Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmstat.c
blob312d728976f1661c4fa335a1ead46356b3bf091b
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
27 static void sum_vm_events(unsigned long *ret)
29 int cpu;
30 int i;
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret)
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
53 EXPORT_SYMBOL_GPL(all_vm_events);
55 #ifdef CONFIG_HOTPLUG
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu)
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
84 #ifdef CONFIG_SMP
86 static int calculate_threshold(struct zone *zone)
88 int threshold;
89 int mem; /* memory in 128 MB units */
92 * The threshold scales with the number of processors and the amount
93 * of memory per zone. More memory means that we can defer updates for
94 * longer, more processors could lead to more contention.
95 * fls() is used to have a cheap way of logarithmic scaling.
97 * Some sample thresholds:
99 * Threshold Processors (fls) Zonesize fls(mem+1)
100 * ------------------------------------------------------------------
101 * 8 1 1 0.9-1 GB 4
102 * 16 2 2 0.9-1 GB 4
103 * 20 2 2 1-2 GB 5
104 * 24 2 2 2-4 GB 6
105 * 28 2 2 4-8 GB 7
106 * 32 2 2 8-16 GB 8
107 * 4 2 2 <128M 1
108 * 30 4 3 2-4 GB 5
109 * 48 4 3 8-16 GB 8
110 * 32 8 4 1-2 GB 4
111 * 32 8 4 0.9-1GB 4
112 * 10 16 5 <128M 1
113 * 40 16 5 900M 4
114 * 70 64 7 2-4 GB 5
115 * 84 64 7 4-8 GB 6
116 * 108 512 9 4-8 GB 6
117 * 125 1024 10 8-16 GB 8
118 * 125 1024 10 16-32 GB 9
121 mem = zone->present_pages >> (27 - PAGE_SHIFT);
123 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
126 * Maximum threshold is 125
128 threshold = min(125, threshold);
130 return threshold;
134 * Refresh the thresholds for each zone.
136 static void refresh_zone_stat_thresholds(void)
138 struct zone *zone;
139 int cpu;
140 int threshold;
142 for_each_populated_zone(zone) {
143 unsigned long max_drift, tolerate_drift;
145 threshold = calculate_threshold(zone);
147 for_each_online_cpu(cpu)
148 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
149 = threshold;
152 * Only set percpu_drift_mark if there is a danger that
153 * NR_FREE_PAGES reports the low watermark is ok when in fact
154 * the min watermark could be breached by an allocation
156 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
157 max_drift = num_online_cpus() * threshold;
158 if (max_drift > tolerate_drift)
159 zone->percpu_drift_mark = high_wmark_pages(zone) +
160 max_drift;
165 * For use when we know that interrupts are disabled.
167 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
168 int delta)
170 struct per_cpu_pageset __percpu *pcp = zone->pageset;
171 s8 __percpu *p = pcp->vm_stat_diff + item;
172 long x;
173 long t;
175 x = delta + __this_cpu_read(*p);
177 t = __this_cpu_read(pcp->stat_threshold);
179 if (unlikely(x > t || x < -t)) {
180 zone_page_state_add(x, zone, item);
181 x = 0;
183 __this_cpu_write(*p, x);
185 EXPORT_SYMBOL(__mod_zone_page_state);
188 * Optimized increment and decrement functions.
190 * These are only for a single page and therefore can take a struct page *
191 * argument instead of struct zone *. This allows the inclusion of the code
192 * generated for page_zone(page) into the optimized functions.
194 * No overflow check is necessary and therefore the differential can be
195 * incremented or decremented in place which may allow the compilers to
196 * generate better code.
197 * The increment or decrement is known and therefore one boundary check can
198 * be omitted.
200 * NOTE: These functions are very performance sensitive. Change only
201 * with care.
203 * Some processors have inc/dec instructions that are atomic vs an interrupt.
204 * However, the code must first determine the differential location in a zone
205 * based on the processor number and then inc/dec the counter. There is no
206 * guarantee without disabling preemption that the processor will not change
207 * in between and therefore the atomicity vs. interrupt cannot be exploited
208 * in a useful way here.
