2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements the LEB properties tree (LPT) area. The LPT area
25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27 * between the log and the orphan area.
29 * The LPT area is like a miniature self-contained file system. It is required
30 * that it never runs out of space, is fast to access and update, and scales
31 * logarithmically. The LEB properties tree is implemented as a wandering tree
32 * much like the TNC, and the LPT area has its own garbage collection.
34 * The LPT has two slightly different forms called the "small model" and the
35 * "big model". The small model is used when the entire LEB properties table
36 * can be written into a single eraseblock. In that case, garbage collection
37 * consists of just writing the whole table, which therefore makes all other
38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39 * selected for garbage collection, which consists are marking the nodes in
40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41 * the case of the big model, a table of LEB numbers is saved so that the entire
42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
46 #include <linux/crc16.h>
50 * do_calc_lpt_geom - calculate sizes for the LPT area.
51 * @c: the UBIFS file-system description object
53 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
54 * properties of the flash and whether LPT is "big" (c->big_lpt).
56 static void do_calc_lpt_geom(struct ubifs_info
*c
)
58 int i
, n
, bits
, per_leb_wastage
, max_pnode_cnt
;
59 long long sz
, tot_wastage
;
61 n
= c
->main_lebs
+ c
->max_leb_cnt
- c
->leb_cnt
;
62 max_pnode_cnt
= DIV_ROUND_UP(n
, UBIFS_LPT_FANOUT
);
66 while (n
< max_pnode_cnt
) {
68 n
<<= UBIFS_LPT_FANOUT_SHIFT
;
71 c
->pnode_cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
73 n
= DIV_ROUND_UP(c
->pnode_cnt
, UBIFS_LPT_FANOUT
);
75 for (i
= 1; i
< c
->lpt_hght
; i
++) {
76 n
= DIV_ROUND_UP(n
, UBIFS_LPT_FANOUT
);
80 c
->space_bits
= fls(c
->leb_size
) - 3;
81 c
->lpt_lnum_bits
= fls(c
->lpt_lebs
);
82 c
->lpt_offs_bits
= fls(c
->leb_size
- 1);
83 c
->lpt_spc_bits
= fls(c
->leb_size
);
85 n
= DIV_ROUND_UP(c
->max_leb_cnt
, UBIFS_LPT_FANOUT
);
86 c
->pcnt_bits
= fls(n
- 1);
88 c
->lnum_bits
= fls(c
->max_leb_cnt
- 1);
90 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
91 (c
->big_lpt
? c
->pcnt_bits
: 0) +
92 (c
->space_bits
* 2 + 1) * UBIFS_LPT_FANOUT
;
93 c
->pnode_sz
= (bits
+ 7) / 8;
95 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
96 (c
->big_lpt
? c
->pcnt_bits
: 0) +
97 (c
->lpt_lnum_bits
+ c
->lpt_offs_bits
) * UBIFS_LPT_FANOUT
;
98 c
->nnode_sz
= (bits
+ 7) / 8;
100 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
101 c
->lpt_lebs
* c
->lpt_spc_bits
* 2;
102 c
->ltab_sz
= (bits
+ 7) / 8;
104 bits
= UBIFS_LPT_CRC_BITS
+ UBIFS_LPT_TYPE_BITS
+
105 c
->lnum_bits
* c
->lsave_cnt
;
106 c
->lsave_sz
= (bits
+ 7) / 8;
108 /* Calculate the minimum LPT size */
109 c
->lpt_sz
= (long long)c
->pnode_cnt
* c
->pnode_sz
;
110 c
->lpt_sz
+= (long long)c
->nnode_cnt
* c
->nnode_sz
;
111 c
->lpt_sz
+= c
->ltab_sz
;
112 c
->lpt_sz
+= c
->lsave_sz
;
116 per_leb_wastage
= max_t(int, c
->pnode_sz
, c
->nnode_sz
);
117 sz
+= per_leb_wastage
;
118 tot_wastage
= per_leb_wastage
;
119 while (sz
> c
->leb_size
) {
120 sz
+= per_leb_wastage
;
122 tot_wastage
+= per_leb_wastage
;
124 tot_wastage
+= ALIGN(sz
, c
->min_io_size
) - sz
;
125 c
->lpt_sz
+= tot_wastage
;
129 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
130 * @c: the UBIFS file-system description object
132 * This function returns %0 on success and a negative error code on failure.
134 int ubifs_calc_lpt_geom(struct ubifs_info
*c
)
141 /* Verify that lpt_lebs is big enough */
142 sz
= c
->lpt_sz
* 2; /* Must have at least 2 times the size */
143 sz
+= c
->leb_size
- 1;
144 do_div(sz
, c
->leb_size
);
146 if (lebs_needed
> c
->lpt_lebs
) {
147 ubifs_err("too few LPT LEBs");
151 /* Verify that ltab fits in a single LEB (since ltab is a single node */
152 if (c
->ltab_sz
> c
->leb_size
) {
153 ubifs_err("LPT ltab too big");
157 c
->check_lpt_free
= c
->big_lpt
;
163 * calc_dflt_lpt_geom - calculate default LPT geometry.
164 * @c: the UBIFS file-system description object
165 * @main_lebs: number of main area LEBs is passed and returned here
166 * @big_lpt: whether the LPT area is "big" is returned here
168 * The size of the LPT area depends on parameters that themselves are dependent
169 * on the size of the LPT area. This function, successively recalculates the LPT
170 * area geometry until the parameters and resultant geometry are consistent.
172 * This function returns %0 on success and a negative error code on failure.
174 static int calc_dflt_lpt_geom(struct ubifs_info
*c
, int *main_lebs
,
180 /* Start by assuming the minimum number of LPT LEBs */
181 c
->lpt_lebs
= UBIFS_MIN_LPT_LEBS
;
182 c
->main_lebs
= *main_lebs
- c
->lpt_lebs
;
183 if (c
->main_lebs
<= 0)
186 /* And assume we will use the small LPT model */
190 * Calculate the geometry based on assumptions above and then see if it
195 /* Small LPT model must have lpt_sz < leb_size */
196 if (c
->lpt_sz
> c
->leb_size
) {
197 /* Nope, so try again using big LPT model */
202 /* Now check there are enough LPT LEBs */
203 for (i
= 0; i
< 64 ; i
++) {
204 sz
= c
->lpt_sz
* 4; /* Allow 4 times the size */
205 sz
+= c
->leb_size
- 1;
206 do_div(sz
, c
->leb_size
);
208 if (lebs_needed
> c
->lpt_lebs
) {
209 /* Not enough LPT LEBs so try again with more */
210 c
->lpt_lebs
= lebs_needed
;
211 c
->main_lebs
= *main_lebs
- c
->lpt_lebs
;
212 if (c
->main_lebs
<= 0)
217 if (c
->ltab_sz
> c
->leb_size
) {
218 ubifs_err("LPT ltab too big");
221 *main_lebs
= c
->main_lebs
;
222 *big_lpt
= c
->big_lpt
;
229 * pack_bits - pack bit fields end-to-end.
230 * @addr: address at which to pack (passed and next address returned)
231 * @pos: bit position at which to pack (passed and next position returned)
232 * @val: value to pack
233 * @nrbits: number of bits of value to pack (1-32)
235 static void pack_bits(uint8_t **addr
, int *pos
, uint32_t val
, int nrbits
)
240 ubifs_assert(nrbits
> 0);
241 ubifs_assert(nrbits
<= 32);
242 ubifs_assert(*pos
>= 0);
243 ubifs_assert(*pos
< 8);
244 ubifs_assert((val
>> nrbits
) == 0 || nrbits
== 32);
246 *p
|= ((uint8_t)val
) << b
;
249 *++p
= (uint8_t)(val
>>= (8 - b
));
251 *++p
= (uint8_t)(val
>>= 8);
253 *++p
= (uint8_t)(val
>>= 8);
255 *++p
= (uint8_t)(val
>>= 8);
262 *++p
= (uint8_t)(val
>>= 8);
264 *++p
= (uint8_t)(val
>>= 8);
266 *++p
= (uint8_t)(val
>>= 8);
278 * ubifs_unpack_bits - unpack bit fields.
