mm: fix missing page table unmap for stack guard page failure case
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blob53cbace918114691b5bfa0fff6357513bca4d602
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
118 void __remove_from_page_cache(struct page *page)
120 struct address_space *mapping = page->mapping;
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
128 BUG_ON(page_mapped(page));
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
143 void remove_from_page_cache(struct page *page)
145 struct address_space *mapping = page->mapping;
147 BUG_ON(!PageLocked(page));
149 spin_lock_irq(&mapping->tree_lock);
150 __remove_from_page_cache(page);
151 spin_unlock_irq(&mapping->tree_lock);
152 mem_cgroup_uncharge_cache_page(page);
155 static int sync_page(void *word)
157 struct address_space *mapping;
158 struct page *page;
160 page = container_of((unsigned long *)word, struct page, flags);
163 * page_mapping() is being called without PG_locked held.
164 * Some knowledge of the state and use of the page is used to
165 * reduce the requirements down to a memory barrier.
166 * The danger here is of a stale page_mapping() return value
167 * indicating a struct address_space different from the one it's
168 * associated with when it is associated with one.
169 * After smp_mb(), it's either the correct page_mapping() for
170 * the page, or an old page_mapping() and the page's own
171 * page_mapping() has gone NULL.
172 * The ->sync_page() address_space operation must tolerate
173 * page_mapping() going NULL. By an amazing coincidence,
174 * this comes about because none of the users of the page
175 * in the ->sync_page() methods make essential use of the
176 * page_mapping(), merely passing the page down to the backing
177 * device's unplug functions when it's non-NULL, which in turn
178 * ignore it for all cases but swap, where only page_private(page) is
179 * of interest. When page_mapping() does go NULL, the entire
180 * call stack gracefully ignores the page and returns.
181 * -- wli
183 smp_mb();
184 mapping = page_mapping(page);
185 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 mapping->a_ops->sync_page(page);
187 io_schedule();
188 return 0;
191 static int sync_page_killable(void *word)
193 sync_page(word);
194 return fatal_signal_pending(current) ? -EINTR : 0;
198 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199 * @mapping: address space structure to write
200 * @start: offset in bytes where the range starts
201 * @end: offset in bytes where the range ends (inclusive)
202 * @sync_mode: enable synchronous operation
204 * Start writeback against all of a mapping's dirty pages that lie
205 * within the byte offsets <start, end> inclusive.
207 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208 * opposed to a regular memory cleansing writeback. The difference between
209 * these two operations is that if a dirty page/buffer is encountered, it must
210 * be waited upon, and not just skipped over.
212 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213 loff_t end, int sync_mode)
215 int ret;
216 struct writeback_control wbc = {
217 .sync_mode = sync_mode,
218 .nr_to_write = LONG_MAX,
219 .range_start = start,
220 .range_end = end,
223 if (!mapping_cap_writeback_dirty(mapping))
224 return 0;
226 ret = do_writepages(mapping, &wbc);
227 return ret;
230 static inline int __filemap_fdatawrite(struct address_space *mapping,
231 int sync_mode)
233 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
236 int filemap_fdatawrite(struct address_space *mapping)
238 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 EXPORT_SYMBOL(filemap_fdatawrite);
242 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243 loff_t end)
245 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 EXPORT_SYMBOL(filemap_fdatawrite_range);
250 * filemap_flush - mostly a non-blocking flush
251 * @mapping: target address_space
253 * This is a mostly non-blocking flush. Not suitable for data-integrity
254 * purposes - I/O may not be started against all dirty pages.
256 int filemap_flush(struct address_space *mapping)
258 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 EXPORT_SYMBOL(filemap_flush);
263 * filemap_fdatawait_range - wait for writeback to complete
264 * @mapping: address space structure to wait for
265 * @start_byte: offset in bytes where the range starts
266 * @end_byte: offset in bytes where the range ends (inclusive)
268 * Walk the list of under-writeback pages of the given address space
269 * in the given range and wait for all of them.
271 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
272 loff_t end_byte)
274 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
275 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
276 struct pagevec pvec;
277 int nr_pages;
278 int ret = 0;
280 if (end_byte < start_byte)
281 return 0;
283 pagevec_init(&pvec, 0);
284 while ((index <= end) &&
285 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286 PAGECACHE_TAG_WRITEBACK,
287 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288 unsigned i;
290 for (i = 0; i < nr_pages; i++) {
291 struct page *page = pvec.pages[i];
293 /* until radix tree lookup accepts end_index */
294 if (page->index > end)
295 continue;
297 wait_on_page_writeback(page);
298 if (PageError(page))
299 ret = -EIO;
301 pagevec_release(&pvec);
302 cond_resched();
305 /* Check for outstanding write errors */
306 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 ret = -ENOSPC;
308 if (test_and_clear_bit(AS_EIO, &mapping->flags))
309 ret = -EIO;
311 return ret;
313 EXPORT_SYMBOL(filemap_fdatawait_range);
316 * filemap_fdatawait - wait for all under-writeback pages to complete
317 * @mapping: address space structure to wait for
319 * Walk the list of under-writeback pages of the given address space
320 * and wait for all of them.
322 int filemap_fdatawait(struct address_space *mapping)
324 loff_t i_size = i_size_read(mapping->host);
326 if (i_size == 0)
327 return 0;
329 return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 EXPORT_SYMBOL(filemap_fdatawait);
333 int filemap_write_and_wait(struct address_space *mapping)
335 int err = 0;
337 if (mapping->nrpages) {
338 err = filemap_fdatawrite(mapping);
340 * Even if the above returned error, the pages may be
341 * written partially (e.g. -ENOSPC), so we wait for it.
342 * But the -EIO is special case, it may indicate the worst
343 * thing (e.g. bug) happened, so we avoid waiting for it.
345 if (err != -EIO) {
346 int err2 = filemap_fdatawait(mapping);
347 if (!err)
348 err = err2;
351 return err;
353 EXPORT_SYMBOL(filemap_write_and_wait);
356 * filemap_write_and_wait_range - write out & wait on a file range
357 * @mapping: the address_space for the pages
358 * @lstart: offset in bytes where the range starts
359 * @lend: offset in bytes where the range ends (inclusive)
361 * Write out and wait upon file offsets lstart->lend, inclusive.
363 * Note that `lend' is inclusive (describes the last byte to be written) so
364 * that this function can be used to write to the very end-of-file (end = -1).
366 int filemap_write_and_wait_range(struct address_space *mapping,
367 loff_t lstart, loff_t lend)
369 int err = 0;
371 if (mapping->nrpages) {
372 err = __filemap_fdatawrite_range(mapping, lstart, lend,
373 WB_SYNC_ALL);
374 /* See comment of filemap_write_and_wait() */
375 if (err != -EIO) {
376 int err2 = filemap_fdatawait_range(mapping,
377 lstart, lend);
378 if (!err)
379 err = err2;
382 return err;
384 EXPORT_SYMBOL(filemap_write_and_wait_range);
387 * add_to_page_cache_locked - add a locked page to the pagecache
388 * @page: page to add
389 * @mapping: the page's address_space
390 * @offset: page index
391 * @gfp_mask: page allocation mode
393 * This function is used to add a page to the pagecache. It must be locked.
394 * This function does not add the page to the LRU. The caller must do that.
