4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
26 * The ring buffer header is special. We must manually up keep it.
28 int ring_buffer_print_entry_header(struct trace_seq
*s
)
32 ret
= trace_seq_printf(s
, "# compressed entry header\n");
33 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
34 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
35 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
36 ret
= trace_seq_printf(s
, "\n");
37 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING
);
39 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND
);
41 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
61 * Here's some silly ASCII art.
64 * |reader| RING BUFFER
66 * +------+ +---+ +---+ +---+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
93 * +------------------------------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
101 * | New +---+ +---+ +---+
104 * +------------------------------+
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
111 * We will be using cmpxchg soon to make all this lockless.
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
145 RB_BUFFERS_ON_BIT
= 0,
146 RB_BUFFERS_DISABLED_BIT
= 1,
150 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
151 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
154 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 * tracing_on - enable all tracing buffers
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
164 void tracing_on(void)
166 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
168 EXPORT_SYMBOL_GPL(tracing_on
);
171 * tracing_off - turn off all tracing buffers
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
178 void tracing_off(void)
180 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
182 EXPORT_SYMBOL_GPL(tracing_off
);
185 * tracing_off_permanent - permanently disable ring buffers
187 * This function, once called, will disable all ring buffers
190 void tracing_off_permanent(void)
192 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
196 * tracing_is_on - show state of ring buffers enabled
198 int tracing_is_on(void)
200 return ring_buffer_flags
== RB_BUFFERS_ON
;
202 EXPORT_SYMBOL_GPL(tracing_is_on
);
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT 4U
206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
213 RB_LEN_TIME_EXTEND
= 8,
214 RB_LEN_TIME_STAMP
= 16,
217 static inline int rb_null_event(struct ring_buffer_event
*event
)
219 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
222 static void rb_event_set_padding(struct ring_buffer_event
*event
)
224 /* padding has a NULL time_delta */
225 event
->type_len
= RINGBUF_TYPE_PADDING
;
226 event
->time_delta
= 0;
230 rb_event_data_length(struct ring_buffer_event
*event
)
235 length
= event
->type_len
* RB_ALIGNMENT
;
237 length
= event
->array
[0];
238 return length
+ RB_EVNT_HDR_SIZE
;
241 /* inline for ring buffer fast paths */
243 rb_event_length(struct ring_buffer_event
*event
)
245 switch (event
->type_len
) {
246 case RINGBUF_TYPE_PADDING
:
247 if (rb_null_event(event
))
250 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
252 case RINGBUF_TYPE_TIME_EXTEND
:
253 return RB_LEN_TIME_EXTEND
;
255 case RINGBUF_TYPE_TIME_STAMP
:
256 return RB_LEN_TIME_STAMP
;
258 case RINGBUF_TYPE_DATA
:
259 return rb_event_data_length(event
);
268 * ring_buffer_event_length - return the length of the event
269 * @event: the event to get the length of
271 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
273 unsigned length
= rb_event_length(event
);
274 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
276 length
-= RB_EVNT_HDR_SIZE
;
277 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
278 length
-= sizeof(event
->array
[0]);
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
283 /* inline for ring buffer fast paths */
285 rb_event_data(struct ring_buffer_event
*event
)
287 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
288 /* If length is in len field, then array[0] has the data */
290 return (void *)&event
->array
[0];
291 /* Otherwise length is in array[0] and array[1] has the data */
292 return (void *)&event
->array
[1];
296 * ring_buffer_event_data - return the data of the event
297 * @event: the event to get the data from
299 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
301 return rb_event_data(event
);
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
305 #define for_each_buffer_cpu(buffer, cpu) \
306 for_each_cpu(cpu, buffer->cpumask)
309 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST (~TS_MASK)
312 struct buffer_data_page
{
313 u64 time_stamp
; /* page time stamp */
314 local_t commit
; /* write committed index */
315 unsigned char data
[]; /* data of buffer page */
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
327 struct list_head list
; /* list of buffer pages */
328 local_t write
; /* index for next write */
329 unsigned read
; /* index for next read */
330 local_t entries
; /* entries on this page */
331 struct buffer_data_page
*page
; /* Actual data page */
335 * The buffer page counters, write and entries, must be reset
336 * atomically when crossing page boundaries. To synchronize this
337 * update, two counters are inserted into the number. One is
338 * the actual counter for the write position or count on the page.
340 * The other is a counter of updaters. Before an update happens
341 * the update partition of the counter is incremented. This will
342 * allow the updater to update the counter atomically.
344 * The counter is 20 bits, and the state data is 12.
346 #define RB_WRITE_MASK 0xfffff
347 #define RB_WRITE_INTCNT (1 << 20)
349 static void rb_init_page(struct buffer_data_page
*bpage
)
351 local_set(&bpage
->commit
, 0);
355 * ring_buffer_page_len - the size of data on the page.
356 * @page: The page to read
358 * Returns the amount of data on the page, including buffer page header.
360 size_t ring_buffer_page_len(void *page
)
362 return local_read(&((struct buffer_data_page
*)page
)->commit
)
367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
370 static void free_buffer_page(struct buffer_page
*bpage
)
372 free_page((unsigned long)bpage
->page
);
377 * We need to fit the time_stamp delta into 27 bits.
379 static inline int test_time_stamp(u64 delta
)
381 if (delta
& TS_DELTA_TEST
)
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_EXTEND)
394 int ring_buffer_print_page_header(struct trace_seq
*s
)
396 struct buffer_data_page field
;
399 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
400 "offset:0;\tsize:%u;\n",
401 (unsigned int)sizeof(field
.time_stamp
));
403 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
404 "offset:%u;\tsize:%u;\n",
405 (unsigned int)offsetof(typeof(field
), commit
),
406 (unsigned int)sizeof(field
.commit
));
408 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
409 "offset:%u;\tsize:%u;\n",
410 (unsigned int)offsetof(typeof(field
), data
),
411 (unsigned int)BUF_PAGE_SIZE
);
417 * head_page == tail_page && head == tail then buffer is empty.
419 struct ring_buffer_per_cpu
{
421 struct ring_buffer
*buffer
;
422 spinlock_t reader_lock
; /* serialize readers */
424 struct lock_class_key lock_key
;
425 struct list_head
*pages
;
426 struct buffer_page
*head_page
; /* read from head */
427 struct buffer_page
*tail_page
; /* write to tail */
428 struct buffer_page
*commit_page
; /* committed pages */
429 struct buffer_page
*reader_page
;
430 local_t commit_overrun
;
438 atomic_t record_disabled
;
445 atomic_t record_disabled
;
446 cpumask_var_t cpumask
;
448 struct lock_class_key
*reader_lock_key
;
452 struct ring_buffer_per_cpu
**buffers
;
454 #ifdef CONFIG_HOTPLUG_CPU
455 struct notifier_block cpu_notify
;
460 struct ring_buffer_iter
{
461 struct ring_buffer_per_cpu
*cpu_buffer
;
463 struct buffer_page
*head_page
;
467 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
468 #define RB_WARN_ON(b, cond) \
470 int _____ret = unlikely(cond); \
472 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
473 struct ring_buffer_per_cpu *__b = \
475 atomic_inc(&__b->buffer->record_disabled); \
477 atomic_inc(&b->record_disabled); \
483 /* Up this if you want to test the TIME_EXTENTS and normalization */
484 #define DEBUG_SHIFT 0
486 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
488 /* shift to debug/test normalization and TIME_EXTENTS */
489 return buffer
->clock() << DEBUG_SHIFT
;
492 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
496 preempt_disable_notrace();
497 time
= rb_time_stamp(buffer
);
498 preempt_enable_no_resched_notrace();
502 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
504 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
507 /* Just stupid testing the normalize function and deltas */
510 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
513 * Making the ring buffer lockless makes things tricky.
