 p = redirect;
1515 spin_unlock(&redirect_lock);
1517 if (p) {
1518 ssize_t res;
1519 res = vfs_write(p, buf, count, &p->f_pos);
1520 fput(p);
1521 return res;
1523 return tty_write(file, buf, count, ppos);
1526 void tty_port_init(struct tty_port *port)
1528 memset(port, 0, sizeof(*port));
1529 init_waitqueue_head(&port->open_wait);
1530 init_waitqueue_head(&port->close_wait);
1531 mutex_init(&port->mutex);
1532 port->close_delay = (50 * HZ) / 100;
1533 port->closing_wait = (3000 * HZ) / 100;
1535 EXPORT_SYMBOL(tty_port_init);
1537 int tty_port_alloc_xmit_buf(struct tty_port *port)
1539 /* We may sleep in get_zeroed_page() */
1540 mutex_lock(&port->mutex);
1541 if (port->xmit_buf == NULL)
1542 port->xmit_buf = (unsigned char *)get_zeroed_page(GFP_KERNEL);
1543 mutex_unlock(&port->mutex);
1544 if (port->xmit_buf == NULL)
1545 return -ENOMEM;
1546 return 0;
1548 EXPORT_SYMBOL(tty_port_alloc_xmit_buf);
1550 void tty_port_free_xmit_buf(struct tty_port *port)
1552 mutex_lock(&port->mutex);
1553 if (port->xmit_buf != NULL) {
1554 free_page((unsigned long)port->xmit_buf);
1555 port->xmit_buf = NULL;
1557 mutex_unlock(&port->mutex);
1559 EXPORT_SYMBOL(tty_port_free_xmit_buf);
1562 static char ptychar[] = "pqrstuvwxyzabcde";
1565 * pty_line_name - generate name for a pty
1566 * @driver: the tty driver in use
1567 * @index: the minor number
1568 * @p: output buffer of at least 6 bytes
1570 * Generate a name from a driver reference and write it to the output
1571 * buffer.
1573 * Locking: None
1575 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1577 int i = index + driver->name_base;
1578 /* ->name is initialized to "ttyp", but "tty" is expected */
1579 sprintf(p, "%s%c%x",
1580 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1581 ptychar[i >> 4 & 0xf], i & 0xf);
1585 * pty_line_name - generate name for a tty
1586 * @driver: the tty driver in use
1587 * @index: the minor number
1588 * @p: output buffer of at least 7 bytes
1590 * Generate a name from a driver reference and write it to the output
1591 * buffer.
1593 * Locking: None
1595 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1597 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1601 * init_dev - initialise a tty device
1602 * @driver: tty driver we are opening a device on
1603 * @idx: device index
1604 * @tty: returned tty structure
1606 * Prepare a tty device. This may not be a "new" clean device but
1607 * could also be an active device. The pty drivers require special
1608 * handling because of this.
1610 * Locking:
1611 * The function is called under the tty_mutex, which
1612 * protects us from the tty struct or driver itself going away.
1614 * On exit the tty device has the line discipline attached and
1615 * a reference count of 1. If a pair was created for pty/tty use
1616 * and the other was a pty master then it too has a reference count of 1.
1618 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1619 * failed open. The new code protects the open with a mutex, so it's
1620 * really quite straightforward. The mutex locking can probably be
1621 * relaxed for the (most common) case of reopening a tty.
1624 static int init_dev(struct tty_driver *driver, int idx,
1625 struct tty_struct **ret_tty)
1627 struct tty_struct *tty, *o_tty;
1628 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1629 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1630 int retval = 0;
1632 /* check whether we're reopening an existing tty */
1633 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1634 tty = devpts_get_tty(idx);
1636 * If we don't have a tty here on a slave open, it's because
1637 * the master already started the close process and there's
1638 * no relation between devpts file and tty anymore.
1640 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1641 retval = -EIO;
1642 goto end_init;
1645 * It's safe from now on because init_dev() is called with
1646 * tty_mutex held and release_dev() won't change tty->count
1647 * or tty->flags without having to grab tty_mutex
1649 if (tty && driver->subtype == PTY_TYPE_MASTER)
1650 tty = tty->link;
1651 } else {
1652 tty = driver->ttys[idx];
1654 if (tty) goto fast_track;
1657 * First time open is complex, especially for PTY devices.
1658 * This code guarantees that either everything succeeds and the
1659 * TTY is ready for operation, or else the table slots are vacated
1660 * and the allocated memory released. (Except that the termios
1661 * and locked termios may be retained.)
1664 if (!try_module_get(driver->owner)) {
1665 retval = -ENODEV;
1666 goto end_init;
1669 o_tty = NULL;
1670 tp = o_tp = NULL;
1671 ltp = o_ltp = NULL;
1673 tty = alloc_tty_struct();
1674 if (!tty)
1675 goto fail_no_mem;
1676 initialize_tty_struct(tty);
1677 tty->driver = driver;
1678 tty->ops = driver->ops;
1679 tty->index = idx;
1680 tty_line_name(driver, idx, tty->name);
1682 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1683 tp_loc = &tty->termios;
1684 ltp_loc = &tty->termios_locked;
1685 } else {
1686 tp_loc = &driver->termios[idx];
1687 ltp_loc = &driver->termios_locked[idx];
1690 if (!*tp_loc) {
1691 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1692 if (!tp)
1693 goto free_mem_out;
1694 *tp = driver->init_termios;
1697 if (!*ltp_loc) {
1698 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1699 if (!ltp)
1700 goto free_mem_out;
1703 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1704 o_tty = alloc_tty_struct();
1705 if (!o_tty)
1706 goto free_mem_out;
1707 initialize_tty_struct(o_tty);
1708 o_tty->driver = driver->other;
1709 o_tty->ops = driver->ops;
1710 o_tty->index = idx;
1711 tty_line_name(driver->other, idx, o_tty->name);
1713 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1714 o_tp_loc = &o_tty->termios;
1715 o_ltp_loc = &o_tty->termios_locked;
1716 } else {
1717 o_tp_loc = &driver->other->termios[idx];
1718 o_ltp_loc = &driver->other->termios_locked[idx];
1721 if (!*o_tp_loc) {
1722 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1723 if (!o_tp)
1724 goto free_mem_out;
1725 *o_tp = driver->other->init_termios;
1728 if (!*o_ltp_loc) {
1729 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1730 if (!o_ltp)
1731 goto free_mem_out;
1735 * Everything allocated ... set up the o_tty structure.
1737 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1738 driver->other->ttys[idx] = o_tty;
1739 if (!*o_tp_loc)
1740 *o_tp_loc = o_tp;
1741 if (!*o_ltp_loc)
1742 *o_ltp_loc = o_ltp;
1743 o_tty->termios = *o_tp_loc;
1744 o_tty->termios_locked = *o_ltp_loc;
1745 driver->other->refcount++;
1746 if (driver->subtype == PTY_TYPE_MASTER)
1747 o_tty->count++;
1749 /* Establish the links in both directions */
1750 tty->link = o_tty;
1751 o_tty->link = tty;
1755 * All structures have been allocated, so now we install them.
1756 * Failures after this point use release_tty to clean up, so
1757 * there's no need to null out the local pointers.
1759 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1760 driver->ttys[idx] = tty;
1762 if (!*tp_loc)
1763 *tp_loc = tp;
1764 if (!*ltp_loc)
1765 *ltp_loc = ltp;
1766 tty->termios = *tp_loc;
1767 tty->termios_locked = *ltp_loc;
1768 /* Compatibility until drivers always set this */
1769 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1770 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1771 driver->refcount++;
1772 tty->count++;
1775 * Structures all installed ... call the ldisc open routines.
1776 * If we fail here just call release_tty to clean up. No need
1777 * to decrement the use counts, as release_tty doesn't care.
1780 retval = tty_ldisc_setup(tty, o_tty);
1782 if (retval)
1783 goto release_mem_out;
1784 goto success;
1787 * This fast open can be used if the tty is already open.