396 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
397 pgoff_t offset, gfp_t gfp_mask)
399 int error;
401 VM_BUG_ON(!PageLocked(page));
403 error = mem_cgroup_cache_charge(page, current->mm,
404 gfp_mask & GFP_RECLAIM_MASK);
405 if (error)
406 goto out;
408 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
409 if (error == 0) {
410 page_cache_get(page);
411 page->mapping = mapping;
412 page->index = offset;
414 spin_lock_irq(&mapping->tree_lock);
415 error = radix_tree_insert(&mapping->page_tree, offset, page);
416 if (likely(!error)) {
417 mapping->nrpages++;
418 __inc_zone_page_state(page, NR_FILE_PAGES);
419 if (PageSwapBacked(page))
420 __inc_zone_page_state(page, NR_SHMEM);
421 spin_unlock_irq(&mapping->tree_lock);
422 } else {
423 page->mapping = NULL;
424 spin_unlock_irq(&mapping->tree_lock);
425 mem_cgroup_uncharge_cache_page(page);
426 page_cache_release(page);
428 radix_tree_preload_end();
429 } else
430 mem_cgroup_uncharge_cache_page(page);
431 out:
432 return error;
434 EXPORT_SYMBOL(add_to_page_cache_locked);
436 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
437 pgoff_t offset, gfp_t gfp_mask)
439 int ret;
442 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443 * before shmem_readpage has a chance to mark them as SwapBacked: they
444 * need to go on the anon lru below, and mem_cgroup_cache_charge
445 * (called in add_to_page_cache) needs to know where they're going too.
447 if (mapping_cap_swap_backed(mapping))
448 SetPageSwapBacked(page);
450 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
451 if (ret == 0) {
452 if (page_is_file_cache(page))
453 lru_cache_add_file(page);
454 else
455 lru_cache_add_anon(page);
457 return ret;
459 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461 #ifdef CONFIG_NUMA
462 struct page *__page_cache_alloc(gfp_t gfp)
464 if (cpuset_do_page_mem_spread()) {
465 int n = cpuset_mem_spread_node();
466 return alloc_pages_exact_node(n, gfp, 0);
468 return alloc_pages(gfp, 0);
470 EXPORT_SYMBOL(__page_cache_alloc);
471 #endif
473 static int __sleep_on_page_lock(void *word)
475 io_schedule();
476 return 0;
480 * In order to wait for pages to become available there must be
481 * waitqueues associated with pages. By using a hash table of
482 * waitqueues where the bucket discipline is to maintain all
483 * waiters on the same queue and wake all when any of the pages
484 * become available, and for the woken contexts to check to be
485 * sure the appropriate page became available, this saves space
486 * at a cost of "thundering herd" phenomena during rare hash
487 * collisions.
489 static wait_queue_head_t *page_waitqueue(struct page *page)
491 const struct zone *zone = page_zone(page);
493 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
496 static inline void wake_up_page(struct page *page, int bit)
498 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
501 void wait_on_page_bit(struct page *page, int bit_nr)
503 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
505 if (test_bit(bit_nr, &page->flags))
506 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
507 TASK_UNINTERRUPTIBLE);
509 EXPORT_SYMBOL(wait_on_page_bit);
512 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
513 * @page: Page defining the wait queue of interest
514 * @waiter: Waiter to add to the queue
516 * Add an arbitrary @waiter to the wait queue for the nominated @page.
518 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
520 wait_queue_head_t *q = page_waitqueue(page);
521 unsigned long flags;
523 spin_lock_irqsave(&q->lock, flags);
524 __add_wait_queue(q, waiter);
525 spin_unlock_irqrestore(&q->lock, flags);
527 EXPORT_SYMBOL_GPL(add_page_wait_queue);
530 * unlock_page - unlock a locked page
531 * @page: the page
533 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
534 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
535 * mechananism between PageLocked pages and PageWriteback pages is shared.
536 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
538 * The mb is necessary to enforce ordering between the clear_bit and the read
539 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
541 void unlock_page(struct page *page)
543 VM_BUG_ON(!PageLocked(page));
544 clear_bit_unlock(PG_locked, &page->flags);
545 smp_mb__after_clear_bit();
546 wake_up_page(page, PG_locked);
548 EXPORT_SYMBOL(unlock_page);
551 * end_page_writeback - end writeback against a page
552 * @page: the page
554 void end_page_writeback(struct page *page)
556 if (TestClearPageReclaim(page))
557 rotate_reclaimable_page(page);
559 if (!test_clear_page_writeback(page))
560 BUG();
562 smp_mb__after_clear_bit();
563 wake_up_page(page, PG_writeback);
565 EXPORT_SYMBOL(end_page_writeback);
568 * __lock_page - get a lock on the page, assuming we need to sleep to get it
569 * @page: the page to lock
571 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
572 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
573 * chances are that on the second loop, the block layer's plug list is empty,
574 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
576 void __lock_page(struct page *page)
578 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
580 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
581 TASK_UNINTERRUPTIBLE);
583 EXPORT_SYMBOL(__lock_page);
585 int __lock_page_killable(struct page *page)
587 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
589 return __wait_on_bit_lock(page_waitqueue(page), &wait,
590 sync_page_killable, TASK_KILLABLE);
592 EXPORT_SYMBOL_GPL(__lock_page_killable);
595 * __lock_page_nosync - get a lock on the page, without calling sync_page()
596 * @page: the page to lock
598 * Variant of lock_page that does not require the caller to hold a reference
599 * on the page's mapping.
601 void __lock_page_nosync(struct page *page)
603 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
604 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
605 TASK_UNINTERRUPTIBLE);
609 * find_get_page - find and get a page reference
610 * @mapping: the address_space to search
611 * @offset: the page index
613 * Is there a pagecache struct page at the given (mapping, offset) tuple?
614 * If yes, increment its refcount and return it; if no, return NULL.
616 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
618 void **pagep;
619 struct page *page;
621 rcu_read_lock();
622 repeat:
623 page = NULL;
624 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
625 if (pagep) {
626 page = radix_tree_deref_slot(pagep);
627 if (unlikely(!page || page == RADIX_TREE_RETRY))
628 goto repeat;
630 if (!page_cache_get_speculative(page))
631 goto repeat;
634 * Has the page moved?
635 * This is part of the lockless pagecache protocol. See
636 * include/linux/pagemap.h for details.
638 if (unlikely(page != *pagep)) {
639 page_cache_release(page);
640 goto repeat;
643 rcu_read_unlock();
645 return page;
647 EXPORT_SYMBOL(find_get_page);
650 * find_lock_page - locate, pin and lock a pagecache page
651 * @mapping: the address_space to search
652 * @offset: the page index
654 * Locates the desired pagecache page, locks it, increments its reference
655 * count and returns its address.
657 * Returns zero if the page was not present. find_lock_page() may sleep.
659 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
661 struct page *page;
663 repeat:
664 page = find_get_page(mapping, offset);
665 if (page) {
666 lock_page(page);
667 /* Has the page been truncated? */
668 if (unlikely(page->mapping != mapping)) {
669 unlock_page(page);
670 page_cache_release(page);
671 goto repeat;
673 VM_BUG_ON(page->index != offset);
675 return page;
677 EXPORT_SYMBOL(find_lock_page);
680 * find_or_create_page - locate or add a pagecache page
681 * @mapping: the page's address_space
682 * @index: the page's index into the mapping
683 * @gfp_mask: page allocation mode
685 * Locates a page in the pagecache. If the page is not present, a new page
686 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
687 * LRU list. The returned page is locked and has its reference count
688 * incremented.
690 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
691 * allocation!
693 * find_or_create_page() returns the desired page's address, or zero on
694 * memory exhaustion.
696 struct page *find_or_create_page(struct address_space *mapping,
697 pgoff_t index, gfp_t gfp_mask)
699 struct page *page;
700 int err;
701 repeat:
702 page = find_lock_page(mapping, index);
703 if (!page) {
704 page = __page_cache_alloc(gfp_mask);
705 if (!page)
706 return NULL;
708 * We want a regular kernel memory (not highmem or DMA etc)
709 * allocation for the radix tree nodes, but we need to honour
710 * the context-specific requirements the caller has asked for.
711 * GFP_RECLAIM_MASK collects those requirements.
713 err = add_to_page_cache_lru(page, mapping, index,
714 (gfp_mask & GFP_RECLAIM_MASK));
715 if (unlikely(err)) {
716 page_cache_release(page);
717 page = NULL;
718 if (err == -EEXIST)
719 goto repeat;
722 return page;
724 EXPORT_SYMBOL(find_or_create_page);
727 * find_get_pages - gang pagecache lookup
728 * @mapping: The address_space to search
729 * @start: The starting page index
730 * @nr_pages: The maximum number of pages
731 * @pages: Where the resulting pages are placed
733 * find_get_pages() will search for and return a group of up to
734 * @nr_pages pages in the mapping. The pages are placed at @pages.