210 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
212 struct per_cpu_pageset __percpu *pcp = zone->pageset;
213 s8 __percpu *p = pcp->vm_stat_diff + item;
214 s8 v, t;
216 v = __this_cpu_inc_return(*p);
217 t = __this_cpu_read(pcp->stat_threshold);
218 if (unlikely(v > t)) {
219 s8 overstep = t >> 1;
221 zone_page_state_add(v + overstep, zone, item);
222 __this_cpu_write(*p, -overstep);
226 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
228 __inc_zone_state(page_zone(page), item);
230 EXPORT_SYMBOL(__inc_zone_page_state);
232 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
234 struct per_cpu_pageset __percpu *pcp = zone->pageset;
235 s8 __percpu *p = pcp->vm_stat_diff + item;
236 s8 v, t;
238 v = __this_cpu_dec_return(*p);
239 t = __this_cpu_read(pcp->stat_threshold);
240 if (unlikely(v < - t)) {
241 s8 overstep = t >> 1;
243 zone_page_state_add(v - overstep, zone, item);
244 __this_cpu_write(*p, overstep);
248 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
250 __dec_zone_state(page_zone(page), item);
252 EXPORT_SYMBOL(__dec_zone_page_state);
254 #ifdef CONFIG_CMPXCHG_LOCAL
256 * If we have cmpxchg_local support then we do not need to incur the overhead
257 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
259 * mod_state() modifies the zone counter state through atomic per cpu
260 * operations.
262 * Overstep mode specifies how overstep should handled:
263 * 0 No overstepping
264 * 1 Overstepping half of threshold
265 * -1 Overstepping minus half of threshold
267 static inline void mod_state(struct zone *zone,
268 enum zone_stat_item item, int delta, int overstep_mode)
270 struct per_cpu_pageset __percpu *pcp = zone->pageset;
271 s8 __percpu *p = pcp->vm_stat_diff + item;
272 long o, n, t, z;
274 do {
275 z = 0; /* overflow to zone counters */
278 * The fetching of the stat_threshold is racy. We may apply
279 * a counter threshold to the wrong the cpu if we get
280 * rescheduled while executing here. However, the following
281 * will apply the threshold again and therefore bring the
282 * counter under the threshold.
284 t = this_cpu_read(pcp->stat_threshold);
286 o = this_cpu_read(*p);
287 n = delta + o;
289 if (n > t || n < -t) {
290 int os = overstep_mode * (t >> 1) ;
292 /* Overflow must be added to zone counters */
293 z = n + os;
294 n = -os;
296 } while (this_cpu_cmpxchg(*p, o, n) != o);
298 if (z)
299 zone_page_state_add(z, zone, item);
302 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
303 int delta)
305 mod_state(zone, item, delta, 0);
307 EXPORT_SYMBOL(mod_zone_page_state);
309 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
311 mod_state(zone, item, 1, 1);
314 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
316 mod_state(page_zone(page), item, 1, 1);
318 EXPORT_SYMBOL(inc_zone_page_state);
320 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
322 mod_state(page_zone(page), item, -1, -1);
324 EXPORT_SYMBOL(dec_zone_page_state);
325 #else
327 * Use interrupt disable to serialize counter updates
329 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
330 int delta)
332 unsigned long flags;
334 local_irq_save(flags);
335 __mod_zone_page_state(zone, item, delta);
336 local_irq_restore(flags);
338 EXPORT_SYMBOL(mod_zone_page_state);
340 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
342 unsigned long flags;
344 local_irq_save(flags);
345 __inc_zone_state(zone, item);
346 local_irq_restore(flags);
349 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
351 unsigned long flags;
352 struct zone *zone;
354 zone = page_zone(page);
355 local_irq_save(flags);
356 __inc_zone_state(zone, item);
357 local_irq_restore(flags);
359 EXPORT_SYMBOL(inc_zone_page_state);
361 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
363 unsigned long flags;
365 local_irq_save(flags);
366 __dec_zone_page_state(page, item);
367 local_irq_restore(flags);
369 EXPORT_SYMBOL(dec_zone_page_state);
370 #endif
373 * Update the zone counters for one cpu.
375 * The cpu specified must be either the current cpu or a processor that
376 * is not online. If it is the current cpu then the execution thread must
377 * be pinned to the current cpu.