279 * @addr: address at which to unpack (passed and next address returned)
280 * @pos: bit position at which to unpack (passed and next position returned)
281 * @nrbits: number of bits of value to unpack (1-32)
283 * This functions returns the value unpacked.
285 uint32_t ubifs_unpack_bits(uint8_t **addr
, int *pos
, int nrbits
)
287 const int k
= 32 - nrbits
;
292 ubifs_assert(nrbits
> 0);
293 ubifs_assert(nrbits
<= 32);
294 ubifs_assert(*pos
>= 0);
295 ubifs_assert(*pos
< 8);
297 val
= p
[1] | ((uint32_t)p
[2] << 8) | ((uint32_t)p
[3] << 16) |
298 ((uint32_t)p
[4] << 24);
303 val
= p
[0] | ((uint32_t)p
[1] << 8) | ((uint32_t)p
[2] << 16) |
304 ((uint32_t)p
[3] << 24);
311 ubifs_assert((val
>> nrbits
) == 0 || nrbits
- b
== 32);
316 * ubifs_pack_pnode - pack all the bit fields of a pnode.
317 * @c: UBIFS file-system description object
318 * @buf: buffer into which to pack
319 * @pnode: pnode to pack
321 void ubifs_pack_pnode(struct ubifs_info
*c
, void *buf
,
322 struct ubifs_pnode
*pnode
)
324 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
328 pack_bits(&addr
, &pos
, UBIFS_LPT_PNODE
, UBIFS_LPT_TYPE_BITS
);
330 pack_bits(&addr
, &pos
, pnode
->num
, c
->pcnt_bits
);
331 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
332 pack_bits(&addr
, &pos
, pnode
->lprops
[i
].free
>> 3,
334 pack_bits(&addr
, &pos
, pnode
->lprops
[i
].dirty
>> 3,
336 if (pnode
->lprops
[i
].flags
& LPROPS_INDEX
)
337 pack_bits(&addr
, &pos
, 1, 1);
339 pack_bits(&addr
, &pos
, 0, 1);
341 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
342 c
->pnode_sz
- UBIFS_LPT_CRC_BYTES
);
345 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
349 * ubifs_pack_nnode - pack all the bit fields of a nnode.
350 * @c: UBIFS file-system description object
351 * @buf: buffer into which to pack
352 * @nnode: nnode to pack
354 void ubifs_pack_nnode(struct ubifs_info
*c
, void *buf
,
355 struct ubifs_nnode
*nnode
)
357 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
361 pack_bits(&addr
, &pos
, UBIFS_LPT_NNODE
, UBIFS_LPT_TYPE_BITS
);
363 pack_bits(&addr
, &pos
, nnode
->num
, c
->pcnt_bits
);
364 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
365 int lnum
= nnode
->nbranch
[i
].lnum
;
368 lnum
= c
->lpt_last
+ 1;
369 pack_bits(&addr
, &pos
, lnum
- c
->lpt_first
, c
->lpt_lnum_bits
);
370 pack_bits(&addr
, &pos
, nnode
->nbranch
[i
].offs
,
373 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
374 c
->nnode_sz
- UBIFS_LPT_CRC_BYTES
);
377 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
381 * ubifs_pack_ltab - pack the LPT's own lprops table.
382 * @c: UBIFS file-system description object
383 * @buf: buffer into which to pack
384 * @ltab: LPT's own lprops table to pack
386 void ubifs_pack_ltab(struct ubifs_info
*c
, void *buf
,
387 struct ubifs_lpt_lprops
*ltab
)
389 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
393 pack_bits(&addr
, &pos
, UBIFS_LPT_LTAB
, UBIFS_LPT_TYPE_BITS
);
394 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
395 pack_bits(&addr
, &pos
, ltab
[i
].free
, c
->lpt_spc_bits
);
396 pack_bits(&addr
, &pos
, ltab
[i
].dirty
, c
->lpt_spc_bits
);
398 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
399 c
->ltab_sz
- UBIFS_LPT_CRC_BYTES
);
402 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
406 * ubifs_pack_lsave - pack the LPT's save table.
407 * @c: UBIFS file-system description object
408 * @buf: buffer into which to pack
409 * @lsave: LPT's save table to pack
411 void ubifs_pack_lsave(struct ubifs_info
*c
, void *buf
, int *lsave
)
413 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
417 pack_bits(&addr
, &pos
, UBIFS_LPT_LSAVE
, UBIFS_LPT_TYPE_BITS
);
418 for (i
= 0; i
< c
->lsave_cnt
; i
++)
419 pack_bits(&addr
, &pos
, lsave
[i
], c
->lnum_bits
);
420 crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
421 c
->lsave_sz
- UBIFS_LPT_CRC_BYTES
);
424 pack_bits(&addr
, &pos
, crc
, UBIFS_LPT_CRC_BITS
);
428 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
429 * @c: UBIFS file-system description object
430 * @lnum: LEB number to which to add dirty space
431 * @dirty: amount of dirty space to add
433 void ubifs_add_lpt_dirt(struct ubifs_info
*c
, int lnum
, int dirty
)
437 dbg_lp("LEB %d add %d to %d",
438 lnum
, dirty
, c
->ltab
[lnum
- c
->lpt_first
].dirty
);
439 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
440 c
->ltab
[lnum
- c
->lpt_first
].dirty
+= dirty
;
444 * set_ltab - set LPT LEB properties.
445 * @c: UBIFS file-system description object
447 * @free: amount of free space
448 * @dirty: amount of dirty space
450 static void set_ltab(struct ubifs_info
*c
, int lnum
, int free
, int dirty
)
452 dbg_lp("LEB %d free %d dirty %d to %d %d",
453 lnum
, c
->ltab
[lnum
- c
->lpt_first
].free
,
454 c
->ltab
[lnum
- c
->lpt_first
].dirty
, free
, dirty
);
455 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
456 c
->ltab
[lnum
- c
->lpt_first
].free
= free
;
457 c
->ltab
[lnum
- c
->lpt_first
].dirty
= dirty
;
461 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
462 * @c: UBIFS file-system description object
463 * @nnode: nnode for which to add dirt
465 void ubifs_add_nnode_dirt(struct ubifs_info
*c
, struct ubifs_nnode
*nnode
)
467 struct ubifs_nnode
*np
= nnode
->parent
;
470 ubifs_add_lpt_dirt(c
, np
->nbranch
[nnode
->iip
].lnum
,
473 ubifs_add_lpt_dirt(c
, c
->lpt_lnum
, c
->nnode_sz
);
474 if (!(c
->lpt_drty_flgs
& LTAB_DIRTY
)) {
475 c
->lpt_drty_flgs
|= LTAB_DIRTY
;
476 ubifs_add_lpt_dirt(c
, c
->ltab_lnum
, c
->ltab_sz
);
482 * add_pnode_dirt - add dirty space to LPT LEB properties.
483 * @c: UBIFS file-system description object
484 * @pnode: pnode for which to add dirt
486 static void add_pnode_dirt(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
488 ubifs_add_lpt_dirt(c
, pnode
->parent
->nbranch
[pnode
->iip
].lnum
,
493 * calc_nnode_num - calculate nnode number.
494 * @row: the row in the tree (root is zero)
495 * @col: the column in the row (leftmost is zero)
497 * The nnode number is a number that uniquely identifies a nnode and can be used
498 * easily to traverse the tree from the root to that nnode.
500 * This function calculates and returns the nnode number for the nnode at @row
503 static int calc_nnode_num(int row
, int col
)
509 bits
= (col
& (UBIFS_LPT_FANOUT
- 1));
510 col
>>= UBIFS_LPT_FANOUT_SHIFT
;
511 num
<<= UBIFS_LPT_FANOUT_SHIFT
;
518 * calc_nnode_num_from_parent - calculate nnode number.
519 * @c: UBIFS file-system description object
520 * @parent: parent nnode
521 * @iip: index in parent
523 * The nnode number is a number that uniquely identifies a nnode and can be used
524 * easily to traverse the tree from the root to that nnode.
526 * This function calculates and returns the nnode number based on the parent's
527 * nnode number and the index in parent.