735 * find_get_pages() takes a reference against the returned pages.
737 * The search returns a group of mapping-contiguous pages with ascending
738 * indexes. There may be holes in the indices due to not-present pages.
740 * find_get_pages() returns the number of pages which were found.
742 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
743 unsigned int nr_pages, struct page **pages)
745 unsigned int i;
746 unsigned int ret;
747 unsigned int nr_found;
749 rcu_read_lock();
750 restart:
751 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
752 (void ***)pages, start, nr_pages);
753 ret = 0;
754 for (i = 0; i < nr_found; i++) {
755 struct page *page;
756 repeat:
757 page = radix_tree_deref_slot((void **)pages[i]);
758 if (unlikely(!page))
759 continue;
761 * this can only trigger if nr_found == 1, making livelock
762 * a non issue.
764 if (unlikely(page == RADIX_TREE_RETRY))
765 goto restart;
767 if (!page_cache_get_speculative(page))
768 goto repeat;
770 /* Has the page moved? */
771 if (unlikely(page != *((void **)pages[i]))) {
772 page_cache_release(page);
773 goto repeat;
776 pages[ret] = page;
777 ret++;
779 rcu_read_unlock();
780 return ret;
784 * find_get_pages_contig - gang contiguous pagecache lookup
785 * @mapping: The address_space to search
786 * @index: The starting page index
787 * @nr_pages: The maximum number of pages
788 * @pages: Where the resulting pages are placed
790 * find_get_pages_contig() works exactly like find_get_pages(), except
791 * that the returned number of pages are guaranteed to be contiguous.
793 * find_get_pages_contig() returns the number of pages which were found.
795 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
796 unsigned int nr_pages, struct page **pages)
798 unsigned int i;
799 unsigned int ret;
800 unsigned int nr_found;
802 rcu_read_lock();
803 restart:
804 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
805 (void ***)pages, index, nr_pages);
806 ret = 0;
807 for (i = 0; i < nr_found; i++) {
808 struct page *page;
809 repeat:
810 page = radix_tree_deref_slot((void **)pages[i]);
811 if (unlikely(!page))
812 continue;
814 * this can only trigger if nr_found == 1, making livelock
815 * a non issue.
817 if (unlikely(page == RADIX_TREE_RETRY))
818 goto restart;
820 if (page->mapping == NULL || page->index != index)
821 break;
823 if (!page_cache_get_speculative(page))
824 goto repeat;
826 /* Has the page moved? */
827 if (unlikely(page != *((void **)pages[i]))) {
828 page_cache_release(page);
829 goto repeat;
832 pages[ret] = page;
833 ret++;
834 index++;
836 rcu_read_unlock();
837 return ret;
839 EXPORT_SYMBOL(find_get_pages_contig);
842 * find_get_pages_tag - find and return pages that match @tag
843 * @mapping: the address_space to search
844 * @index: the starting page index
845 * @tag: the tag index
846 * @nr_pages: the maximum number of pages
847 * @pages: where the resulting pages are placed
849 * Like find_get_pages, except we only return pages which are tagged with
850 * @tag. We update @index to index the next page for the traversal.
852 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
853 int tag, unsigned int nr_pages, struct page **pages)
855 unsigned int i;
856 unsigned int ret;
857 unsigned int nr_found;
859 rcu_read_lock();
860 restart:
861 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
862 (void ***)pages, *index, nr_pages, tag);
863 ret = 0;
864 for (i = 0; i < nr_found; i++) {
865 struct page *page;
866 repeat:
867 page = radix_tree_deref_slot((void **)pages[i]);
868 if (unlikely(!page))
869 continue;
871 * this can only trigger if nr_found == 1, making livelock
872 * a non issue.
874 if (unlikely(page == RADIX_TREE_RETRY))
875 goto restart;
877 if (!page_cache_get_speculative(page))
878 goto repeat;
880 /* Has the page moved? */
881 if (unlikely(page != *((void **)pages[i]))) {
882 page_cache_release(page);
883 goto repeat;
886 pages[ret] = page;
887 ret++;
889 rcu_read_unlock();
891 if (ret)
892 *index = pages[ret - 1]->index + 1;
894 return ret;
896 EXPORT_SYMBOL(find_get_pages_tag);
899 * grab_cache_page_nowait - returns locked page at given index in given cache
900 * @mapping: target address_space
901 * @index: the page index
903 * Same as grab_cache_page(), but do not wait if the page is unavailable.
904 * This is intended for speculative data generators, where the data can
905 * be regenerated if the page couldn't be grabbed. This routine should
906 * be safe to call while holding the lock for another page.
908 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
909 * and deadlock against the caller's locked page.
911 struct page *
912 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
914 struct page *page = find_get_page(mapping, index);
916 if (page) {
917 if (trylock_page(page))
918 return page;
919 page_cache_release(page);
920 return NULL;
922 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
923 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
924 page_cache_release(page);
925 page = NULL;
927 return page;
929 EXPORT_SYMBOL(grab_cache_page_nowait);
932 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
933 * a _large_ part of the i/o request. Imagine the worst scenario:
935 * ---R__________________________________________B__________
936 * ^ reading here ^ bad block(assume 4k)
938 * read(R) => miss => readahead(R...B) => media error => frustrating retries
939 * => failing the whole request => read(R) => read(R+1) =>
940 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
941 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
942 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
944 * It is going insane. Fix it by quickly scaling down the readahead size.
946 static void shrink_readahead_size_eio(struct file *filp,
947 struct file_ra_state *ra)
949 ra->ra_pages /= 4;
953 * do_generic_file_read - generic file read routine
954 * @filp: the file to read
955 * @ppos: current file position
956 * @desc: read_descriptor
957 * @actor: read method
959 * This is a generic file read routine, and uses the
960 * mapping->a_ops->readpage() function for the actual low-level stuff.
962 * This is really ugly. But the goto's actually try to clarify some
963 * of the logic when it comes to error handling etc.
965 static void do_generic_file_read(struct file *filp, loff_t *ppos,
966 read_descriptor_t *desc, read_actor_t actor)
968 struct address_space *mapping = filp->f_mapping;
969 struct inode *inode = mapping->host;
970 struct file_ra_state *ra = &filp->f_ra;
971 pgoff_t index;
972 pgoff_t last_index;
973 pgoff_t prev_index;
974 unsigned long offset; /* offset into pagecache page */
975 unsigned int prev_offset;
976 int error;
978 index = *ppos >> PAGE_CACHE_SHIFT;
979 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
980 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
981 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
982 offset = *ppos & ~PAGE_CACHE_MASK;
984 for (;;) {
985 struct page *page;
986 pgoff_t end_index;
987 loff_t isize;
988 unsigned long nr, ret;
990 cond_resched();
991 find_page:
992 page = find_get_page(mapping, index);
993 if (!page) {
994 page_cache_sync_readahead(mapping,
995 ra, filp,
996 index, last_index - index);
997 page = find_get_page(mapping, index);
998 if (unlikely(page == NULL))
999 goto no_cached_page;
1001 if (PageReadahead(page)) {
1002 page_cache_async_readahead(mapping,
1003 ra, filp, page,
1004 index, last_index - index);
1006 if (!PageUptodate(page)) {
1007 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1008 !mapping->a_ops->is_partially_uptodate)
1009 goto page_not_up_to_date;
1010 if (!trylock_page(page))
1011 goto page_not_up_to_date;
1012 /* Did it get truncated before we got the lock? */
1013 if (!page->mapping)
1014 goto page_not_up_to_date_locked;
1015 if (!mapping->a_ops->is_partially_uptodate(page,
1016 desc, offset))
1017 goto page_not_up_to_date_locked;
1018 unlock_page(page);
1020 page_ok:
1022 * i_size must be checked after we know the page is Uptodate.