514 * Although writes only happen on the CPU that they are on,
515 * and they only need to worry about interrupts. Reads can
518 * The reader page is always off the ring buffer, but when the
519 * reader finishes with a page, it needs to swap its page with
520 * a new one from the buffer. The reader needs to take from
521 * the head (writes go to the tail). But if a writer is in overwrite
522 * mode and wraps, it must push the head page forward.
524 * Here lies the problem.
526 * The reader must be careful to replace only the head page, and
527 * not another one. As described at the top of the file in the
528 * ASCII art, the reader sets its old page to point to the next
529 * page after head. It then sets the page after head to point to
530 * the old reader page. But if the writer moves the head page
531 * during this operation, the reader could end up with the tail.
533 * We use cmpxchg to help prevent this race. We also do something
534 * special with the page before head. We set the LSB to 1.
536 * When the writer must push the page forward, it will clear the
537 * bit that points to the head page, move the head, and then set
538 * the bit that points to the new head page.
540 * We also don't want an interrupt coming in and moving the head
541 * page on another writer. Thus we use the second LSB to catch
544 * head->list->prev->next bit 1 bit 0
547 * Points to head page 0 1
550 * Note we can not trust the prev pointer of the head page, because:
552 * +----+ +-----+ +-----+
553 * | |------>| T |---X--->| N |
555 * +----+ +-----+ +-----+
558 * +----------| R |----------+ |
562 * Key: ---X--> HEAD flag set in pointer
567 * (see __rb_reserve_next() to see where this happens)
569 * What the above shows is that the reader just swapped out
570 * the reader page with a page in the buffer, but before it
571 * could make the new header point back to the new page added
572 * it was preempted by a writer. The writer moved forward onto
573 * the new page added by the reader and is about to move forward
576 * You can see, it is legitimate for the previous pointer of
577 * the head (or any page) not to point back to itself. But only
581 #define RB_PAGE_NORMAL 0UL
582 #define RB_PAGE_HEAD 1UL
583 #define RB_PAGE_UPDATE 2UL
586 #define RB_FLAG_MASK 3UL
588 /* PAGE_MOVED is not part of the mask */
589 #define RB_PAGE_MOVED 4UL
592 * rb_list_head - remove any bit
594 static struct list_head
*rb_list_head(struct list_head
*list
)
596 unsigned long val
= (unsigned long)list
;
598 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
602 * rb_is_head_page - test if the given page is the head page
604 * Because the reader may move the head_page pointer, we can
605 * not trust what the head page is (it may be pointing to
606 * the reader page). But if the next page is a header page,
607 * its flags will be non zero.
610 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
611 struct buffer_page
*page
, struct list_head
*list
)
615 val
= (unsigned long)list
->next
;
617 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
618 return RB_PAGE_MOVED
;
620 return val
& RB_FLAG_MASK
;
626 * The unique thing about the reader page, is that, if the
627 * writer is ever on it, the previous pointer never points
628 * back to the reader page.
630 static int rb_is_reader_page(struct buffer_page
*page
)
632 struct list_head
*list
= page
->list
.prev
;
634 return rb_list_head(list
->next
) != &page
->list
;
638 * rb_set_list_to_head - set a list_head to be pointing to head.
640 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
641 struct list_head
*list
)
645 ptr
= (unsigned long *)&list
->next
;
646 *ptr
|= RB_PAGE_HEAD
;
647 *ptr
&= ~RB_PAGE_UPDATE
;
651 * rb_head_page_activate - sets up head page
653 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
655 struct buffer_page
*head
;
657 head
= cpu_buffer
->head_page
;
662 * Set the previous list pointer to have the HEAD flag.
664 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
667 static void rb_list_head_clear(struct list_head
*list
)
669 unsigned long *ptr
= (unsigned long *)&list
->next
;
671 *ptr
&= ~RB_FLAG_MASK
;
675 * rb_head_page_dactivate - clears head page ptr (for free list)
678 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
680 struct list_head
*hd
;
682 /* Go through the whole list and clear any pointers found. */
683 rb_list_head_clear(cpu_buffer
->pages
);
685 list_for_each(hd
, cpu_buffer
->pages
)
686 rb_list_head_clear(hd
);
689 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
690 struct buffer_page
*head
,
691 struct buffer_page
*prev
,
692 int old_flag
, int new_flag
)
694 struct list_head
*list
;
695 unsigned long val
= (unsigned long)&head
->list
;
700 val
&= ~RB_FLAG_MASK
;
702 ret
= cmpxchg((unsigned long *)&list
->next
,
703 val
| old_flag
, val
| new_flag
);
705 /* check if the reader took the page */
706 if ((ret
& ~RB_FLAG_MASK
) != val
)
707 return RB_PAGE_MOVED
;
709 return ret
& RB_FLAG_MASK
;
712 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
713 struct buffer_page
*head
,
714 struct buffer_page
*prev
,
717 return rb_head_page_set(cpu_buffer
, head
, prev
,
718 old_flag
, RB_PAGE_UPDATE
);
721 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
722 struct buffer_page
*head
,
723 struct buffer_page
*prev
,
726 return rb_head_page_set(cpu_buffer
, head
, prev
,
727 old_flag
, RB_PAGE_HEAD
);
730 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
731 struct buffer_page
*head
,
732 struct buffer_page
*prev
,
735 return rb_head_page_set(cpu_buffer
, head
, prev
,
736 old_flag
, RB_PAGE_NORMAL
);
739 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
740 struct buffer_page
**bpage
)
742 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
744 *bpage
= list_entry(p
, struct buffer_page
, list
);
747 static struct buffer_page
*
748 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
750 struct buffer_page
*head
;
751 struct buffer_page
*page
;
752 struct list_head
*list
;
755 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
759 list
= cpu_buffer
->pages
;
760 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
763 page
= head
= cpu_buffer
->head_page
;
765 * It is possible that the writer moves the header behind
766 * where we started, and we miss in one loop.
767 * A second loop should grab the header, but we'll do
768 * three loops just because I'm paranoid.
770 for (i
= 0; i
< 3; i
++) {
772 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
773 cpu_buffer
->head_page
= page
;
776 rb_inc_page(cpu_buffer
, &page
);
777 } while (page
!= head
);
780 RB_WARN_ON(cpu_buffer
, 1);
785 static int rb_head_page_replace(struct buffer_page
*old
,
786 struct buffer_page
*new)
788 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
792 val
= *ptr
& ~RB_FLAG_MASK
;
795 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
801 * rb_tail_page_update - move the tail page forward
803 * Returns 1 if moved tail page, 0 if someone else did.
