Merge branch 'for-2.6.30' of git://linux-nfs.org/~bfields/linux
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / super.c
blob1943fdf655faca2d3d1810cca8b36ac80c9d3593
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h> /* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h> /* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 #include "internal.h"
46 LIST_HEAD(super_blocks);
47 DEFINE_SPINLOCK(sb_lock);
49 /**
50 * alloc_super - create new superblock
51 * @type: filesystem type superblock should belong to
53 * Allocates and initializes a new &struct super_block. alloc_super()
54 * returns a pointer new superblock or %NULL if allocation had failed.
56 static struct super_block *alloc_super(struct file_system_type *type)
58 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
59 static struct super_operations default_op;
61 if (s) {
62 if (security_sb_alloc(s)) {
63 kfree(s);
64 s = NULL;
65 goto out;
67 INIT_LIST_HEAD(&s->s_dirty);
68 INIT_LIST_HEAD(&s->s_io);
69 INIT_LIST_HEAD(&s->s_more_io);
70 INIT_LIST_HEAD(&s->s_files);
71 INIT_LIST_HEAD(&s->s_instances);
72 INIT_HLIST_HEAD(&s->s_anon);
73 INIT_LIST_HEAD(&s->s_inodes);
74 INIT_LIST_HEAD(&s->s_dentry_lru);
75 INIT_LIST_HEAD(&s->s_async_list);
76 init_rwsem(&s->s_umount);
77 mutex_init(&s->s_lock);
78 lockdep_set_class(&s->s_umount, &type->s_umount_key);
80 * The locking rules for s_lock are up to the
81 * filesystem. For example ext3fs has different
82 * lock ordering than usbfs:
84 lockdep_set_class(&s->s_lock, &type->s_lock_key);
86 * sget() can have s_umount recursion.
88 * When it cannot find a suitable sb, it allocates a new
89 * one (this one), and tries again to find a suitable old
90 * one.
92 * In case that succeeds, it will acquire the s_umount
93 * lock of the old one. Since these are clearly distrinct
94 * locks, and this object isn't exposed yet, there's no
95 * risk of deadlocks.
97 * Annotate this by putting this lock in a different
98 * subclass.
100 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
101 s->s_count = S_BIAS;
102 atomic_set(&s->s_active, 1);
103 mutex_init(&s->s_vfs_rename_mutex);
104 mutex_init(&s->s_dquot.dqio_mutex);
105 mutex_init(&s->s_dquot.dqonoff_mutex);
106 init_rwsem(&s->s_dquot.dqptr_sem);
107 init_waitqueue_head(&s->s_wait_unfrozen);
108 s->s_maxbytes = MAX_NON_LFS;
109 s->dq_op = sb_dquot_ops;
110 s->s_qcop = sb_quotactl_ops;
111 s->s_op = &default_op;
112 s->s_time_gran = 1000000000;
114 out:
115 return s;
119 * destroy_super - frees a superblock
120 * @s: superblock to free
122 * Frees a superblock.
124 static inline void destroy_super(struct super_block *s)
126 security_sb_free(s);
127 kfree(s->s_subtype);
128 kfree(s->s_options);
129 kfree(s);
132 /* Superblock refcounting */
135 * Drop a superblock's refcount. Returns non-zero if the superblock was
136 * destroyed. The caller must hold sb_lock.
138 static int __put_super(struct super_block *sb)
140 int ret = 0;
142 if (!--sb->s_count) {
143 destroy_super(sb);
144 ret = 1;
146 return ret;
150 * Drop a superblock's refcount.
151 * Returns non-zero if the superblock is about to be destroyed and
152 * at least is already removed from super_blocks list, so if we are
153 * making a loop through super blocks then we need to restart.
154 * The caller must hold sb_lock.
156 int __put_super_and_need_restart(struct super_block *sb)
158 /* check for race with generic_shutdown_super() */
159 if (list_empty(&sb->s_list)) {
160 /* super block is removed, need to restart... */
161 __put_super(sb);
162 return 1;
164 /* can't be the last, since s_list is still in use */
165 sb->s_count--;
166 BUG_ON(sb->s_count == 0);
167 return 0;
171 * put_super - drop a temporary reference to superblock
172 * @sb: superblock in question
174 * Drops a temporary reference, frees superblock if there's no
175 * references left.