379 * Note that refresh_cpu_vm_stats strives to only access
380 * node local memory. The per cpu pagesets on remote zones are placed
381 * in the memory local to the processor using that pageset. So the
382 * loop over all zones will access a series of cachelines local to
383 * the processor.
385 * The call to zone_page_state_add updates the cachelines with the
386 * statistics in the remote zone struct as well as the global cachelines
387 * with the global counters. These could cause remote node cache line
388 * bouncing and will have to be only done when necessary.
390 void refresh_cpu_vm_stats(int cpu)
392 struct zone *zone;
393 int i;
394 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
396 for_each_populated_zone(zone) {
397 struct per_cpu_pageset *p;
399 p = per_cpu_ptr(zone->pageset, cpu);
401 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
402 if (p->vm_stat_diff[i]) {
403 unsigned long flags;
404 int v;
406 local_irq_save(flags);
407 v = p->vm_stat_diff[i];
408 p->vm_stat_diff[i] = 0;
409 local_irq_restore(flags);
410 atomic_long_add(v, &zone->vm_stat[i]);
411 global_diff[i] += v;
412 #ifdef CONFIG_NUMA
413 /* 3 seconds idle till flush */
414 p->expire = 3;
415 #endif
417 cond_resched();
418 #ifdef CONFIG_NUMA
420 * Deal with draining the remote pageset of this
421 * processor
423 * Check if there are pages remaining in this pageset
424 * if not then there is nothing to expire.
426 if (!p->expire || !p->pcp.count)
427 continue;
430 * We never drain zones local to this processor.
432 if (zone_to_nid(zone) == numa_node_id()) {
433 p->expire = 0;
434 continue;
437 p->expire--;
438 if (p->expire)
439 continue;
441 if (p->pcp.count)
442 drain_zone_pages(zone, &p->pcp);
443 #endif
446 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
447 if (global_diff[i])
448 atomic_long_add(global_diff[i], &vm_stat[i]);
451 #endif
453 #ifdef CONFIG_NUMA
455 * zonelist = the list of zones passed to the allocator
456 * z = the zone from which the allocation occurred.
458 * Must be called with interrupts disabled.
460 void zone_statistics(struct zone *preferred_zone, struct zone *z)
462 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
463 __inc_zone_state(z, NUMA_HIT);
464 } else {
465 __inc_zone_state(z, NUMA_MISS);
466 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
468 if (z->node == numa_node_id())
469 __inc_zone_state(z, NUMA_LOCAL);
470 else
471 __inc_zone_state(z, NUMA_OTHER);
473 #endif
475 #ifdef CONFIG_COMPACTION
477 struct contig_page_info {
478 unsigned long free_pages;
479 unsigned long free_blocks_total;
480 unsigned long free_blocks_suitable;
484 * Calculate the number of free pages in a zone, how many contiguous
485 * pages are free and how many are large enough to satisfy an allocation of
486 * the target size. Note that this function makes no attempt to estimate
487 * how many suitable free blocks there *might* be if MOVABLE pages were
488 * migrated. Calculating that is possible, but expensive and can be
489 * figured out from userspace
491 static void fill_contig_page_info(struct zone *zone,
492 unsigned int suitable_order,
493 struct contig_page_info *info)
495 unsigned int order;
497 info->free_pages = 0;
498 info->free_blocks_total = 0;
499 info->free_blocks_suitable = 0;
501 for (order = 0; order < MAX_ORDER; order++) {
502 unsigned long blocks;
504 /* Count number of free blocks */
505 blocks = zone->free_area[order].nr_free;
506 info->free_blocks_total += blocks;
508 /* Count free base pages */
509 info->free_pages += blocks << order;
511 /* Count the suitable free blocks */
512 if (order >= suitable_order)
513 info->free_blocks_suitable += blocks <<
514 (order - suitable_order);
519 * A fragmentation index only makes sense if an allocation of a requested
520 * size would fail. If that is true, the fragmentation index indicates
521 * whether external fragmentation or a lack of memory was the problem.