1024 * Checking i_size after the check allows us to calculate
1025 * the correct value for "nr", which means the zero-filled
1026 * part of the page is not copied back to userspace (unless
1027 * another truncate extends the file - this is desired though).
1030 isize = i_size_read(inode);
1031 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1032 if (unlikely(!isize || index > end_index)) {
1033 page_cache_release(page);
1034 goto out;
1037 /* nr is the maximum number of bytes to copy from this page */
1038 nr = PAGE_CACHE_SIZE;
1039 if (index == end_index) {
1040 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1041 if (nr <= offset) {
1042 page_cache_release(page);
1043 goto out;
1046 nr = nr - offset;
1048 /* If users can be writing to this page using arbitrary
1049 * virtual addresses, take care about potential aliasing
1050 * before reading the page on the kernel side.
1052 if (mapping_writably_mapped(mapping))
1053 flush_dcache_page(page);
1056 * When a sequential read accesses a page several times,
1057 * only mark it as accessed the first time.
1059 if (prev_index != index || offset != prev_offset)
1060 mark_page_accessed(page);
1061 prev_index = index;
1064 * Ok, we have the page, and it's up-to-date, so
1065 * now we can copy it to user space...
1067 * The actor routine returns how many bytes were actually used..
1068 * NOTE! This may not be the same as how much of a user buffer
1069 * we filled up (we may be padding etc), so we can only update
1070 * "pos" here (the actor routine has to update the user buffer
1071 * pointers and the remaining count).
1073 ret = actor(desc, page, offset, nr);
1074 offset += ret;
1075 index += offset >> PAGE_CACHE_SHIFT;
1076 offset &= ~PAGE_CACHE_MASK;
1077 prev_offset = offset;
1079 page_cache_release(page);
1080 if (ret == nr && desc->count)
1081 continue;
1082 goto out;
1084 page_not_up_to_date:
1085 /* Get exclusive access to the page ... */
1086 error = lock_page_killable(page);
1087 if (unlikely(error))
1088 goto readpage_error;
1090 page_not_up_to_date_locked:
1091 /* Did it get truncated before we got the lock? */
1092 if (!page->mapping) {
1093 unlock_page(page);
1094 page_cache_release(page);
1095 continue;
1098 /* Did somebody else fill it already? */
1099 if (PageUptodate(page)) {
1100 unlock_page(page);
1101 goto page_ok;
1104 readpage:
1106 * A previous I/O error may have been due to temporary
1107 * failures, eg. multipath errors.
1108 * PG_error will be set again if readpage fails.
1110 ClearPageError(page);
1111 /* Start the actual read. The read will unlock the page. */
1112 error = mapping->a_ops->readpage(filp, page);
1114 if (unlikely(error)) {
1115 if (error == AOP_TRUNCATED_PAGE) {
1116 page_cache_release(page);
1117 goto find_page;
1119 goto readpage_error;
1122 if (!PageUptodate(page)) {
1123 error = lock_page_killable(page);
1124 if (unlikely(error))
1125 goto readpage_error;
1126 if (!PageUptodate(page)) {
1127 if (page->mapping == NULL) {
1129 * invalidate_inode_pages got it
1131 unlock_page(page);
1132 page_cache_release(page);
1133 goto find_page;
1135 unlock_page(page);
1136 shrink_readahead_size_eio(filp, ra);
1137 error = -EIO;
1138 goto readpage_error;
1140 unlock_page(page);
1143 goto page_ok;
1145 readpage_error:
1146 /* UHHUH! A synchronous read error occurred. Report it */
1147 desc->error = error;
1148 page_cache_release(page);
1149 goto out;
1151 no_cached_page:
1153 * Ok, it wasn't cached, so we need to create a new
1154 * page..
1156 page = page_cache_alloc_cold(mapping);
1157 if (!page) {
1158 desc->error = -ENOMEM;
1159 goto out;
1161 error = add_to_page_cache_lru(page, mapping,
1162 index, GFP_KERNEL);
1163 if (error) {
1164 page_cache_release(page);
1165 if (error == -EEXIST)
1166 goto find_page;
1167 desc->error = error;
1168 goto out;
1170 goto readpage;
1173 out:
1174 ra->prev_pos = prev_index;
1175 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1176 ra->prev_pos |= prev_offset;
1178 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1179 file_accessed(filp);
1182 int file_read_actor(read_descriptor_t *desc, struct page *page,
1183 unsigned long offset, unsigned long size)
1185 char *kaddr;
1186 unsigned long left, count = desc->count;
1188 if (size > count)
1189 size = count;
1192 * Faults on the destination of a read are common, so do it before
1193 * taking the kmap.
1195 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1196 kaddr = kmap_atomic(page, KM_USER0);
1197 left = __copy_to_user_inatomic(desc->arg.buf,
1198 kaddr + offset, size);
1199 kunmap_atomic(kaddr, KM_USER0);
1200 if (left == 0)
1201 goto success;
1204 /* Do it the slow way */
1205 kaddr = kmap(page);
1206 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1207 kunmap(page);
1209 if (left) {
1210 size -= left;
1211 desc->error = -EFAULT;
1213 success:
1214 desc->count = count - size;
1215 desc->written += size;
1216 desc->arg.buf += size;
1217 return size;
1221 * Performs necessary checks before doing a write
1222 * @iov: io vector request
1223 * @nr_segs: number of segments in the iovec
1224 * @count: number of bytes to write
1225 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1227 * Adjust number of segments and amount of bytes to write (nr_segs should be
1228 * properly initialized first). Returns appropriate error code that caller
1229 * should return or zero in case that write should be allowed.
1231 int generic_segment_checks(const struct iovec *iov,
1232 unsigned long *nr_segs, size_t *count, int access_flags)
1234 unsigned long seg;
1235 size_t cnt = 0;
1236 for (seg = 0; seg < *nr_segs; seg++) {
1237 const struct iovec *iv = &iov[seg];
1240 * If any segment has a negative length, or the cumulative
1241 * length ever wraps negative then return -EINVAL.
1243 cnt += iv->iov_len;
1244 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1245 return -EINVAL;
1246 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1247 continue;
1248 if (seg == 0)
1249 return -EFAULT;
1250 *nr_segs = seg;
1251 cnt -= iv->iov_len; /* This segment is no good */
1252 break;
1254 *count = cnt;
1255 return 0;
1257 EXPORT_SYMBOL(generic_segment_checks);
1260 * generic_file_aio_read - generic filesystem read routine
1261 * @iocb: kernel I/O control block
1262 * @iov: io vector request
1263 * @nr_segs: number of segments in the iovec
1264 * @pos: current file position
1266 * This is the "read()" routine for all filesystems
1267 * that can use the page cache directly.