177 static void put_super(struct super_block *sb)
179 spin_lock(&sb_lock);
180 __put_super(sb);
181 spin_unlock(&sb_lock);
186 * deactivate_super - drop an active reference to superblock
187 * @s: superblock to deactivate
189 * Drops an active reference to superblock, acquiring a temprory one if
190 * there is no active references left. In that case we lock superblock,
191 * tell fs driver to shut it down and drop the temporary reference we
192 * had just acquired.
194 void deactivate_super(struct super_block *s)
196 struct file_system_type *fs = s->s_type;
197 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
198 s->s_count -= S_BIAS-1;
199 spin_unlock(&sb_lock);
200 vfs_dq_off(s, 0);
201 down_write(&s->s_umount);
202 fs->kill_sb(s);
203 put_filesystem(fs);
204 put_super(s);
208 EXPORT_SYMBOL(deactivate_super);
211 * deactivate_locked_super - drop an active reference to superblock
212 * @s: superblock to deactivate
214 * Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
215 * it does not unlock it until it's all over. As the result, it's safe to
216 * use to dispose of new superblock on ->get_sb() failure exits - nobody
217 * will see the sucker until it's all over. Equivalent using up_write +
218 * deactivate_super is safe for that purpose only if superblock is either
219 * safe to use or has NULL ->s_root when we unlock.
221 void deactivate_locked_super(struct super_block *s)
223 struct file_system_type *fs = s->s_type;
224 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
225 s->s_count -= S_BIAS-1;
226 spin_unlock(&sb_lock);
227 vfs_dq_off(s, 0);
228 fs->kill_sb(s);
229 put_filesystem(fs);
230 put_super(s);
231 } else {
232 up_write(&s->s_umount);
236 EXPORT_SYMBOL(deactivate_locked_super);
239 * grab_super - acquire an active reference
240 * @s: reference we are trying to make active
242 * Tries to acquire an active reference. grab_super() is used when we
243 * had just found a superblock in super_blocks or fs_type->fs_supers
244 * and want to turn it into a full-blown active reference. grab_super()
245 * is called with sb_lock held and drops it. Returns 1 in case of
246 * success, 0 if we had failed (superblock contents was already dead or
247 * dying when grab_super() had been called).
249 static int grab_super(struct super_block *s) __releases(sb_lock)
251 s->s_count++;
252 spin_unlock(&sb_lock);
253 down_write(&s->s_umount);
254 if (s->s_root) {
255 spin_lock(&sb_lock);
256 if (s->s_count > S_BIAS) {
257 atomic_inc(&s->s_active);
258 s->s_count--;
259 spin_unlock(&sb_lock);
260 return 1;
262 spin_unlock(&sb_lock);
264 up_write(&s->s_umount);
265 put_super(s);
266 yield();
267 return 0;
271 * Superblock locking. We really ought to get rid of these two.
273 void lock_super(struct super_block * sb)
275 get_fs_excl();
276 mutex_lock(&sb->s_lock);
279 void unlock_super(struct super_block * sb)
281 put_fs_excl();
282 mutex_unlock(&sb->s_lock);
285 EXPORT_SYMBOL(lock_super);
286 EXPORT_SYMBOL(unlock_super);
289 * Write out and wait upon all dirty data associated with this
290 * superblock. Filesystem data as well as the underlying block
291 * device. Takes the superblock lock. Requires a second blkdev
292 * flush by the caller to complete the operation.
294 void __fsync_super(struct super_block *sb)
296 sync_inodes_sb(sb, 0);
297 vfs_dq_sync(sb);
298 lock_super(sb);
299 if (sb->s_dirt && sb->s_op->write_super)
300 sb->s_op->write_super(sb);
301 unlock_super(sb);
302 if (sb->s_op->sync_fs)
303 sb->s_op->sync_fs(sb, 1);
304 sync_blockdev(sb->s_bdev);
305 sync_inodes_sb(sb, 1);
309 * Write out and wait upon all dirty data associated with this
310 * superblock. Filesystem data as well as the underlying block
311 * device. Takes the superblock lock.