1788 * No memory is allocated, and the only failures are from
1789 * attempting to open a closing tty or attempting multiple
1790 * opens on a pty master.
1792 fast_track:
1793 if (test_bit(TTY_CLOSING, &tty->flags)) {
1794 retval = -EIO;
1795 goto end_init;
1797 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1798 driver->subtype == PTY_TYPE_MASTER) {
1800 * special case for PTY masters: only one open permitted,
1801 * and the slave side open count is incremented as well.
1803 if (tty->count) {
1804 retval = -EIO;
1805 goto end_init;
1807 tty->link->count++;
1809 tty->count++;
1810 tty->driver = driver; /* N.B. why do this every time?? */
1812 /* FIXME */
1813 if (!test_bit(TTY_LDISC, &tty->flags))
1814 printk(KERN_ERR "init_dev but no ldisc\n");
1815 success:
1816 *ret_tty = tty;
1818 /* All paths come through here to release the mutex */
1819 end_init:
1820 return retval;
1822 /* Release locally allocated memory ... nothing placed in slots */
1823 free_mem_out:
1824 kfree(o_tp);
1825 if (o_tty)
1826 free_tty_struct(o_tty);
1827 kfree(ltp);
1828 kfree(tp);
1829 free_tty_struct(tty);
1831 fail_no_mem:
1832 module_put(driver->owner);
1833 retval = -ENOMEM;
1834 goto end_init;
1836 /* call the tty release_tty routine to clean out this slot */
1837 release_mem_out:
1838 if (printk_ratelimit())
1839 printk(KERN_INFO "init_dev: ldisc open failed, "
1840 "clearing slot %d\n", idx);
1841 release_tty(tty, idx);
1842 goto end_init;
1846 * release_one_tty - release tty structure memory
1848 * Releases memory associated with a tty structure, and clears out the
1849 * driver table slots. This function is called when a device is no longer
1850 * in use. It also gets called when setup of a device fails.
1852 * Locking:
1853 * tty_mutex - sometimes only
1854 * takes the file list lock internally when working on the list
1855 * of ttys that the driver keeps.
1856 * FIXME: should we require tty_mutex is held here ??
1858 static void release_one_tty(struct tty_struct *tty, int idx)
1860 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
1861 struct ktermios *tp;
1863 if (!devpts)
1864 tty->driver->ttys[idx] = NULL;
1866 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1867 tp = tty->termios;
1868 if (!devpts)
1869 tty->driver->termios[idx] = NULL;
1870 kfree(tp);
1872 tp = tty->termios_locked;
1873 if (!devpts)
1874 tty->driver->termios_locked[idx] = NULL;
1875 kfree(tp);
1879 tty->magic = 0;
1880 tty->driver->refcount--;
1882 file_list_lock();
1883 list_del_init(&tty->tty_files);
1884 file_list_unlock();
1886 free_tty_struct(tty);
1890 * release_tty - release tty structure memory
1892 * Release both @tty and a possible linked partner (think pty pair),
1893 * and decrement the refcount of the backing module.
1895 * Locking:
1896 * tty_mutex - sometimes only
1897 * takes the file list lock internally when working on the list
1898 * of ttys that the driver keeps.
1899 * FIXME: should we require tty_mutex is held here ??
1901 static void release_tty(struct tty_struct *tty, int idx)
1903 struct tty_driver *driver = tty->driver;
1905 if (tty->link)
1906 release_one_tty(tty->link, idx);
1907 release_one_tty(tty, idx);
1908 module_put(driver->owner);
1912 * Even releasing the tty structures is a tricky business.. We have
1913 * to be very careful that the structures are all released at the
1914 * same time, as interrupts might otherwise get the wrong pointers.
1916 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1917 * lead to double frees or releasing memory still in use.
1919 static void release_dev(struct file *filp)
1921 struct tty_struct *tty, *o_tty;
1922 int pty_master, tty_closing, o_tty_closing, do_sleep;
1923 int devpts;
1924 int idx;
1925 char buf[64];
1927 tty = (struct tty_struct *)filp->private_data;
1928 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1929 "release_dev"))
1930 return;
1932 check_tty_count(tty, "release_dev");
1934 tty_fasync(-1, filp, 0);
1936 idx = tty->index;
1937 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1938 tty->driver->subtype == PTY_TYPE_MASTER);
1939 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1940 o_tty = tty->link;
1942 #ifdef TTY_PARANOIA_CHECK
1943 if (idx < 0 || idx >= tty->driver->num) {
1944 printk(KERN_DEBUG "release_dev: bad idx when trying to "
1945 "free (%s)\n", tty->name);
1946 return;
1948 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1949 if (tty != tty->driver->ttys[idx]) {
1950 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
1951 "for (%s)\n", idx, tty->name);
1952 return;
1954 if (tty->termios != tty->driver->termios[idx]) {
1955 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
1956 "for (%s)\n",
1957 idx, tty->name);
1958 return;
1960 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1961 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
1962 "termios_locked for (%s)\n",
1963 idx, tty->name);
1964 return;
1967 #endif
1969 #ifdef TTY_DEBUG_HANGUP
1970 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
1971 tty_name(tty, buf), tty->count);
1972 #endif
1974 #ifdef TTY_PARANOIA_CHECK
1975 if (tty->driver->other &&
1976 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1977 if (o_tty != tty->driver->other->ttys[idx]) {
1978 printk(KERN_DEBUG "release_dev: other->table[%d] "
1979 "not o_tty for (%s)\n",
1980 idx, tty->name);
1981 return;
1983 if (o_tty->termios != tty->driver->other->termios[idx]) {
1984 printk(KERN_DEBUG "release_dev: other->termios[%d] "
1985 "not o_termios for (%s)\n",
1986 idx, tty->name);
1987 return;
1989 if (o_tty->termios_locked !=
1990 tty->driver->other->termios_locked[idx]) {
1991 printk(KERN_DEBUG "release_dev: other->termios_locked["
1992 "%d] not o_termios_locked for (%s)\n",
1993 idx, tty->name);
1994 return;
1996 if (o_tty->link != tty) {
1997 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
1998 return;
2001 #endif
2002 if (tty->ops->close)
2003 tty->ops->close(tty, filp);
2006 * Sanity check: if tty->count is going to zero, there shouldn't be
2007 * any waiters on tty->read_wait or tty->write_wait. We test the
2008 * wait queues and kick everyone out _before_ actually starting to
2009 * close. This ensures that we won't block while releasing the tty
2010 * structure.
2012 * The test for the o_tty closing is necessary, since the master and
2013 * slave sides may close in any order. If the slave side closes out
2014 * first, its count will be one, since the master side holds an open.
2015 * Thus this test wouldn't be triggered at the time the slave closes,
2016 * so we do it now.
2018 * Note that it's possible for the tty to be opened again while we're
2019 * flushing out waiters. By recalculating the closing flags before
2020 * each iteration we avoid any problems.
2022 while (1) {
2023 /* Guard against races with tty->count changes elsewhere and
2024 opens on /dev/tty */
2026 mutex_lock(&tty_mutex);
2027 tty_closing = tty->count <= 1;
2028 o_tty_closing = o_tty &&
2029 (o_tty->count <= (pty_master ? 1 : 0));
2030 do_sleep = 0;
2032 if (tty_closing) {
2033 if (waitqueue_active(&tty->read_wait)) {
2034 wake_up(&tty->read_wait);
2035 do_sleep++;
2037 if (waitqueue_active(&tty->write_wait)) {
2038 wake_up(&tty->write_wait);
2039 do_sleep++;
2042 if (o_tty_closing) {
2043 if (waitqueue_active(&o_tty->read_wait)) {
2044 wake_up(&o_tty->read_wait);
2045 do_sleep++;
2047 if (waitqueue_active(&o_tty->write_wait)) {
2048 wake_up(&o_tty->write_wait);
2049 do_sleep++;
2052 if (!do_sleep)
2053 break;
2055 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2056 "active!\n", tty_name(tty, buf));
2057 mutex_unlock(&tty_mutex);
2058 schedule();
2062 * The closing flags are now consistent with the open counts on
2063 * both sides, and we've completed the last operation that could
2064 * block, so it's safe to proceed with closing.