522 * The value can be used to determine if page reclaim or compaction
523 * should be used
525 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
527 unsigned long requested = 1UL << order;
529 if (!info->free_blocks_total)
530 return 0;
532 /* Fragmentation index only makes sense when a request would fail */
533 if (info->free_blocks_suitable)
534 return -1000;
537 * Index is between 0 and 1 so return within 3 decimal places
539 * 0 => allocation would fail due to lack of memory
540 * 1 => allocation would fail due to fragmentation
542 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
545 /* Same as __fragmentation index but allocs contig_page_info on stack */
546 int fragmentation_index(struct zone *zone, unsigned int order)
548 struct contig_page_info info;
550 fill_contig_page_info(zone, order, &info);
551 return __fragmentation_index(order, &info);
553 #endif
555 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
556 #include <linux/proc_fs.h>
557 #include <linux/seq_file.h>
559 static char * const migratetype_names[MIGRATE_TYPES] = {
560 "Unmovable",
561 "Reclaimable",
562 "Movable",
563 "Reserve",
564 "Isolate",
567 static void *frag_start(struct seq_file *m, loff_t *pos)
569 pg_data_t *pgdat;
570 loff_t node = *pos;
571 for (pgdat = first_online_pgdat();
572 pgdat && node;
573 pgdat = next_online_pgdat(pgdat))
574 --node;
576 return pgdat;
579 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
581 pg_data_t *pgdat = (pg_data_t *)arg;
583 (*pos)++;
584 return next_online_pgdat(pgdat);
587 static void frag_stop(struct seq_file *m, void *arg)
591 /* Walk all the zones in a node and print using a callback */
592 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
593 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
595 struct zone *zone;
596 struct zone *node_zones = pgdat->node_zones;
597 unsigned long flags;
599 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
600 if (!populated_zone(zone))
601 continue;
603 spin_lock_irqsave(&zone->lock, flags);
604 print(m, pgdat, zone);
605 spin_unlock_irqrestore(&zone->lock, flags);
608 #endif
610 #ifdef CONFIG_PROC_FS
611 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
612 struct zone *zone)
614 int order;
616 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
617 for (order = 0; order < MAX_ORDER; ++order)
618 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
619 seq_putc(m, '\n');
623 * This walks the free areas for each zone.
625 static int frag_show(struct seq_file *m, void *arg)
627 pg_data_t *pgdat = (pg_data_t *)arg;
628 walk_zones_in_node(m, pgdat, frag_show_print);
629 return 0;
632 static void pagetypeinfo_showfree_print(struct seq_file *m,
633 pg_data_t *pgdat, struct zone *zone)
635 int order, mtype;
637 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
638 seq_printf(m, "Node %4d, zone %8s, type %12s ",
639 pgdat->node_id,
640 zone->name,
641 migratetype_names[mtype]);
642 for (order = 0; order < MAX_ORDER; ++order) {
643 unsigned long freecount = 0;
644 struct free_area *area;
645 struct list_head *curr;
647 area = &(zone->free_area[order]);
649 list_for_each(curr, &area->free_list[mtype])
650 freecount++;
651 seq_printf(m, "%6lu ", freecount);
653 seq_putc(m, '\n');
657 /* Print out the free pages at each order for each migatetype */
658 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
660 int order;
661 pg_data_t *pgdat = (pg_data_t *)arg;
663 /* Print header */
664 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
665 for (order = 0; order < MAX_ORDER; ++order)
666 seq_printf(m, "%6d ", order);
667 seq_putc(m, '\n');
669 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
671 return 0;
674 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
675 pg_data_t *pgdat, struct zone *zone)
677 int mtype;
678 unsigned long pfn;
679 unsigned long start_pfn = zone->zone_start_pfn;
680 unsigned long end_pfn = start_pfn + zone->spanned_pages;
681 unsigned long count[MIGRATE_TYPES] = { 0, };
683 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
684 struct page *page;
686 if (!pfn_valid(pfn))
687 continue;
689 page = pfn_to_page(pfn);
691 /* Watch for unexpected holes punched in the memmap */
692 if (!memmap_valid_within(pfn, page, zone))
693 continue;
695 mtype = get_pageblock_migratetype(page);
697 if (mtype < MIGRATE_TYPES)
698 count[mtype]++;
701 /* Print counts */
702 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
703 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
704 seq_printf(m, "%12lu ", count[mtype]);
705 seq_putc(m, '\n');
708 /* Print out the free pages at each order for each migratetype */
709 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
711 int mtype;
712 pg_data_t *pgdat = (pg_data_t *)arg;
714 seq_printf(m, "\n%-23s", "Number of blocks type ");
715 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
716 seq_printf(m, "%12s ", migratetype_names[mtype]);
717 seq_putc(m, '\n');
718 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
720 return 0;
724 * This prints out statistics in relation to grouping pages by mobility.