313 int fsync_super(struct super_block *sb)
315 __fsync_super(sb);
316 return sync_blockdev(sb->s_bdev);
318 EXPORT_SYMBOL_GPL(fsync_super);
321 * generic_shutdown_super - common helper for ->kill_sb()
322 * @sb: superblock to kill
324 * generic_shutdown_super() does all fs-independent work on superblock
325 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
326 * that need destruction out of superblock, call generic_shutdown_super()
327 * and release aforementioned objects. Note: dentries and inodes _are_
328 * taken care of and do not need specific handling.
330 * Upon calling this function, the filesystem may no longer alter or
331 * rearrange the set of dentries belonging to this super_block, nor may it
332 * change the attachments of dentries to inodes.
334 void generic_shutdown_super(struct super_block *sb)
336 const struct super_operations *sop = sb->s_op;
339 if (sb->s_root) {
340 shrink_dcache_for_umount(sb);
341 fsync_super(sb);
342 lock_super(sb);
343 sb->s_flags &= ~MS_ACTIVE;
346 * wait for asynchronous fs operations to finish before going further
348 async_synchronize_full_domain(&sb->s_async_list);
350 /* bad name - it should be evict_inodes() */
351 invalidate_inodes(sb);
352 lock_kernel();
354 if (sop->write_super && sb->s_dirt)
355 sop->write_super(sb);
356 if (sop->put_super)
357 sop->put_super(sb);
359 /* Forget any remaining inodes */
360 if (invalidate_inodes(sb)) {
361 printk("VFS: Busy inodes after unmount of %s. "
362 "Self-destruct in 5 seconds. Have a nice day...\n",
363 sb->s_id);
366 unlock_kernel();
367 unlock_super(sb);
369 spin_lock(&sb_lock);
370 /* should be initialized for __put_super_and_need_restart() */
371 list_del_init(&sb->s_list);
372 list_del(&sb->s_instances);
373 spin_unlock(&sb_lock);
374 up_write(&sb->s_umount);
377 EXPORT_SYMBOL(generic_shutdown_super);
380 * sget - find or create a superblock
381 * @type: filesystem type superblock should belong to
382 * @test: comparison callback
383 * @set: setup callback
384 * @data: argument to each of them
386 struct super_block *sget(struct file_system_type *type,
387 int (*test)(struct super_block *,void *),
388 int (*set)(struct super_block *,void *),
389 void *data)
391 struct super_block *s = NULL;
392 struct super_block *old;
393 int err;
395 retry:
396 spin_lock(&sb_lock);
397 if (test) {
398 list_for_each_entry(old, &type->fs_supers, s_instances) {
399 if (!test(old, data))
400 continue;
401 if (!grab_super(old))
402 goto retry;
403 if (s) {
404 up_write(&s->s_umount);
405 destroy_super(s);
407 return old;
410 if (!s) {
411 spin_unlock(&sb_lock);
412 s = alloc_super(type);
413 if (!s)
414 return ERR_PTR(-ENOMEM);
415 goto retry;
418 err = set(s, data);
419 if (err) {
420 spin_unlock(&sb_lock);
421 up_write(&s->s_umount);
422 destroy_super(s);
423 return ERR_PTR(err);
425 s->s_type = type;
426 strlcpy(s->s_id, type->name, sizeof(s->s_id));
427 list_add_tail(&s->s_list, &super_blocks);
428 list_add(&s->s_instances, &type->fs_supers);
429 spin_unlock(&sb_lock);
430 get_filesystem(type);
431 return s;
434 EXPORT_SYMBOL(sget);
436 void drop_super(struct super_block *sb)
438 up_read(&sb->s_umount);
439 put_super(sb);
442 EXPORT_SYMBOL(drop_super);
444 static inline void write_super(struct super_block *sb)
446 lock_super(sb);
447 if (sb->s_root && sb->s_dirt)
448 if (sb->s_op->write_super)
449 sb->s_op->write_super(sb);
450 unlock_super(sb);
454 * Note: check the dirty flag before waiting, so we don't
455 * hold up the sync while mounting a device. (The newly
456 * mounted device won't need syncing.)
