uwb: document UWB and WUSB sysfs files
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / super.c
blob7562464ac83fba3c19101afea8cf9495bf6cd692
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include "ubifs.h"
39 /* Slab cache for UBIFS inodes */
40 struct kmem_cache *ubifs_inode_slab;
42 /* UBIFS TNC shrinker description */
43 static struct shrinker ubifs_shrinker_info = {
44 .shrink = ubifs_shrinker,
45 .seeks = DEFAULT_SEEKS,
48 /**
49 * validate_inode - validate inode.
50 * @c: UBIFS file-system description object
51 * @inode: the inode to validate
53 * This is a helper function for 'ubifs_iget()' which validates various fields
54 * of a newly built inode to make sure they contain sane values and prevent
55 * possible vulnerabilities. Returns zero if the inode is all right and
56 * a non-zero error code if not.
58 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
60 int err;
61 const struct ubifs_inode *ui = ubifs_inode(inode);
63 if (inode->i_size > c->max_inode_sz) {
64 ubifs_err("inode is too large (%lld)",
65 (long long)inode->i_size);
66 return 1;
69 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
70 ubifs_err("unknown compression type %d", ui->compr_type);
71 return 2;
74 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
75 return 3;
77 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
78 return 4;
80 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
81 return 5;
83 if (!ubifs_compr_present(ui->compr_type)) {
84 ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 "compiled in", inode->i_ino,
86 ubifs_compr_name(ui->compr_type));
89 err = dbg_check_dir_size(c, inode);
90 return err;
93 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
95 int err;
96 union ubifs_key key;
97 struct ubifs_ino_node *ino;
98 struct ubifs_info *c = sb->s_fs_info;
99 struct inode *inode;
100 struct ubifs_inode *ui;
102 dbg_gen("inode %lu", inum);
104 inode = iget_locked(sb, inum);
105 if (!inode)
106 return ERR_PTR(-ENOMEM);
107 if (!(inode->i_state & I_NEW))
108 return inode;
109 ui = ubifs_inode(inode);
111 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
112 if (!ino) {
113 err = -ENOMEM;
114 goto out;
117 ino_key_init(c, &key, inode->i_ino);
119 err = ubifs_tnc_lookup(c, &key, ino);
120 if (err)
121 goto out_ino;
123 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
124 inode->i_nlink = le32_to_cpu(ino->nlink);
125 inode->i_uid = le32_to_cpu(ino->uid);
126 inode->i_gid = le32_to_cpu(ino->gid);
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
151 /* Disable read-ahead */
152 inode->i_mapping->backing_dev_info = &c->bdi;
154 switch (inode->i_mode & S_IFMT) {
155 case S_IFREG:
156 inode->i_mapping->a_ops = &ubifs_file_address_operations;
157 inode->i_op = &ubifs_file_inode_operations;
158 inode->i_fop = &ubifs_file_operations;
159 if (ui->xattr) {
160 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
161 if (!ui->data) {
162 err = -ENOMEM;
163 goto out_ino;
165 memcpy(ui->data, ino->data, ui->data_len);
166 ((char *)ui->data)[ui->data_len] = '\0';
167 } else if (ui->data_len != 0) {
168 err = 10;
169 goto out_invalid;
171 break;
172 case S_IFDIR:
173 inode->i_op = &ubifs_dir_inode_operations;
174 inode->i_fop = &ubifs_dir_operations;
175 if (ui->data_len != 0) {
176 err = 11;
177 goto out_invalid;
179 break;
180 case S_IFLNK:
181 inode->i_op = &ubifs_symlink_inode_operations;
182 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
183 err = 12;
184 goto out_invalid;
186 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
187 if (!ui->data) {
188 err = -ENOMEM;
189 goto out_ino;
191 memcpy(ui->data, ino->data, ui->data_len);
192 ((char *)ui->data)[ui->data_len] = '\0';
193 break;
194 case S_IFBLK:
195 case S_IFCHR:
197 dev_t rdev;
198 union ubifs_dev_desc *dev;
200 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
201 if (!ui->data) {
202 err = -ENOMEM;
203 goto out_ino;
206 dev = (union ubifs_dev_desc *)ino->data;
207 if (ui->data_len == sizeof(dev->new))
208 rdev = new_decode_dev(le32_to_cpu(dev->new));
209 else if (ui->data_len == sizeof(dev->huge))
210 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
211 else {
212 err = 13;
213 goto out_invalid;
215 memcpy(ui->data, ino->data, ui->data_len);
216 inode->i_op = &ubifs_file_inode_operations;
217 init_special_inode(inode, inode->i_mode, rdev);
218 break;
220 case S_IFSOCK:
221 case S_IFIFO:
222 inode->i_op = &ubifs_file_inode_operations;
223 init_special_inode(inode, inode->i_mode, 0);
224 if (ui->data_len != 0) {
225 err = 14;
226 goto out_invalid;
228 break;
229 default:
230 err = 15;
231 goto out_invalid;
234 kfree(ino);
235 ubifs_set_inode_flags(inode);
236 unlock_new_inode(inode);
237 return inode;
239 out_invalid:
240 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
241 dbg_dump_node(c, ino);
242 dbg_dump_inode(c, inode);
243 err = -EINVAL;
244 out_ino:
245 kfree(ino);
246 out:
247 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
248 iget_failed(inode);
249 return ERR_PTR(err);
252 static struct inode *ubifs_alloc_inode(struct super_block *sb)
254 struct ubifs_inode *ui;
256 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
257 if (!ui)
258 return NULL;
260 memset((void *)ui + sizeof(struct inode), 0,
261 sizeof(struct ubifs_inode) - sizeof(struct inode));
262 mutex_init(&ui->ui_mutex);
263 spin_lock_init(&ui->ui_lock);
264 return &ui->vfs_inode;
267 static void ubifs_destroy_inode(struct inode *inode)
269 struct ubifs_inode *ui = ubifs_inode(inode);
271 kfree(ui->data);
272 kmem_cache_free(ubifs_inode_slab, inode);
276 * Note, Linux write-back code calls this without 'i_mutex'.
278 static int ubifs_write_inode(struct inode *inode, int wait)
280 int err = 0;
281 struct ubifs_info *c = inode->i_sb->s_fs_info;
282 struct ubifs_inode *ui = ubifs_inode(inode);
284 ubifs_assert(!ui->xattr);
285 if (is_bad_inode(inode))
286 return 0;
288 mutex_lock(&ui->ui_mutex);
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
294 * 'ubifs_link()'.