529 static int calc_nnode_num_from_parent(struct ubifs_info
*c
,
530 struct ubifs_nnode
*parent
, int iip
)
536 shft
= (c
->lpt_hght
- parent
->level
) * UBIFS_LPT_FANOUT_SHIFT
;
537 num
= parent
->num
^ (1 << shft
);
538 num
|= (UBIFS_LPT_FANOUT
+ iip
) << shft
;
543 * calc_pnode_num_from_parent - calculate pnode number.
544 * @c: UBIFS file-system description object
545 * @parent: parent nnode
546 * @iip: index in parent
548 * The pnode number is a number that uniquely identifies a pnode and can be used
549 * easily to traverse the tree from the root to that pnode.
551 * This function calculates and returns the pnode number based on the parent's
552 * nnode number and the index in parent.
554 static int calc_pnode_num_from_parent(struct ubifs_info
*c
,
555 struct ubifs_nnode
*parent
, int iip
)
557 int i
, n
= c
->lpt_hght
- 1, pnum
= parent
->num
, num
= 0;
559 for (i
= 0; i
< n
; i
++) {
560 num
<<= UBIFS_LPT_FANOUT_SHIFT
;
561 num
|= pnum
& (UBIFS_LPT_FANOUT
- 1);
562 pnum
>>= UBIFS_LPT_FANOUT_SHIFT
;
564 num
<<= UBIFS_LPT_FANOUT_SHIFT
;
570 * ubifs_create_dflt_lpt - create default LPT.
571 * @c: UBIFS file-system description object
572 * @main_lebs: number of main area LEBs is passed and returned here
573 * @lpt_first: LEB number of first LPT LEB
574 * @lpt_lebs: number of LEBs for LPT is passed and returned here
575 * @big_lpt: use big LPT model is passed and returned here
577 * This function returns %0 on success and a negative error code on failure.
579 int ubifs_create_dflt_lpt(struct ubifs_info
*c
, int *main_lebs
, int lpt_first
,
580 int *lpt_lebs
, int *big_lpt
)
582 int lnum
, err
= 0, node_sz
, iopos
, i
, j
, cnt
, len
, alen
, row
;
583 int blnum
, boffs
, bsz
, bcnt
;
584 struct ubifs_pnode
*pnode
= NULL
;
585 struct ubifs_nnode
*nnode
= NULL
;
586 void *buf
= NULL
, *p
;
587 struct ubifs_lpt_lprops
*ltab
= NULL
;
590 err
= calc_dflt_lpt_geom(c
, main_lebs
, big_lpt
);
593 *lpt_lebs
= c
->lpt_lebs
;
595 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
596 c
->lpt_first
= lpt_first
;
597 /* Needed by 'set_ltab()' */
598 c
->lpt_last
= lpt_first
+ c
->lpt_lebs
- 1;
599 /* Needed by 'ubifs_pack_lsave()' */
600 c
->main_first
= c
->leb_cnt
- *main_lebs
;
602 lsave
= kmalloc(sizeof(int) * c
->lsave_cnt
, GFP_KERNEL
);
603 pnode
= kzalloc(sizeof(struct ubifs_pnode
), GFP_KERNEL
);
604 nnode
= kzalloc(sizeof(struct ubifs_nnode
), GFP_KERNEL
);
605 buf
= vmalloc(c
->leb_size
);
606 ltab
= vmalloc(sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
607 if (!pnode
|| !nnode
|| !buf
|| !ltab
|| !lsave
) {
612 ubifs_assert(!c
->ltab
);
613 c
->ltab
= ltab
; /* Needed by set_ltab */
615 /* Initialize LPT's own lprops */
616 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
617 ltab
[i
].free
= c
->leb_size
;
625 /* Number of leaf nodes (pnodes) */
629 * The first pnode contains the LEB properties for the LEBs that contain
630 * the root inode node and the root index node of the index tree.
632 node_sz
= ALIGN(ubifs_idx_node_sz(c
, 1), 8);
633 iopos
= ALIGN(node_sz
, c
->min_io_size
);
634 pnode
->lprops
[0].free
= c
->leb_size
- iopos
;
635 pnode
->lprops
[0].dirty
= iopos
- node_sz
;
636 pnode
->lprops
[0].flags
= LPROPS_INDEX
;
638 node_sz
= UBIFS_INO_NODE_SZ
;
639 iopos
= ALIGN(node_sz
, c
->min_io_size
);
640 pnode
->lprops
[1].free
= c
->leb_size
- iopos
;
641 pnode
->lprops
[1].dirty
= iopos
- node_sz
;
643 for (i
= 2; i
< UBIFS_LPT_FANOUT
; i
++)
644 pnode
->lprops
[i
].free
= c
->leb_size
;
646 /* Add first pnode */
647 ubifs_pack_pnode(c
, p
, pnode
);
652 /* Reset pnode values for remaining pnodes */
653 pnode
->lprops
[0].free
= c
->leb_size
;
654 pnode
->lprops
[0].dirty
= 0;
655 pnode
->lprops
[0].flags
= 0;
657 pnode
->lprops
[1].free
= c
->leb_size
;
658 pnode
->lprops
[1].dirty
= 0;
661 * To calculate the internal node branches, we keep information about
664 blnum
= lnum
; /* LEB number of level below */
665 boffs
= 0; /* Offset of level below */
666 bcnt
= cnt
; /* Number of nodes in level below */
667 bsz
= c
->pnode_sz
; /* Size of nodes in level below */
669 /* Add all remaining pnodes */
670 for (i
= 1; i
< cnt
; i
++) {
671 if (len
+ c
->pnode_sz
> c
->leb_size
) {
672 alen
= ALIGN(len
, c
->min_io_size
);
673 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
674 memset(p
, 0xff, alen
- len
);
675 err
= ubi_leb_change(c
->ubi
, lnum
++, buf
, alen
,
682 ubifs_pack_pnode(c
, p
, pnode
);
686 * pnodes are simply numbered left to right starting at zero,
687 * which means the pnode number can be used easily to traverse
688 * down the tree to the corresponding pnode.
694 for (i
= UBIFS_LPT_FANOUT
; cnt
> i
; i
<<= UBIFS_LPT_FANOUT_SHIFT
)
696 /* Add all nnodes, one level at a time */
698 /* Number of internal nodes (nnodes) at next level */
699 cnt
= DIV_ROUND_UP(cnt
, UBIFS_LPT_FANOUT
);
700 for (i
= 0; i
< cnt
; i
++) {
701 if (len
+ c
->nnode_sz
> c
->leb_size
) {
702 alen
= ALIGN(len
, c
->min_io_size
);
703 set_ltab(c
, lnum
, c
->leb_size
- alen
,
705 memset(p
, 0xff, alen
- len
);
706 err
= ubi_leb_change(c
->ubi
, lnum
++, buf
, alen
,
713 /* Only 1 nnode at this level, so it is the root */
718 /* Set branches to the level below */
719 for (j
= 0; j
< UBIFS_LPT_FANOUT
; j
++) {
721 if (boffs
+ bsz
> c
->leb_size
) {
725 nnode
->nbranch
[j
].lnum
= blnum
;
726 nnode
->nbranch
[j
].offs
= boffs
;
730 nnode
->nbranch
[j
].lnum
= 0;
731 nnode
->nbranch
[j
].offs
= 0;
734 nnode
->num
= calc_nnode_num(row
, i
);
735 ubifs_pack_nnode(c
, p
, nnode
);
739 /* Only 1 nnode at this level, so it is the root */
742 /* Update the information about the level below */
749 /* Need to add LPT's save table */
750 if (len
+ c
->lsave_sz
> c
->leb_size
) {
751 alen
= ALIGN(len
, c
->min_io_size
);
752 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
753 memset(p
, 0xff, alen
- len
);
754 err
= ubi_leb_change(c
->ubi
, lnum
++, buf
, alen
,
762 c
->lsave_lnum
= lnum
;
765 for (i
= 0; i
< c
->lsave_cnt
&& i
< *main_lebs
; i
++)
766 lsave
[i
] = c
->main_first
+ i
;
767 for (; i
< c
->lsave_cnt
; i
++)
768 lsave
[i
] = c
->main_first
;
770 ubifs_pack_lsave(c
, p
, lsave
);
775 /* Need to add LPT's own LEB properties table */
776 if (len
+ c
->ltab_sz
> c
->leb_size
) {
777 alen
= ALIGN(len
, c
->min_io_size
);
778 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
779 memset(p
, 0xff, alen
- len
);
780 err
= ubi_leb_change(c
->ubi
, lnum
++, buf
, alen
, UBI_SHORTTERM
);
790 /* Update ltab before packing it */
792 alen
= ALIGN(len
, c
->min_io_size
);
793 set_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- len
);
795 ubifs_pack_ltab(c
, p
, ltab
);
798 /* Write remaining buffer */
799 memset(p
, 0xff, alen
- len
);
800 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, alen
, UBI_SHORTTERM
);
804 c
->nhead_lnum
= lnum
;
805 c
->nhead_offs
= ALIGN(len
, c
->min_io_size
);
807 dbg_lp("space_bits %d", c
->space_bits
);
808 dbg_lp("lpt_lnum_bits %d", c
->lpt_lnum_bits
);
809 dbg_lp("lpt_offs_bits %d", c
->lpt_offs_bits
);
810 dbg_lp("lpt_spc_bits %d", c
->lpt_spc_bits
);
811 dbg_lp("pcnt_bits %d", c
->pcnt_bits
);
812 dbg_lp("lnum_bits %d", c
->lnum_bits
);
813 dbg_lp("pnode_sz %d", c
->pnode_sz
);
814 dbg_lp("nnode_sz %d", c
->nnode_sz
);
815 dbg_lp("ltab_sz %d", c
->ltab_sz
);
816 dbg_lp("lsave_sz %d", c
->lsave_sz
);
817 dbg_lp("lsave_cnt %d", c
->lsave_cnt
);
818 dbg_lp("lpt_hght %d", c
->lpt_hght
);
819 dbg_lp("big_lpt %d", c
->big_lpt
);
820 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
821 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
822 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
824 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
836 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
837 * @c: UBIFS file-system description object
840 * When a pnode is loaded into memory, the LEB properties it contains are added,
841 * by this function, to the LEB category lists and heaps.