458 void sync_supers(void)
460 struct super_block *sb;
462 spin_lock(&sb_lock);
463 restart:
464 list_for_each_entry(sb, &super_blocks, s_list) {
465 if (sb->s_dirt) {
466 sb->s_count++;
467 spin_unlock(&sb_lock);
468 down_read(&sb->s_umount);
469 write_super(sb);
470 up_read(&sb->s_umount);
471 spin_lock(&sb_lock);
472 if (__put_super_and_need_restart(sb))
473 goto restart;
476 spin_unlock(&sb_lock);
480 * Call the ->sync_fs super_op against all filesystems which are r/w and
481 * which implement it.
483 * This operation is careful to avoid the livelock which could easily happen
484 * if two or more filesystems are being continuously dirtied. s_need_sync_fs
485 * is used only here. We set it against all filesystems and then clear it as
486 * we sync them. So redirtied filesystems are skipped.
488 * But if process A is currently running sync_filesystems and then process B
489 * calls sync_filesystems as well, process B will set all the s_need_sync_fs
490 * flags again, which will cause process A to resync everything. Fix that with
491 * a local mutex.
493 * (Fabian) Avoid sync_fs with clean fs & wait mode 0
495 void sync_filesystems(int wait)
497 struct super_block *sb;
498 static DEFINE_MUTEX(mutex);
500 mutex_lock(&mutex); /* Could be down_interruptible */
501 spin_lock(&sb_lock);
502 list_for_each_entry(sb, &super_blocks, s_list) {
503 if (!sb->s_op->sync_fs)
504 continue;
505 if (sb->s_flags & MS_RDONLY)
506 continue;
507 sb->s_need_sync_fs = 1;
510 restart:
511 list_for_each_entry(sb, &super_blocks, s_list) {
512 if (!sb->s_need_sync_fs)
513 continue;
514 sb->s_need_sync_fs = 0;
515 if (sb->s_flags & MS_RDONLY)
516 continue; /* hm. Was remounted r/o meanwhile */
517 sb->s_count++;
518 spin_unlock(&sb_lock);
519 down_read(&sb->s_umount);
520 async_synchronize_full_domain(&sb->s_async_list);
521 if (sb->s_root && (wait || sb->s_dirt))
522 sb->s_op->sync_fs(sb, wait);
523 up_read(&sb->s_umount);
524 /* restart only when sb is no longer on the list */
525 spin_lock(&sb_lock);
526 if (__put_super_and_need_restart(sb))
527 goto restart;
529 spin_unlock(&sb_lock);
530 mutex_unlock(&mutex);
534 * get_super - get the superblock of a device
535 * @bdev: device to get the superblock for
537 * Scans the superblock list and finds the superblock of the file system
538 * mounted on the device given. %NULL is returned if no match is found.
541 struct super_block * get_super(struct block_device *bdev)
543 struct super_block *sb;
545 if (!bdev)
546 return NULL;
548 spin_lock(&sb_lock);
549 rescan:
550 list_for_each_entry(sb, &super_blocks, s_list) {
551 if (sb->s_bdev == bdev) {
552 sb->s_count++;
553 spin_unlock(&sb_lock);
554 down_read(&sb->s_umount);
555 if (sb->s_root)
556 return sb;
557 up_read(&sb->s_umount);
558 /* restart only when sb is no longer on the list */
559 spin_lock(&sb_lock);
560 if (__put_super_and_need_restart(sb))
561 goto rescan;
564 spin_unlock(&sb_lock);
565 return NULL;
568 EXPORT_SYMBOL(get_super);
570 struct super_block * user_get_super(dev_t dev)
572 struct super_block *sb;
574 spin_lock(&sb_lock);
575 rescan:
576 list_for_each_entry(sb, &super_blocks, s_list) {
577 if (sb->s_dev == dev) {
578 sb->s_count++;
579 spin_unlock(&sb_lock);
580 down_read(&sb->s_umount);
581 if (sb->s_root)
582 return sb;
583 up_read(&sb->s_umount);
584 /* restart only when sb is no longer on the list */
585 spin_lock(&sb_lock);
586 if (__put_super_and_need_restart(sb))
587 goto rescan;
590 spin_unlock(&sb_lock);
591 return NULL;
594 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
596 struct super_block *s;
597 struct ustat tmp;
598 struct kstatfs sbuf;
599 int err = -EINVAL;
601 s = user_get_super(new_decode_dev(dev));
602 if (s == NULL)
603 goto out;
604 err = vfs_statfs(s->s_root, &sbuf);
605 drop_super(s);
606 if (err)
607 goto out;
609 memset(&tmp,0,sizeof(struct ustat));
610 tmp.f_tfree = sbuf.f_bfree;
611 tmp.f_tinode = sbuf.f_ffree;
613 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
614 out:
615 return err;
619 * mark_files_ro - mark all files read-only
620 * @sb: superblock in question
622 * All files are marked read-only. We don't care about pending
623 * delete files so this should be used in 'force' mode only.