725 * It is expensive to collect so do not constantly read the file.
727 static int pagetypeinfo_show(struct seq_file *m, void *arg)
729 pg_data_t *pgdat = (pg_data_t *)arg;
731 /* check memoryless node */
732 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
733 return 0;
735 seq_printf(m, "Page block order: %d\n", pageblock_order);
736 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
737 seq_putc(m, '\n');
738 pagetypeinfo_showfree(m, pgdat);
739 pagetypeinfo_showblockcount(m, pgdat);
741 return 0;
744 static const struct seq_operations fragmentation_op = {
745 .start = frag_start,
746 .next = frag_next,
747 .stop = frag_stop,
748 .show = frag_show,
751 static int fragmentation_open(struct inode *inode, struct file *file)
753 return seq_open(file, &fragmentation_op);
756 static const struct file_operations fragmentation_file_operations = {
757 .open = fragmentation_open,
758 .read = seq_read,
759 .llseek = seq_lseek,
760 .release = seq_release,
763 static const struct seq_operations pagetypeinfo_op = {
764 .start = frag_start,
765 .next = frag_next,
766 .stop = frag_stop,
767 .show = pagetypeinfo_show,
770 static int pagetypeinfo_open(struct inode *inode, struct file *file)
772 return seq_open(file, &pagetypeinfo_op);
775 static const struct file_operations pagetypeinfo_file_ops = {
776 .open = pagetypeinfo_open,
777 .read = seq_read,
778 .llseek = seq_lseek,
779 .release = seq_release,
782 #ifdef CONFIG_ZONE_DMA
783 #define TEXT_FOR_DMA(xx) xx "_dma",
784 #else
785 #define TEXT_FOR_DMA(xx)
786 #endif
788 #ifdef CONFIG_ZONE_DMA32
789 #define TEXT_FOR_DMA32(xx) xx "_dma32",
790 #else
791 #define TEXT_FOR_DMA32(xx)
792 #endif
794 #ifdef CONFIG_HIGHMEM
795 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
796 #else
797 #define TEXT_FOR_HIGHMEM(xx)
798 #endif
800 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
801 TEXT_FOR_HIGHMEM(xx) xx "_movable",
803 static const char * const vmstat_text[] = {
804 /* Zoned VM counters */
805 "nr_free_pages",
806 "nr_inactive_anon",
807 "nr_active_anon",
808 "nr_inactive_file",
809 "nr_active_file",
810 "nr_unevictable",
811 "nr_mlock",
812 "nr_anon_pages",
813 "nr_mapped",
814 "nr_file_pages",
815 "nr_dirty",
816 "nr_writeback",
817 "nr_slab_reclaimable",
818 "nr_slab_unreclaimable",
819 "nr_page_table_pages",
820 "nr_kernel_stack",
821 "nr_unstable",
822 "nr_bounce",
823 "nr_vmscan_write",
824 "nr_writeback_temp",
825 "nr_isolated_anon",
826 "nr_isolated_file",
827 "nr_shmem",
828 "nr_dirtied",
829 "nr_written",
831 #ifdef CONFIG_NUMA
832 "numa_hit",
833 "numa_miss",
834 "numa_foreign",
835 "numa_interleave",
836 "numa_local",
837 "numa_other",
838 #endif
839 "nr_dirty_threshold",
840 "nr_dirty_background_threshold",