843 static void update_cats(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
847 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
848 int cat
= pnode
->lprops
[i
].flags
& LPROPS_CAT_MASK
;
849 int lnum
= pnode
->lprops
[i
].lnum
;
853 ubifs_add_to_cat(c
, &pnode
->lprops
[i
], cat
);
858 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
859 * @c: UBIFS file-system description object
860 * @old_pnode: pnode copied
861 * @new_pnode: pnode copy
863 * During commit it is sometimes necessary to copy a pnode
864 * (see dirty_cow_pnode). When that happens, references in
865 * category lists and heaps must be replaced. This function does that.
867 static void replace_cats(struct ubifs_info
*c
, struct ubifs_pnode
*old_pnode
,
868 struct ubifs_pnode
*new_pnode
)
872 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
873 if (!new_pnode
->lprops
[i
].lnum
)
875 ubifs_replace_cat(c
, &old_pnode
->lprops
[i
],
876 &new_pnode
->lprops
[i
]);
881 * check_lpt_crc - check LPT node crc is correct.
882 * @c: UBIFS file-system description object
883 * @buf: buffer containing node
884 * @len: length of node
886 * This function returns %0 on success and a negative error code on failure.
888 static int check_lpt_crc(void *buf
, int len
)
892 uint16_t crc
, calc_crc
;
894 crc
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_CRC_BITS
);
895 calc_crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
896 len
- UBIFS_LPT_CRC_BYTES
);
897 if (crc
!= calc_crc
) {
898 ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc
,
907 * check_lpt_type - check LPT node type is correct.
908 * @c: UBIFS file-system description object
909 * @addr: address of type bit field is passed and returned updated here
910 * @pos: position of type bit field is passed and returned updated here
911 * @type: expected type
913 * This function returns %0 on success and a negative error code on failure.
915 static int check_lpt_type(uint8_t **addr
, int *pos
, int type
)
919 node_type
= ubifs_unpack_bits(addr
, pos
, UBIFS_LPT_TYPE_BITS
);
920 if (node_type
!= type
) {
921 ubifs_err("invalid type (%d) in LPT node type %d", node_type
,
930 * unpack_pnode - unpack a pnode.
931 * @c: UBIFS file-system description object
932 * @buf: buffer containing packed pnode to unpack
933 * @pnode: pnode structure to fill
935 * This function returns %0 on success and a negative error code on failure.
937 static int unpack_pnode(struct ubifs_info
*c
, void *buf
,
938 struct ubifs_pnode
*pnode
)
940 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
943 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_PNODE
);
947 pnode
->num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
948 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
949 struct ubifs_lprops
* const lprops
= &pnode
->lprops
[i
];
951 lprops
->free
= ubifs_unpack_bits(&addr
, &pos
, c
->space_bits
);
953 lprops
->dirty
= ubifs_unpack_bits(&addr
, &pos
, c
->space_bits
);
956 if (ubifs_unpack_bits(&addr
, &pos
, 1))
957 lprops
->flags
= LPROPS_INDEX
;
960 lprops
->flags
|= ubifs_categorize_lprops(c
, lprops
);
962 err
= check_lpt_crc(buf
, c
->pnode_sz
);
967 * unpack_nnode - unpack a nnode.
968 * @c: UBIFS file-system description object
969 * @buf: buffer containing packed nnode to unpack
970 * @nnode: nnode structure to fill
972 * This function returns %0 on success and a negative error code on failure.
974 static int unpack_nnode(struct ubifs_info
*c
, void *buf
,
975 struct ubifs_nnode
*nnode
)
977 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
980 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_NNODE
);
984 nnode
->num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
985 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
988 lnum
= ubifs_unpack_bits(&addr
, &pos
, c
->lpt_lnum_bits
) +
990 if (lnum
== c
->lpt_last
+ 1)
992 nnode
->nbranch
[i
].lnum
= lnum
;
993 nnode
->nbranch
[i
].offs
= ubifs_unpack_bits(&addr
, &pos
,
996 err
= check_lpt_crc(buf
, c
->nnode_sz
);
1001 * unpack_ltab - unpack the LPT's own lprops table.
1002 * @c: UBIFS file-system description object
1003 * @buf: buffer from which to unpack
1005 * This function returns %0 on success and a negative error code on failure.
1007 static int unpack_ltab(struct ubifs_info
*c
, void *buf
)
1009 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1010 int i
, pos
= 0, err
;
1012 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_LTAB
);
1015 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1016 int free
= ubifs_unpack_bits(&addr
, &pos
, c
->lpt_spc_bits
);
1017 int dirty
= ubifs_unpack_bits(&addr
, &pos
, c
->lpt_spc_bits
);
1019 if (free
< 0 || free
> c
->leb_size
|| dirty
< 0 ||
1020 dirty
> c
->leb_size
|| free
+ dirty
> c
->leb_size
)
1023 c
->ltab
[i
].free
= free
;
1024 c
->ltab
[i
].dirty
= dirty
;
1028 err
= check_lpt_crc(buf
, c
->ltab_sz
);
1033 * unpack_lsave - unpack the LPT's save table.
1034 * @c: UBIFS file-system description object
1035 * @buf: buffer from which to unpack
1037 * This function returns %0 on success and a negative error code on failure.
1039 static int unpack_lsave(struct ubifs_info
*c
, void *buf
)
1041 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1042 int i
, pos
= 0, err
;
1044 err
= check_lpt_type(&addr
, &pos
, UBIFS_LPT_LSAVE
);
1047 for (i
= 0; i
< c
->lsave_cnt
; i
++) {
1048 int lnum
= ubifs_unpack_bits(&addr
, &pos
, c
->lnum_bits
);
1050 if (lnum
< c
->main_first
|| lnum
>= c
->leb_cnt
)
1054 err
= check_lpt_crc(buf
, c
->lsave_sz
);
1059 * validate_nnode - validate a nnode.
1060 * @c: UBIFS file-system description object
1061 * @nnode: nnode to validate
1062 * @parent: parent nnode (or NULL for the root nnode)
1063 * @iip: index in parent
1065 * This function returns %0 on success and a negative error code on failure.