626 static void mark_files_ro(struct super_block *sb)
628 struct file *f;
630 retry:
631 file_list_lock();
632 list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
633 struct vfsmount *mnt;
634 if (!S_ISREG(f->f_path.dentry->d_inode->i_mode))
635 continue;
636 if (!file_count(f))
637 continue;
638 if (!(f->f_mode & FMODE_WRITE))
639 continue;
640 f->f_mode &= ~FMODE_WRITE;
641 if (file_check_writeable(f) != 0)
642 continue;
643 file_release_write(f);
644 mnt = mntget(f->f_path.mnt);
645 file_list_unlock();
647 * This can sleep, so we can't hold
648 * the file_list_lock() spinlock.
650 mnt_drop_write(mnt);
651 mntput(mnt);
652 goto retry;
654 file_list_unlock();
658 * do_remount_sb - asks filesystem to change mount options.
659 * @sb: superblock in question
660 * @flags: numeric part of options
661 * @data: the rest of options
662 * @force: whether or not to force the change
664 * Alters the mount options of a mounted file system.
666 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
668 int retval;
669 int remount_rw;
671 #ifdef CONFIG_BLOCK
672 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
673 return -EACCES;
674 #endif
675 if (flags & MS_RDONLY)
676 acct_auto_close(sb);
677 shrink_dcache_sb(sb);
678 fsync_super(sb);
680 /* If we are remounting RDONLY and current sb is read/write,
681 make sure there are no rw files opened */
682 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
683 if (force)
684 mark_files_ro(sb);
685 else if (!fs_may_remount_ro(sb))
686 return -EBUSY;
687 retval = vfs_dq_off(sb, 1);
688 if (retval < 0 && retval != -ENOSYS)
689 return -EBUSY;
691 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
693 if (sb->s_op->remount_fs) {
694 lock_super(sb);
695 retval = sb->s_op->remount_fs(sb, &flags, data);
696 unlock_super(sb);
697 if (retval)
698 return retval;
700 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
701 if (remount_rw)
702 vfs_dq_quota_on_remount(sb);
703 return 0;
706 static void do_emergency_remount(struct work_struct *work)
708 struct super_block *sb;
710 spin_lock(&sb_lock);
711 list_for_each_entry(sb, &super_blocks, s_list) {
712 sb->s_count++;
713 spin_unlock(&sb_lock);
714 down_read(&sb->s_umount);
715 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
717 * ->remount_fs needs lock_kernel().
719 * What lock protects sb->s_flags??