296 if (!ui->dirty) {
297 mutex_unlock(&ui->ui_mutex);
298 return 0;
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 if (inode->i_nlink) {
308 err = ubifs_jnl_write_inode(c, inode);
309 if (err)
310 ubifs_err("can't write inode %lu, error %d",
311 inode->i_ino, err);
314 ui->dirty = 0;
315 mutex_unlock(&ui->ui_mutex);
316 ubifs_release_dirty_inode_budget(c, ui);
317 return err;
320 static void ubifs_delete_inode(struct inode *inode)
322 int err;
323 struct ubifs_info *c = inode->i_sb->s_fs_info;
324 struct ubifs_inode *ui = ubifs_inode(inode);
326 if (ui->xattr)
328 * Extended attribute inode deletions are fully handled in
329 * 'ubifs_removexattr()'. These inodes are special and have
330 * limited usage, so there is nothing to do here.
332 goto out;
334 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
335 ubifs_assert(!atomic_read(&inode->i_count));
336 ubifs_assert(inode->i_nlink == 0);
338 truncate_inode_pages(&inode->i_data, 0);
339 if (is_bad_inode(inode))
340 goto out;
342 ui->ui_size = inode->i_size = 0;
343 err = ubifs_jnl_delete_inode(c, inode);
344 if (err)
346 * Worst case we have a lost orphan inode wasting space, so a
347 * simple error message is OK here.
349 ubifs_err("can't delete inode %lu, error %d",
350 inode->i_ino, err);
352 out:
353 if (ui->dirty)
354 ubifs_release_dirty_inode_budget(c, ui);
355 clear_inode(inode);
358 static void ubifs_dirty_inode(struct inode *inode)
360 struct ubifs_inode *ui = ubifs_inode(inode);
362 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
363 if (!ui->dirty) {
364 ui->dirty = 1;
365 dbg_gen("inode %lu", inode->i_ino);
369 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
371 struct ubifs_info *c = dentry->d_sb->s_fs_info;
372 unsigned long long free;
373 __le32 *uuid = (__le32 *)c->uuid;
375 free = ubifs_get_free_space(c);
376 dbg_gen("free space %lld bytes (%lld blocks)",
377 free, free >> UBIFS_BLOCK_SHIFT);
379 buf->f_type = UBIFS_SUPER_MAGIC;
380 buf->f_bsize = UBIFS_BLOCK_SIZE;
381 buf->f_blocks = c->block_cnt;
382 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
383 if (free > c->report_rp_size)
384 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
385 else
386 buf->f_bavail = 0;
387 buf->f_files = 0;
388 buf->f_ffree = 0;
389 buf->f_namelen = UBIFS_MAX_NLEN;
390 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
391 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
392 return 0;
395 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
397 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
399 if (c->mount_opts.unmount_mode == 2)
400 seq_printf(s, ",fast_unmount");
401 else if (c->mount_opts.unmount_mode == 1)
402 seq_printf(s, ",norm_unmount");
404 return 0;
407 static int ubifs_sync_fs(struct super_block *sb, int wait)
409 struct ubifs_info *c = sb->s_fs_info;
410 int i, ret = 0, err;
412 if (c->jheads)
413 for (i = 0; i < c->jhead_cnt; i++) {
414 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
415 if (err && !ret)
416 ret = err;
419 * We ought to call sync for c->ubi but it does not have one. If it had
420 * it would in turn call mtd->sync, however mtd operations are
421 * synchronous anyway, so we don't lose any sleep here.
423 return ret;
427 * init_constants_early - initialize UBIFS constants.
428 * @c: UBIFS file-system description object
430 * This function initialize UBIFS constants which do not need the superblock to
431 * be read. It also checks that the UBI volume satisfies basic UBIFS
432 * requirements. Returns zero in case of success and a negative error code in
433 * case of failure.
435 static int init_constants_early(struct ubifs_info *c)
437 if (c->vi.corrupted) {
438 ubifs_warn("UBI volume is corrupted - read-only mode");
439 c->ro_media = 1;
442 if (c->di.ro_mode) {
443 ubifs_msg("read-only UBI device");
444 c->ro_media = 1;
447 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
448 ubifs_msg("static UBI volume - read-only mode");
449 c->ro_media = 1;
452 c->leb_cnt = c->vi.size;
453 c->leb_size = c->vi.usable_leb_size;
454 c->half_leb_size = c->leb_size / 2;
455 c->min_io_size = c->di.min_io_size;
456 c->min_io_shift = fls(c->min_io_size) - 1;
458 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
459 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
460 c->leb_size, UBIFS_MIN_LEB_SZ);
461 return -EINVAL;
464 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
465 ubifs_err("too few LEBs (%d), min. is %d",
466 c->leb_cnt, UBIFS_MIN_LEB_CNT);
467 return -EINVAL;
470 if (!is_power_of_2(c->min_io_size)) {
471 ubifs_err("bad min. I/O size %d", c->min_io_size);
472 return -EINVAL;
476 * UBIFS aligns all node to 8-byte boundary, so to make function in
477 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
478 * less than 8.
480 if (c->min_io_size < 8) {
481 c->min_io_size = 8;
482 c->min_io_shift = 3;
485 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
486 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
489 * Initialize node length ranges which are mostly needed for node
490 * length validation.
492 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
493 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
494 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
495 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
496 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
497 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
499 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
500 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
501 c->ranges[UBIFS_ORPH_NODE].min_len =
502 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
503 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
504 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
505 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
506 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
507 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
508 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
509 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
511 * Minimum indexing node size is amended later when superblock is
512 * read and the key length is known.
514 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
516 * Maximum indexing node size is amended later when superblock is
517 * read and the fanout is known.
519 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
522 * Initialize dead and dark LEB space watermarks.
524 * Dead space is the space which cannot be used. Its watermark is
525 * equivalent to min. I/O unit or minimum node size if it is greater
526 * then min. I/O unit.
528 * Dark space is the space which might be used, or might not, depending
529 * on which node should be written to the LEB. Its watermark is
530 * equivalent to maximum UBIFS node size.
532 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
533 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
536 * Calculate how many bytes would be wasted at the end of LEB if it was
537 * fully filled with data nodes of maximum size. This is used in
538 * calculations when reporting free space.
540 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
541 return 0;
545 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
546 * @c: UBIFS file-system description object
547 * @lnum: LEB the write-buffer was synchronized to
548 * @free: how many free bytes left in this LEB
549 * @pad: how many bytes were padded
551 * This is a callback function which is called by the I/O unit when the
552 * write-buffer is synchronized. We need this to correctly maintain space
553 * accounting in bud logical eraseblocks. This function returns zero in case of
554 * success and a negative error code in case of failure.