1067 static int validate_nnode(struct ubifs_info
*c
, struct ubifs_nnode
*nnode
,
1068 struct ubifs_nnode
*parent
, int iip
)
1070 int i
, lvl
, max_offs
;
1073 int num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1075 if (nnode
->num
!= num
)
1078 lvl
= parent
? parent
->level
- 1 : c
->lpt_hght
;
1082 max_offs
= c
->leb_size
- c
->pnode_sz
;
1084 max_offs
= c
->leb_size
- c
->nnode_sz
;
1085 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1086 int lnum
= nnode
->nbranch
[i
].lnum
;
1087 int offs
= nnode
->nbranch
[i
].offs
;
1094 if (lnum
< c
->lpt_first
|| lnum
> c
->lpt_last
)
1096 if (offs
< 0 || offs
> max_offs
)
1103 * validate_pnode - validate a pnode.
1104 * @c: UBIFS file-system description object
1105 * @pnode: pnode to validate
1106 * @parent: parent nnode
1107 * @iip: index in parent
1109 * This function returns %0 on success and a negative error code on failure.
1111 static int validate_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
1112 struct ubifs_nnode
*parent
, int iip
)
1117 int num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1119 if (pnode
->num
!= num
)
1122 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1123 int free
= pnode
->lprops
[i
].free
;
1124 int dirty
= pnode
->lprops
[i
].dirty
;
1126 if (free
< 0 || free
> c
->leb_size
|| free
% c
->min_io_size
||
1129 if (dirty
< 0 || dirty
> c
->leb_size
|| (dirty
& 7))
1131 if (dirty
+ free
> c
->leb_size
)
1138 * set_pnode_lnum - set LEB numbers on a pnode.
1139 * @c: UBIFS file-system description object
1140 * @pnode: pnode to update
1142 * This function calculates the LEB numbers for the LEB properties it contains
1143 * based on the pnode number.
1145 static void set_pnode_lnum(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
1149 lnum
= (pnode
->num
<< UBIFS_LPT_FANOUT_SHIFT
) + c
->main_first
;
1150 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1151 if (lnum
>= c
->leb_cnt
)
1153 pnode
->lprops
[i
].lnum
= lnum
++;
1158 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1159 * @c: UBIFS file-system description object
1160 * @parent: parent nnode (or NULL for the root)
1161 * @iip: index in parent
1163 * This function returns %0 on success and a negative error code on failure.
1165 int ubifs_read_nnode(struct ubifs_info
*c
, struct ubifs_nnode
*parent
, int iip
)
1167 struct ubifs_nbranch
*branch
= NULL
;
1168 struct ubifs_nnode
*nnode
= NULL
;
1169 void *buf
= c
->lpt_nod_buf
;
1170 int err
, lnum
, offs
;
1173 branch
= &parent
->nbranch
[iip
];
1174 lnum
= branch
->lnum
;
1175 offs
= branch
->offs
;
1180 nnode
= kzalloc(sizeof(struct ubifs_nnode
), GFP_NOFS
);
1187 * This nnode was not written which just means that the LEB
1188 * properties in the subtree below it describe empty LEBs. We
1189 * make the nnode as though we had read it, which in fact means
1190 * doing almost nothing.
1193 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1195 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, c
->nnode_sz
);
1198 err
= unpack_nnode(c
, buf
, nnode
);
1202 err
= validate_nnode(c
, nnode
, parent
, iip
);
1206 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1208 branch
->nnode
= nnode
;
1209 nnode
->level
= parent
->level
- 1;
1212 nnode
->level
= c
->lpt_hght
;
1214 nnode
->parent
= parent
;
1219 ubifs_err("error %d reading nnode at %d:%d", err
, lnum
, offs
);
1225 * read_pnode - read a pnode from flash and link it to the tree in memory.
1226 * @c: UBIFS file-system description object
1227 * @parent: parent nnode
1228 * @iip: index in parent
1230 * This function returns %0 on success and a negative error code on failure.
1232 static int read_pnode(struct ubifs_info
*c
, struct ubifs_nnode
*parent
, int iip
)
1234 struct ubifs_nbranch
*branch
;
1235 struct ubifs_pnode
*pnode
= NULL
;
1236 void *buf
= c
->lpt_nod_buf
;
1237 int err
, lnum
, offs
;
1239 branch
= &parent
->nbranch
[iip
];
1240 lnum
= branch
->lnum
;
1241 offs
= branch
->offs
;
1242 pnode
= kzalloc(sizeof(struct ubifs_pnode
), GFP_NOFS
);
1249 * This pnode was not written which just means that the LEB
1250 * properties in it describe empty LEBs. We make the pnode as
1251 * though we had read it.
1256 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1257 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1258 struct ubifs_lprops
* const lprops
= &pnode
->lprops
[i
];
1260 lprops
->free
= c
->leb_size
;
1261 lprops
->flags
= ubifs_categorize_lprops(c
, lprops
);
1264 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, c
->pnode_sz
);
1267 err
= unpack_pnode(c
, buf
, pnode
);
1271 err
= validate_pnode(c
, pnode
, parent
, iip
);
1275 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1276 branch
->pnode
= pnode
;
1277 pnode
->parent
= parent
;
1279 set_pnode_lnum(c
, pnode
);
1280 c
->pnodes_have
+= 1;
1284 ubifs_err("error %d reading pnode at %d:%d", err
, lnum
, offs
);
1285 dbg_dump_pnode(c
, pnode
, parent
, iip
);
1286 dbg_msg("calc num: %d", calc_pnode_num_from_parent(c
, parent
, iip
));
1292 * read_ltab - read LPT's own lprops table.
1293 * @c: UBIFS file-system description object
1295 * This function returns %0 on success and a negative error code on failure.
1297 static int read_ltab(struct ubifs_info
*c
)
1302 buf
= vmalloc(c
->ltab_sz
);
1305 err
= ubi_read(c
->ubi
, c
->ltab_lnum
, buf
, c
->ltab_offs
, c
->ltab_sz
);
1308 err
= unpack_ltab(c
, buf
);
1315 * read_lsave - read LPT's save table.
1316 * @c: UBIFS file-system description object
1318 * This function returns %0 on success and a negative error code on failure.
1320 static int read_lsave(struct ubifs_info
*c
)
1325 buf
= vmalloc(c
->lsave_sz
);
1328 err
= ubi_read(c
->ubi
, c
->lsave_lnum
, buf
, c
->lsave_offs
, c
->lsave_sz
);
1331 err
= unpack_lsave(c
, buf
);
1334 for (i
= 0; i
< c
->lsave_cnt
; i
++) {
1335 int lnum
= c
->lsave
[i
];
1338 * Due to automatic resizing, the values in the lsave table
1339 * could be beyond the volume size - just ignore them.
1341 if (lnum
>= c
->leb_cnt
)
1343 ubifs_lpt_lookup(c
, lnum
);
1351 * ubifs_get_nnode - get a nnode.
1352 * @c: UBIFS file-system description object
1353 * @parent: parent nnode (or NULL for the root)
1354 * @iip: index in parent
1356 * This function returns a pointer to the nnode on success or a negative error
1359 struct ubifs_nnode
*ubifs_get_nnode(struct ubifs_info
*c
,
1360 struct ubifs_nnode
*parent
, int iip
)
1362 struct ubifs_nbranch
*branch
;
1363 struct ubifs_nnode
*nnode
;
1366 branch
= &parent
->nbranch
[iip
];
1367 nnode
= branch
->nnode
;
1370 err
= ubifs_read_nnode(c
, parent
, iip
);
1372 return ERR_PTR(err
);
1373 return branch
->nnode
;
1377 * ubifs_get_pnode - get a pnode.
1378 * @c: UBIFS file-system description object
1379 * @parent: parent nnode
1380 * @iip: index in parent
1382 * This function returns a pointer to the pnode on success or a negative error
1385 struct ubifs_pnode
*ubifs_get_pnode(struct ubifs_info
*c
,
1386 struct ubifs_nnode
*parent
, int iip
)
1388 struct ubifs_nbranch
*branch
;
1389 struct ubifs_pnode
*pnode
;
1392 branch
= &parent
->nbranch
[iip
];
1393 pnode
= branch
->pnode
;
1396 err
= read_pnode(c
, parent
, iip
);
1398 return ERR_PTR(err
);
1399 update_cats(c
, branch
->pnode
);
1400 return branch
->pnode
;
1404 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1405 * @c: UBIFS file-system description object
1406 * @lnum: LEB number to lookup
1408 * This function returns a pointer to the LEB properties on success or a
1409 * negative error code on failure.