805 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
806 struct buffer_page
*tail_page
,
807 struct buffer_page
*next_page
)
809 struct buffer_page
*old_tail
;
810 unsigned long old_entries
;
811 unsigned long old_write
;
815 * The tail page now needs to be moved forward.
817 * We need to reset the tail page, but without messing
818 * with possible erasing of data brought in by interrupts
819 * that have moved the tail page and are currently on it.
821 * We add a counter to the write field to denote this.
823 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
824 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
827 * Just make sure we have seen our old_write and synchronize
828 * with any interrupts that come in.
833 * If the tail page is still the same as what we think
834 * it is, then it is up to us to update the tail
837 if (tail_page
== cpu_buffer
->tail_page
) {
838 /* Zero the write counter */
839 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
840 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
843 * This will only succeed if an interrupt did
844 * not come in and change it. In which case, we
845 * do not want to modify it.
847 * We add (void) to let the compiler know that we do not care
848 * about the return value of these functions. We use the
849 * cmpxchg to only update if an interrupt did not already
850 * do it for us. If the cmpxchg fails, we don't care.
852 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
853 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
856 * No need to worry about races with clearing out the commit.
857 * it only can increment when a commit takes place. But that
858 * only happens in the outer most nested commit.
860 local_set(&next_page
->page
->commit
, 0);
862 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
863 tail_page
, next_page
);
865 if (old_tail
== tail_page
)
872 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
873 struct buffer_page
*bpage
)
875 unsigned long val
= (unsigned long)bpage
;
877 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
884 * rb_check_list - make sure a pointer to a list has the last bits zero
886 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
887 struct list_head
*list
)
889 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
891 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
897 * check_pages - integrity check of buffer pages
898 * @cpu_buffer: CPU buffer with pages to test
900 * As a safety measure we check to make sure the data pages have not
903 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
905 struct list_head
*head
= cpu_buffer
->pages
;
906 struct buffer_page
*bpage
, *tmp
;
908 rb_head_page_deactivate(cpu_buffer
);
910 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
912 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
915 if (rb_check_list(cpu_buffer
, head
))
918 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
919 if (RB_WARN_ON(cpu_buffer
,
920 bpage
->list
.next
->prev
!= &bpage
->list
))
922 if (RB_WARN_ON(cpu_buffer
,
923 bpage
->list
.prev
->next
!= &bpage
->list
))
925 if (rb_check_list(cpu_buffer
, &bpage
->list
))
929 rb_head_page_activate(cpu_buffer
);
934 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
937 struct buffer_page
*bpage
, *tmp
;
944 for (i
= 0; i
< nr_pages
; i
++) {
945 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
946 GFP_KERNEL
, cpu_to_node(cpu_buffer
->cpu
));
950 rb_check_bpage(cpu_buffer
, bpage
);
952 list_add(&bpage
->list
, &pages
);
954 addr
= __get_free_page(GFP_KERNEL
);
957 bpage
->page
= (void *)addr
;
958 rb_init_page(bpage
->page
);
962 * The ring buffer page list is a circular list that does not
963 * start and end with a list head. All page list items point to
966 cpu_buffer
->pages
= pages
.next
;
969 rb_check_pages(cpu_buffer
);
974 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
975 list_del_init(&bpage
->list
);
976 free_buffer_page(bpage
);
981 static struct ring_buffer_per_cpu
*
982 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
984 struct ring_buffer_per_cpu
*cpu_buffer
;
985 struct buffer_page
*bpage
;
989 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
990 GFP_KERNEL
, cpu_to_node(cpu
));
994 cpu_buffer
->cpu
= cpu
;
995 cpu_buffer
->buffer
= buffer
;
996 spin_lock_init(&cpu_buffer
->reader_lock
);
997 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
998 cpu_buffer
->lock
= (raw_spinlock_t
)__RAW_SPIN_LOCK_UNLOCKED
;
1000 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1001 GFP_KERNEL
, cpu_to_node(cpu
));
1003 goto fail_free_buffer
;
1005 rb_check_bpage(cpu_buffer
, bpage
);
1007 cpu_buffer
->reader_page
= bpage
;
1008 addr
= __get_free_page(GFP_KERNEL
);
1010 goto fail_free_reader
;
1011 bpage
->page
= (void *)addr
;
1012 rb_init_page(bpage
->page
);
1014 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1016 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1018 goto fail_free_reader
;
1020 cpu_buffer
->head_page
1021 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1022 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1024 rb_head_page_activate(cpu_buffer
);
1029 free_buffer_page(cpu_buffer
->reader_page
);
1036 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1038 struct list_head
*head
= cpu_buffer
->pages
;
1039 struct buffer_page
*bpage
, *tmp
;
1041 free_buffer_page(cpu_buffer
->reader_page
);
1043 rb_head_page_deactivate(cpu_buffer
);
1046 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1047 list_del_init(&bpage
->list
);
1048 free_buffer_page(bpage
);
1050 bpage
= list_entry(head
, struct buffer_page
, list
);
1051 free_buffer_page(bpage
);
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 static int rb_cpu_notify(struct notifier_block
*self
,
1059 unsigned long action
, void *hcpu
);
1063 * ring_buffer_alloc - allocate a new ring_buffer
1064 * @size: the size in bytes per cpu that is needed.
1065 * @flags: attributes to set for the ring buffer.
1067 * Currently the only flag that is available is the RB_FL_OVERWRITE
1068 * flag. This flag means that the buffer will overwrite old data
1069 * when the buffer wraps. If this flag is not set, the buffer will
1070 * drop data when the tail hits the head.
1072 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1073 struct lock_class_key
*key
)
1075 struct ring_buffer
*buffer
;
1079 /* keep it in its own cache line */
1080 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1085 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1086 goto fail_free_buffer
;
1088 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1089 buffer
->flags
= flags
;
1090 buffer
->clock
= trace_clock_local
;
1091 buffer
->reader_lock_key
= key
;
1093 /* need at least two pages */
1094 if (buffer
->pages
< 2)
1098 * In case of non-hotplug cpu, if the ring-buffer is allocated
1099 * in early initcall, it will not be notified of secondary cpus.
1100 * In that off case, we need to allocate for all possible cpus.
1102 #ifdef CONFIG_HOTPLUG_CPU
1104 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1106 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1108 buffer
->cpus
= nr_cpu_ids
;
1110 bsize
= sizeof(void *) * nr_cpu_ids
;
1111 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1113 if (!buffer
->buffers
)
1114 goto fail_free_cpumask
;
1116 for_each_buffer_cpu(buffer
, cpu
) {
1117 buffer
->buffers
[cpu
] =
1118 rb_allocate_cpu_buffer(buffer
, cpu
);
1119 if (!buffer
->buffers
[cpu
])
1120 goto fail_free_buffers
;
1123 #ifdef CONFIG_HOTPLUG_CPU
1124 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1125 buffer
->cpu_notify
.priority
= 0;
1126 register_cpu_notifier(&buffer
->cpu_notify
);
1130 mutex_init(&buffer
->mutex
);
1135 for_each_buffer_cpu(buffer
, cpu
) {
1136 if (buffer
->buffers
[cpu
])
1137 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1139 kfree(buffer
->buffers
);
1142 free_cpumask_var(buffer
->cpumask
);
1149 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1152 * ring_buffer_free - free a ring buffer.