556 * This function actually belongs to the journal, but we keep it here because
557 * we want to keep it static.
559 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
561 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
565 * init_constants_late - initialize UBIFS constants.
566 * @c: UBIFS file-system description object
568 * This is a helper function which initializes various UBIFS constants after
569 * the superblock has been read. It also checks various UBIFS parameters and
570 * makes sure they are all right. Returns zero in case of success and a
571 * negative error code in case of failure.
573 static int init_constants_late(struct ubifs_info *c)
575 int tmp, err;
576 uint64_t tmp64;
578 c->main_bytes = (long long)c->main_lebs * c->leb_size;
579 c->max_znode_sz = sizeof(struct ubifs_znode) +
580 c->fanout * sizeof(struct ubifs_zbranch);
582 tmp = ubifs_idx_node_sz(c, 1);
583 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
584 c->min_idx_node_sz = ALIGN(tmp, 8);
586 tmp = ubifs_idx_node_sz(c, c->fanout);
587 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
588 c->max_idx_node_sz = ALIGN(tmp, 8);
590 /* Make sure LEB size is large enough to fit full commit */
591 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
592 tmp = ALIGN(tmp, c->min_io_size);
593 if (tmp > c->leb_size) {
594 dbg_err("too small LEB size %d, at least %d needed",
595 c->leb_size, tmp);
596 return -EINVAL;
600 * Make sure that the log is large enough to fit reference nodes for
601 * all buds plus one reserved LEB.
603 tmp64 = c->max_bud_bytes;
604 tmp = do_div(tmp64, c->leb_size);
605 c->max_bud_cnt = tmp64 + !!tmp;
606 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
607 tmp /= c->leb_size;
608 tmp += 1;
609 if (c->log_lebs < tmp) {
610 dbg_err("too small log %d LEBs, required min. %d LEBs",
611 c->log_lebs, tmp);
612 return -EINVAL;
616 * When budgeting we assume worst-case scenarios when the pages are not
617 * be compressed and direntries are of the maximum size.
619 * Note, data, which may be stored in inodes is budgeted separately, so
620 * it is not included into 'c->inode_budget'.
622 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
623 c->inode_budget = UBIFS_INO_NODE_SZ;
624 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
627 * When the amount of flash space used by buds becomes
628 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
629 * The writers are unblocked when the commit is finished. To avoid
630 * writers to be blocked UBIFS initiates background commit in advance,
631 * when number of bud bytes becomes above the limit defined below.
633 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
636 * Ensure minimum journal size. All the bytes in the journal heads are
637 * considered to be used, when calculating the current journal usage.
638 * Consequently, if the journal is too small, UBIFS will treat it as
639 * always full.
641 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
642 if (c->bg_bud_bytes < tmp64)
643 c->bg_bud_bytes = tmp64;
644 if (c->max_bud_bytes < tmp64 + c->leb_size)
645 c->max_bud_bytes = tmp64 + c->leb_size;
647 err = ubifs_calc_lpt_geom(c);
648 if (err)
649 return err;
651 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
654 * Calculate total amount of FS blocks. This number is not used
655 * internally because it does not make much sense for UBIFS, but it is
656 * necessary to report something for the 'statfs()' call.
658 * Subtract the LEB reserved for GC, the LEB which is reserved for
659 * deletions, and assume only one journal head is available.
661 tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1;
662 tmp64 *= (uint64_t)c->leb_size - c->leb_overhead;
663 tmp64 = ubifs_reported_space(c, tmp64);
664 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
666 return 0;
670 * take_gc_lnum - reserve GC LEB.
671 * @c: UBIFS file-system description object
673 * This function ensures that the LEB reserved for garbage collection is
674 * unmapped and is marked as "taken" in lprops. We also have to set free space
675 * to LEB size and dirty space to zero, because lprops may contain out-of-date
676 * information if the file-system was un-mounted before it has been committed.
677 * This function returns zero in case of success and a negative error code in
678 * case of failure.
680 static int take_gc_lnum(struct ubifs_info *c)
682 int err;
684 if (c->gc_lnum == -1) {
685 ubifs_err("no LEB for GC");
686 return -EINVAL;
689 err = ubifs_leb_unmap(c, c->gc_lnum);
690 if (err)
691 return err;
693 /* And we have to tell lprops that this LEB is taken */
694 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
695 LPROPS_TAKEN, 0, 0);
696 return err;
700 * alloc_wbufs - allocate write-buffers.
701 * @c: UBIFS file-system description object
703 * This helper function allocates and initializes UBIFS write-buffers. Returns
704 * zero in case of success and %-ENOMEM in case of failure.
706 static int alloc_wbufs(struct ubifs_info *c)
708 int i, err;
710 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
711 GFP_KERNEL);
712 if (!c->jheads)
713 return -ENOMEM;
715 /* Initialize journal heads */
716 for (i = 0; i < c->jhead_cnt; i++) {
717 INIT_LIST_HEAD(&c->jheads[i].buds_list);
718 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
719 if (err)
720 return err;
722 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
723 c->jheads[i].wbuf.jhead = i;
726 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
728 * Garbage Collector head likely contains long-term data and
729 * does not need to be synchronized by timer.
731 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
732 c->jheads[GCHD].wbuf.timeout = 0;
734 return 0;
738 * free_wbufs - free write-buffers.
739 * @c: UBIFS file-system description object
741 static void free_wbufs(struct ubifs_info *c)
743 int i;
745 if (c->jheads) {
746 for (i = 0; i < c->jhead_cnt; i++) {
747 kfree(c->jheads[i].wbuf.buf);
748 kfree(c->jheads[i].wbuf.inodes);
750 kfree(c->jheads);
751 c->jheads = NULL;
756 * free_orphans - free orphans.
757 * @c: UBIFS file-system description object
759 static void free_orphans(struct ubifs_info *c)
761 struct ubifs_orphan *orph;
763 while (c->orph_dnext) {
764 orph = c->orph_dnext;
765 c->orph_dnext = orph->dnext;
766 list_del(&orph->list);
767 kfree(orph);
770 while (!list_empty(&c->orph_list)) {
771 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
772 list_del(&orph->list);
773 kfree(orph);
774 dbg_err("orphan list not empty at unmount");
777 vfree(c->orph_buf);
778 c->orph_buf = NULL;
782 * free_buds - free per-bud objects.