2066 if (pty_master) {
2067 if (--o_tty->count < 0) {
2068 printk(KERN_WARNING "release_dev: bad pty slave count "
2069 "(%d) for %s\n",
2070 o_tty->count, tty_name(o_tty, buf));
2071 o_tty->count = 0;
2074 if (--tty->count < 0) {
2075 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2076 tty->count, tty_name(tty, buf));
2077 tty->count = 0;
2081 * We've decremented tty->count, so we need to remove this file
2082 * descriptor off the tty->tty_files list; this serves two
2083 * purposes:
2084 * - check_tty_count sees the correct number of file descriptors
2085 * associated with this tty.
2086 * - do_tty_hangup no longer sees this file descriptor as
2087 * something that needs to be handled for hangups.
2089 file_kill(filp);
2090 filp->private_data = NULL;
2093 * Perform some housekeeping before deciding whether to return.
2095 * Set the TTY_CLOSING flag if this was the last open. In the
2096 * case of a pty we may have to wait around for the other side
2097 * to close, and TTY_CLOSING makes sure we can't be reopened.
2099 if (tty_closing)
2100 set_bit(TTY_CLOSING, &tty->flags);
2101 if (o_tty_closing)
2102 set_bit(TTY_CLOSING, &o_tty->flags);
2105 * If _either_ side is closing, make sure there aren't any
2106 * processes that still think tty or o_tty is their controlling
2107 * tty.
2109 if (tty_closing || o_tty_closing) {
2110 read_lock(&tasklist_lock);
2111 session_clear_tty(tty->session);
2112 if (o_tty)
2113 session_clear_tty(o_tty->session);
2114 read_unlock(&tasklist_lock);
2117 mutex_unlock(&tty_mutex);
2119 /* check whether both sides are closing ... */
2120 if (!tty_closing || (o_tty && !o_tty_closing))
2121 return;
2123 #ifdef TTY_DEBUG_HANGUP
2124 printk(KERN_DEBUG "freeing tty structure...");
2125 #endif
2127 * Ask the line discipline code to release its structures
2129 tty_ldisc_release(tty, o_tty);
2131 * The release_tty function takes care of the details of clearing
2132 * the slots and preserving the termios structure.
2134 release_tty(tty, idx);
2136 /* Make this pty number available for reallocation */
2137 if (devpts)
2138 devpts_kill_index(idx);
2142 * tty_open - open a tty device
2143 * @inode: inode of device file
2144 * @filp: file pointer to tty
2146 * tty_open and tty_release keep up the tty count that contains the
2147 * number of opens done on a tty. We cannot use the inode-count, as
2148 * different inodes might point to the same tty.
2150 * Open-counting is needed for pty masters, as well as for keeping
2151 * track of serial lines: DTR is dropped when the last close happens.
2152 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2154 * The termios state of a pty is reset on first open so that
2155 * settings don't persist across reuse.
2157 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2158 * tty->count should protect the rest.
2159 * ->siglock protects ->signal/->sighand
2162 static int __tty_open(struct inode *inode, struct file *filp)
2164 struct tty_struct *tty;
2165 int noctty, retval;
2166 struct tty_driver *driver;
2167 int index;
2168 dev_t device = inode->i_rdev;
2169 unsigned short saved_flags = filp->f_flags;
2171 nonseekable_open(inode, filp);
2173 retry_open:
2174 noctty = filp->f_flags & O_NOCTTY;
2175 index = -1;
2176 retval = 0;
2178 mutex_lock(&tty_mutex);
2180 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
2181 tty = get_current_tty();
2182 if (!tty) {
2183 mutex_unlock(&tty_mutex);
2184 return -ENXIO;
2186 driver = tty->driver;
2187 index = tty->index;
2188 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2189 /* noctty = 1; */
2190 goto got_driver;
2192 #ifdef CONFIG_VT
2193 if (device == MKDEV(TTY_MAJOR, 0)) {
2194 extern struct tty_driver *console_driver;
2195 driver = console_driver;
2196 index = fg_console;
2197 noctty = 1;
2198 goto got_driver;
2200 #endif
2201 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
2202 driver = console_device(&index);
2203 if (driver) {
2204 /* Don't let /dev/console block */
2205 filp->f_flags |= O_NONBLOCK;
2206 noctty = 1;
2207 goto got_driver;
2209 mutex_unlock(&tty_mutex);
2210 return -ENODEV;
2213 driver = get_tty_driver(device, &index);
2214 if (!driver) {
2215 mutex_unlock(&tty_mutex);
2216 return -ENODEV;
2218 got_driver:
2219 retval = init_dev(driver, index, &tty);
2220 mutex_unlock(&tty_mutex);
2221 if (retval)
2222 return retval;
2224 filp->private_data = tty;
2225 file_move(filp, &tty->tty_files);
2226 check_tty_count(tty, "tty_open");
2227 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2228 tty->driver->subtype == PTY_TYPE_MASTER)
2229 noctty = 1;
2230 #ifdef TTY_DEBUG_HANGUP
2231 printk(KERN_DEBUG "opening %s...", tty->name);
2232 #endif
2233 if (!retval) {
2234 if (tty->ops->open)
2235 retval = tty->ops->open(tty, filp);
2236 else
2237 retval = -ENODEV;
2239 filp->f_flags = saved_flags;
2241 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2242 !capable(CAP_SYS_ADMIN))
2243 retval = -EBUSY;
2245 if (retval) {
2246 #ifdef TTY_DEBUG_HANGUP
2247 printk(KERN_DEBUG "error %d in opening %s...", retval,
2248 tty->name);
2249 #endif
2250 release_dev(filp);
2251 if (retval != -ERESTARTSYS)
2252 return retval;
2253 if (signal_pending(current))
2254 return retval;
2255 schedule();
2257 * Need to reset f_op in case a hangup happened.
2259 if (filp->f_op == &hung_up_tty_fops)
2260 filp->f_op = &tty_fops;
2261 goto retry_open;
2264 mutex_lock(&tty_mutex);
2265 spin_lock_irq(&current->sighand->siglock);
2266 if (!noctty &&
2267 current->signal->leader &&
2268 !current->signal->tty &&
2269 tty->session == NULL)
2270 __proc_set_tty(current, tty);
2271 spin_unlock_irq(&current->sighand->siglock);
2272 mutex_unlock(&tty_mutex);
2273 return 0;
2276 /* BKL pushdown: scary code avoidance wrapper */
2277 static int tty_open(struct inode *inode, struct file *filp)
2279 int ret;
2281 lock_kernel();
2282 ret = __tty_open(inode, filp);
2283 unlock_kernel();
2284 return ret;
2289 #ifdef CONFIG_UNIX98_PTYS
2291 * ptmx_open - open a unix 98 pty master
2292 * @inode: inode of device file
2293 * @filp: file pointer to tty
2295 * Allocate a unix98 pty master device from the ptmx driver.
2297 * Locking: tty_mutex protects theinit_dev work. tty->count should
2298 * protect the rest.