1153 * @buffer: the buffer to free.
1156 ring_buffer_free(struct ring_buffer
*buffer
)
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 unregister_cpu_notifier(&buffer
->cpu_notify
);
1166 for_each_buffer_cpu(buffer
, cpu
)
1167 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1171 kfree(buffer
->buffers
);
1172 free_cpumask_var(buffer
->cpumask
);
1176 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1178 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1181 buffer
->clock
= clock
;
1184 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1187 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1189 struct buffer_page
*bpage
;
1190 struct list_head
*p
;
1193 atomic_inc(&cpu_buffer
->record_disabled
);
1194 synchronize_sched();
1196 spin_lock_irq(&cpu_buffer
->reader_lock
);
1197 rb_head_page_deactivate(cpu_buffer
);
1199 for (i
= 0; i
< nr_pages
; i
++) {
1200 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1202 p
= cpu_buffer
->pages
->next
;
1203 bpage
= list_entry(p
, struct buffer_page
, list
);
1204 list_del_init(&bpage
->list
);
1205 free_buffer_page(bpage
);
1207 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1210 rb_reset_cpu(cpu_buffer
);
1211 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1213 rb_check_pages(cpu_buffer
);
1215 atomic_dec(&cpu_buffer
->record_disabled
);
1220 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1221 struct list_head
*pages
, unsigned nr_pages
)
1223 struct buffer_page
*bpage
;
1224 struct list_head
*p
;
1227 atomic_inc(&cpu_buffer
->record_disabled
);
1228 synchronize_sched();
1230 spin_lock_irq(&cpu_buffer
->reader_lock
);
1231 rb_head_page_deactivate(cpu_buffer
);
1233 for (i
= 0; i
< nr_pages
; i
++) {
1234 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1237 bpage
= list_entry(p
, struct buffer_page
, list
);
1238 list_del_init(&bpage
->list
);
1239 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1241 rb_reset_cpu(cpu_buffer
);
1242 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1244 rb_check_pages(cpu_buffer
);
1246 atomic_dec(&cpu_buffer
->record_disabled
);
1250 * ring_buffer_resize - resize the ring buffer
1251 * @buffer: the buffer to resize.
1252 * @size: the new size.
1254 * The tracer is responsible for making sure that the buffer is
1255 * not being used while changing the size.
1256 * Note: We may be able to change the above requirement by using
1257 * RCU synchronizations.
1259 * Minimum size is 2 * BUF_PAGE_SIZE.
1261 * Returns -1 on failure.
1263 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1265 struct ring_buffer_per_cpu
*cpu_buffer
;
1266 unsigned nr_pages
, rm_pages
, new_pages
;
1267 struct buffer_page
*bpage
, *tmp
;
1268 unsigned long buffer_size
;
1274 * Always succeed at resizing a non-existent buffer:
1279 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1280 size
*= BUF_PAGE_SIZE
;
1281 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1283 /* we need a minimum of two pages */
1284 if (size
< BUF_PAGE_SIZE
* 2)
1285 size
= BUF_PAGE_SIZE
* 2;
1287 if (size
== buffer_size
)
1290 mutex_lock(&buffer
->mutex
);
1293 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1295 if (size
< buffer_size
) {
1297 /* easy case, just free pages */
1298 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1301 rm_pages
= buffer
->pages
- nr_pages
;
1303 for_each_buffer_cpu(buffer
, cpu
) {
1304 cpu_buffer
= buffer
->buffers
[cpu
];
1305 rb_remove_pages(cpu_buffer
, rm_pages
);
1311 * This is a bit more difficult. We only want to add pages
1312 * when we can allocate enough for all CPUs. We do this
1313 * by allocating all the pages and storing them on a local
1314 * link list. If we succeed in our allocation, then we
1315 * add these pages to the cpu_buffers. Otherwise we just free
1316 * them all and return -ENOMEM;
1318 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1321 new_pages
= nr_pages
- buffer
->pages
;
1323 for_each_buffer_cpu(buffer
, cpu
) {
1324 for (i
= 0; i
< new_pages
; i
++) {
1325 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1327 GFP_KERNEL
, cpu_to_node(cpu
));
1330 list_add(&bpage
->list
, &pages
);
1331 addr
= __get_free_page(GFP_KERNEL
);
1334 bpage
->page
= (void *)addr
;
1335 rb_init_page(bpage
->page
);
1339 for_each_buffer_cpu(buffer
, cpu
) {
1340 cpu_buffer
= buffer
->buffers
[cpu
];
1341 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1344 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1348 buffer
->pages
= nr_pages
;
1350 mutex_unlock(&buffer
->mutex
);
1355 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1356 list_del_init(&bpage
->list
);
1357 free_buffer_page(bpage
);
1360 mutex_unlock(&buffer
->mutex
);
1364 * Something went totally wrong, and we are too paranoid
1365 * to even clean up the mess.
1369 mutex_unlock(&buffer
->mutex
);
1372 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1374 static inline void *
1375 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1377 return bpage
->data
+ index
;
1380 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1382 return bpage
->page
->data
+ index
;
1385 static inline struct ring_buffer_event
*
1386 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1388 return __rb_page_index(cpu_buffer
->reader_page
,
1389 cpu_buffer
->reader_page
->read
);
1392 static inline struct ring_buffer_event
*
1393 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1395 return __rb_page_index(iter
->head_page
, iter
->head
);
1398 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1400 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1403 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1405 return local_read(&bpage
->page
->commit
);
1408 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1410 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1413 /* Size is determined by what has been commited */
1414 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1416 return rb_page_commit(bpage
);
1419 static inline unsigned
1420 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1422 return rb_page_commit(cpu_buffer
->commit_page
);
1425 static inline unsigned
1426 rb_event_index(struct ring_buffer_event
*event
)
1428 unsigned long addr
= (unsigned long)event
;
1430 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1434 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1435 struct ring_buffer_event
*event
)
1437 unsigned long addr
= (unsigned long)event
;
1438 unsigned long index
;
1440 index
= rb_event_index(event
);
1443 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1444 rb_commit_index(cpu_buffer
) == index
;
1448 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1450 unsigned long max_count
;
1453 * We only race with interrupts and NMIs on this CPU.
1454 * If we own the commit event, then we can commit
1455 * all others that interrupted us, since the interruptions
1456 * are in stack format (they finish before they come
1457 * back to us). This allows us to do a simple loop to
1458 * assign the commit to the tail.
1461 max_count
= cpu_buffer
->buffer
->pages
* 100;
1463 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1464 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1466 if (RB_WARN_ON(cpu_buffer
,
1467 rb_is_reader_page(cpu_buffer
->tail_page
)))
1469 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1470 rb_page_write(cpu_buffer
->commit_page
));
1471 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1472 cpu_buffer
->write_stamp
=
1473 cpu_buffer
->commit_page
->page
->time_stamp
;
1474 /* add barrier to keep gcc from optimizing too much */
1477 while (rb_commit_index(cpu_buffer
) !=
1478 rb_page_write(cpu_buffer
->commit_page
)) {
1480 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1481 rb_page_write(cpu_buffer
->commit_page
));
1482 RB_WARN_ON(cpu_buffer
,
1483 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1488 /* again, keep gcc from optimizing */
1492 * If an interrupt came in just after the first while loop
1493 * and pushed the tail page forward, we will be left with
1494 * a dangling commit that will never go forward.