783 * @c: UBIFS file-system description object
785 static void free_buds(struct ubifs_info *c)
787 struct rb_node *this = c->buds.rb_node;
788 struct ubifs_bud *bud;
790 while (this) {
791 if (this->rb_left)
792 this = this->rb_left;
793 else if (this->rb_right)
794 this = this->rb_right;
795 else {
796 bud = rb_entry(this, struct ubifs_bud, rb);
797 this = rb_parent(this);
798 if (this) {
799 if (this->rb_left == &bud->rb)
800 this->rb_left = NULL;
801 else
802 this->rb_right = NULL;
804 kfree(bud);
810 * check_volume_empty - check if the UBI volume is empty.
811 * @c: UBIFS file-system description object
813 * This function checks if the UBIFS volume is empty by looking if its LEBs are
814 * mapped or not. The result of checking is stored in the @c->empty variable.
815 * Returns zero in case of success and a negative error code in case of
816 * failure.
818 static int check_volume_empty(struct ubifs_info *c)
820 int lnum, err;
822 c->empty = 1;
823 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
824 err = ubi_is_mapped(c->ubi, lnum);
825 if (unlikely(err < 0))
826 return err;
827 if (err == 1) {
828 c->empty = 0;
829 break;
832 cond_resched();
835 return 0;
839 * UBIFS mount options.
841 * Opt_fast_unmount: do not run a journal commit before un-mounting
842 * Opt_norm_unmount: run a journal commit before un-mounting
843 * Opt_err: just end of array marker
845 enum {
846 Opt_fast_unmount,
847 Opt_norm_unmount,
848 Opt_err,
851 static match_table_t tokens = {
852 {Opt_fast_unmount, "fast_unmount"},
853 {Opt_norm_unmount, "norm_unmount"},
854 {Opt_err, NULL},
858 * ubifs_parse_options - parse mount parameters.
859 * @c: UBIFS file-system description object
860 * @options: parameters to parse
861 * @is_remount: non-zero if this is FS re-mount
863 * This function parses UBIFS mount options and returns zero in case success
864 * and a negative error code in case of failure.
866 static int ubifs_parse_options(struct ubifs_info *c, char *options,
867 int is_remount)
869 char *p;
870 substring_t args[MAX_OPT_ARGS];
872 if (!options)
873 return 0;
875 while ((p = strsep(&options, ","))) {
876 int token;
878 if (!*p)
879 continue;
881 token = match_token(p, tokens, args);
882 switch (token) {
883 case Opt_fast_unmount:
884 c->mount_opts.unmount_mode = 2;
885 c->fast_unmount = 1;
886 break;
887 case Opt_norm_unmount:
888 c->mount_opts.unmount_mode = 1;
889 c->fast_unmount = 0;
890 break;
891 default:
892 ubifs_err("unrecognized mount option \"%s\" "
893 "or missing value", p);
894 return -EINVAL;
898 return 0;
902 * destroy_journal - destroy journal data structures.
903 * @c: UBIFS file-system description object
905 * This function destroys journal data structures including those that may have
906 * been created by recovery functions.
908 static void destroy_journal(struct ubifs_info *c)
910 while (!list_empty(&c->unclean_leb_list)) {
911 struct ubifs_unclean_leb *ucleb;
913 ucleb = list_entry(c->unclean_leb_list.next,
914 struct ubifs_unclean_leb, list);
915 list_del(&ucleb->list);
916 kfree(ucleb);
918 while (!list_empty(&c->old_buds)) {
919 struct ubifs_bud *bud;
921 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
922 list_del(&bud->list);
923 kfree(bud);
925 ubifs_destroy_idx_gc(c);
926 ubifs_destroy_size_tree(c);
927 ubifs_tnc_close(c);
928 free_buds(c);
932 * mount_ubifs - mount UBIFS file-system.
933 * @c: UBIFS file-system description object
935 * This function mounts UBIFS file system. Returns zero in case of success and
936 * a negative error code in case of failure.
938 * Note, the function does not de-allocate resources it it fails half way
939 * through, and the caller has to do this instead.
941 static int mount_ubifs(struct ubifs_info *c)
943 struct super_block *sb = c->vfs_sb;
944 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
945 long long x;
946 size_t sz;
948 err = init_constants_early(c);
949 if (err)
950 return err;
952 #ifdef CONFIG_UBIFS_FS_DEBUG
953 c->dbg_buf = vmalloc(c->leb_size);
954 if (!c->dbg_buf)
955 return -ENOMEM;
956 #endif
958 err = check_volume_empty(c);
959 if (err)
960 goto out_free;
962 if (c->empty && (mounted_read_only || c->ro_media)) {
964 * This UBI volume is empty, and read-only, or the file system
965 * is mounted read-only - we cannot format it.
967 ubifs_err("can't format empty UBI volume: read-only %s",
968 c->ro_media ? "UBI volume" : "mount");
969 err = -EROFS;
970 goto out_free;
973 if (c->ro_media && !mounted_read_only) {
974 ubifs_err("cannot mount read-write - read-only media");
975 err = -EROFS;
976 goto out_free;
980 * The requirement for the buffer is that it should fit indexing B-tree
981 * height amount of integers. We assume the height if the TNC tree will
982 * never exceed 64.
984 err = -ENOMEM;
985 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
986 if (!c->bottom_up_buf)
987 goto out_free;
989 c->sbuf = vmalloc(c->leb_size);
990 if (!c->sbuf)
991 goto out_free;
993 if (!mounted_read_only) {
994 c->ileb_buf = vmalloc(c->leb_size);
995 if (!c->ileb_buf)
996 goto out_free;
999 err = ubifs_read_superblock(c);
1000 if (err)
1001 goto out_free;
1004 * Make sure the compressor which is set as the default on in the
1005 * superblock was actually compiled in.
1007 if (!ubifs_compr_present(c->default_compr)) {
1008 ubifs_warn("'%s' compressor is set by superblock, but not "
1009 "compiled in", ubifs_compr_name(c->default_compr));
1010 c->default_compr = UBIFS_COMPR_NONE;
1013 dbg_failure_mode_registration(c);
1015 err = init_constants_late(c);
1016 if (err)
1017 goto out_dereg;
1019 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1020 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1021 c->cbuf = kmalloc(sz, GFP_NOFS);
1022 if (!c->cbuf) {
1023 err = -ENOMEM;
1024 goto out_dereg;
1027 if (!mounted_read_only) {
1028 err = alloc_wbufs(c);
1029 if (err)
1030 goto out_cbuf;
1032 /* Create background thread */
1033 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num,
1034 c->vi.vol_id);
1035 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1036 if (!c->bgt)
1037 c->bgt = ERR_PTR(-EINVAL);
1038 if (IS_ERR(c->bgt)) {
1039 err = PTR_ERR(c->bgt);
1040 c->bgt = NULL;
1041 ubifs_err("cannot spawn \"%s\", error %d",
1042 c->bgt_name, err);
1043 goto out_wbufs;
1045 wake_up_process(c->bgt);
1048 err = ubifs_read_master(c);
1049 if (err)
1050 goto out_master;
1052 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1053 ubifs_msg("recovery needed");
1054 c->need_recovery = 1;
1055 if (!mounted_read_only) {
1056 err = ubifs_recover_inl_heads(c, c->sbuf);
1057 if (err)
1058 goto out_master;
1060 } else if (!mounted_read_only) {
1062 * Set the "dirty" flag so that if we reboot uncleanly we
1063 * will notice this immediately on the next mount.