2299 * allocated_ptys_lock handles the list of free pty numbers
2302 static int __ptmx_open(struct inode *inode, struct file *filp)
2304 struct tty_struct *tty;
2305 int retval;
2306 int index;
2308 nonseekable_open(inode, filp);
2310 /* find a device that is not in use. */
2311 index = devpts_new_index();
2312 if (index < 0)
2313 return index;
2315 mutex_lock(&tty_mutex);
2316 retval = init_dev(ptm_driver, index, &tty);
2317 mutex_unlock(&tty_mutex);
2319 if (retval)
2320 goto out;
2322 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2323 filp->private_data = tty;
2324 file_move(filp, &tty->tty_files);
2326 retval = devpts_pty_new(tty->link);
2327 if (retval)
2328 goto out1;
2330 check_tty_count(tty, "ptmx_open");
2331 retval = ptm_driver->ops->open(tty, filp);
2332 if (!retval)
2333 return 0;
2334 out1:
2335 release_dev(filp);
2336 return retval;
2337 out:
2338 devpts_kill_index(index);
2339 return retval;
2342 static int ptmx_open(struct inode *inode, struct file *filp)
2344 int ret;
2346 lock_kernel();
2347 ret = __ptmx_open(inode, filp);
2348 unlock_kernel();
2349 return ret;
2351 #endif
2354 * tty_release - vfs callback for close
2355 * @inode: inode of tty
2356 * @filp: file pointer for handle to tty
2358 * Called the last time each file handle is closed that references
2359 * this tty. There may however be several such references.
2361 * Locking:
2362 * Takes bkl. See release_dev
2365 static int tty_release(struct inode *inode, struct file *filp)
2367 lock_kernel();
2368 release_dev(filp);
2369 unlock_kernel();
2370 return 0;
2374 * tty_poll - check tty status
2375 * @filp: file being polled
2376 * @wait: poll wait structures to update
2378 * Call the line discipline polling method to obtain the poll
2379 * status of the device.
2381 * Locking: locks called line discipline but ldisc poll method
2382 * may be re-entered freely by other callers.
2385 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2387 struct tty_struct *tty;
2388 struct tty_ldisc *ld;
2389 int ret = 0;
2391 tty = (struct tty_struct *)filp->private_data;
2392 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2393 return 0;
2395 ld = tty_ldisc_ref_wait(tty);
2396 if (ld->ops->poll)
2397 ret = (ld->ops->poll)(tty, filp, wait);
2398 tty_ldisc_deref(ld);
2399 return ret;
2402 static int tty_fasync(int fd, struct file *filp, int on)
2404 struct tty_struct *tty;
2405 unsigned long flags;
2406 int retval = 0;
2408 lock_kernel();
2409 tty = (struct tty_struct *)filp->private_data;
2410 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2411 goto out;
2413 retval = fasync_helper(fd, filp, on, &tty->fasync);
2414 if (retval <= 0)
2415 goto out;
2417 if (on) {
2418 enum pid_type type;
2419 struct pid *pid;
2420 if (!waitqueue_active(&tty->read_wait))
2421 tty->minimum_to_wake = 1;
2422 spin_lock_irqsave(&tty->ctrl_lock, flags);
2423 if (tty->pgrp) {
2424 pid = tty->pgrp;
2425 type = PIDTYPE_PGID;
2426 } else {
2427 pid = task_pid(current);
2428 type = PIDTYPE_PID;
2430 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2431 retval = __f_setown(filp, pid, type, 0);
2432 if (retval)
2433 goto out;
2434 } else {
2435 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2436 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2438 retval = 0;
2439 out:
2440 unlock_kernel();
2441 return retval;
2445 * tiocsti - fake input character
2446 * @tty: tty to fake input into
2447 * @p: pointer to character
2449 * Fake input to a tty device. Does the necessary locking and
2450 * input management.
2452 * FIXME: does not honour flow control ??
2454 * Locking:
2455 * Called functions take tty_ldisc_lock
2456 * current->signal->tty check is safe without locks
2458 * FIXME: may race normal receive processing
2461 static int tiocsti(struct tty_struct *tty, char __user *p)
2463 char ch, mbz = 0;
2464 struct tty_ldisc *ld;
2466 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2467 return -EPERM;
2468 if (get_user(ch, p))
2469 return -EFAULT;
2470 ld = tty_ldisc_ref_wait(tty);
2471 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2472 tty_ldisc_deref(ld);
2473 return 0;
2477 * tiocgwinsz - implement window query ioctl
2478 * @tty; tty
2479 * @arg: user buffer for result
2481 * Copies the kernel idea of the window size into the user buffer.
2483 * Locking: tty->termios_mutex is taken to ensure the winsize data
2484 * is consistent.
2487 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2489 int err;
2491 mutex_lock(&tty->termios_mutex);
2492 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2493 mutex_unlock(&tty->termios_mutex);
2495 return err ? -EFAULT: 0;
2499 * tty_do_resize - resize event
2500 * @tty: tty being resized
2501 * @real_tty: real tty (if using a pty/tty pair)
2502 * @rows: rows (character)
2503 * @cols: cols (character)
2505 * Update the termios variables and send the neccessary signals to
2506 * peform a terminal resize correctly
2509 int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2510 struct winsize *ws)
2512 struct pid *pgrp, *rpgrp;
2513 unsigned long flags;
2515 mutex_lock(&tty->termios_mutex);
2516 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2517 goto done;
2518 /* Get the PID values and reference them so we can
2519 avoid holding the tty ctrl lock while sending signals */
2520 spin_lock_irqsave(&tty->ctrl_lock, flags);
2521 pgrp = get_pid(tty->pgrp);
2522 rpgrp = get_pid(real_tty->pgrp);
2523 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525 if (pgrp)
2526 kill_pgrp(pgrp, SIGWINCH, 1);
2527 if (rpgrp != pgrp && rpgrp)
2528 kill_pgrp(rpgrp, SIGWINCH, 1);
2530 put_pid(pgrp);
2531 put_pid(rpgrp);
2533 tty->winsize = *ws;
2534 real_tty->winsize = *ws;
2535 done:
2536 mutex_unlock(&tty->termios_mutex);
2537 return 0;
2541 * tiocswinsz - implement window size set ioctl
2542 * @tty; tty
2543 * @arg: user buffer for result
2545 * Copies the user idea of the window size to the kernel. Traditionally
2546 * this is just advisory information but for the Linux console it
2547 * actually has driver level meaning and triggers a VC resize.
2549 * Locking:
2550 * Driver dependant. The default do_resize method takes the
2551 * tty termios mutex and ctrl_lock. The console takes its own lock
2552 * then calls into the default method.
2555 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2556 struct winsize __user *arg)
2558 struct winsize tmp_ws;
2559 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2560 return -EFAULT;
2562 if (tty->ops->resize)
2563 return tty->ops->resize(tty, real_tty, &tmp_ws);
2564 else
2565 return tty_do_resize(tty, real_tty, &tmp_ws);
2569 * tioccons - allow admin to move logical console
2570 * @file: the file to become console
2572 * Allow the adminstrator to move the redirected console device
2574 * Locking: uses redirect_lock to guard the redirect information
2577 static int tioccons(struct file *file)
2579 if (!capable(CAP_SYS_ADMIN))
2580 return -EPERM;
2581 if (file->f_op->write == redirected_tty_write) {
2582 struct file *f;
2583 spin_lock(&redirect_lock);
2584 f = redirect;
2585 redirect = NULL;
2586 spin_unlock(&redirect_lock);
2587 if (f)
2588 fput(f);
2589 return 0;
2591 spin_lock(&redirect_lock);
2592 if (redirect) {
2593 spin_unlock(&redirect_lock);
2594 return -EBUSY;
2596 get_file(file);
2597 redirect = file;
2598 spin_unlock(&redirect_lock);
2599 return 0;
2603 * fionbio - non blocking ioctl
2604 * @file: file to set blocking value
2605 * @p: user parameter
2607 * Historical tty interfaces had a blocking control ioctl before
2608 * the generic functionality existed. This piece of history is preserved
2609 * in the expected tty API of posix OS's.
2611 * Locking: none, the open fle handle ensures it won't go away.