1411 struct ubifs_lprops
*ubifs_lpt_lookup(struct ubifs_info
*c
, int lnum
)
1413 int err
, i
, h
, iip
, shft
;
1414 struct ubifs_nnode
*nnode
;
1415 struct ubifs_pnode
*pnode
;
1418 err
= ubifs_read_nnode(c
, NULL
, 0);
1420 return ERR_PTR(err
);
1423 i
= lnum
- c
->main_first
;
1424 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
1425 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1426 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1427 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1428 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
1430 return ERR_PTR(PTR_ERR(nnode
));
1432 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1433 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1434 pnode
= ubifs_get_pnode(c
, nnode
, iip
);
1436 return ERR_PTR(PTR_ERR(pnode
));
1437 iip
= (i
& (UBIFS_LPT_FANOUT
- 1));
1438 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum
,
1439 pnode
->lprops
[iip
].free
, pnode
->lprops
[iip
].dirty
,
1440 pnode
->lprops
[iip
].flags
);
1441 return &pnode
->lprops
[iip
];
1445 * dirty_cow_nnode - ensure a nnode is not being committed.
1446 * @c: UBIFS file-system description object
1447 * @nnode: nnode to check
1449 * Returns dirtied nnode on success or negative error code on failure.
1451 static struct ubifs_nnode
*dirty_cow_nnode(struct ubifs_info
*c
,
1452 struct ubifs_nnode
*nnode
)
1454 struct ubifs_nnode
*n
;
1457 if (!test_bit(COW_CNODE
, &nnode
->flags
)) {
1458 /* nnode is not being committed */
1459 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
1460 c
->dirty_nn_cnt
+= 1;
1461 ubifs_add_nnode_dirt(c
, nnode
);
1466 /* nnode is being committed, so copy it */
1467 n
= kmalloc(sizeof(struct ubifs_nnode
), GFP_NOFS
);
1469 return ERR_PTR(-ENOMEM
);
1471 memcpy(n
, nnode
, sizeof(struct ubifs_nnode
));
1473 __set_bit(DIRTY_CNODE
, &n
->flags
);
1474 __clear_bit(COW_CNODE
, &n
->flags
);
1476 /* The children now have new parent */
1477 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1478 struct ubifs_nbranch
*branch
= &n
->nbranch
[i
];
1481 branch
->cnode
->parent
= n
;
1484 ubifs_assert(!test_bit(OBSOLETE_CNODE
, &nnode
->flags
));
1485 __set_bit(OBSOLETE_CNODE
, &nnode
->flags
);
1487 c
->dirty_nn_cnt
+= 1;
1488 ubifs_add_nnode_dirt(c
, nnode
);
1490 nnode
->parent
->nbranch
[n
->iip
].nnode
= n
;
1497 * dirty_cow_pnode - ensure a pnode is not being committed.
1498 * @c: UBIFS file-system description object
1499 * @pnode: pnode to check
1501 * Returns dirtied pnode on success or negative error code on failure.
1503 static struct ubifs_pnode
*dirty_cow_pnode(struct ubifs_info
*c
,
1504 struct ubifs_pnode
*pnode
)
1506 struct ubifs_pnode
*p
;
1508 if (!test_bit(COW_CNODE
, &pnode
->flags
)) {
1509 /* pnode is not being committed */
1510 if (!test_and_set_bit(DIRTY_CNODE
, &pnode
->flags
)) {
1511 c
->dirty_pn_cnt
+= 1;
1512 add_pnode_dirt(c
, pnode
);
1517 /* pnode is being committed, so copy it */
1518 p
= kmalloc(sizeof(struct ubifs_pnode
), GFP_NOFS
);
1520 return ERR_PTR(-ENOMEM
);
1522 memcpy(p
, pnode
, sizeof(struct ubifs_pnode
));
1524 __set_bit(DIRTY_CNODE
, &p
->flags
);
1525 __clear_bit(COW_CNODE
, &p
->flags
);
1526 replace_cats(c
, pnode
, p
);
1528 ubifs_assert(!test_bit(OBSOLETE_CNODE
, &pnode
->flags
));
1529 __set_bit(OBSOLETE_CNODE
, &pnode
->flags
);
1531 c
->dirty_pn_cnt
+= 1;
1532 add_pnode_dirt(c
, pnode
);
1533 pnode
->parent
->nbranch
[p
->iip
].pnode
= p
;
1538 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1539 * @c: UBIFS file-system description object
1540 * @lnum: LEB number to lookup
1542 * This function returns a pointer to the LEB properties on success or a
1543 * negative error code on failure.
1545 struct ubifs_lprops
*ubifs_lpt_lookup_dirty(struct ubifs_info
*c
, int lnum
)
1547 int err
, i
, h
, iip
, shft
;
1548 struct ubifs_nnode
*nnode
;
1549 struct ubifs_pnode
*pnode
;
1552 err
= ubifs_read_nnode(c
, NULL
, 0);
1554 return ERR_PTR(err
);
1557 nnode
= dirty_cow_nnode(c
, nnode
);
1559 return ERR_PTR(PTR_ERR(nnode
));
1560 i
= lnum
- c
->main_first
;
1561 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
1562 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1563 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1564 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1565 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
1567 return ERR_PTR(PTR_ERR(nnode
));
1568 nnode
= dirty_cow_nnode(c
, nnode
);
1570 return ERR_PTR(PTR_ERR(nnode
));
1572 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1573 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1574 pnode
= ubifs_get_pnode(c
, nnode
, iip
);
1576 return ERR_PTR(PTR_ERR(pnode
));
1577 pnode
= dirty_cow_pnode(c
, pnode
);
1579 return ERR_PTR(PTR_ERR(pnode
));
1580 iip
= (i
& (UBIFS_LPT_FANOUT
- 1));
1581 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum
,
1582 pnode
->lprops
[iip
].free
, pnode
->lprops
[iip
].dirty
,
1583 pnode
->lprops
[iip
].flags
);
1584 ubifs_assert(test_bit(DIRTY_CNODE
, &pnode
->flags
));
1585 return &pnode
->lprops
[iip
];
1589 * lpt_init_rd - initialize the LPT for reading.
1590 * @c: UBIFS file-system description object
1592 * This function returns %0 on success and a negative error code on failure.
1594 static int lpt_init_rd(struct ubifs_info
*c
)
1598 c
->ltab
= vmalloc(sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1602 i
= max_t(int, c
->nnode_sz
, c
->pnode_sz
);
1603 c
->lpt_nod_buf
= kmalloc(i
, GFP_KERNEL
);
1604 if (!c
->lpt_nod_buf
)
1607 for (i
= 0; i
< LPROPS_HEAP_CNT
; i
++) {
1608 c
->lpt_heap
[i
].arr
= kmalloc(sizeof(void *) * LPT_HEAP_SZ
,
1610 if (!c
->lpt_heap
[i
].arr
)
1612 c
->lpt_heap
[i
].cnt
= 0;
1613 c
->lpt_heap
[i
].max_cnt
= LPT_HEAP_SZ
;
1616 c
->dirty_idx
.arr
= kmalloc(sizeof(void *) * LPT_HEAP_SZ
, GFP_KERNEL
);
1617 if (!c
->dirty_idx
.arr
)
1619 c
->dirty_idx
.cnt
= 0;
1620 c
->dirty_idx
.max_cnt
= LPT_HEAP_SZ
;
1626 dbg_lp("space_bits %d", c
->space_bits
);
1627 dbg_lp("lpt_lnum_bits %d", c
->lpt_lnum_bits
);
1628 dbg_lp("lpt_offs_bits %d", c
->lpt_offs_bits
);
1629 dbg_lp("lpt_spc_bits %d", c
->lpt_spc_bits
);
1630 dbg_lp("pcnt_bits %d", c
->pcnt_bits
);
1631 dbg_lp("lnum_bits %d", c
->lnum_bits
);
1632 dbg_lp("pnode_sz %d", c
->pnode_sz
);
1633 dbg_lp("nnode_sz %d", c
->nnode_sz
);
1634 dbg_lp("ltab_sz %d", c
->ltab_sz
);
1635 dbg_lp("lsave_sz %d", c
->lsave_sz
);
1636 dbg_lp("lsave_cnt %d", c
->lsave_cnt
);
1637 dbg_lp("lpt_hght %d", c
->lpt_hght
);
1638 dbg_lp("big_lpt %d", c
->big_lpt
);
1639 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
1640 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
1641 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
1643 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
1649 * lpt_init_wr - initialize the LPT for writing.