1496 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1500 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1502 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1503 cpu_buffer
->reader_page
->read
= 0;
1506 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1508 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1511 * The iterator could be on the reader page (it starts there).
1512 * But the head could have moved, since the reader was
1513 * found. Check for this case and assign the iterator
1514 * to the head page instead of next.
1516 if (iter
->head_page
== cpu_buffer
->reader_page
)
1517 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1519 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1521 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1526 * ring_buffer_update_event - update event type and data
1527 * @event: the even to update
1528 * @type: the type of event
1529 * @length: the size of the event field in the ring buffer
1531 * Update the type and data fields of the event. The length
1532 * is the actual size that is written to the ring buffer,
1533 * and with this, we can determine what to place into the
1537 rb_update_event(struct ring_buffer_event
*event
,
1538 unsigned type
, unsigned length
)
1540 event
->type_len
= type
;
1544 case RINGBUF_TYPE_PADDING
:
1545 case RINGBUF_TYPE_TIME_EXTEND
:
1546 case RINGBUF_TYPE_TIME_STAMP
:
1550 length
-= RB_EVNT_HDR_SIZE
;
1551 if (length
> RB_MAX_SMALL_DATA
)
1552 event
->array
[0] = length
;
1554 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1562 * rb_handle_head_page - writer hit the head page
1564 * Returns: +1 to retry page
1569 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1570 struct buffer_page
*tail_page
,
1571 struct buffer_page
*next_page
)
1573 struct buffer_page
*new_head
;
1578 entries
= rb_page_entries(next_page
);
1581 * The hard part is here. We need to move the head
1582 * forward, and protect against both readers on
1583 * other CPUs and writers coming in via interrupts.
1585 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1589 * type can be one of four:
1590 * NORMAL - an interrupt already moved it for us
1591 * HEAD - we are the first to get here.
1592 * UPDATE - we are the interrupt interrupting
1594 * MOVED - a reader on another CPU moved the next
1595 * pointer to its reader page. Give up
1602 * We changed the head to UPDATE, thus
1603 * it is our responsibility to update
1606 local_add(entries
, &cpu_buffer
->overrun
);
1609 * The entries will be zeroed out when we move the
1613 /* still more to do */
1616 case RB_PAGE_UPDATE
:
1618 * This is an interrupt that interrupt the
1619 * previous update. Still more to do.
1622 case RB_PAGE_NORMAL
:
1624 * An interrupt came in before the update
1625 * and processed this for us.
1626 * Nothing left to do.
1631 * The reader is on another CPU and just did
1632 * a swap with our next_page.
1637 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1642 * Now that we are here, the old head pointer is
1643 * set to UPDATE. This will keep the reader from
1644 * swapping the head page with the reader page.
1645 * The reader (on another CPU) will spin till
1648 * We just need to protect against interrupts
1649 * doing the job. We will set the next pointer
1650 * to HEAD. After that, we set the old pointer
1651 * to NORMAL, but only if it was HEAD before.
1652 * otherwise we are an interrupt, and only
1653 * want the outer most commit to reset it.
1655 new_head
= next_page
;
1656 rb_inc_page(cpu_buffer
, &new_head
);
1658 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1662 * Valid returns are:
1663 * HEAD - an interrupt came in and already set it.
1664 * NORMAL - One of two things:
1665 * 1) We really set it.
1666 * 2) A bunch of interrupts came in and moved
1667 * the page forward again.
1671 case RB_PAGE_NORMAL
:
1675 RB_WARN_ON(cpu_buffer
, 1);
1680 * It is possible that an interrupt came in,
1681 * set the head up, then more interrupts came in
1682 * and moved it again. When we get back here,
1683 * the page would have been set to NORMAL but we
1684 * just set it back to HEAD.
1686 * How do you detect this? Well, if that happened
1687 * the tail page would have moved.
1689 if (ret
== RB_PAGE_NORMAL
) {
1691 * If the tail had moved passed next, then we need
1692 * to reset the pointer.
1694 if (cpu_buffer
->tail_page
!= tail_page
&&
1695 cpu_buffer
->tail_page
!= next_page
)
1696 rb_head_page_set_normal(cpu_buffer
, new_head
,
1702 * If this was the outer most commit (the one that
1703 * changed the original pointer from HEAD to UPDATE),
1704 * then it is up to us to reset it to NORMAL.
1706 if (type
== RB_PAGE_HEAD
) {
1707 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1710 if (RB_WARN_ON(cpu_buffer
,
1711 ret
!= RB_PAGE_UPDATE
))
1718 static unsigned rb_calculate_event_length(unsigned length
)
1720 struct ring_buffer_event event
; /* Used only for sizeof array */
1722 /* zero length can cause confusions */
1726 if (length
> RB_MAX_SMALL_DATA
)
1727 length
+= sizeof(event
.array
[0]);
1729 length
+= RB_EVNT_HDR_SIZE
;
1730 length
= ALIGN(length
, RB_ALIGNMENT
);
1736 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1737 struct buffer_page
*tail_page
,
1738 unsigned long tail
, unsigned long length
)
1740 struct ring_buffer_event
*event
;
1743 * Only the event that crossed the page boundary
1744 * must fill the old tail_page with padding.
1746 if (tail
>= BUF_PAGE_SIZE
) {
1747 local_sub(length
, &tail_page
->write
);
1751 event
= __rb_page_index(tail_page
, tail
);
1752 kmemcheck_annotate_bitfield(event
, bitfield
);
1755 * If this event is bigger than the minimum size, then
1756 * we need to be careful that we don't subtract the
1757 * write counter enough to allow another writer to slip
1759 * We put in a discarded commit instead, to make sure
1760 * that this space is not used again.
1762 * If we are less than the minimum size, we don't need to
1765 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1766 /* No room for any events */
1768 /* Mark the rest of the page with padding */
1769 rb_event_set_padding(event
);
1771 /* Set the write back to the previous setting */
1772 local_sub(length
, &tail_page
->write
);
1776 /* Put in a discarded event */
1777 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1778 event
->type_len
= RINGBUF_TYPE_PADDING
;
1779 /* time delta must be non zero */
1780 event
->time_delta
= 1;
1782 /* Set write to end of buffer */
1783 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1784 local_sub(length
, &tail_page
->write
);
1787 static struct ring_buffer_event
*
1788 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1789 unsigned long length
, unsigned long tail
,
1790 struct buffer_page
*commit_page
,
1791 struct buffer_page
*tail_page
, u64
*ts
)
1793 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1794 struct buffer_page
*next_page
;
1797 next_page
= tail_page
;
1799 rb_inc_page(cpu_buffer
, &next_page
);
1802 * If for some reason, we had an interrupt storm that made
1803 * it all the way around the buffer, bail, and warn
1806 if (unlikely(next_page
== commit_page
)) {
1807 local_inc(&cpu_buffer
->commit_overrun
);
1812 * This is where the fun begins!