2614 static int fionbio(struct file *file, int __user *p)
2616 int nonblock;
2618 if (get_user(nonblock, p))
2619 return -EFAULT;
2621 /* file->f_flags is still BKL protected in the fs layer - vomit */
2622 lock_kernel();
2623 if (nonblock)
2624 file->f_flags |= O_NONBLOCK;
2625 else
2626 file->f_flags &= ~O_NONBLOCK;
2627 unlock_kernel();
2628 return 0;
2632 * tiocsctty - set controlling tty
2633 * @tty: tty structure
2634 * @arg: user argument
2636 * This ioctl is used to manage job control. It permits a session
2637 * leader to set this tty as the controlling tty for the session.
2639 * Locking:
2640 * Takes tty_mutex() to protect tty instance
2641 * Takes tasklist_lock internally to walk sessions
2642 * Takes ->siglock() when updating signal->tty
2645 static int tiocsctty(struct tty_struct *tty, int arg)
2647 int ret = 0;
2648 if (current->signal->leader && (task_session(current) == tty->session))
2649 return ret;
2651 mutex_lock(&tty_mutex);
2653 * The process must be a session leader and
2654 * not have a controlling tty already.
2656 if (!current->signal->leader || current->signal->tty) {
2657 ret = -EPERM;
2658 goto unlock;
2661 if (tty->session) {
2663 * This tty is already the controlling
2664 * tty for another session group!
2666 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2668 * Steal it away
2670 read_lock(&tasklist_lock);
2671 session_clear_tty(tty->session);
2672 read_unlock(&tasklist_lock);
2673 } else {
2674 ret = -EPERM;
2675 goto unlock;
2678 proc_set_tty(current, tty);
2679 unlock:
2680 mutex_unlock(&tty_mutex);
2681 return ret;
2685 * tty_get_pgrp - return a ref counted pgrp pid
2686 * @tty: tty to read
2688 * Returns a refcounted instance of the pid struct for the process
2689 * group controlling the tty.
2692 struct pid *tty_get_pgrp(struct tty_struct *tty)
2694 unsigned long flags;
2695 struct pid *pgrp;
2697 spin_lock_irqsave(&tty->ctrl_lock, flags);
2698 pgrp = get_pid(tty->pgrp);
2699 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2701 return pgrp;
2703 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2706 * tiocgpgrp - get process group
2707 * @tty: tty passed by user
2708 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2709 * @p: returned pid
2711 * Obtain the process group of the tty. If there is no process group
2712 * return an error.
2714 * Locking: none. Reference to current->signal->tty is safe.
2717 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2719 struct pid *pid;
2720 int ret;
2722 * (tty == real_tty) is a cheap way of
2723 * testing if the tty is NOT a master pty.
2725 if (tty == real_tty && current->signal->tty != real_tty)
2726 return -ENOTTY;
2727 pid = tty_get_pgrp(real_tty);
2728 ret = put_user(pid_vnr(pid), p);
2729 put_pid(pid);
2730 return ret;
2734 * tiocspgrp - attempt to set process group
2735 * @tty: tty passed by user
2736 * @real_tty: tty side device matching tty passed by user
2737 * @p: pid pointer
2739 * Set the process group of the tty to the session passed. Only
2740 * permitted where the tty session is our session.
2742 * Locking: RCU, ctrl lock
2745 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2747 struct pid *pgrp;
2748 pid_t pgrp_nr;
2749 int retval = tty_check_change(real_tty);
2750 unsigned long flags;
2752 if (retval == -EIO)
2753 return -ENOTTY;
2754 if (retval)
2755 return retval;
2756 if (!current->signal->tty ||
2757 (current->signal->tty != real_tty) ||
2758 (real_tty->session != task_session(current)))
2759 return -ENOTTY;
2760 if (get_user(pgrp_nr, p))
2761 return -EFAULT;
2762 if (pgrp_nr < 0)
2763 return -EINVAL;
2764 rcu_read_lock();
2765 pgrp = find_vpid(pgrp_nr);
2766 retval = -ESRCH;
2767 if (!pgrp)
2768 goto out_unlock;
2769 retval = -EPERM;
2770 if (session_of_pgrp(pgrp) != task_session(current))
2771 goto out_unlock;
2772 retval = 0;
2773 spin_lock_irqsave(&tty->ctrl_lock, flags);
2774 put_pid(real_tty->pgrp);
2775 real_tty->pgrp = get_pid(pgrp);
2776 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2777 out_unlock:
2778 rcu_read_unlock();
2779 return retval;
2783 * tiocgsid - get session id
2784 * @tty: tty passed by user
2785 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2786 * @p: pointer to returned session id
2788 * Obtain the session id of the tty. If there is no session
2789 * return an error.
2791 * Locking: none. Reference to current->signal->tty is safe.
2794 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2797 * (tty == real_tty) is a cheap way of
2798 * testing if the tty is NOT a master pty.
2800 if (tty == real_tty && current->signal->tty != real_tty)
2801 return -ENOTTY;
2802 if (!real_tty->session)
2803 return -ENOTTY;
2804 return put_user(pid_vnr(real_tty->session), p);
2808 * tiocsetd - set line discipline
2809 * @tty: tty device
2810 * @p: pointer to user data
2812 * Set the line discipline according to user request.
2814 * Locking: see tty_set_ldisc, this function is just a helper
2817 static int tiocsetd(struct tty_struct *tty, int __user *p)
2819 int ldisc;
2820 int ret;
2822 if (get_user(ldisc, p))
2823 return -EFAULT;
2825 lock_kernel();
2826 ret = tty_set_ldisc(tty, ldisc);
2827 unlock_kernel();
2829 return ret;
2833 * send_break - performed time break
2834 * @tty: device to break on
2835 * @duration: timeout in mS
2837 * Perform a timed break on hardware that lacks its own driver level
2838 * timed break functionality.
2840 * Locking:
2841 * atomic_write_lock serializes
2845 static int send_break(struct tty_struct *tty, unsigned int duration)
2847 int retval;
2849 if (tty->ops->break_ctl == NULL)
2850 return 0;
2852 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2853 retval = tty->ops->break_ctl(tty, duration);
2854 else {
2855 /* Do the work ourselves */
2856 if (tty_write_lock(tty, 0) < 0)
2857 return -EINTR;
2858 retval = tty->ops->break_ctl(tty, -1);
2859 if (retval)
2860 goto out;
2861 if (!signal_pending(current))
2862 msleep_interruptible(duration);
2863 retval = tty->ops->break_ctl(tty, 0);
2864 out:
2865 tty_write_unlock(tty);
2866 if (signal_pending(current))
2867 retval = -EINTR;
2869 return retval;
2873 * tty_tiocmget - get modem status
2874 * @tty: tty device
2875 * @file: user file pointer
2876 * @p: pointer to result
2878 * Obtain the modem status bits from the tty driver if the feature
2879 * is supported. Return -EINVAL if it is not available.
2881 * Locking: none (up to the driver)
2884 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2886 int retval = -EINVAL;
2888 if (tty->ops->tiocmget) {
2889 retval = tty->ops->tiocmget(tty, file);
2891 if (retval >= 0)
2892 retval = put_user(retval, p);
2894 return retval;
2898 * tty_tiocmset - set modem status
2899 * @tty: tty device
2900 * @file: user file pointer
2901 * @cmd: command - clear bits, set bits or set all
2902 * @p: pointer to desired bits
2904 * Set the modem status bits from the tty driver if the feature
2905 * is supported. Return -EINVAL if it is not available.
2907 * Locking: none (up to the driver)
2910 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2911 unsigned __user *p)
2913 int retval;
2914 unsigned int set, clear, val;
2916 if (tty->ops->tiocmset == NULL)
2917 return -EINVAL;
2919 retval = get_user(val, p);
2920 if (retval)
2921 return retval;
2922 set = clear = 0;
2923 switch (cmd) {
2924 case TIOCMBIS:
2925 set = val;
2926 break;
2927 case TIOCMBIC:
2928 clear = val;
2929 break;
2930 case TIOCMSET:
2931 set = val;
2932 clear = ~val;
2933 break;
2935 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2936 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2937 return tty->ops->tiocmset(tty, file, set, clear);
2941 * Split this up, as gcc can choke on it otherwise..