1269 ssize_t
1270 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1271 unsigned long nr_segs, loff_t pos)
1273 struct file *filp = iocb->ki_filp;
1274 ssize_t retval;
1275 unsigned long seg;
1276 size_t count;
1277 loff_t *ppos = &iocb->ki_pos;
1279 count = 0;
1280 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1281 if (retval)
1282 return retval;
1284 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1285 if (filp->f_flags & O_DIRECT) {
1286 loff_t size;
1287 struct address_space *mapping;
1288 struct inode *inode;
1290 mapping = filp->f_mapping;
1291 inode = mapping->host;
1292 if (!count)
1293 goto out; /* skip atime */
1294 size = i_size_read(inode);
1295 if (pos < size) {
1296 retval = filemap_write_and_wait_range(mapping, pos,
1297 pos + iov_length(iov, nr_segs) - 1);
1298 if (!retval) {
1299 retval = mapping->a_ops->direct_IO(READ, iocb,
1300 iov, pos, nr_segs);
1302 if (retval > 0)
1303 *ppos = pos + retval;
1304 if (retval) {
1305 file_accessed(filp);
1306 goto out;
1311 for (seg = 0; seg < nr_segs; seg++) {
1312 read_descriptor_t desc;
1314 desc.written = 0;
1315 desc.arg.buf = iov[seg].iov_base;
1316 desc.count = iov[seg].iov_len;
1317 if (desc.count == 0)
1318 continue;
1319 desc.error = 0;
1320 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1321 retval += desc.written;
1322 if (desc.error) {
1323 retval = retval ?: desc.error;
1324 break;
1326 if (desc.count > 0)
1327 break;
1329 out:
1330 return retval;
1332 EXPORT_SYMBOL(generic_file_aio_read);
1334 static ssize_t
1335 do_readahead(struct address_space *mapping, struct file *filp,
1336 pgoff_t index, unsigned long nr)
1338 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1339 return -EINVAL;
1341 force_page_cache_readahead(mapping, filp, index, nr);
1342 return 0;
1345 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1347 ssize_t ret;
1348 struct file *file;
1350 ret = -EBADF;
1351 file = fget(fd);
1352 if (file) {
1353 if (file->f_mode & FMODE_READ) {
1354 struct address_space *mapping = file->f_mapping;
1355 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1356 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1357 unsigned long len = end - start + 1;
1358 ret = do_readahead(mapping, file, start, len);
1360 fput(file);
1362 return ret;
1364 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1365 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1367 return SYSC_readahead((int) fd, offset, (size_t) count);
1369 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1370 #endif
1372 #ifdef CONFIG_MMU
1374 * page_cache_read - adds requested page to the page cache if not already there
1375 * @file: file to read
1376 * @offset: page index
1378 * This adds the requested page to the page cache if it isn't already there,
1379 * and schedules an I/O to read in its contents from disk.
1381 static int page_cache_read(struct file *file, pgoff_t offset)
1383 struct address_space *mapping = file->f_mapping;
1384 struct page *page;
1385 int ret;
1387 do {
1388 page = page_cache_alloc_cold(mapping);
1389 if (!page)
1390 return -ENOMEM;
1392 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1393 if (ret == 0)
1394 ret = mapping->a_ops->readpage(file, page);
1395 else if (ret == -EEXIST)
1396 ret = 0; /* losing race to add is OK */
1398 page_cache_release(page);
1400 } while (ret == AOP_TRUNCATED_PAGE);
1402 return ret;
1405 #define MMAP_LOTSAMISS (100)
1408 * Synchronous readahead happens when we don't even find
1409 * a page in the page cache at all.
1411 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1412 struct file_ra_state *ra,
1413 struct file *file,
1414 pgoff_t offset)
1416 unsigned long ra_pages;
1417 struct address_space *mapping = file->f_mapping;
1419 /* If we don't want any read-ahead, don't bother */
1420 if (VM_RandomReadHint(vma))
1421 return;
1423 if (VM_SequentialReadHint(vma) ||
1424 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1425 page_cache_sync_readahead(mapping, ra, file, offset,
1426 ra->ra_pages);
1427 return;
1430 if (ra->mmap_miss < INT_MAX)
1431 ra->mmap_miss++;
1434 * Do we miss much more than hit in this file? If so,
1435 * stop bothering with read-ahead. It will only hurt.
1437 if (ra->mmap_miss > MMAP_LOTSAMISS)
1438 return;
1441 * mmap read-around
1443 ra_pages = max_sane_readahead(ra->ra_pages);
1444 if (ra_pages) {
1445 ra->start = max_t(long, 0, offset - ra_pages/2);
1446 ra->size = ra_pages;
1447 ra->async_size = 0;
1448 ra_submit(ra, mapping, file);
1453 * Asynchronous readahead happens when we find the page and PG_readahead,
1454 * so we want to possibly extend the readahead further..
1456 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1457 struct file_ra_state *ra,
1458 struct file *file,
1459 struct page *page,
1460 pgoff_t offset)
1462 struct address_space *mapping = file->f_mapping;
1464 /* If we don't want any read-ahead, don't bother */
1465 if (VM_RandomReadHint(vma))
1466 return;
1467 if (ra->mmap_miss > 0)
1468 ra->mmap_miss--;
1469 if (PageReadahead(page))
1470 page_cache_async_readahead(mapping, ra, file,
1471 page, offset, ra->ra_pages);
1475 * filemap_fault - read in file data for page fault handling
1476 * @vma: vma in which the fault was taken
1477 * @vmf: struct vm_fault containing details of the fault
1479 * filemap_fault() is invoked via the vma operations vector for a
1480 * mapped memory region to read in file data during a page fault.
1482 * The goto's are kind of ugly, but this streamlines the normal case of having
1483 * it in the page cache, and handles the special cases reasonably without
1484 * having a lot of duplicated code.
1486 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1488 int error;
1489 struct file *file = vma->vm_file;
1490 struct address_space *mapping = file->f_mapping;
1491 struct file_ra_state *ra = &file->f_ra;
1492 struct inode *inode = mapping->host;
1493 pgoff_t offset = vmf->pgoff;
1494 struct page *page;
1495 pgoff_t size;
1496 int ret = 0;
1498 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1499 if (offset >= size)
1500 return VM_FAULT_SIGBUS;
1503 * Do we have something in the page cache already?
1505 page = find_get_page(mapping, offset);
1506 if (likely(page)) {
1508 * We found the page, so try async readahead before
1509 * waiting for the lock.
1511 do_async_mmap_readahead(vma, ra, file, page, offset);
1512 lock_page(page);
1514 /* Did it get truncated? */
1515 if (unlikely(page->mapping != mapping)) {
1516 unlock_page(page);
1517 put_page(page);
1518 goto no_cached_page;
1520 } else {
1521 /* No page in the page cache at all */
1522 do_sync_mmap_readahead(vma, ra, file, offset);
1523 count_vm_event(PGMAJFAULT);
1524 ret = VM_FAULT_MAJOR;
1525 retry_find:
1526 page = find_lock_page(mapping, offset);
1527 if (!page)
1528 goto no_cached_page;
1532 * We have a locked page in the page cache, now we need to check
1533 * that it's up-to-date. If not, it is going to be due to an error.
1535 if (unlikely(!PageUptodate(page)))
1536 goto page_not_uptodate;
1539 * Found the page and have a reference on it.
1540 * We must recheck i_size under page lock.
1542 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1543 if (unlikely(offset >= size)) {
1544 unlock_page(page);
1545 page_cache_release(page);
1546 return VM_FAULT_SIGBUS;
1549 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1550 vmf->page = page;
1551 return ret | VM_FAULT_LOCKED;
1553 no_cached_page:
1555 * We're only likely to ever get here if MADV_RANDOM is in
1556 * effect.
1558 error = page_cache_read(file, offset);
1561 * The page we want has now been added to the page cache.
1562 * In the unlikely event that someone removed it in the
1563 * meantime, we'll just come back here and read it again.
1565 if (error >= 0)
1566 goto retry_find;
1569 * An error return from page_cache_read can result if the
1570 * system is low on memory, or a problem occurs while trying
1571 * to schedule I/O.
1573 if (error == -ENOMEM)
1574 return VM_FAULT_OOM;
1575 return VM_FAULT_SIGBUS;
1577 page_not_uptodate:
1579 * Umm, take care of errors if the page isn't up-to-date.
1580 * Try to re-read it _once_. We do this synchronously,
1581 * because there really aren't any performance issues here
1582 * and we need to check for errors.
1584 ClearPageError(page);
1585 error = mapping->a_ops->readpage(file, page);
1586 if (!error) {
1587 wait_on_page_locked(page);
1588 if (!PageUptodate(page))
1589 error = -EIO;
1591 page_cache_release(page);
1593 if (!error || error == AOP_TRUNCATED_PAGE)
1594 goto retry_find;
1596 /* Things didn't work out. Return zero to tell the mm layer so. */
1597 shrink_readahead_size_eio(file, ra);
1598 return VM_FAULT_SIGBUS;
1600 EXPORT_SYMBOL(filemap_fault);
1602 const struct vm_operations_struct generic_file_vm_ops = {
1603 .fault = filemap_fault,
1606 /* This is used for a general mmap of a disk file */
1608 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1610 struct address_space *mapping = file->f_mapping;
1612 if (!mapping->a_ops->readpage)
1613 return -ENOEXEC;
1614 file_accessed(file);
1615 vma->vm_ops = &generic_file_vm_ops;
1616 vma->vm_flags |= VM_CAN_NONLINEAR;
1617 return 0;
1621 * This is for filesystems which do not implement ->writepage.