842 #ifdef CONFIG_VM_EVENT_COUNTERS
843 "pgpgin",
844 "pgpgout",
845 "pswpin",
846 "pswpout",
848 TEXTS_FOR_ZONES("pgalloc")
850 "pgfree",
851 "pgactivate",
852 "pgdeactivate",
854 "pgfault",
855 "pgmajfault",
857 TEXTS_FOR_ZONES("pgrefill")
858 TEXTS_FOR_ZONES("pgsteal")
859 TEXTS_FOR_ZONES("pgscan_kswapd")
860 TEXTS_FOR_ZONES("pgscan_direct")
862 #ifdef CONFIG_NUMA
863 "zone_reclaim_failed",
864 #endif
865 "pginodesteal",
866 "slabs_scanned",
867 "kswapd_steal",
868 "kswapd_inodesteal",
869 "kswapd_low_wmark_hit_quickly",
870 "kswapd_high_wmark_hit_quickly",
871 "kswapd_skip_congestion_wait",
872 "pageoutrun",
873 "allocstall",
875 "pgrotated",
877 #ifdef CONFIG_COMPACTION
878 "compact_blocks_moved",
879 "compact_pages_moved",
880 "compact_pagemigrate_failed",
881 "compact_stall",
882 "compact_fail",
883 "compact_success",
884 #endif
886 #ifdef CONFIG_HUGETLB_PAGE
887 "htlb_buddy_alloc_success",
888 "htlb_buddy_alloc_fail",
889 #endif
890 "unevictable_pgs_culled",
891 "unevictable_pgs_scanned",
892 "unevictable_pgs_rescued",
893 "unevictable_pgs_mlocked",
894 "unevictable_pgs_munlocked",
895 "unevictable_pgs_cleared",
896 "unevictable_pgs_stranded",
897 "unevictable_pgs_mlockfreed",
898 #endif
901 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
902 struct zone *zone)
904 int i;
905 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
906 seq_printf(m,
907 "\n pages free %lu"
908 "\n min %lu"
909 "\n low %lu"
910 "\n high %lu"
911 "\n scanned %lu"
912 "\n spanned %lu"
913 "\n present %lu",
914 zone_nr_free_pages(zone),
915 min_wmark_pages(zone),
916 low_wmark_pages(zone),
917 high_wmark_pages(zone),
918 zone->pages_scanned,
919 zone->spanned_pages,
920 zone->present_pages);
922 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
923 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
924 zone_page_state(zone, i));
926 seq_printf(m,
927 "\n protection: (%lu",
928 zone->lowmem_reserve[0]);
929 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
930 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
931 seq_printf(m,
933 "\n pagesets");
934 for_each_online_cpu(i) {
935 struct per_cpu_pageset *pageset;
937 pageset = per_cpu_ptr(zone->pageset, i);
938 seq_printf(m,
939 "\n cpu: %i"
940 "\n count: %i"
941 "\n high: %i"
942 "\n batch: %i",
944 pageset->pcp.count,
945 pageset->pcp.high,
946 pageset->pcp.batch);
947 #ifdef CONFIG_SMP
948 seq_printf(m, "\n vm stats threshold: %d",
949 pageset->stat_threshold);
950 #endif
952 seq_printf(m,
953 "\n all_unreclaimable: %u"
954 "\n start_pfn: %lu"
955 "\n inactive_ratio: %u",
956 zone->all_unreclaimable,
957 zone->zone_start_pfn,
958 zone->inactive_ratio);
959 seq_putc(m, '\n');
963 * Output information about zones in @pgdat.