2943 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2945 struct tty_struct *tty, *real_tty;
2946 void __user *p = (void __user *)arg;
2947 int retval;
2948 struct tty_ldisc *ld;
2949 struct inode *inode = file->f_dentry->d_inode;
2951 tty = (struct tty_struct *)file->private_data;
2952 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2953 return -EINVAL;
2955 real_tty = tty;
2956 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2957 tty->driver->subtype == PTY_TYPE_MASTER)
2958 real_tty = tty->link;
2962 * Factor out some common prep work
2964 switch (cmd) {
2965 case TIOCSETD:
2966 case TIOCSBRK:
2967 case TIOCCBRK:
2968 case TCSBRK:
2969 case TCSBRKP:
2970 retval = tty_check_change(tty);
2971 if (retval)
2972 return retval;
2973 if (cmd != TIOCCBRK) {
2974 tty_wait_until_sent(tty, 0);
2975 if (signal_pending(current))
2976 return -EINTR;
2978 break;
2982 * Now do the stuff.
2984 switch (cmd) {
2985 case TIOCSTI:
2986 return tiocsti(tty, p);
2987 case TIOCGWINSZ:
2988 return tiocgwinsz(tty, p);
2989 case TIOCSWINSZ:
2990 return tiocswinsz(tty, real_tty, p);
2991 case TIOCCONS:
2992 return real_tty != tty ? -EINVAL : tioccons(file);
2993 case FIONBIO:
2994 return fionbio(file, p);
2995 case TIOCEXCL:
2996 set_bit(TTY_EXCLUSIVE, &tty->flags);
2997 return 0;
2998 case TIOCNXCL:
2999 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3000 return 0;
3001 case TIOCNOTTY:
3002 if (current->signal->tty != tty)
3003 return -ENOTTY;
3004 no_tty();
3005 return 0;
3006 case TIOCSCTTY:
3007 return tiocsctty(tty, arg);
3008 case TIOCGPGRP:
3009 return tiocgpgrp(tty, real_tty, p);
3010 case TIOCSPGRP:
3011 return tiocspgrp(tty, real_tty, p);
3012 case TIOCGSID:
3013 return tiocgsid(tty, real_tty, p);
3014 case TIOCGETD:
3015 return put_user(tty->ldisc.ops->num, (int __user *)p);
3016 case TIOCSETD:
3017 return tiocsetd(tty, p);
3018 #ifdef CONFIG_VT
3019 case TIOCLINUX:
3020 return tioclinux(tty, arg);
3021 #endif
3023 * Break handling
3025 case TIOCSBRK: /* Turn break on, unconditionally */
3026 if (tty->ops->break_ctl)
3027 return tty->ops->break_ctl(tty, -1);
3028 return 0;
3029 case TIOCCBRK: /* Turn break off, unconditionally */
3030 if (tty->ops->break_ctl)
3031 return tty->ops->break_ctl(tty, 0);
3032 return 0;
3033 case TCSBRK: /* SVID version: non-zero arg --> no break */
3034 /* non-zero arg means wait for all output data
3035 * to be sent (performed above) but don't send break.
3036 * This is used by the tcdrain() termios function.
3038 if (!arg)
3039 return send_break(tty, 250);
3040 return 0;
3041 case TCSBRKP: /* support for POSIX tcsendbreak() */
3042 return send_break(tty, arg ? arg*100 : 250);
3044 case TIOCMGET:
3045 return tty_tiocmget(tty, file, p);
3046 case TIOCMSET:
3047 case TIOCMBIC:
3048 case TIOCMBIS:
3049 return tty_tiocmset(tty, file, cmd, p);
3050 case TCFLSH:
3051 switch (arg) {
3052 case TCIFLUSH:
3053 case TCIOFLUSH:
3054 /* flush tty buffer and allow ldisc to process ioctl */
3055 tty_buffer_flush(tty);
3056 break;
3058 break;
3060 if (tty->ops->ioctl) {
3061 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
3062 if (retval != -ENOIOCTLCMD)
3063 return retval;
3065 ld = tty_ldisc_ref_wait(tty);
3066 retval = -EINVAL;
3067 if (ld->ops->ioctl) {
3068 retval = ld->ops->ioctl(tty, file, cmd, arg);
3069 if (retval == -ENOIOCTLCMD)
3070 retval = -EINVAL;
3072 tty_ldisc_deref(ld);
3073 return retval;
3076 #ifdef CONFIG_COMPAT
3077 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3078 unsigned long arg)
3080 struct inode *inode = file->f_dentry->d_inode;
3081 struct tty_struct *tty = file->private_data;
3082 struct tty_ldisc *ld;
3083 int retval = -ENOIOCTLCMD;
3085 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3086 return -EINVAL;
3088 if (tty->ops->compat_ioctl) {
3089 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
3090 if (retval != -ENOIOCTLCMD)
3091 return retval;
3094 ld = tty_ldisc_ref_wait(tty);
3095 if (ld->ops->compat_ioctl)
3096 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3097 tty_ldisc_deref(ld);
3099 return retval;
3101 #endif
3104 * This implements the "Secure Attention Key" --- the idea is to
3105 * prevent trojan horses by killing all processes associated with this
3106 * tty when the user hits the "Secure Attention Key". Required for
3107 * super-paranoid applications --- see the Orange Book for more details.
3109 * This code could be nicer; ideally it should send a HUP, wait a few
3110 * seconds, then send a INT, and then a KILL signal. But you then
3111 * have to coordinate with the init process, since all processes associated
3112 * with the current tty must be dead before the new getty is allowed
3113 * to spawn.
3115 * Now, if it would be correct ;-/ The current code has a nasty hole -
3116 * it doesn't catch files in flight. We may send the descriptor to ourselves
3117 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3119 * Nasty bug: do_SAK is being called in interrupt context. This can
3120 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3122 void __do_SAK(struct tty_struct *tty)
3124 #ifdef TTY_SOFT_SAK
3125 tty_hangup(tty);
3126 #else
3127 struct task_struct *g, *p;
3128 struct pid *session;
3129 int i;
3130 struct file *filp;
3131 struct fdtable *fdt;
3133 if (!tty)
3134 return;
3135 session = tty->session;
3137 tty_ldisc_flush(tty);
3139 tty_driver_flush_buffer(tty);
3141 read_lock(&tasklist_lock);
3142 /* Kill the entire session */
3143 do_each_pid_task(session, PIDTYPE_SID, p) {
3144 printk(KERN_NOTICE "SAK: killed process %d"
3145 " (%s): task_session_nr(p)==tty->session\n",
3146 task_pid_nr(p), p->comm);
3147 send_sig(SIGKILL, p, 1);
3148 } while_each_pid_task(session, PIDTYPE_SID, p);
3149 /* Now kill any processes that happen to have the
3150 * tty open.
3152 do_each_thread(g, p) {
3153 if (p->signal->tty == tty) {
3154 printk(KERN_NOTICE "SAK: killed process %d"
3155 " (%s): task_session_nr(p)==tty->session\n",
3156 task_pid_nr(p), p->comm);
3157 send_sig(SIGKILL, p, 1);
3158 continue;
3160 task_lock(p);
3161 if (p->files) {
3163 * We don't take a ref to the file, so we must
3164 * hold ->file_lock instead.