1623 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1625 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1626 return -EINVAL;
1627 return generic_file_mmap(file, vma);
1629 #else
1630 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1632 return -ENOSYS;
1634 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1636 return -ENOSYS;
1638 #endif /* CONFIG_MMU */
1640 EXPORT_SYMBOL(generic_file_mmap);
1641 EXPORT_SYMBOL(generic_file_readonly_mmap);
1643 static struct page *__read_cache_page(struct address_space *mapping,
1644 pgoff_t index,
1645 int (*filler)(void *,struct page*),
1646 void *data,
1647 gfp_t gfp)
1649 struct page *page;
1650 int err;
1651 repeat:
1652 page = find_get_page(mapping, index);
1653 if (!page) {
1654 page = __page_cache_alloc(gfp | __GFP_COLD);
1655 if (!page)
1656 return ERR_PTR(-ENOMEM);
1657 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1658 if (unlikely(err)) {
1659 page_cache_release(page);
1660 if (err == -EEXIST)
1661 goto repeat;
1662 /* Presumably ENOMEM for radix tree node */
1663 return ERR_PTR(err);
1665 err = filler(data, page);
1666 if (err < 0) {
1667 page_cache_release(page);
1668 page = ERR_PTR(err);
1671 return page;
1674 static struct page *do_read_cache_page(struct address_space *mapping,
1675 pgoff_t index,
1676 int (*filler)(void *,struct page*),
1677 void *data,
1678 gfp_t gfp)
1681 struct page *page;
1682 int err;
1684 retry:
1685 page = __read_cache_page(mapping, index, filler, data, gfp);
1686 if (IS_ERR(page))
1687 return page;
1688 if (PageUptodate(page))
1689 goto out;
1691 lock_page(page);
1692 if (!page->mapping) {
1693 unlock_page(page);
1694 page_cache_release(page);
1695 goto retry;
1697 if (PageUptodate(page)) {
1698 unlock_page(page);
1699 goto out;
1701 err = filler(data, page);
1702 if (err < 0) {
1703 page_cache_release(page);
1704 return ERR_PTR(err);
1706 out:
1707 mark_page_accessed(page);
1708 return page;
1712 * read_cache_page_async - read into page cache, fill it if needed
1713 * @mapping: the page's address_space
1714 * @index: the page index
1715 * @filler: function to perform the read
1716 * @data: destination for read data
1718 * Same as read_cache_page, but don't wait for page to become unlocked
1719 * after submitting it to the filler.
1721 * Read into the page cache. If a page already exists, and PageUptodate() is
1722 * not set, try to fill the page but don't wait for it to become unlocked.
1724 * If the page does not get brought uptodate, return -EIO.
1726 struct page *read_cache_page_async(struct address_space *mapping,
1727 pgoff_t index,
1728 int (*filler)(void *,struct page*),
1729 void *data)
1731 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1733 EXPORT_SYMBOL(read_cache_page_async);
1735 static struct page *wait_on_page_read(struct page *page)
1737 if (!IS_ERR(page)) {
1738 wait_on_page_locked(page);
1739 if (!PageUptodate(page)) {
1740 page_cache_release(page);
1741 page = ERR_PTR(-EIO);
1744 return page;
1748 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1749 * @mapping: the page's address_space
1750 * @index: the page index
1751 * @gfp: the page allocator flags to use if allocating
1753 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1754 * any new page allocations done using the specified allocation flags. Note
1755 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1756 * expect to do this atomically or anything like that - but you can pass in
1757 * other page requirements.
1759 * If the page does not get brought uptodate, return -EIO.
1761 struct page *read_cache_page_gfp(struct address_space *mapping,
1762 pgoff_t index,
1763 gfp_t gfp)
1765 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1767 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1769 EXPORT_SYMBOL(read_cache_page_gfp);
1772 * read_cache_page - read into page cache, fill it if needed
1773 * @mapping: the page's address_space
1774 * @index: the page index
1775 * @filler: function to perform the read
1776 * @data: destination for read data
1778 * Read into the page cache. If a page already exists, and PageUptodate() is
1779 * not set, try to fill the page then wait for it to become unlocked.
1781 * If the page does not get brought uptodate, return -EIO.
1783 struct page *read_cache_page(struct address_space *mapping,
1784 pgoff_t index,
1785 int (*filler)(void *,struct page*),
1786 void *data)
1788 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1790 EXPORT_SYMBOL(read_cache_page);
1793 * The logic we want is
1795 * if suid or (sgid and xgrp)
1796 * remove privs
1798 int should_remove_suid(struct dentry *dentry)
1800 mode_t mode = dentry->d_inode->i_mode;
1801 int kill = 0;
1803 /* suid always must be killed */
1804 if (unlikely(mode & S_ISUID))
1805 kill = ATTR_KILL_SUID;
1808 * sgid without any exec bits is just a mandatory locking mark; leave
1809 * it alone. If some exec bits are set, it's a real sgid; kill it.
1811 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1812 kill |= ATTR_KILL_SGID;
1814 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1815 return kill;
1817 return 0;
1819 EXPORT_SYMBOL(should_remove_suid);
1821 static int __remove_suid(struct dentry *dentry, int kill)
1823 struct iattr newattrs;
1825 newattrs.ia_valid = ATTR_FORCE | kill;
1826 return notify_change(dentry, &newattrs);
1829 int file_remove_suid(struct file *file)
1831 struct dentry *dentry = file->f_path.dentry;
1832 int killsuid = should_remove_suid(dentry);
1833 int killpriv = security_inode_need_killpriv(dentry);
1834 int error = 0;
1836 if (killpriv < 0)
1837 return killpriv;
1838 if (killpriv)
1839 error = security_inode_killpriv(dentry);
1840 if (!error && killsuid)
1841 error = __remove_suid(dentry, killsuid);
1843 return error;
1845 EXPORT_SYMBOL(file_remove_suid);
1847 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1848 const struct iovec *iov, size_t base, size_t bytes)
1850 size_t copied = 0, left = 0;
1852 while (bytes) {
1853 char __user *buf = iov->iov_base + base;
1854 int copy = min(bytes, iov->iov_len - base);
1856 base = 0;
1857 left = __copy_from_user_inatomic(vaddr, buf, copy);
1858 copied += copy;
1859 bytes -= copy;
1860 vaddr += copy;
1861 iov++;
1863 if (unlikely(left))
1864 break;
1866 return copied - left;
1870 * Copy as much as we can into the page and return the number of bytes which
1871 * were successfully copied. If a fault is encountered then return the number of
1872 * bytes which were copied.
1874 size_t iov_iter_copy_from_user_atomic(struct page *page,
1875 struct iov_iter *i, unsigned long offset, size_t bytes)
1877 char *kaddr;
1878 size_t copied;
1880 BUG_ON(!in_atomic());
1881 kaddr = kmap_atomic(page, KM_USER0);
1882 if (likely(i->nr_segs == 1)) {
1883 int left;
1884 char __user *buf = i->iov->iov_base + i->iov_offset;
1885 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1886 copied = bytes - left;
1887 } else {
1888 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1889 i->iov, i->iov_offset, bytes);
1891 kunmap_atomic(kaddr, KM_USER0);
1893 return copied;
1895 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1898 * This has the same sideeffects and return value as
1899 * iov_iter_copy_from_user_atomic().
1900 * The difference is that it attempts to resolve faults.
1901 * Page must not be locked.