1650 * @c: UBIFS file-system description object
1652 * 'lpt_init_rd()' must have been called already.
1654 * This function returns %0 on success and a negative error code on failure.
1656 static int lpt_init_wr(struct ubifs_info
*c
)
1660 c
->ltab_cmt
= vmalloc(sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1664 c
->lpt_buf
= vmalloc(c
->leb_size
);
1669 c
->lsave
= kmalloc(sizeof(int) * c
->lsave_cnt
, GFP_NOFS
);
1672 err
= read_lsave(c
);
1677 for (i
= 0; i
< c
->lpt_lebs
; i
++)
1678 if (c
->ltab
[i
].free
== c
->leb_size
) {
1679 err
= ubifs_leb_unmap(c
, i
+ c
->lpt_first
);
1688 * ubifs_lpt_init - initialize the LPT.
1689 * @c: UBIFS file-system description object
1690 * @rd: whether to initialize lpt for reading
1691 * @wr: whether to initialize lpt for writing
1693 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1694 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1697 * This function returns %0 on success and a negative error code on failure.
1699 int ubifs_lpt_init(struct ubifs_info
*c
, int rd
, int wr
)
1704 err
= lpt_init_rd(c
);
1710 err
= lpt_init_wr(c
);
1719 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1720 * @nnode: where to keep a nnode
1721 * @pnode: where to keep a pnode
1722 * @cnode: where to keep a cnode
1723 * @in_tree: is the node in the tree in memory
1724 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1726 * @ptr.pnode: ditto for pnode
1727 * @ptr.cnode: ditto for cnode
1729 struct lpt_scan_node
{
1731 struct ubifs_nnode nnode
;
1732 struct ubifs_pnode pnode
;
1733 struct ubifs_cnode cnode
;
1737 struct ubifs_nnode
*nnode
;
1738 struct ubifs_pnode
*pnode
;
1739 struct ubifs_cnode
*cnode
;
1744 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1745 * @c: the UBIFS file-system description object
1746 * @path: where to put the nnode
1747 * @parent: parent of the nnode
1748 * @iip: index in parent of the nnode
1750 * This function returns a pointer to the nnode on success or a negative error
1753 static struct ubifs_nnode
*scan_get_nnode(struct ubifs_info
*c
,
1754 struct lpt_scan_node
*path
,
1755 struct ubifs_nnode
*parent
, int iip
)
1757 struct ubifs_nbranch
*branch
;
1758 struct ubifs_nnode
*nnode
;
1759 void *buf
= c
->lpt_nod_buf
;
1762 branch
= &parent
->nbranch
[iip
];
1763 nnode
= branch
->nnode
;
1766 path
->ptr
.nnode
= nnode
;
1769 nnode
= &path
->nnode
;
1771 path
->ptr
.nnode
= nnode
;
1772 memset(nnode
, 0, sizeof(struct ubifs_nnode
));
1773 if (branch
->lnum
== 0) {
1775 * This nnode was not written which just means that the LEB
1776 * properties in the subtree below it describe empty LEBs. We
1777 * make the nnode as though we had read it, which in fact means
1778 * doing almost nothing.
1781 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1783 err
= ubi_read(c
->ubi
, branch
->lnum
, buf
, branch
->offs
,
1786 return ERR_PTR(err
);
1787 err
= unpack_nnode(c
, buf
, nnode
);
1789 return ERR_PTR(err
);
1791 err
= validate_nnode(c
, nnode
, parent
, iip
);
1793 return ERR_PTR(err
);
1795 nnode
->num
= calc_nnode_num_from_parent(c
, parent
, iip
);
1796 nnode
->level
= parent
->level
- 1;
1797 nnode
->parent
= parent
;
1803 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1804 * @c: the UBIFS file-system description object
1805 * @path: where to put the pnode
1806 * @parent: parent of the pnode
1807 * @iip: index in parent of the pnode
1809 * This function returns a pointer to the pnode on success or a negative error
1812 static struct ubifs_pnode
*scan_get_pnode(struct ubifs_info
*c
,
1813 struct lpt_scan_node
*path
,
1814 struct ubifs_nnode
*parent
, int iip
)
1816 struct ubifs_nbranch
*branch
;
1817 struct ubifs_pnode
*pnode
;
1818 void *buf
= c
->lpt_nod_buf
;
1821 branch
= &parent
->nbranch
[iip
];
1822 pnode
= branch
->pnode
;
1825 path
->ptr
.pnode
= pnode
;
1828 pnode
= &path
->pnode
;
1830 path
->ptr
.pnode
= pnode
;
1831 memset(pnode
, 0, sizeof(struct ubifs_pnode
));
1832 if (branch
->lnum
== 0) {
1834 * This pnode was not written which just means that the LEB
1835 * properties in it describe empty LEBs. We make the pnode as
1836 * though we had read it.
1841 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1842 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1843 struct ubifs_lprops
* const lprops
= &pnode
->lprops
[i
];
1845 lprops
->free
= c
->leb_size
;
1846 lprops
->flags
= ubifs_categorize_lprops(c
, lprops
);
1849 ubifs_assert(branch
->lnum
>= c
->lpt_first
&&
1850 branch
->lnum
<= c
->lpt_last
);
1851 ubifs_assert(branch
->offs
>= 0 && branch
->offs
< c
->leb_size
);
1852 err
= ubi_read(c
->ubi
, branch
->lnum
, buf
, branch
->offs
,
1855 return ERR_PTR(err
);
1856 err
= unpack_pnode(c
, buf
, pnode
);
1858 return ERR_PTR(err
);
1860 err
= validate_pnode(c
, pnode
, parent
, iip
);
1862 return ERR_PTR(err
);
1864 pnode
->num
= calc_pnode_num_from_parent(c
, parent
, iip
);
1865 pnode
->parent
= parent
;
1867 set_pnode_lnum(c
, pnode
);
1872 * ubifs_lpt_scan_nolock - scan the LPT.
1873 * @c: the UBIFS file-system description object
1874 * @start_lnum: LEB number from which to start scanning
1875 * @end_lnum: LEB number at which to stop scanning
1876 * @scan_cb: callback function called for each lprops
1877 * @data: data to be passed to the callback function
1879 * This function returns %0 on success and a negative error code on failure.