1065 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1066 err = ubifs_write_master(c);
1067 if (err)
1068 goto out_master;
1071 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1072 if (err)
1073 goto out_lpt;
1075 err = dbg_check_idx_size(c, c->old_idx_sz);
1076 if (err)
1077 goto out_lpt;
1079 err = ubifs_replay_journal(c);
1080 if (err)
1081 goto out_journal;
1083 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1084 if (err)
1085 goto out_orphans;
1087 if (!mounted_read_only) {
1088 int lnum;
1090 /* Check for enough free space */
1091 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1092 ubifs_err("insufficient available space");
1093 err = -EINVAL;
1094 goto out_orphans;
1097 /* Check for enough log space */
1098 lnum = c->lhead_lnum + 1;
1099 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1100 lnum = UBIFS_LOG_LNUM;
1101 if (lnum == c->ltail_lnum) {
1102 err = ubifs_consolidate_log(c);
1103 if (err)
1104 goto out_orphans;
1107 if (c->need_recovery) {
1108 err = ubifs_recover_size(c);
1109 if (err)
1110 goto out_orphans;
1111 err = ubifs_rcvry_gc_commit(c);
1112 } else
1113 err = take_gc_lnum(c);
1114 if (err)
1115 goto out_orphans;
1117 err = dbg_check_lprops(c);
1118 if (err)
1119 goto out_orphans;
1120 } else if (c->need_recovery) {
1121 err = ubifs_recover_size(c);
1122 if (err)
1123 goto out_orphans;
1126 spin_lock(&ubifs_infos_lock);
1127 list_add_tail(&c->infos_list, &ubifs_infos);
1128 spin_unlock(&ubifs_infos_lock);
1130 if (c->need_recovery) {
1131 if (mounted_read_only)
1132 ubifs_msg("recovery deferred");
1133 else {
1134 c->need_recovery = 0;
1135 ubifs_msg("recovery completed");
1139 err = dbg_check_filesystem(c);
1140 if (err)
1141 goto out_infos;
1143 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1144 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1145 if (mounted_read_only)
1146 ubifs_msg("mounted read-only");
1147 x = (long long)c->main_lebs * c->leb_size;
1148 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1149 x, x >> 10, x >> 20, c->main_lebs);
1150 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1151 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1152 x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1153 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1154 ubifs_msg("media format %d, latest format %d",
1155 c->fmt_version, UBIFS_FORMAT_VERSION);
1157 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1158 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1159 dbg_msg("LEB size: %d bytes (%d KiB)",
1160 c->leb_size, c->leb_size / 1024);
1161 dbg_msg("data journal heads: %d",
1162 c->jhead_cnt - NONDATA_JHEADS_CNT);
1163 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1164 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1165 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1166 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1167 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1168 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1169 dbg_msg("fast unmount: %d", c->fast_unmount);
1170 dbg_msg("big_lpt %d", c->big_lpt);
1171 dbg_msg("log LEBs: %d (%d - %d)",
1172 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1173 dbg_msg("LPT area LEBs: %d (%d - %d)",
1174 c->lpt_lebs, c->lpt_first, c->lpt_last);
1175 dbg_msg("orphan area LEBs: %d (%d - %d)",
1176 c->orph_lebs, c->orph_first, c->orph_last);
1177 dbg_msg("main area LEBs: %d (%d - %d)",
1178 c->main_lebs, c->main_first, c->leb_cnt - 1);
1179 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1180 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1181 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1182 dbg_msg("key hash type: %d", c->key_hash_type);
1183 dbg_msg("tree fanout: %d", c->fanout);
1184 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1185 dbg_msg("first main LEB: %d", c->main_first);
1186 dbg_msg("dead watermark: %d", c->dead_wm);
1187 dbg_msg("dark watermark: %d", c->dark_wm);
1188 x = (long long)c->main_lebs * c->dark_wm;
1189 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1190 x, x >> 10, x >> 20);
1191 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1192 c->max_bud_bytes, c->max_bud_bytes >> 10,
1193 c->max_bud_bytes >> 20);
1194 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1195 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1196 c->bg_bud_bytes >> 20);
1197 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1198 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1199 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1200 dbg_msg("commit number: %llu", c->cmt_no);
1202 return 0;
1204 out_infos:
1205 spin_lock(&ubifs_infos_lock);
1206 list_del(&c->infos_list);
1207 spin_unlock(&ubifs_infos_lock);
1208 out_orphans:
1209 free_orphans(c);
1210 out_journal:
1211 destroy_journal(c);
1212 out_lpt:
1213 ubifs_lpt_free(c, 0);
1214 out_master:
1215 kfree(c->mst_node);
1216 kfree(c->rcvrd_mst_node);
1217 if (c->bgt)
1218 kthread_stop(c->bgt);
1219 out_wbufs:
1220 free_wbufs(c);
1221 out_cbuf:
1222 kfree(c->cbuf);
1223 out_dereg:
1224 dbg_failure_mode_deregistration(c);
1225 out_free:
1226 vfree(c->ileb_buf);
1227 vfree(c->sbuf);
1228 kfree(c->bottom_up_buf);
1229 UBIFS_DBG(vfree(c->dbg_buf));
1230 return err;
1234 * ubifs_umount - un-mount UBIFS file-system.
1235 * @c: UBIFS file-system description object
1237 * Note, this function is called to free allocated resourced when un-mounting,
1238 * as well as free resources when an error occurred while we were half way
1239 * through mounting (error path cleanup function). So it has to make sure the
1240 * resource was actually allocated before freeing it.