1903 size_t iov_iter_copy_from_user(struct page *page,
1904 struct iov_iter *i, unsigned long offset, size_t bytes)
1906 char *kaddr;
1907 size_t copied;
1909 kaddr = kmap(page);
1910 if (likely(i->nr_segs == 1)) {
1911 int left;
1912 char __user *buf = i->iov->iov_base + i->iov_offset;
1913 left = __copy_from_user(kaddr + offset, buf, bytes);
1914 copied = bytes - left;
1915 } else {
1916 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1917 i->iov, i->iov_offset, bytes);
1919 kunmap(page);
1920 return copied;
1922 EXPORT_SYMBOL(iov_iter_copy_from_user);
1924 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1926 BUG_ON(i->count < bytes);
1928 if (likely(i->nr_segs == 1)) {
1929 i->iov_offset += bytes;
1930 i->count -= bytes;
1931 } else {
1932 const struct iovec *iov = i->iov;
1933 size_t base = i->iov_offset;
1936 * The !iov->iov_len check ensures we skip over unlikely
1937 * zero-length segments (without overruning the iovec).
1939 while (bytes || unlikely(i->count && !iov->iov_len)) {
1940 int copy;
1942 copy = min(bytes, iov->iov_len - base);
1943 BUG_ON(!i->count || i->count < copy);
1944 i->count -= copy;
1945 bytes -= copy;
1946 base += copy;
1947 if (iov->iov_len == base) {
1948 iov++;
1949 base = 0;
1952 i->iov = iov;
1953 i->iov_offset = base;
1956 EXPORT_SYMBOL(iov_iter_advance);
1959 * Fault in the first iovec of the given iov_iter, to a maximum length
1960 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1961 * accessed (ie. because it is an invalid address).
1963 * writev-intensive code may want this to prefault several iovecs -- that
1964 * would be possible (callers must not rely on the fact that _only_ the
1965 * first iovec will be faulted with the current implementation).
1967 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1969 char __user *buf = i->iov->iov_base + i->iov_offset;
1970 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1971 return fault_in_pages_readable(buf, bytes);
1973 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1976 * Return the count of just the current iov_iter segment.
1978 size_t iov_iter_single_seg_count(struct iov_iter *i)
1980 const struct iovec *iov = i->iov;
1981 if (i->nr_segs == 1)
1982 return i->count;
1983 else
1984 return min(i->count, iov->iov_len - i->iov_offset);
1986 EXPORT_SYMBOL(iov_iter_single_seg_count);
1989 * Performs necessary checks before doing a write
1991 * Can adjust writing position or amount of bytes to write.
1992 * Returns appropriate error code that caller should return or
1993 * zero in case that write should be allowed.
1995 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1997 struct inode *inode = file->f_mapping->host;
1998 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2000 if (unlikely(*pos < 0))
2001 return -EINVAL;
2003 if (!isblk) {
2004 /* FIXME: this is for backwards compatibility with 2.4 */
2005 if (file->f_flags & O_APPEND)
2006 *pos = i_size_read(inode);
2008 if (limit != RLIM_INFINITY) {
2009 if (*pos >= limit) {
2010 send_sig(SIGXFSZ, current, 0);
2011 return -EFBIG;
2013 if (*count > limit - (typeof(limit))*pos) {
2014 *count = limit - (typeof(limit))*pos;
2020 * LFS rule
2022 if (unlikely(*pos + *count > MAX_NON_LFS &&
2023 !(file->f_flags & O_LARGEFILE))) {
2024 if (*pos >= MAX_NON_LFS) {
2025 return -EFBIG;
2027 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2028 *count = MAX_NON_LFS - (unsigned long)*pos;
2033 * Are we about to exceed the fs block limit ?
2035 * If we have written data it becomes a short write. If we have
2036 * exceeded without writing data we send a signal and return EFBIG.
2037 * Linus frestrict idea will clean these up nicely..
2039 if (likely(!isblk)) {
2040 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2041 if (*count || *pos > inode->i_sb->s_maxbytes) {
2042 return -EFBIG;
2044 /* zero-length writes at ->s_maxbytes are OK */
2047 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2048 *count = inode->i_sb->s_maxbytes - *pos;
2049 } else {
2050 #ifdef CONFIG_BLOCK
2051 loff_t isize;
2052 if (bdev_read_only(I_BDEV(inode)))
2053 return -EPERM;
2054 isize = i_size_read(inode);
2055 if (*pos >= isize) {
2056 if (*count || *pos > isize)
2057 return -ENOSPC;
2060 if (*pos + *count > isize)
2061 *count = isize - *pos;
2062 #else
2063 return -EPERM;
2064 #endif
2066 return 0;
2068 EXPORT_SYMBOL(generic_write_checks);
2070 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2071 loff_t pos, unsigned len, unsigned flags,
2072 struct page **pagep, void **fsdata)
2074 const struct address_space_operations *aops = mapping->a_ops;
2076 return aops->write_begin(file, mapping, pos, len, flags,
2077 pagep, fsdata);
2079 EXPORT_SYMBOL(pagecache_write_begin);
2081 int pagecache_write_end(struct file *file, struct address_space *mapping,
2082 loff_t pos, unsigned len, unsigned copied,
2083 struct page *page, void *fsdata)
2085 const struct address_space_operations *aops = mapping->a_ops;
2087 mark_page_accessed(page);
2088 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2090 EXPORT_SYMBOL(pagecache_write_end);
2092 ssize_t
2093 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2094 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2095 size_t count, size_t ocount)
2097 struct file *file = iocb->ki_filp;
2098 struct address_space *mapping = file->f_mapping;
2099 struct inode *inode = mapping->host;
2100 ssize_t written;
2101 size_t write_len;
2102 pgoff_t end;
2104 if (count != ocount)
2105 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2107 write_len = iov_length(iov, *nr_segs);
2108 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2110 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2111 if (written)
2112 goto out;
2115 * After a write we want buffered reads to be sure to go to disk to get
2116 * the new data. We invalidate clean cached page from the region we're
2117 * about to write. We do this *before* the write so that we can return
2118 * without clobbering -EIOCBQUEUED from ->direct_IO().
2120 if (mapping->nrpages) {
2121 written = invalidate_inode_pages2_range(mapping,
2122 pos >> PAGE_CACHE_SHIFT, end);
2124 * If a page can not be invalidated, return 0 to fall back
2125 * to buffered write.
2127 if (written) {
2128 if (written == -EBUSY)
2129 return 0;
2130 goto out;
2134 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2137 * Finally, try again to invalidate clean pages which might have been
2138 * cached by non-direct readahead, or faulted in by get_user_pages()
2139 * if the source of the write was an mmap'ed region of the file
2140 * we're writing. Either one is a pretty crazy thing to do,
2141 * so we don't support it 100%. If this invalidation
2142 * fails, tough, the write still worked...
2144 if (mapping->nrpages) {
2145 invalidate_inode_pages2_range(mapping,
2146 pos >> PAGE_CACHE_SHIFT, end);
2149 if (written > 0) {
2150 loff_t end = pos + written;
2151 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2152 i_size_write(inode, end);
2153 mark_inode_dirty(inode);
2155 *ppos = end;
2157 out:
2158 return written;
2160 EXPORT_SYMBOL(generic_file_direct_write);
2163 * Find or create a page at the given pagecache position. Return the locked
2164 * page. This function is specifically for buffered writes.
2166 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2167 pgoff_t index, unsigned flags)
2169 int status;
2170 struct page *page;
2171 gfp_t gfp_notmask = 0;
2172 if (flags & AOP_FLAG_NOFS)
2173 gfp_notmask = __GFP_FS;
2174 repeat:
2175 page = find_lock_page(mapping, index);
2176 if (likely(page))
2177 return page;
2179 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2180 if (!page)
2181 return NULL;
2182 status = add_to_page_cache_lru(page, mapping, index,
2183 GFP_KERNEL & ~gfp_notmask);
2184 if (unlikely(status)) {
2185 page_cache_release(page);
2186 if (status == -EEXIST)
2187 goto repeat;
2188 return NULL;
2190 return page;
2192 EXPORT_SYMBOL(grab_cache_page_write_begin);
2194 static ssize_t generic_perform_write(struct file *file,
2195 struct iov_iter *i, loff_t pos)
2197 struct address_space *mapping = file->f_mapping;
2198 const struct address_space_operations *a_ops = mapping->a_ops;
2199 long status = 0;
2200 ssize_t written = 0;
2201 unsigned int flags = 0;
2204 * Copies from kernel address space cannot fail (NFSD is a big user).