721 lock_kernel();
722 do_remount_sb(sb, MS_RDONLY, NULL, 1);
723 unlock_kernel();
725 drop_super(sb);
726 spin_lock(&sb_lock);
728 spin_unlock(&sb_lock);
729 kfree(work);
730 printk("Emergency Remount complete\n");
733 void emergency_remount(void)
735 struct work_struct *work;
737 work = kmalloc(sizeof(*work), GFP_ATOMIC);
738 if (work) {
739 INIT_WORK(work, do_emergency_remount);
740 schedule_work(work);
745 * Unnamed block devices are dummy devices used by virtual
746 * filesystems which don't use real block-devices. -- jrs
749 static DEFINE_IDA(unnamed_dev_ida);
750 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
752 int set_anon_super(struct super_block *s, void *data)
754 int dev;
755 int error;
757 retry:
758 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
759 return -ENOMEM;
760 spin_lock(&unnamed_dev_lock);
761 error = ida_get_new(&unnamed_dev_ida, &dev);
762 spin_unlock(&unnamed_dev_lock);
763 if (error == -EAGAIN)
764 /* We raced and lost with another CPU. */
765 goto retry;
766 else if (error)
767 return -EAGAIN;
769 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
770 spin_lock(&unnamed_dev_lock);
771 ida_remove(&unnamed_dev_ida, dev);
772 spin_unlock(&unnamed_dev_lock);
773 return -EMFILE;
775 s->s_dev = MKDEV(0, dev & MINORMASK);
776 return 0;
779 EXPORT_SYMBOL(set_anon_super);
781 void kill_anon_super(struct super_block *sb)
783 int slot = MINOR(sb->s_dev);
785 generic_shutdown_super(sb);
786 spin_lock(&unnamed_dev_lock);
787 ida_remove(&unnamed_dev_ida, slot);
788 spin_unlock(&unnamed_dev_lock);
791 EXPORT_SYMBOL(kill_anon_super);
793 void kill_litter_super(struct super_block *sb)
795 if (sb->s_root)
796 d_genocide(sb->s_root);
797 kill_anon_super(sb);
800 EXPORT_SYMBOL(kill_litter_super);
802 static int ns_test_super(struct super_block *sb, void *data)
804 return sb->s_fs_info == data;
807 static int ns_set_super(struct super_block *sb, void *data)
809 sb->s_fs_info = data;
810 return set_anon_super(sb, NULL);
813 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
814 int (*fill_super)(struct super_block *, void *, int),
815 struct vfsmount *mnt)
817 struct super_block *sb;
819 sb = sget(fs_type, ns_test_super, ns_set_super, data);
820 if (IS_ERR(sb))
821 return PTR_ERR(sb);
823 if (!sb->s_root) {
824 int err;
825 sb->s_flags = flags;
826 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
827 if (err) {
828 deactivate_locked_super(sb);
829 return err;
832 sb->s_flags |= MS_ACTIVE;
835 simple_set_mnt(mnt, sb);
836 return 0;
839 EXPORT_SYMBOL(get_sb_ns);
841 #ifdef CONFIG_BLOCK
842 static int set_bdev_super(struct super_block *s, void *data)
844 s->s_bdev = data;
845 s->s_dev = s->s_bdev->bd_dev;
846 return 0;
849 static int test_bdev_super(struct super_block *s, void *data)
851 return (void *)s->s_bdev == data;
854 int get_sb_bdev(struct file_system_type *fs_type,
855 int flags, const char *dev_name, void *data,
856 int (*fill_super)(struct super_block *, void *, int),
857 struct vfsmount *mnt)
859 struct block_device *bdev;
860 struct super_block *s;
861 fmode_t mode = FMODE_READ;
862 int error = 0;
864 if (!(flags & MS_RDONLY))
865 mode |= FMODE_WRITE;
867 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
868 if (IS_ERR(bdev))
869 return PTR_ERR(bdev);
872 * once the super is inserted into the list by sget, s_umount
873 * will protect the lockfs code from trying to start a snapshot
874 * while we are mounting
876 down(&bdev->bd_mount_sem);
877 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
878 up(&bdev->bd_mount_sem);
879 if (IS_ERR(s))
880 goto error_s;
882 if (s->s_root) {
883 if ((flags ^ s->s_flags) & MS_RDONLY) {
884 deactivate_locked_super(s);
885 error = -EBUSY;
886 goto error_bdev;
889 close_bdev_exclusive(bdev, mode);
890 } else {
891 char b[BDEVNAME_SIZE];
893 s->s_flags = flags;
894 s->s_mode = mode;
895 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
896 sb_set_blocksize(s, block_size(bdev));
897 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
898 if (error) {