1814 * We are fighting against races between a reader that
1815 * could be on another CPU trying to swap its reader
1816 * page with the buffer head.
1818 * We are also fighting against interrupts coming in and
1819 * moving the head or tail on us as well.
1821 * If the next page is the head page then we have filled
1822 * the buffer, unless the commit page is still on the
1825 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1828 * If the commit is not on the reader page, then
1829 * move the header page.
1831 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1833 * If we are not in overwrite mode,
1834 * this is easy, just stop here.
1836 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1839 ret
= rb_handle_head_page(cpu_buffer
,
1848 * We need to be careful here too. The
1849 * commit page could still be on the reader
1850 * page. We could have a small buffer, and
1851 * have filled up the buffer with events
1852 * from interrupts and such, and wrapped.
1854 * Note, if the tail page is also the on the
1855 * reader_page, we let it move out.
1857 if (unlikely((cpu_buffer
->commit_page
!=
1858 cpu_buffer
->tail_page
) &&
1859 (cpu_buffer
->commit_page
==
1860 cpu_buffer
->reader_page
))) {
1861 local_inc(&cpu_buffer
->commit_overrun
);
1867 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1870 * Nested commits always have zero deltas, so
1871 * just reread the time stamp
1873 *ts
= rb_time_stamp(buffer
);
1874 next_page
->page
->time_stamp
= *ts
;
1879 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1881 /* fail and let the caller try again */
1882 return ERR_PTR(-EAGAIN
);
1886 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1891 static struct ring_buffer_event
*
1892 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
1893 unsigned type
, unsigned long length
, u64
*ts
)
1895 struct buffer_page
*tail_page
, *commit_page
;
1896 struct ring_buffer_event
*event
;
1897 unsigned long tail
, write
;
1899 commit_page
= cpu_buffer
->commit_page
;
1900 /* we just need to protect against interrupts */
1902 tail_page
= cpu_buffer
->tail_page
;
1903 write
= local_add_return(length
, &tail_page
->write
);
1905 /* set write to only the index of the write */
1906 write
&= RB_WRITE_MASK
;
1907 tail
= write
- length
;
1909 /* See if we shot pass the end of this buffer page */
1910 if (write
> BUF_PAGE_SIZE
)
1911 return rb_move_tail(cpu_buffer
, length
, tail
,
1912 commit_page
, tail_page
, ts
);
1914 /* We reserved something on the buffer */
1916 event
= __rb_page_index(tail_page
, tail
);
1917 kmemcheck_annotate_bitfield(event
, bitfield
);
1918 rb_update_event(event
, type
, length
);
1920 /* The passed in type is zero for DATA */
1922 local_inc(&tail_page
->entries
);
1925 * If this is the first commit on the page, then update
1929 tail_page
->page
->time_stamp
= *ts
;
1935 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
1936 struct ring_buffer_event
*event
)
1938 unsigned long new_index
, old_index
;
1939 struct buffer_page
*bpage
;
1940 unsigned long index
;
1943 new_index
= rb_event_index(event
);
1944 old_index
= new_index
+ rb_event_length(event
);
1945 addr
= (unsigned long)event
;
1948 bpage
= cpu_buffer
->tail_page
;
1950 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
1951 unsigned long write_mask
=
1952 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
1954 * This is on the tail page. It is possible that
1955 * a write could come in and move the tail page
1956 * and write to the next page. That is fine
1957 * because we just shorten what is on this page.
1959 old_index
+= write_mask
;
1960 new_index
+= write_mask
;
1961 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
1962 if (index
== old_index
)
1966 /* could not discard */
1971 rb_add_time_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
1972 u64
*ts
, u64
*delta
)
1974 struct ring_buffer_event
*event
;
1978 if (unlikely(*delta
> (1ULL << 59) && !once
++)) {
1979 printk(KERN_WARNING
"Delta way too big! %llu"
1980 " ts=%llu write stamp = %llu\n",
1981 (unsigned long long)*delta
,
1982 (unsigned long long)*ts
,
1983 (unsigned long long)cpu_buffer
->write_stamp
);
1988 * The delta is too big, we to add a
1991 event
= __rb_reserve_next(cpu_buffer
,
1992 RINGBUF_TYPE_TIME_EXTEND
,
1998 if (PTR_ERR(event
) == -EAGAIN
)
2001 /* Only a commited time event can update the write stamp */
2002 if (rb_event_is_commit(cpu_buffer
, event
)) {
2004 * If this is the first on the page, then it was
2005 * updated with the page itself. Try to discard it
2006 * and if we can't just make it zero.
2008 if (rb_event_index(event
)) {
2009 event
->time_delta
= *delta
& TS_MASK
;
2010 event
->array
[0] = *delta
>> TS_SHIFT
;
2012 /* try to discard, since we do not need this */
2013 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2014 /* nope, just zero it */
2015 event
->time_delta
= 0;
2016 event
->array
[0] = 0;
2019 cpu_buffer
->write_stamp
= *ts
;
2020 /* let the caller know this was the commit */
2023 /* Try to discard the event */
2024 if (!rb_try_to_discard(cpu_buffer
, event
)) {
2025 /* Darn, this is just wasted space */
2026 event
->time_delta
= 0;
2027 event
->array
[0] = 0;
2037 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2039 local_inc(&cpu_buffer
->committing
);
2040 local_inc(&cpu_buffer
->commits
);
2043 static void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2045 unsigned long commits
;
2047 if (RB_WARN_ON(cpu_buffer
,
2048 !local_read(&cpu_buffer
->committing
)))
2052 commits
= local_read(&cpu_buffer
->commits
);
2053 /* synchronize with interrupts */
2055 if (local_read(&cpu_buffer
->committing
) == 1)
2056 rb_set_commit_to_write(cpu_buffer
);
2058 local_dec(&cpu_buffer
->committing
);
2060 /* synchronize with interrupts */
2064 * Need to account for interrupts coming in between the
2065 * updating of the commit page and the clearing of the
2066 * committing counter.
2068 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2069 !local_read(&cpu_buffer
->committing
)) {
2070 local_inc(&cpu_buffer
->committing
);
2075 static struct ring_buffer_event
*
2076 rb_reserve_next_event(struct ring_buffer
*buffer
,
2077 struct ring_buffer_per_cpu
*cpu_buffer
,
2078 unsigned long length
)
2080 struct ring_buffer_event
*event
;
2085 rb_start_commit(cpu_buffer
);
2087 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2089 * Due to the ability to swap a cpu buffer from a buffer
2090 * it is possible it was swapped before we committed.
2091 * (committing stops a swap). We check for it here and
2092 * if it happened, we have to fail the write.
2095 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2096 local_dec(&cpu_buffer
->committing
);
2097 local_dec(&cpu_buffer
->commits
);
2102 length
= rb_calculate_event_length(length
);
2105 * We allow for interrupts to reenter here and do a trace.
2106 * If one does, it will cause this original code to loop
2107 * back here. Even with heavy interrupts happening, this
2108 * should only happen a few times in a row. If this happens
2109 * 1000 times in a row, there must be either an interrupt
2110 * storm or we have something buggy.
2113 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2116 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2119 * Only the first commit can update the timestamp.