1242 static void ubifs_umount(struct ubifs_info *c)
1244 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1245 c->vi.vol_id);
1247 spin_lock(&ubifs_infos_lock);
1248 list_del(&c->infos_list);
1249 spin_unlock(&ubifs_infos_lock);
1251 if (c->bgt)
1252 kthread_stop(c->bgt);
1254 destroy_journal(c);
1255 free_wbufs(c);
1256 free_orphans(c);
1257 ubifs_lpt_free(c, 0);
1259 kfree(c->cbuf);
1260 kfree(c->rcvrd_mst_node);
1261 kfree(c->mst_node);
1262 vfree(c->sbuf);
1263 kfree(c->bottom_up_buf);
1264 UBIFS_DBG(vfree(c->dbg_buf));
1265 vfree(c->ileb_buf);
1266 dbg_failure_mode_deregistration(c);
1270 * ubifs_remount_rw - re-mount in read-write mode.
1271 * @c: UBIFS file-system description object
1273 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1274 * mode. This function allocates the needed resources and re-mounts UBIFS in
1275 * read-write mode.
1277 static int ubifs_remount_rw(struct ubifs_info *c)
1279 int err, lnum;
1281 if (c->ro_media)
1282 return -EINVAL;
1284 mutex_lock(&c->umount_mutex);
1285 c->remounting_rw = 1;
1287 /* Check for enough free space */
1288 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1289 ubifs_err("insufficient available space");
1290 err = -EINVAL;
1291 goto out;
1294 if (c->old_leb_cnt != c->leb_cnt) {
1295 struct ubifs_sb_node *sup;
1297 sup = ubifs_read_sb_node(c);
1298 if (IS_ERR(sup)) {
1299 err = PTR_ERR(sup);
1300 goto out;
1302 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1303 err = ubifs_write_sb_node(c, sup);
1304 if (err)
1305 goto out;
1308 if (c->need_recovery) {
1309 ubifs_msg("completing deferred recovery");
1310 err = ubifs_write_rcvrd_mst_node(c);
1311 if (err)
1312 goto out;
1313 err = ubifs_recover_size(c);
1314 if (err)
1315 goto out;
1316 err = ubifs_clean_lebs(c, c->sbuf);
1317 if (err)
1318 goto out;
1319 err = ubifs_recover_inl_heads(c, c->sbuf);
1320 if (err)
1321 goto out;
1324 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1325 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1326 err = ubifs_write_master(c);
1327 if (err)
1328 goto out;
1331 c->ileb_buf = vmalloc(c->leb_size);
1332 if (!c->ileb_buf) {
1333 err = -ENOMEM;
1334 goto out;
1337 err = ubifs_lpt_init(c, 0, 1);
1338 if (err)
1339 goto out;
1341 err = alloc_wbufs(c);
1342 if (err)
1343 goto out;
1345 ubifs_create_buds_lists(c);
1347 /* Create background thread */
1348 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1349 if (!c->bgt)
1350 c->bgt = ERR_PTR(-EINVAL);
1351 if (IS_ERR(c->bgt)) {
1352 err = PTR_ERR(c->bgt);
1353 c->bgt = NULL;
1354 ubifs_err("cannot spawn \"%s\", error %d",
1355 c->bgt_name, err);
1356 return err;
1358 wake_up_process(c->bgt);
1360 c->orph_buf = vmalloc(c->leb_size);
1361 if (!c->orph_buf)
1362 return -ENOMEM;
1364 /* Check for enough log space */
1365 lnum = c->lhead_lnum + 1;
1366 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1367 lnum = UBIFS_LOG_LNUM;
1368 if (lnum == c->ltail_lnum) {
1369 err = ubifs_consolidate_log(c);
1370 if (err)
1371 goto out;
1374 if (c->need_recovery)
1375 err = ubifs_rcvry_gc_commit(c);
1376 else
1377 err = take_gc_lnum(c);
1378 if (err)
1379 goto out;
1381 if (c->need_recovery) {
1382 c->need_recovery = 0;
1383 ubifs_msg("deferred recovery completed");
1386 dbg_gen("re-mounted read-write");
1387 c->vfs_sb->s_flags &= ~MS_RDONLY;
1388 c->remounting_rw = 0;
1389 mutex_unlock(&c->umount_mutex);
1390 return 0;
1392 out:
1393 vfree(c->orph_buf);
1394 c->orph_buf = NULL;
1395 if (c->bgt) {
1396 kthread_stop(c->bgt);
1397 c->bgt = NULL;
1399 free_wbufs(c);
1400 vfree(c->ileb_buf);
1401 c->ileb_buf = NULL;
1402 ubifs_lpt_free(c, 1);
1403 c->remounting_rw = 0;
1404 mutex_unlock(&c->umount_mutex);
1405 return err;
1409 * commit_on_unmount - commit the journal when un-mounting.
1410 * @c: UBIFS file-system description object
1412 * This function is called during un-mounting and it commits the journal unless
1413 * the "fast unmount" mode is enabled. It also avoids committing the journal if
1414 * it contains too few data.
1416 * Sometimes recovery requires the journal to be committed at least once, and
1417 * this function takes care about this.
1419 static void commit_on_unmount(struct ubifs_info *c)
1421 if (!c->fast_unmount) {
1422 long long bud_bytes;
1424 spin_lock(&c->buds_lock);
1425 bud_bytes = c->bud_bytes;
1426 spin_unlock(&c->buds_lock);
1427 if (bud_bytes > c->leb_size)
1428 ubifs_run_commit(c);
1433 * ubifs_remount_ro - re-mount in read-only mode.
1434 * @c: UBIFS file-system description object
1436 * We rely on VFS to have stopped writing. Possibly the background thread could
1437 * be running a commit, however kthread_stop will wait in that case.
1439 static void ubifs_remount_ro(struct ubifs_info *c)
1441 int i, err;
1443 ubifs_assert(!c->need_recovery);
1444 commit_on_unmount(c);
1446 mutex_lock(&c->umount_mutex);
1447 if (c->bgt) {
1448 kthread_stop(c->bgt);
1449 c->bgt = NULL;
1452 for (i = 0; i < c->jhead_cnt; i++) {
1453 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1454 del_timer_sync(&c->jheads[i].wbuf.timer);
1457 if (!c->ro_media) {
1458 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1459 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1460 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1461 err = ubifs_write_master(c);
1462 if (err)
1463 ubifs_ro_mode(c, err);
1466 ubifs_destroy_idx_gc(c);
1467 free_wbufs(c);
1468 vfree(c->orph_buf);
1469 c->orph_buf = NULL;
1470 vfree(c->ileb_buf);
1471 c->ileb_buf = NULL;
1472 ubifs_lpt_free(c, 1);
1473 mutex_unlock(&c->umount_mutex);
1476 static void ubifs_put_super(struct super_block *sb)
1478 int i;
1479 struct ubifs_info *c = sb->s_fs_info;
1481 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1482 c->vi.vol_id);
1484 * The following asserts are only valid if there has not been a failure
1485 * of the media. For example, there will be dirty inodes if we failed
1486 * to write them back because of I/O errors.