965 static int zoneinfo_show(struct seq_file *m, void *arg)
967 pg_data_t *pgdat = (pg_data_t *)arg;
968 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
969 return 0;
972 static const struct seq_operations zoneinfo_op = {
973 .start = frag_start, /* iterate over all zones. The same as in
974 * fragmentation. */
975 .next = frag_next,
976 .stop = frag_stop,
977 .show = zoneinfo_show,
980 static int zoneinfo_open(struct inode *inode, struct file *file)
982 return seq_open(file, &zoneinfo_op);
985 static const struct file_operations proc_zoneinfo_file_operations = {
986 .open = zoneinfo_open,
987 .read = seq_read,
988 .llseek = seq_lseek,
989 .release = seq_release,
992 enum writeback_stat_item {
993 NR_DIRTY_THRESHOLD,
994 NR_DIRTY_BG_THRESHOLD,
995 NR_VM_WRITEBACK_STAT_ITEMS,
998 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1000 unsigned long *v;
1001 int i, stat_items_size;
1003 if (*pos >= ARRAY_SIZE(vmstat_text))
1004 return NULL;
1005 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1006 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1008 #ifdef CONFIG_VM_EVENT_COUNTERS
1009 stat_items_size += sizeof(struct vm_event_state);
1010 #endif
1012 v = kmalloc(stat_items_size, GFP_KERNEL);
1013 m->private = v;
1014 if (!v)
1015 return ERR_PTR(-ENOMEM);
1016 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1017 v[i] = global_page_state(i);
1018 v += NR_VM_ZONE_STAT_ITEMS;
1020 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1021 v + NR_DIRTY_THRESHOLD);
1022 v += NR_VM_WRITEBACK_STAT_ITEMS;
1024 #ifdef CONFIG_VM_EVENT_COUNTERS
1025 all_vm_events(v);
1026 v[PGPGIN] /= 2; /* sectors -> kbytes */
1027 v[PGPGOUT] /= 2;
1028 #endif
1029 return (unsigned long *)m->private + *pos;
1032 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1034 (*pos)++;
1035 if (*pos >= ARRAY_SIZE(vmstat_text))
1036 return NULL;
1037 return (unsigned long *)m->private + *pos;
1040 static int vmstat_show(struct seq_file *m, void *arg)
1042 unsigned long *l = arg;
1043 unsigned long off = l - (unsigned long *)m->private;
1045 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1046 return 0;
1049 static void vmstat_stop(struct seq_file *m, void *arg)
1051 kfree(m->private);
1052 m->private = NULL;
1055 static const struct seq_operations vmstat_op = {
1056 .start = vmstat_start,
1057 .next = vmstat_next,
1058 .stop = vmstat_stop,
1059 .show = vmstat_show,
1062 static int vmstat_open(struct inode *inode, struct file *file)
1064 return seq_open(file, &vmstat_op);
1067 static const struct file_operations proc_vmstat_file_operations = {
1068 .open = vmstat_open,
1069 .read = seq_read,
1070 .llseek = seq_lseek,
1071 .release = seq_release,
1073 #endif /* CONFIG_PROC_FS */
1075 #ifdef CONFIG_SMP
1076 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1077 int sysctl_stat_interval __read_mostly = HZ;
1079 static void vmstat_update(struct work_struct *w)
1081 refresh_cpu_vm_stats(smp_processor_id());
1082 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1083 round_jiffies_relative(sysctl_stat_interval));
1086 static void __cpuinit start_cpu_timer(int cpu)
1088 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1090 INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1091 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1095 * Use the cpu notifier to insure that the thresholds are recalculated
1096 * when necessary.
1098 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1099 unsigned long action,
1100 void *hcpu)
1102 long cpu = (long)hcpu;
1104 switch (action) {
1105 case CPU_ONLINE:
1106 case CPU_ONLINE_FROZEN:
1107 refresh_zone_stat_thresholds();
1108 start_cpu_timer(cpu);
1109 node_set_state(cpu_to_node(cpu), N_CPU);
1110 break;
1111 case CPU_DOWN_PREPARE:
1112 case CPU_DOWN_PREPARE_FROZEN:
1113 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1114 per_cpu(vmstat_work, cpu).work.func = NULL;
1115 break;
1116 case CPU_DOWN_FAILED:
1117 case CPU_DOWN_FAILED_FROZEN:
1118 start_cpu_timer(cpu);
1119 break;
1120 case CPU_DEAD:
1121 case CPU_DEAD_FROZEN:
1122 refresh_zone_stat_thresholds();
1123 break;
1124 default:
1125 break;
1127 return NOTIFY_OK;
1130 static struct notifier_block __cpuinitdata vmstat_notifier =
1131 { &vmstat_cpuup_callback, NULL, 0 };
1132 #endif
1134 static int __init setup_vmstat(void)
1136 #ifdef CONFIG_SMP
1137 int cpu;
1139 refresh_zone_stat_thresholds();
1140 register_cpu_notifier(&vmstat_notifier);
1142 for_each_online_cpu(cpu)
1143 start_cpu_timer(cpu);
1144 #endif
1145 #ifdef CONFIG_PROC_FS
1146 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1147 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1148 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1149 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1150 #endif
1151 return 0;
1153 module_init(setup_vmstat)
1155 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1156 #include <linux/debugfs.h>
1158 static struct dentry *extfrag_debug_root;
1161 * Return an index indicating how much of the available free memory is
1162 * unusable for an allocation of the requested size.