3166 spin_lock(&p->files->file_lock);
3167 fdt = files_fdtable(p->files);
3168 for (i = 0; i < fdt->max_fds; i++) {
3169 filp = fcheck_files(p->files, i);
3170 if (!filp)
3171 continue;
3172 if (filp->f_op->read == tty_read &&
3173 filp->private_data == tty) {
3174 printk(KERN_NOTICE "SAK: killed process %d"
3175 " (%s): fd#%d opened to the tty\n",
3176 task_pid_nr(p), p->comm, i);
3177 force_sig(SIGKILL, p);
3178 break;
3181 spin_unlock(&p->files->file_lock);
3183 task_unlock(p);
3184 } while_each_thread(g, p);
3185 read_unlock(&tasklist_lock);
3186 #endif
3189 static void do_SAK_work(struct work_struct *work)
3191 struct tty_struct *tty =
3192 container_of(work, struct tty_struct, SAK_work);
3193 __do_SAK(tty);
3197 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3198 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3199 * the values which we write to it will be identical to the values which it
3200 * already has. --akpm
3202 void do_SAK(struct tty_struct *tty)
3204 if (!tty)
3205 return;
3206 schedule_work(&tty->SAK_work);
3209 EXPORT_SYMBOL(do_SAK);
3212 * flush_to_ldisc
3213 * @work: tty structure passed from work queue.
3215 * This routine is called out of the software interrupt to flush data
3216 * from the buffer chain to the line discipline.
3218 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3219 * while invoking the line discipline receive_buf method. The
3220 * receive_buf method is single threaded for each tty instance.
3223 static void flush_to_ldisc(struct work_struct *work)
3225 struct tty_struct *tty =
3226 container_of(work, struct tty_struct, buf.work.work);
3227 unsigned long flags;
3228 struct tty_ldisc *disc;
3229 struct tty_buffer *tbuf, *head;
3230 char *char_buf;
3231 unsigned char *flag_buf;
3233 disc = tty_ldisc_ref(tty);
3234 if (disc == NULL) /* !TTY_LDISC */
3235 return;
3237 spin_lock_irqsave(&tty->buf.lock, flags);
3238 /* So we know a flush is running */
3239 set_bit(TTY_FLUSHING, &tty->flags);
3240 head = tty->buf.head;
3241 if (head != NULL) {
3242 tty->buf.head = NULL;
3243 for (;;) {
3244 int count = head->commit - head->read;
3245 if (!count) {
3246 if (head->next == NULL)
3247 break;
3248 tbuf = head;
3249 head = head->next;
3250 tty_buffer_free(tty, tbuf);
3251 continue;
3253 /* Ldisc or user is trying to flush the buffers
3254 we are feeding to the ldisc, stop feeding the
3255 line discipline as we want to empty the queue */
3256 if (test_bit(TTY_FLUSHPENDING, &tty->flags))
3257 break;
3258 if (!tty->receive_room) {
3259 schedule_delayed_work(&tty->buf.work, 1);
3260 break;
3262 if (count > tty->receive_room)
3263 count = tty->receive_room;
3264 char_buf = head->char_buf_ptr + head->read;
3265 flag_buf = head->flag_buf_ptr + head->read;
3266 head->read += count;
3267 spin_unlock_irqrestore(&tty->buf.lock, flags);
3268 disc->ops->receive_buf(tty, char_buf,
3269 flag_buf, count);
3270 spin_lock_irqsave(&tty->buf.lock, flags);
3272 /* Restore the queue head */
3273 tty->buf.head = head;
3275 /* We may have a deferred request to flush the input buffer,
3276 if so pull the chain under the lock and empty the queue */
3277 if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
3278 __tty_buffer_flush(tty);
3279 clear_bit(TTY_FLUSHPENDING, &tty->flags);
3280 wake_up(&tty->read_wait);
3282 clear_bit(TTY_FLUSHING, &tty->flags);
3283 spin_unlock_irqrestore(&tty->buf.lock, flags);
3285 tty_ldisc_deref(disc);
3289 * tty_flip_buffer_push - terminal
3290 * @tty: tty to push
3292 * Queue a push of the terminal flip buffers to the line discipline. This
3293 * function must not be called from IRQ context if tty->low_latency is set.
3295 * In the event of the queue being busy for flipping the work will be
3296 * held off and retried later.
3298 * Locking: tty buffer lock. Driver locks in low latency mode.
3301 void tty_flip_buffer_push(struct tty_struct *tty)
3303 unsigned long flags;
3304 spin_lock_irqsave(&tty->buf.lock, flags);
3305 if (tty->buf.tail != NULL)
3306 tty->buf.tail->commit = tty->buf.tail->used;
3307 spin_unlock_irqrestore(&tty->buf.lock, flags);
3309 if (tty->low_latency)
3310 flush_to_ldisc(&tty->buf.work.work);
3311 else
3312 schedule_delayed_work(&tty->buf.work, 1);
3315 EXPORT_SYMBOL(tty_flip_buffer_push);
3319 * initialize_tty_struct
3320 * @tty: tty to initialize
3322 * This subroutine initializes a tty structure that has been newly
3323 * allocated.
3325 * Locking: none - tty in question must not be exposed at this point
3328 static void initialize_tty_struct(struct tty_struct *tty)
3330 memset(tty, 0, sizeof(struct tty_struct));
3331 tty->magic = TTY_MAGIC;
3332 tty_ldisc_init(tty);
3333 tty->session = NULL;
3334 tty->pgrp = NULL;
3335 tty->overrun_time = jiffies;
3336 tty->buf.head = tty->buf.tail = NULL;
3337 tty_buffer_init(tty);
3338 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3339 mutex_init(&tty->termios_mutex);
3340 init_waitqueue_head(&tty->write_wait);
3341 init_waitqueue_head(&tty->read_wait);
3342 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3343 mutex_init(&tty->atomic_read_lock);
3344 mutex_init(&tty->atomic_write_lock);
3345 spin_lock_init(&tty->read_lock);
3346 spin_lock_init(&tty->ctrl_lock);
3347 INIT_LIST_HEAD(&tty->tty_files);
3348 INIT_WORK(&tty->SAK_work, do_SAK_work);
3352 * tty_put_char - write one character to a tty
3353 * @tty: tty
3354 * @ch: character
3356 * Write one byte to the tty using the provided put_char method
3357 * if present. Returns the number of characters successfully output.
3359 * Note: the specific put_char operation in the driver layer may go
3360 * away soon. Don't call it directly, use this method
3363 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3365 if (tty->ops->put_char)
3366 return tty->ops->put_char(tty, ch);
3367 return tty->ops->write(tty, &ch, 1);
3370 EXPORT_SYMBOL_GPL(tty_put_char);
3372 static struct class *tty_class;
3375 * tty_register_device - register a tty device
3376 * @driver: the tty driver that describes the tty device
3377 * @index: the index in the tty driver for this tty device
3378 * @device: a struct device that is associated with this tty device.
3379 * This field is optional, if there is no known struct device
3380 * for this tty device it can be set to NULL safely.
3382 * Returns a pointer to the struct device for this tty device
3383 * (or ERR_PTR(-EFOO) on error).
3385 * This call is required to be made to register an individual tty device
3386 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3387 * that bit is not set, this function should not be called by a tty
3388 * driver.
3390 * Locking: ??
3393 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3394 struct device *device)
3396 char name[64];
3397 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3399 if (index >= driver->num) {
3400 printk(KERN_ERR "Attempt to register invalid tty line number "
3401 " (%d).\n", index);
3402 return ERR_PTR(-EINVAL);
3405 if (driver->type == TTY_DRIVER_TYPE_PTY)
3406 pty_line_name(driver, index, name);
3407 else
3408 tty_line_name(driver, index, name);
3410 return device_create_drvdata(tty_class, device, dev, NULL, name);
3414 * tty_unregister_device - unregister a tty device
3415 * @driver: the tty driver that describes the tty device
3416 * @index: the index in the tty driver for this tty device
3418 * If a tty device is registered with a call to tty_register_device() then
3419 * this function must be called when the tty device is gone.
3421 * Locking: ??