1488 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1489 ubifs_assert(c->budg_idx_growth == 0);
1490 ubifs_assert(c->budg_dd_growth == 0);
1491 ubifs_assert(c->budg_data_growth == 0);
1494 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1495 * and file system un-mount. Namely, it prevents the shrinker from
1496 * picking this superblock for shrinking - it will be just skipped if
1497 * the mutex is locked.
1499 mutex_lock(&c->umount_mutex);
1500 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1502 * First of all kill the background thread to make sure it does
1503 * not interfere with un-mounting and freeing resources.
1505 if (c->bgt) {
1506 kthread_stop(c->bgt);
1507 c->bgt = NULL;
1510 /* Synchronize write-buffers */
1511 if (c->jheads)
1512 for (i = 0; i < c->jhead_cnt; i++) {
1513 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1514 del_timer_sync(&c->jheads[i].wbuf.timer);
1518 * On fatal errors c->ro_media is set to 1, in which case we do
1519 * not write the master node.
1521 if (!c->ro_media) {
1523 * We are being cleanly unmounted which means the
1524 * orphans were killed - indicate this in the master
1525 * node. Also save the reserved GC LEB number.
1527 int err;
1529 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1530 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1531 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1532 err = ubifs_write_master(c);
1533 if (err)
1535 * Recovery will attempt to fix the master area
1536 * next mount, so we just print a message and
1537 * continue to unmount normally.
1539 ubifs_err("failed to write master node, "
1540 "error %d", err);
1544 ubifs_umount(c);
1545 bdi_destroy(&c->bdi);
1546 ubi_close_volume(c->ubi);
1547 mutex_unlock(&c->umount_mutex);
1548 kfree(c);
1551 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1553 int err;
1554 struct ubifs_info *c = sb->s_fs_info;
1556 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1558 err = ubifs_parse_options(c, data, 1);
1559 if (err) {
1560 ubifs_err("invalid or unknown remount parameter");
1561 return err;
1563 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1564 err = ubifs_remount_rw(c);
1565 if (err)
1566 return err;
1567 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1568 ubifs_remount_ro(c);
1570 return 0;
1573 struct super_operations ubifs_super_operations = {
1574 .alloc_inode = ubifs_alloc_inode,
1575 .destroy_inode = ubifs_destroy_inode,
1576 .put_super = ubifs_put_super,
1577 .write_inode = ubifs_write_inode,
1578 .delete_inode = ubifs_delete_inode,
1579 .statfs = ubifs_statfs,
1580 .dirty_inode = ubifs_dirty_inode,
1581 .remount_fs = ubifs_remount_fs,
1582 .show_options = ubifs_show_options,
1583 .sync_fs = ubifs_sync_fs,
1587 * open_ubi - parse UBI device name string and open the UBI device.
1588 * @name: UBI volume name
1589 * @mode: UBI volume open mode
1591 * There are several ways to specify UBI volumes when mounting UBIFS:
1592 * o ubiX_Y - UBI device number X, volume Y;
1593 * o ubiY - UBI device number 0, volume Y;
1594 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1595 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1597 * Alternative '!' separator may be used instead of ':' (because some shells
1598 * like busybox may interpret ':' as an NFS host name separator). This function
1599 * returns ubi volume object in case of success and a negative error code in
1600 * case of failure.
1602 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1604 int dev, vol;
1605 char *endptr;
1607 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1608 return ERR_PTR(-EINVAL);
1610 /* ubi:NAME method */
1611 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1612 return ubi_open_volume_nm(0, name + 4, mode);
1614 if (!isdigit(name[3]))
1615 return ERR_PTR(-EINVAL);
1617 dev = simple_strtoul(name + 3, &endptr, 0);
1619 /* ubiY method */
1620 if (*endptr == '\0')
1621 return ubi_open_volume(0, dev, mode);
1623 /* ubiX_Y method */
1624 if (*endptr == '_' && isdigit(endptr[1])) {
1625 vol = simple_strtoul(endptr + 1, &endptr, 0);
1626 if (*endptr != '\0')
1627 return ERR_PTR(-EINVAL);
1628 return ubi_open_volume(dev, vol, mode);
1631 /* ubiX:NAME method */
1632 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1633 return ubi_open_volume_nm(dev, ++endptr, mode);
1635 return ERR_PTR(-EINVAL);
1638 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1640 struct ubi_volume_desc *ubi = sb->s_fs_info;
1641 struct ubifs_info *c;
1642 struct inode *root;
1643 int err;
1645 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1646 if (!c)
1647 return -ENOMEM;
1649 spin_lock_init(&c->cnt_lock);
1650 spin_lock_init(&c->cs_lock);
1651 spin_lock_init(&c->buds_lock);
1652 spin_lock_init(&c->space_lock);
1653 spin_lock_init(&c->orphan_lock);
1654 init_rwsem(&c->commit_sem);
1655 mutex_init(&c->lp_mutex);
1656 mutex_init(&c->tnc_mutex);
1657 mutex_init(&c->log_mutex);
1658 mutex_init(&c->mst_mutex);
1659 mutex_init(&c->umount_mutex);
1660 init_waitqueue_head(&c->cmt_wq);
1661 c->buds = RB_ROOT;
1662 c->old_idx = RB_ROOT;
1663 c->size_tree = RB_ROOT;
1664 c->orph_tree = RB_ROOT;
1665 INIT_LIST_HEAD(&c->infos_list);
1666 INIT_LIST_HEAD(&c->idx_gc);
1667 INIT_LIST_HEAD(&c->replay_list);
1668 INIT_LIST_HEAD(&c->replay_buds);
1669 INIT_LIST_HEAD(&c->uncat_list);
1670 INIT_LIST_HEAD(&c->empty_list);
1671 INIT_LIST_HEAD(&c->freeable_list);
1672 INIT_LIST_HEAD(&c->frdi_idx_list);
1673 INIT_LIST_HEAD(&c->unclean_leb_list);
1674 INIT_LIST_HEAD(&c->old_buds);
1675 INIT_LIST_HEAD(&c->orph_list);
1676 INIT_LIST_HEAD(&c->orph_new);
1678 c->highest_inum = UBIFS_FIRST_INO;
1679 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1681 ubi_get_volume_info(ubi, &c->vi);
1682 ubi_get_device_info(c->vi.ubi_num, &c->di);
1684 /* Re-open the UBI device in read-write mode */
1685 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1686 if (IS_ERR(c->ubi)) {
1687 err = PTR_ERR(c->ubi);
1688 goto out_free;
1692 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1693 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1694 * which means the user would have to wait not just for their own I/O
1695 * but the read-ahead I/O as well i.e. completely pointless.