899 deactivate_locked_super(s);
900 goto error;
903 s->s_flags |= MS_ACTIVE;
904 bdev->bd_super = s;
907 simple_set_mnt(mnt, s);
908 return 0;
910 error_s:
911 error = PTR_ERR(s);
912 error_bdev:
913 close_bdev_exclusive(bdev, mode);
914 error:
915 return error;
918 EXPORT_SYMBOL(get_sb_bdev);
920 void kill_block_super(struct super_block *sb)
922 struct block_device *bdev = sb->s_bdev;
923 fmode_t mode = sb->s_mode;
925 bdev->bd_super = NULL;
926 generic_shutdown_super(sb);
927 sync_blockdev(bdev);
928 close_bdev_exclusive(bdev, mode);
931 EXPORT_SYMBOL(kill_block_super);
932 #endif
934 int get_sb_nodev(struct file_system_type *fs_type,
935 int flags, void *data,
936 int (*fill_super)(struct super_block *, void *, int),
937 struct vfsmount *mnt)
939 int error;
940 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
942 if (IS_ERR(s))
943 return PTR_ERR(s);
945 s->s_flags = flags;
947 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
948 if (error) {
949 deactivate_locked_super(s);
950 return error;
952 s->s_flags |= MS_ACTIVE;
953 simple_set_mnt(mnt, s);
954 return 0;
957 EXPORT_SYMBOL(get_sb_nodev);
959 static int compare_single(struct super_block *s, void *p)
961 return 1;
964 int get_sb_single(struct file_system_type *fs_type,
965 int flags, void *data,
966 int (*fill_super)(struct super_block *, void *, int),
967 struct vfsmount *mnt)
969 struct super_block *s;
970 int error;
972 s = sget(fs_type, compare_single, set_anon_super, NULL);
973 if (IS_ERR(s))
974 return PTR_ERR(s);
975 if (!s->s_root) {
976 s->s_flags = flags;
977 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
978 if (error) {
979 deactivate_locked_super(s);
980 return error;
982 s->s_flags |= MS_ACTIVE;
984 do_remount_sb(s, flags, data, 0);
985 simple_set_mnt(mnt, s);
986 return 0;
989 EXPORT_SYMBOL(get_sb_single);
991 struct vfsmount *
992 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
994 struct vfsmount *mnt;
995 char *secdata = NULL;
996 int error;
998 if (!type)
999 return ERR_PTR(-ENODEV);
1001 error = -ENOMEM;
1002 mnt = alloc_vfsmnt(name);
1003 if (!mnt)
1004 goto out;
1006 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1007 secdata = alloc_secdata();
1008 if (!secdata)
1009 goto out_mnt;
1011 error = security_sb_copy_data(data, secdata);
1012 if (error)
1013 goto out_free_secdata;
1016 error = type->get_sb(type, flags, name, data, mnt);
1017 if (error < 0)
1018 goto out_free_secdata;
1019 BUG_ON(!mnt->mnt_sb);
1021 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
1022 if (error)
1023 goto out_sb;
1025 mnt->mnt_mountpoint = mnt->mnt_root;
1026 mnt->mnt_parent = mnt;
1027 up_write(&mnt->mnt_sb->s_umount);
1028 free_secdata(secdata);
1029 return mnt;
1030 out_sb:
1031 dput(mnt->mnt_root);
1032 deactivate_locked_super(mnt->mnt_sb);
1033 out_free_secdata:
1034 free_secdata(secdata);
1035 out_mnt:
1036 free_vfsmnt(mnt);
1037 out:
1038 return ERR_PTR(error);
1041 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1043 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1045 int err;
1046 const char *subtype = strchr(fstype, '.');
1047 if (subtype) {
1048 subtype++;
1049 err = -EINVAL;
1050 if (!subtype[0])
1051 goto err;
1052 } else
1053 subtype = "";
1055 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1056 err = -ENOMEM;
1057 if (!mnt->mnt_sb->s_subtype)
1058 goto err;
1059 return mnt;
1061 err:
1062 mntput(mnt);
1063 return ERR_PTR(err);
1066 struct vfsmount *
1067 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1069 struct file_system_type *type = get_fs_type(fstype);
1070 struct vfsmount *mnt;
1071 if (!type)
1072 return ERR_PTR(-ENODEV);
1073 mnt = vfs_kern_mount(type, flags, name, data);
1074 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1075 !mnt->mnt_sb->s_subtype)
1076 mnt = fs_set_subtype(mnt, fstype);
1077 put_filesystem(type);
1078 return mnt;
1080 EXPORT_SYMBOL_GPL(do_kern_mount);
1082 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1084 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1087 EXPORT_SYMBOL_GPL(kern_mount_data);