2206 if (segment_eq(get_fs(), KERNEL_DS))
2207 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2209 do {
2210 struct page *page;
2211 pgoff_t index; /* Pagecache index for current page */
2212 unsigned long offset; /* Offset into pagecache page */
2213 unsigned long bytes; /* Bytes to write to page */
2214 size_t copied; /* Bytes copied from user */
2215 void *fsdata;
2217 offset = (pos & (PAGE_CACHE_SIZE - 1));
2218 index = pos >> PAGE_CACHE_SHIFT;
2219 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2220 iov_iter_count(i));
2222 again:
2225 * Bring in the user page that we will copy from _first_.
2226 * Otherwise there's a nasty deadlock on copying from the
2227 * same page as we're writing to, without it being marked
2228 * up-to-date.
2230 * Not only is this an optimisation, but it is also required
2231 * to check that the address is actually valid, when atomic
2232 * usercopies are used, below.
2234 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2235 status = -EFAULT;
2236 break;
2239 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2240 &page, &fsdata);
2241 if (unlikely(status))
2242 break;
2244 if (mapping_writably_mapped(mapping))
2245 flush_dcache_page(page);
2247 pagefault_disable();
2248 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2249 pagefault_enable();
2250 flush_dcache_page(page);
2252 mark_page_accessed(page);
2253 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2254 page, fsdata);
2255 if (unlikely(status < 0))
2256 break;
2257 copied = status;
2259 cond_resched();
2261 iov_iter_advance(i, copied);
2262 if (unlikely(copied == 0)) {
2264 * If we were unable to copy any data at all, we must
2265 * fall back to a single segment length write.
2267 * If we didn't fallback here, we could livelock
2268 * because not all segments in the iov can be copied at
2269 * once without a pagefault.
2271 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2272 iov_iter_single_seg_count(i));
2273 goto again;
2275 pos += copied;
2276 written += copied;
2278 balance_dirty_pages_ratelimited(mapping);
2280 } while (iov_iter_count(i));
2282 return written ? written : status;
2285 ssize_t
2286 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2287 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2288 size_t count, ssize_t written)
2290 struct file *file = iocb->ki_filp;
2291 ssize_t status;
2292 struct iov_iter i;
2294 iov_iter_init(&i, iov, nr_segs, count, written);
2295 status = generic_perform_write(file, &i, pos);
2297 if (likely(status >= 0)) {
2298 written += status;
2299 *ppos = pos + status;
2302 return written ? written : status;
2304 EXPORT_SYMBOL(generic_file_buffered_write);
2307 * __generic_file_aio_write - write data to a file
2308 * @iocb: IO state structure (file, offset, etc.)
2309 * @iov: vector with data to write
2310 * @nr_segs: number of segments in the vector
2311 * @ppos: position where to write
2313 * This function does all the work needed for actually writing data to a
2314 * file. It does all basic checks, removes SUID from the file, updates
2315 * modification times and calls proper subroutines depending on whether we
2316 * do direct IO or a standard buffered write.
2318 * It expects i_mutex to be grabbed unless we work on a block device or similar
2319 * object which does not need locking at all.
2321 * This function does *not* take care of syncing data in case of O_SYNC write.
2322 * A caller has to handle it. This is mainly due to the fact that we want to
2323 * avoid syncing under i_mutex.
2325 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2326 unsigned long nr_segs, loff_t *ppos)
2328 struct file *file = iocb->ki_filp;
2329 struct address_space * mapping = file->f_mapping;
2330 size_t ocount; /* original count */
2331 size_t count; /* after file limit checks */
2332 struct inode *inode = mapping->host;
2333 loff_t pos;
2334 ssize_t written;
2335 ssize_t err;
2337 ocount = 0;
2338 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2339 if (err)
2340 return err;
2342 count = ocount;
2343 pos = *ppos;
2345 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2347 /* We can write back this queue in page reclaim */
2348 current->backing_dev_info = mapping->backing_dev_info;
2349 written = 0;
2351 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2352 if (err)
2353 goto out;
2355 if (count == 0)
2356 goto out;
2358 err = file_remove_suid(file);
2359 if (err)
2360 goto out;
2362 file_update_time(file);
2364 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2365 if (unlikely(file->f_flags & O_DIRECT)) {
2366 loff_t endbyte;
2367 ssize_t written_buffered;
2369 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2370 ppos, count, ocount);
2371 if (written < 0 || written == count)
2372 goto out;
2374 * direct-io write to a hole: fall through to buffered I/O
2375 * for completing the rest of the request.
2377 pos += written;
2378 count -= written;
2379 written_buffered = generic_file_buffered_write(iocb, iov,
2380 nr_segs, pos, ppos, count,
2381 written);
2383 * If generic_file_buffered_write() retuned a synchronous error
2384 * then we want to return the number of bytes which were
2385 * direct-written, or the error code if that was zero. Note
2386 * that this differs from normal direct-io semantics, which
2387 * will return -EFOO even if some bytes were written.
2389 if (written_buffered < 0) {
2390 err = written_buffered;
2391 goto out;
2395 * We need to ensure that the page cache pages are written to
2396 * disk and invalidated to preserve the expected O_DIRECT
2397 * semantics.
2399 endbyte = pos + written_buffered - written - 1;
2400 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2401 if (err == 0) {
2402 written = written_buffered;
2403 invalidate_mapping_pages(mapping,
2404 pos >> PAGE_CACHE_SHIFT,
2405 endbyte >> PAGE_CACHE_SHIFT);
2406 } else {
2408 * We don't know how much we wrote, so just return
2409 * the number of bytes which were direct-written
2412 } else {
2413 written = generic_file_buffered_write(iocb, iov, nr_segs,
2414 pos, ppos, count, written);
2416 out:
2417 current->backing_dev_info = NULL;
2418 return written ? written : err;
2420 EXPORT_SYMBOL(__generic_file_aio_write);
2423 * generic_file_aio_write - write data to a file
2424 * @iocb: IO state structure
2425 * @iov: vector with data to write
2426 * @nr_segs: number of segments in the vector
2427 * @pos: position in file where to write
2429 * This is a wrapper around __generic_file_aio_write() to be used by most
2430 * filesystems. It takes care of syncing the file in case of O_SYNC file
2431 * and acquires i_mutex as needed.
2433 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2434 unsigned long nr_segs, loff_t pos)
2436 struct file *file = iocb->ki_filp;
2437 struct inode *inode = file->f_mapping->host;
2438 ssize_t ret;
2440 BUG_ON(iocb->ki_pos != pos);
2442 mutex_lock(&inode->i_mutex);
2443 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2444 mutex_unlock(&inode->i_mutex);
2446 if (ret > 0 || ret == -EIOCBQUEUED) {
2447 ssize_t err;
2449 err = generic_write_sync(file, pos, ret);
2450 if (err < 0 && ret > 0)
2451 ret = err;
2453 return ret;
2455 EXPORT_SYMBOL(generic_file_aio_write);
2458 * try_to_release_page() - release old fs-specific metadata on a page
2460 * @page: the page which the kernel is trying to free
2461 * @gfp_mask: memory allocation flags (and I/O mode)
2463 * The address_space is to try to release any data against the page
2464 * (presumably at page->private). If the release was successful, return `1'.
2465 * Otherwise return zero.
2467 * This may also be called if PG_fscache is set on a page, indicating that the
2468 * page is known to the local caching routines.
2470 * The @gfp_mask argument specifies whether I/O may be performed to release
2471 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2474 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2476 struct address_space * const mapping = page->mapping;
2478 BUG_ON(!PageLocked(page));
2479 if (PageWriteback(page))
2480 return 0;
2482 if (mapping && mapping->a_ops->releasepage)
2483 return mapping->a_ops->releasepage(page, gfp_mask);
2484 return try_to_free_buffers(page);
2487 EXPORT_SYMBOL(try_to_release_page);