2120 * Yes there is a race here. If an interrupt comes in
2121 * just after the conditional and it traces too, then it
2122 * will also check the deltas. More than one timestamp may
2123 * also be made. But only the entry that did the actual
2124 * commit will be something other than zero.
2126 if (likely(cpu_buffer
->tail_page
== cpu_buffer
->commit_page
&&
2127 rb_page_write(cpu_buffer
->tail_page
) ==
2128 rb_commit_index(cpu_buffer
))) {
2131 diff
= ts
- cpu_buffer
->write_stamp
;
2133 /* make sure this diff is calculated here */
2136 /* Did the write stamp get updated already? */
2137 if (unlikely(ts
< cpu_buffer
->write_stamp
))
2141 if (unlikely(test_time_stamp(delta
))) {
2143 commit
= rb_add_time_stamp(cpu_buffer
, &ts
, &delta
);
2144 if (commit
== -EBUSY
)
2147 if (commit
== -EAGAIN
)
2150 RB_WARN_ON(cpu_buffer
, commit
< 0);
2155 event
= __rb_reserve_next(cpu_buffer
, 0, length
, &ts
);
2156 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2162 if (!rb_event_is_commit(cpu_buffer
, event
))
2165 event
->time_delta
= delta
;
2170 rb_end_commit(cpu_buffer
);
2174 #ifdef CONFIG_TRACING
2176 #define TRACE_RECURSIVE_DEPTH 16
2178 static int trace_recursive_lock(void)
2180 current
->trace_recursion
++;
2182 if (likely(current
->trace_recursion
< TRACE_RECURSIVE_DEPTH
))
2185 /* Disable all tracing before we do anything else */
2186 tracing_off_permanent();
2188 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2189 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2190 current
->trace_recursion
,
2191 hardirq_count() >> HARDIRQ_SHIFT
,
2192 softirq_count() >> SOFTIRQ_SHIFT
,
2199 static void trace_recursive_unlock(void)
2201 WARN_ON_ONCE(!current
->trace_recursion
);
2203 current
->trace_recursion
--;
2208 #define trace_recursive_lock() (0)
2209 #define trace_recursive_unlock() do { } while (0)
2213 static DEFINE_PER_CPU(int, rb_need_resched
);
2216 * ring_buffer_lock_reserve - reserve a part of the buffer
2217 * @buffer: the ring buffer to reserve from
2218 * @length: the length of the data to reserve (excluding event header)
2220 * Returns a reseverd event on the ring buffer to copy directly to.
2221 * The user of this interface will need to get the body to write into
2222 * and can use the ring_buffer_event_data() interface.
2224 * The length is the length of the data needed, not the event length
2225 * which also includes the event header.
2227 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2228 * If NULL is returned, then nothing has been allocated or locked.
2230 struct ring_buffer_event
*
2231 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2233 struct ring_buffer_per_cpu
*cpu_buffer
;
2234 struct ring_buffer_event
*event
;
2237 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2240 /* If we are tracing schedule, we don't want to recurse */
2241 resched
= ftrace_preempt_disable();
2243 if (atomic_read(&buffer
->record_disabled
))
2246 if (trace_recursive_lock())
2249 cpu
= raw_smp_processor_id();
2251 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2254 cpu_buffer
= buffer
->buffers
[cpu
];
2256 if (atomic_read(&cpu_buffer
->record_disabled
))
2259 if (length
> BUF_MAX_DATA_SIZE
)
2262 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2267 * Need to store resched state on this cpu.
2268 * Only the first needs to.
2271 if (preempt_count() == 1)
2272 per_cpu(rb_need_resched
, cpu
) = resched
;
2277 trace_recursive_unlock();
2280 ftrace_preempt_enable(resched
);
2283 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2286 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2287 struct ring_buffer_event
*event
)
2290 * The event first in the commit queue updates the
2293 if (rb_event_is_commit(cpu_buffer
, event
))
2294 cpu_buffer
->write_stamp
+= event
->time_delta
;
2297 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2298 struct ring_buffer_event
*event
)
2300 local_inc(&cpu_buffer
->entries
);
2301 rb_update_write_stamp(cpu_buffer
, event
);
2302 rb_end_commit(cpu_buffer
);
2306 * ring_buffer_unlock_commit - commit a reserved
2307 * @buffer: The buffer to commit to
2308 * @event: The event pointer to commit.
2310 * This commits the data to the ring buffer, and releases any locks held.
2312 * Must be paired with ring_buffer_lock_reserve.
2314 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2315 struct ring_buffer_event
*event
)
2317 struct ring_buffer_per_cpu
*cpu_buffer
;
2318 int cpu
= raw_smp_processor_id();
2320 cpu_buffer
= buffer
->buffers
[cpu
];
2322 rb_commit(cpu_buffer
, event
);
2324 trace_recursive_unlock();
2327 * Only the last preempt count needs to restore preemption.
2329 if (preempt_count() == 1)
2330 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2332 preempt_enable_no_resched_notrace();
2336 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2338 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2340 /* array[0] holds the actual length for the discarded event */
2341 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2342 event
->type_len
= RINGBUF_TYPE_PADDING
;
2343 /* time delta must be non zero */
2344 if (!event
->time_delta
)
2345 event
->time_delta
= 1;
2349 * Decrement the entries to the page that an event is on.
2350 * The event does not even need to exist, only the pointer
2351 * to the page it is on. This may only be called before the commit
2355 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2356 struct ring_buffer_event
*event
)
2358 unsigned long addr
= (unsigned long)event
;
2359 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2360 struct buffer_page
*start
;
2364 /* Do the likely case first */
2365 if (likely(bpage
->page
== (void *)addr
)) {
2366 local_dec(&bpage
->entries
);
2371 * Because the commit page may be on the reader page we
2372 * start with the next page and check the end loop there.
2374 rb_inc_page(cpu_buffer
, &bpage
);
2377 if (bpage
->page
== (void *)addr
) {
2378 local_dec(&bpage
->entries
);
2381 rb_inc_page(cpu_buffer
, &bpage
);
2382 } while (bpage
!= start
);
2384 /* commit not part of this buffer?? */
2385 RB_WARN_ON(cpu_buffer
, 1);
2389 * ring_buffer_commit_discard - discard an event that has not been committed
2390 * @buffer: the ring buffer
2391 * @event: non committed event to discard
2393 * Sometimes an event that is in the ring buffer needs to be ignored.
2394 * This function lets the user discard an event in the ring buffer
2395 * and then that event will not be read later.
2397 * This function only works if it is called before the the item has been
2398 * committed. It will try to free the event from the ring buffer
2399 * if another event has not been added behind it.
2401 * If another event has been added behind it, it will set the event
2402 * up as discarded, and perform the commit.
2404 * If this function is called, do not call ring_buffer_unlock_commit on
2407 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2408 struct ring_buffer_event
*event
)
2410 struct ring_buffer_per_cpu
*cpu_buffer
;
2413 /* The event is discarded regardless */
2414 rb_event_discard(event
);
2416 cpu
= smp_processor_id();
2417 cpu_buffer
= buffer
->buffers
[cpu
];
2420 * This must only be called if the event has not been
2421 * committed yet. Thus we can assume that preemption
2422 * is still disabled.