1697 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1699 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1700 c->bdi.unplug_io_fn = default_unplug_io_fn;
1701 err = bdi_init(&c->bdi);
1702 if (err)
1703 goto out_close;
1705 err = ubifs_parse_options(c, data, 0);
1706 if (err)
1707 goto out_bdi;
1709 c->vfs_sb = sb;
1711 sb->s_fs_info = c;
1712 sb->s_magic = UBIFS_SUPER_MAGIC;
1713 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1714 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1715 sb->s_dev = c->vi.cdev;
1716 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1717 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1718 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1719 sb->s_op = &ubifs_super_operations;
1721 mutex_lock(&c->umount_mutex);
1722 err = mount_ubifs(c);
1723 if (err) {
1724 ubifs_assert(err < 0);
1725 goto out_unlock;
1728 /* Read the root inode */
1729 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1730 if (IS_ERR(root)) {
1731 err = PTR_ERR(root);
1732 goto out_umount;
1735 sb->s_root = d_alloc_root(root);
1736 if (!sb->s_root)
1737 goto out_iput;
1739 mutex_unlock(&c->umount_mutex);
1741 return 0;
1743 out_iput:
1744 iput(root);
1745 out_umount:
1746 ubifs_umount(c);
1747 out_unlock:
1748 mutex_unlock(&c->umount_mutex);
1749 out_bdi:
1750 bdi_destroy(&c->bdi);
1751 out_close:
1752 ubi_close_volume(c->ubi);
1753 out_free:
1754 kfree(c);
1755 return err;
1758 static int sb_test(struct super_block *sb, void *data)
1760 dev_t *dev = data;
1762 return sb->s_dev == *dev;
1765 static int sb_set(struct super_block *sb, void *data)
1767 dev_t *dev = data;
1769 sb->s_dev = *dev;
1770 return 0;
1773 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1774 const char *name, void *data, struct vfsmount *mnt)
1776 struct ubi_volume_desc *ubi;
1777 struct ubi_volume_info vi;
1778 struct super_block *sb;
1779 int err;
1781 dbg_gen("name %s, flags %#x", name, flags);
1784 * Get UBI device number and volume ID. Mount it read-only so far
1785 * because this might be a new mount point, and UBI allows only one
1786 * read-write user at a time.
1788 ubi = open_ubi(name, UBI_READONLY);
1789 if (IS_ERR(ubi)) {
1790 ubifs_err("cannot open \"%s\", error %d",
1791 name, (int)PTR_ERR(ubi));
1792 return PTR_ERR(ubi);
1794 ubi_get_volume_info(ubi, &vi);
1796 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1798 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1799 if (IS_ERR(sb)) {
1800 err = PTR_ERR(sb);
1801 goto out_close;
1804 if (sb->s_root) {
1805 /* A new mount point for already mounted UBIFS */
1806 dbg_gen("this ubi volume is already mounted");
1807 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1808 err = -EBUSY;
1809 goto out_deact;
1811 } else {
1812 sb->s_flags = flags;
1814 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1815 * replaced by 'c'.
1817 sb->s_fs_info = ubi;
1818 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1819 if (err)
1820 goto out_deact;
1821 /* We do not support atime */
1822 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1825 /* 'fill_super()' opens ubi again so we must close it here */
1826 ubi_close_volume(ubi);
1828 return simple_set_mnt(mnt, sb);
1830 out_deact:
1831 up_write(&sb->s_umount);
1832 deactivate_super(sb);
1833 out_close:
1834 ubi_close_volume(ubi);
1835 return err;
1838 static void ubifs_kill_sb(struct super_block *sb)
1840 struct ubifs_info *c = sb->s_fs_info;
1843 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1844 * in order to be outside BKL.
1846 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1847 commit_on_unmount(c);
1848 /* The un-mount routine is actually done in put_super() */
1849 generic_shutdown_super(sb);
1852 static struct file_system_type ubifs_fs_type = {
1853 .name = "ubifs",
1854 .owner = THIS_MODULE,
1855 .get_sb = ubifs_get_sb,
1856 .kill_sb = ubifs_kill_sb
1860 * Inode slab cache constructor.
1862 static void inode_slab_ctor(void *obj)
1864 struct ubifs_inode *ui = obj;
1865 inode_init_once(&ui->vfs_inode);
1868 static int __init ubifs_init(void)
1870 int err;
1872 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1874 /* Make sure node sizes are 8-byte aligned */
1875 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1876 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1877 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1878 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1879 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1880 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1881 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1882 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1883 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1884 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1885 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1887 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1888 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1889 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1890 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1891 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1892 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1894 /* Check min. node size */
1895 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1896 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1897 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1898 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1900 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1901 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1902 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1903 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1905 /* Defined node sizes */
1906 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1907 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1908 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1909 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1912 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1913 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1915 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1916 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1917 " at least 4096 bytes",
1918 (unsigned int)PAGE_CACHE_SIZE);
1919 return -EINVAL;
1922 err = register_filesystem(&ubifs_fs_type);
1923 if (err) {
1924 ubifs_err("cannot register file system, error %d", err);
1925 return err;
1928 err = -ENOMEM;
1929 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1930 sizeof(struct ubifs_inode), 0,
1931 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1932 &inode_slab_ctor);
1933 if (!ubifs_inode_slab)
1934 goto out_reg;
1936 register_shrinker(&ubifs_shrinker_info);
1938 err = ubifs_compressors_init();
1939 if (err)
1940 goto out_compr;
1942 return 0;
1944 out_compr:
1945 unregister_shrinker(&ubifs_shrinker_info);
1946 kmem_cache_destroy(ubifs_inode_slab);
1947 out_reg:
1948 unregister_filesystem(&ubifs_fs_type);
1949 return err;
1951 /* late_initcall to let compressors initialize first */
1952 late_initcall(ubifs_init);
1954 static void __exit ubifs_exit(void)
1956 ubifs_assert(list_empty(&ubifs_infos));
1957 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
1959 ubifs_compressors_exit();
1960 unregister_shrinker(&ubifs_shrinker_info);
1961 kmem_cache_destroy(ubifs_inode_slab);
1962 unregister_filesystem(&ubifs_fs_type);
1964 module_exit(ubifs_exit);
1966 MODULE_LICENSE("GPL");
1967 MODULE_VERSION(__stringify(UBIFS_VERSION));
1968 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1969 MODULE_DESCRIPTION("UBIFS - UBI File System");