3424 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3426 device_destroy(tty_class,
3427 MKDEV(driver->major, driver->minor_start) + index);
3430 EXPORT_SYMBOL(tty_register_device);
3431 EXPORT_SYMBOL(tty_unregister_device);
3433 struct tty_driver *alloc_tty_driver(int lines)
3435 struct tty_driver *driver;
3437 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3438 if (driver) {
3439 driver->magic = TTY_DRIVER_MAGIC;
3440 driver->num = lines;
3441 /* later we'll move allocation of tables here */
3443 return driver;
3446 void put_tty_driver(struct tty_driver *driver)
3448 kfree(driver);
3451 void tty_set_operations(struct tty_driver *driver,
3452 const struct tty_operations *op)
3454 driver->ops = op;
3457 EXPORT_SYMBOL(alloc_tty_driver);
3458 EXPORT_SYMBOL(put_tty_driver);
3459 EXPORT_SYMBOL(tty_set_operations);
3462 * Called by a tty driver to register itself.
3464 int tty_register_driver(struct tty_driver *driver)
3466 int error;
3467 int i;
3468 dev_t dev;
3469 void **p = NULL;
3471 if (driver->flags & TTY_DRIVER_INSTALLED)
3472 return 0;
3474 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3475 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3476 if (!p)
3477 return -ENOMEM;
3480 if (!driver->major) {
3481 error = alloc_chrdev_region(&dev, driver->minor_start,
3482 driver->num, driver->name);
3483 if (!error) {
3484 driver->major = MAJOR(dev);
3485 driver->minor_start = MINOR(dev);
3487 } else {
3488 dev = MKDEV(driver->major, driver->minor_start);
3489 error = register_chrdev_region(dev, driver->num, driver->name);
3491 if (error < 0) {
3492 kfree(p);
3493 return error;
3496 if (p) {
3497 driver->ttys = (struct tty_struct **)p;
3498 driver->termios = (struct ktermios **)(p + driver->num);
3499 driver->termios_locked = (struct ktermios **)
3500 (p + driver->num * 2);
3501 } else {
3502 driver->ttys = NULL;
3503 driver->termios = NULL;
3504 driver->termios_locked = NULL;
3507 cdev_init(&driver->cdev, &tty_fops);
3508 driver->cdev.owner = driver->owner;
3509 error = cdev_add(&driver->cdev, dev, driver->num);
3510 if (error) {
3511 unregister_chrdev_region(dev, driver->num);
3512 driver->ttys = NULL;
3513 driver->termios = driver->termios_locked = NULL;
3514 kfree(p);
3515 return error;
3518 mutex_lock(&tty_mutex);
3519 list_add(&driver->tty_drivers, &tty_drivers);
3520 mutex_unlock(&tty_mutex);
3522 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3523 for (i = 0; i < driver->num; i++)
3524 tty_register_device(driver, i, NULL);
3526 proc_tty_register_driver(driver);
3527 return 0;
3530 EXPORT_SYMBOL(tty_register_driver);
3533 * Called by a tty driver to unregister itself.
3535 int tty_unregister_driver(struct tty_driver *driver)
3537 int i;
3538 struct ktermios *tp;
3539 void *p;
3541 if (driver->refcount)
3542 return -EBUSY;
3544 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3545 driver->num);
3546 mutex_lock(&tty_mutex);
3547 list_del(&driver->tty_drivers);
3548 mutex_unlock(&tty_mutex);
3551 * Free the termios and termios_locked structures because
3552 * we don't want to get memory leaks when modular tty
3553 * drivers are removed from the kernel.
3555 for (i = 0; i < driver->num; i++) {
3556 tp = driver->termios[i];
3557 if (tp) {
3558 driver->termios[i] = NULL;
3559 kfree(tp);
3561 tp = driver->termios_locked[i];
3562 if (tp) {
3563 driver->termios_locked[i] = NULL;
3564 kfree(tp);
3566 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3567 tty_unregister_device(driver, i);
3569 p = driver->ttys;
3570 proc_tty_unregister_driver(driver);
3571 driver->ttys = NULL;
3572 driver->termios = driver->termios_locked = NULL;
3573 kfree(p);
3574 cdev_del(&driver->cdev);
3575 return 0;
3577 EXPORT_SYMBOL(tty_unregister_driver);
3579 dev_t tty_devnum(struct tty_struct *tty)
3581 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3583 EXPORT_SYMBOL(tty_devnum);
3585 void proc_clear_tty(struct task_struct *p)
3587 spin_lock_irq(&p->sighand->siglock);
3588 p->signal->tty = NULL;
3589 spin_unlock_irq(&p->sighand->siglock);
3592 /* Called under the sighand lock */
3594 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3596 if (tty) {
3597 unsigned long flags;
3598 /* We should not have a session or pgrp to put here but.... */
3599 spin_lock_irqsave(&tty->ctrl_lock, flags);
3600 put_pid(tty->session);
3601 put_pid(tty->pgrp);
3602 tty->pgrp = get_pid(task_pgrp(tsk));
3603 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3604 tty->session = get_pid(task_session(tsk));
3606 put_pid(tsk->signal->tty_old_pgrp);
3607 tsk->signal->tty = tty;
3608 tsk->signal->tty_old_pgrp = NULL;
3611 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3613 spin_lock_irq(&tsk->sighand->siglock);
3614 __proc_set_tty(tsk, tty);
3615 spin_unlock_irq(&tsk->sighand->siglock);
3618 struct tty_struct *get_current_tty(void)
3620 struct tty_struct *tty;
3621 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3622 tty = current->signal->tty;
3624 * session->tty can be changed/cleared from under us, make sure we
3625 * issue the load. The obtained pointer, when not NULL, is valid as
3626 * long as we hold tty_mutex.
3628 barrier();
3629 return tty;
3631 EXPORT_SYMBOL_GPL(get_current_tty);
3634 * Initialize the console device. This is called *early*, so
3635 * we can't necessarily depend on lots of kernel help here.
3636 * Just do some early initializations, and do the complex setup
3637 * later.
3639 void __init console_init(void)
3641 initcall_t *call;
3643 /* Setup the default TTY line discipline. */
3644 tty_ldisc_begin();
3647 * set up the console device so that later boot sequences can
3648 * inform about problems etc..
3650 call = __con_initcall_start;
3651 while (call < __con_initcall_end) {
3652 (*call)();
3653 call++;
3657 static int __init tty_class_init(void)
3659 tty_class = class_create(THIS_MODULE, "tty");
3660 if (IS_ERR(tty_class))
3661 return PTR_ERR(tty_class);
3662 return 0;
3665 postcore_initcall(tty_class_init);
3667 /* 3/2004 jmc: why do these devices exist? */
3669 static struct cdev tty_cdev, console_cdev;
3670 #ifdef CONFIG_UNIX98_PTYS
3671 static struct cdev ptmx_cdev;
3672 #endif
3673 #ifdef CONFIG_VT
3674 static struct cdev vc0_cdev;
3675 #endif
3678 * Ok, now we can initialize the rest of the tty devices and can count
3679 * on memory allocations, interrupts etc..
3681 static int __init tty_init(void)
3683 cdev_init(&tty_cdev, &tty_fops);
3684 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3685 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3686 panic("Couldn't register /dev/tty driver\n");
3687 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3688 "tty");
3690 cdev_init(&console_cdev, &console_fops);
3691 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3692 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3693 panic("Couldn't register /dev/console driver\n");
3694 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3695 "console");
3697 #ifdef CONFIG_UNIX98_PTYS
3698 cdev_init(&ptmx_cdev, &ptmx_fops);
3699 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3700 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3701 panic("Couldn't register /dev/ptmx driver\n");
3702 device_create_drvdata(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), NULL, "ptmx");
3703 #endif
3705 #ifdef CONFIG_VT
3706 cdev_init(&vc0_cdev, &console_fops);
3707 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3708 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3709 panic("Couldn't register /dev/tty0 driver\n");
3710 device_create_drvdata(tty_class, NULL, MKDEV(TTY_MAJOR, 0), NULL, "tty0");
3712 vty_init();
3713 #endif
3714 return 0;
3716 module_init(tty_init);