1164 static int unusable_free_index(unsigned int order,
1165 struct contig_page_info *info)
1167 /* No free memory is interpreted as all free memory is unusable */
1168 if (info->free_pages == 0)
1169 return 1000;
1172 * Index should be a value between 0 and 1. Return a value to 3
1173 * decimal places.
1175 * 0 => no fragmentation
1176 * 1 => high fragmentation
1178 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1182 static void unusable_show_print(struct seq_file *m,
1183 pg_data_t *pgdat, struct zone *zone)
1185 unsigned int order;
1186 int index;
1187 struct contig_page_info info;
1189 seq_printf(m, "Node %d, zone %8s ",
1190 pgdat->node_id,
1191 zone->name);
1192 for (order = 0; order < MAX_ORDER; ++order) {
1193 fill_contig_page_info(zone, order, &info);
1194 index = unusable_free_index(order, &info);
1195 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1198 seq_putc(m, '\n');
1202 * Display unusable free space index
1204 * The unusable free space index measures how much of the available free
1205 * memory cannot be used to satisfy an allocation of a given size and is a
1206 * value between 0 and 1. The higher the value, the more of free memory is
1207 * unusable and by implication, the worse the external fragmentation is. This
1208 * can be expressed as a percentage by multiplying by 100.
1210 static int unusable_show(struct seq_file *m, void *arg)
1212 pg_data_t *pgdat = (pg_data_t *)arg;
1214 /* check memoryless node */
1215 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1216 return 0;
1218 walk_zones_in_node(m, pgdat, unusable_show_print);
1220 return 0;
1223 static const struct seq_operations unusable_op = {
1224 .start = frag_start,
1225 .next = frag_next,
1226 .stop = frag_stop,
1227 .show = unusable_show,
1230 static int unusable_open(struct inode *inode, struct file *file)
1232 return seq_open(file, &unusable_op);
1235 static const struct file_operations unusable_file_ops = {
1236 .open = unusable_open,
1237 .read = seq_read,
1238 .llseek = seq_lseek,
1239 .release = seq_release,
1242 static void extfrag_show_print(struct seq_file *m,
1243 pg_data_t *pgdat, struct zone *zone)
1245 unsigned int order;
1246 int index;
1248 /* Alloc on stack as interrupts are disabled for zone walk */
1249 struct contig_page_info info;
1251 seq_printf(m, "Node %d, zone %8s ",
1252 pgdat->node_id,
1253 zone->name);
1254 for (order = 0; order < MAX_ORDER; ++order) {
1255 fill_contig_page_info(zone, order, &info);
1256 index = __fragmentation_index(order, &info);
1257 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1260 seq_putc(m, '\n');
1264 * Display fragmentation index for orders that allocations would fail for
1266 static int extfrag_show(struct seq_file *m, void *arg)
1268 pg_data_t *pgdat = (pg_data_t *)arg;
1270 walk_zones_in_node(m, pgdat, extfrag_show_print);
1272 return 0;
1275 static const struct seq_operations extfrag_op = {
1276 .start = frag_start,
1277 .next = frag_next,
1278 .stop = frag_stop,
1279 .show = extfrag_show,
1282 static int extfrag_open(struct inode *inode, struct file *file)
1284 return seq_open(file, &extfrag_op);
1287 static const struct file_operations extfrag_file_ops = {
1288 .open = extfrag_open,
1289 .read = seq_read,
1290 .llseek = seq_lseek,
1291 .release = seq_release,
1294 static int __init extfrag_debug_init(void)
1296 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1297 if (!extfrag_debug_root)
1298 return -ENOMEM;
1300 if (!debugfs_create_file("unusable_index", 0444,
1301 extfrag_debug_root, NULL, &unusable_file_ops))
1302 return -ENOMEM;
1304 if (!debugfs_create_file("extfrag_index", 0444,
1305 extfrag_debug_root, NULL, &extfrag_file_ops))
1306 return -ENOMEM;
1308 return 0;
1311 module_init(extfrag_debug_init);
1312 #endif