1881 int ubifs_lpt_scan_nolock(struct ubifs_info
*c
, int start_lnum
, int end_lnum
,
1882 ubifs_lpt_scan_callback scan_cb
, void *data
)
1884 int err
= 0, i
, h
, iip
, shft
;
1885 struct ubifs_nnode
*nnode
;
1886 struct ubifs_pnode
*pnode
;
1887 struct lpt_scan_node
*path
;
1889 if (start_lnum
== -1) {
1890 start_lnum
= end_lnum
+ 1;
1891 if (start_lnum
>= c
->leb_cnt
)
1892 start_lnum
= c
->main_first
;
1895 ubifs_assert(start_lnum
>= c
->main_first
&& start_lnum
< c
->leb_cnt
);
1896 ubifs_assert(end_lnum
>= c
->main_first
&& end_lnum
< c
->leb_cnt
);
1899 err
= ubifs_read_nnode(c
, NULL
, 0);
1904 path
= kmalloc(sizeof(struct lpt_scan_node
) * (c
->lpt_hght
+ 1),
1909 path
[0].ptr
.nnode
= c
->nroot
;
1910 path
[0].in_tree
= 1;
1912 /* Descend to the pnode containing start_lnum */
1914 i
= start_lnum
- c
->main_first
;
1915 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
1916 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1917 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1918 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1919 nnode
= scan_get_nnode(c
, path
+ h
, nnode
, iip
);
1920 if (IS_ERR(nnode
)) {
1921 err
= PTR_ERR(nnode
);
1925 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
1926 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
1927 pnode
= scan_get_pnode(c
, path
+ h
, nnode
, iip
);
1928 if (IS_ERR(pnode
)) {
1929 err
= PTR_ERR(pnode
);
1932 iip
= (i
& (UBIFS_LPT_FANOUT
- 1));
1934 /* Loop for each lprops */
1936 struct ubifs_lprops
*lprops
= &pnode
->lprops
[iip
];
1937 int ret
, lnum
= lprops
->lnum
;
1939 ret
= scan_cb(c
, lprops
, path
[h
].in_tree
, data
);
1944 if (ret
& LPT_SCAN_ADD
) {
1945 /* Add all the nodes in path to the tree in memory */
1946 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1947 const size_t sz
= sizeof(struct ubifs_nnode
);
1948 struct ubifs_nnode
*parent
;
1950 if (path
[h
].in_tree
)
1952 nnode
= kmalloc(sz
, GFP_NOFS
);
1957 memcpy(nnode
, &path
[h
].nnode
, sz
);
1958 parent
= nnode
->parent
;
1959 parent
->nbranch
[nnode
->iip
].nnode
= nnode
;
1960 path
[h
].ptr
.nnode
= nnode
;
1961 path
[h
].in_tree
= 1;
1962 path
[h
+ 1].cnode
.parent
= nnode
;
1964 if (path
[h
].in_tree
)
1965 ubifs_ensure_cat(c
, lprops
);
1967 const size_t sz
= sizeof(struct ubifs_pnode
);
1968 struct ubifs_nnode
*parent
;
1970 pnode
= kmalloc(sz
, GFP_NOFS
);
1975 memcpy(pnode
, &path
[h
].pnode
, sz
);
1976 parent
= pnode
->parent
;
1977 parent
->nbranch
[pnode
->iip
].pnode
= pnode
;
1978 path
[h
].ptr
.pnode
= pnode
;
1979 path
[h
].in_tree
= 1;
1980 update_cats(c
, pnode
);
1981 c
->pnodes_have
+= 1;
1983 err
= dbg_check_lpt_nodes(c
, (struct ubifs_cnode
*)
1987 err
= dbg_check_cats(c
);
1991 if (ret
& LPT_SCAN_STOP
) {
1995 /* Get the next lprops */
1996 if (lnum
== end_lnum
) {
1998 * We got to the end without finding what we were
2004 if (lnum
+ 1 >= c
->leb_cnt
) {
2005 /* Wrap-around to the beginning */
2006 start_lnum
= c
->main_first
;
2009 if (iip
+ 1 < UBIFS_LPT_FANOUT
) {
2010 /* Next lprops is in the same pnode */
2014 /* We need to get the next pnode. Go up until we can go right */
2018 ubifs_assert(h
>= 0);
2019 nnode
= path
[h
].ptr
.nnode
;
2020 if (iip
+ 1 < UBIFS_LPT_FANOUT
)
2026 /* Descend to the pnode */
2028 for (; h
< c
->lpt_hght
; h
++) {
2029 nnode
= scan_get_nnode(c
, path
+ h
, nnode
, iip
);
2030 if (IS_ERR(nnode
)) {
2031 err
= PTR_ERR(nnode
);
2036 pnode
= scan_get_pnode(c
, path
+ h
, nnode
, iip
);
2037 if (IS_ERR(pnode
)) {
2038 err
= PTR_ERR(pnode
);
2048 #ifdef CONFIG_UBIFS_FS_DEBUG
2051 * dbg_chk_pnode - check a pnode.
2052 * @c: the UBIFS file-system description object
2053 * @pnode: pnode to check
2054 * @col: pnode column
2056 * This function returns %0 on success and a negative error code on failure.
2058 static int dbg_chk_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
2063 if (pnode
->num
!= col
) {
2064 dbg_err("pnode num %d expected %d parent num %d iip %d",
2065 pnode
->num
, col
, pnode
->parent
->num
, pnode
->iip
);
2068 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
2069 struct ubifs_lprops
*lp
, *lprops
= &pnode
->lprops
[i
];
2070 int lnum
= (pnode
->num
<< UBIFS_LPT_FANOUT_SHIFT
) + i
+
2072 int found
, cat
= lprops
->flags
& LPROPS_CAT_MASK
;
2073 struct ubifs_lpt_heap
*heap
;
2074 struct list_head
*list
= NULL
;
2076 if (lnum
>= c
->leb_cnt
)
2078 if (lprops
->lnum
!= lnum
) {
2079 dbg_err("bad LEB number %d expected %d",
2080 lprops
->lnum
, lnum
);
2083 if (lprops
->flags
& LPROPS_TAKEN
) {
2084 if (cat
!= LPROPS_UNCAT
) {
2085 dbg_err("LEB %d taken but not uncat %d",
2091 if (lprops
->flags
& LPROPS_INDEX
) {
2094 case LPROPS_DIRTY_IDX
:
2095 case LPROPS_FRDI_IDX
:
2098 dbg_err("LEB %d index but cat %d",
2108 case LPROPS_FREEABLE
:
2111 dbg_err("LEB %d not index but cat %d",
2118 list
= &c
->uncat_list
;
2121 list
= &c
->empty_list
;
2123 case LPROPS_FREEABLE
:
2124 list
= &c
->freeable_list
;
2126 case LPROPS_FRDI_IDX
:
2127 list
= &c
->frdi_idx_list
;
2133 case LPROPS_DIRTY_IDX
:
2135 heap
= &c
->lpt_heap
[cat
- 1];
2136 if (lprops
->hpos
< heap
->cnt
&&
2137 heap
->arr
[lprops
->hpos
] == lprops
)
2142 case LPROPS_FREEABLE
:
2143 case LPROPS_FRDI_IDX
:
2144 list_for_each_entry(lp
, list
, list
)
2152 dbg_err("LEB %d cat %d not found in cat heap/list",
2158 if (lprops
->free
!= c
->leb_size
) {
2159 dbg_err("LEB %d cat %d free %d dirty %d",
2160 lprops
->lnum
, cat
, lprops
->free
,
2164 case LPROPS_FREEABLE
:
2165 case LPROPS_FRDI_IDX
:
2166 if (lprops
->free
+ lprops
->dirty
!= c
->leb_size
) {
2167 dbg_err("LEB %d cat %d free %d dirty %d",
2168 lprops
->lnum
, cat
, lprops
->free
,
2178 * dbg_check_lpt_nodes - check nnodes and pnodes.
2179 * @c: the UBIFS file-system description object
2180 * @cnode: next cnode (nnode or pnode) to check
2181 * @row: row of cnode (root is zero)
2182 * @col: column of cnode (leftmost is zero)
2184 * This function returns %0 on success and a negative error code on failure.
2186 int dbg_check_lpt_nodes(struct ubifs_info
*c
, struct ubifs_cnode
*cnode
,
2189 struct ubifs_nnode
*nnode
, *nn
;
2190 struct ubifs_cnode
*cn
;
2191 int num
, iip
= 0, err
;
2193 if (!(ubifs_chk_flags
& UBIFS_CHK_LPROPS
))
2197 ubifs_assert(row
>= 0);
2198 nnode
= cnode
->parent
;
2200 /* cnode is a nnode */
2201 num
= calc_nnode_num(row
, col
);
2202 if (cnode
->num
!= num
) {
2203 dbg_err("nnode num %d expected %d "
2204 "parent num %d iip %d", cnode
->num
, num
,
2205 (nnode
? nnode
->num
: 0), cnode
->iip
);
2208 nn
= (struct ubifs_nnode
*)cnode
;
2209 while (iip
< UBIFS_LPT_FANOUT
) {
2210 cn
= nn
->nbranch
[iip
].cnode
;
2214 col
<<= UBIFS_LPT_FANOUT_SHIFT
;
2223 if (iip
< UBIFS_LPT_FANOUT
)
2226 struct ubifs_pnode
*pnode
;
2228 /* cnode is a pnode */
2229 pnode
= (struct ubifs_pnode
*)cnode
;
2230 err
= dbg_chk_pnode(c
, pnode
, col
);
2234 /* Go up and to the right */
2236 col
>>= UBIFS_LPT_FANOUT_SHIFT
;
2237 iip
= cnode
->iip
+ 1;
2238 cnode
= (struct ubifs_cnode
*)nnode
;
2243 #endif /* CONFIG_UBIFS_FS_DEBUG */