2424 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2426 rb_decrement_entry(cpu_buffer
, event
);
2427 if (rb_try_to_discard(cpu_buffer
, event
))
2431 * The commit is still visible by the reader, so we
2432 * must still update the timestamp.
2434 rb_update_write_stamp(cpu_buffer
, event
);
2436 rb_end_commit(cpu_buffer
);
2438 trace_recursive_unlock();
2441 * Only the last preempt count needs to restore preemption.
2443 if (preempt_count() == 1)
2444 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
2446 preempt_enable_no_resched_notrace();
2449 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2452 * ring_buffer_write - write data to the buffer without reserving
2453 * @buffer: The ring buffer to write to.
2454 * @length: The length of the data being written (excluding the event header)
2455 * @data: The data to write to the buffer.
2457 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2458 * one function. If you already have the data to write to the buffer, it
2459 * may be easier to simply call this function.
2461 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2462 * and not the length of the event which would hold the header.
2464 int ring_buffer_write(struct ring_buffer
*buffer
,
2465 unsigned long length
,
2468 struct ring_buffer_per_cpu
*cpu_buffer
;
2469 struct ring_buffer_event
*event
;
2474 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2477 resched
= ftrace_preempt_disable();
2479 if (atomic_read(&buffer
->record_disabled
))
2482 cpu
= raw_smp_processor_id();
2484 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2487 cpu_buffer
= buffer
->buffers
[cpu
];
2489 if (atomic_read(&cpu_buffer
->record_disabled
))
2492 if (length
> BUF_MAX_DATA_SIZE
)
2495 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2499 body
= rb_event_data(event
);
2501 memcpy(body
, data
, length
);
2503 rb_commit(cpu_buffer
, event
);
2507 ftrace_preempt_enable(resched
);
2511 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2513 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2515 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2516 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2517 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2519 /* In case of error, head will be NULL */
2520 if (unlikely(!head
))
2523 return reader
->read
== rb_page_commit(reader
) &&
2524 (commit
== reader
||
2526 head
->read
== rb_page_commit(commit
)));
2530 * ring_buffer_record_disable - stop all writes into the buffer
2531 * @buffer: The ring buffer to stop writes to.
2533 * This prevents all writes to the buffer. Any attempt to write
2534 * to the buffer after this will fail and return NULL.
2536 * The caller should call synchronize_sched() after this.
2538 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2540 atomic_inc(&buffer
->record_disabled
);
2542 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2545 * ring_buffer_record_enable - enable writes to the buffer
2546 * @buffer: The ring buffer to enable writes
2548 * Note, multiple disables will need the same number of enables
2549 * to truely enable the writing (much like preempt_disable).
2551 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2553 atomic_dec(&buffer
->record_disabled
);
2555 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2558 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2559 * @buffer: The ring buffer to stop writes to.
2560 * @cpu: The CPU buffer to stop
2562 * This prevents all writes to the buffer. Any attempt to write
2563 * to the buffer after this will fail and return NULL.
2565 * The caller should call synchronize_sched() after this.
2567 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2569 struct ring_buffer_per_cpu
*cpu_buffer
;
2571 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2574 cpu_buffer
= buffer
->buffers
[cpu
];
2575 atomic_inc(&cpu_buffer
->record_disabled
);
2577 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2580 * ring_buffer_record_enable_cpu - enable writes to the buffer
2581 * @buffer: The ring buffer to enable writes
2582 * @cpu: The CPU to enable.
2584 * Note, multiple disables will need the same number of enables
2585 * to truely enable the writing (much like preempt_disable).
2587 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2589 struct ring_buffer_per_cpu
*cpu_buffer
;
2591 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2594 cpu_buffer
= buffer
->buffers
[cpu
];
2595 atomic_dec(&cpu_buffer
->record_disabled
);
2597 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2600 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2601 * @buffer: The ring buffer
2602 * @cpu: The per CPU buffer to get the entries from.
2604 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2606 struct ring_buffer_per_cpu
*cpu_buffer
;
2609 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2612 cpu_buffer
= buffer
->buffers
[cpu
];
2613 ret
= (local_read(&cpu_buffer
->entries
) - local_read(&cpu_buffer
->overrun
))
2618 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2621 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2622 * @buffer: The ring buffer
2623 * @cpu: The per CPU buffer to get the number of overruns from
2625 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2627 struct ring_buffer_per_cpu
*cpu_buffer
;
2630 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2633 cpu_buffer
= buffer
->buffers
[cpu
];
2634 ret
= local_read(&cpu_buffer
->overrun
);
2638 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2641 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2642 * @buffer: The ring buffer
2643 * @cpu: The per CPU buffer to get the number of overruns from
2646 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2648 struct ring_buffer_per_cpu
*cpu_buffer
;
2651 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2654 cpu_buffer
= buffer
->buffers
[cpu
];
2655 ret
= local_read(&cpu_buffer
->commit_overrun
);
2659 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2662 * ring_buffer_entries - get the number of entries in a buffer
2663 * @buffer: The ring buffer
2665 * Returns the total number of entries in the ring buffer
2668 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2670 struct ring_buffer_per_cpu
*cpu_buffer
;
2671 unsigned long entries
= 0;
2674 /* if you care about this being correct, lock the buffer */
2675 for_each_buffer_cpu(buffer
, cpu
) {
2676 cpu_buffer
= buffer
->buffers
[cpu
];
2677 entries
+= (local_read(&cpu_buffer
->entries
) -
2678 local_read(&cpu_buffer
->overrun
)) - cpu_buffer
->read
;
2683 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2686 * ring_buffer_overruns - get the number of overruns in buffer
2687 * @buffer: The ring buffer
2689 * Returns the total number of overruns in the ring buffer
2692 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2694 struct ring_buffer_per_cpu
*cpu_buffer
;
2695 unsigned long overruns
= 0;
2698 /* if you care about this being correct, lock the buffer */
2699 for_each_buffer_cpu(buffer
, cpu
) {
2700 cpu_buffer
= buffer
->buffers
[cpu
];
2701 overruns
+= local_read(&cpu_buffer
->overrun
);
2706 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2708 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2710 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2712 /* Iterator usage is expected to have record disabled */
2713 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2714 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2715 if (unlikely(!iter
->head_page
))
2717 iter
->head
= iter
->head_page
->read
;
2719 iter
->head_page
= cpu_buffer
->reader_page
;
2720 iter
->head
= cpu_buffer
->reader_page
->read
;
2723 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2725 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2729 * ring_buffer_iter_reset - reset an iterator
2730 * @iter: The iterator to reset
2732 * Resets the iterator, so that it will start from the beginning
2735 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2737 struct ring_buffer_per_cpu
*cpu_buffer
;
2738 unsigned long flags
;
2743 cpu_buffer
= iter
->cpu_buffer
;
2745 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2746 rb_iter_reset(iter
);
2747 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2749 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2752 * ring_buffer_iter_empty - check if an iterator has no more to read
2753 * @iter: The iterator to check
2755 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2757 struct ring_buffer_per_cpu
*cpu_buffer
;
2759 cpu_buffer
= iter
->cpu_buffer
;
2761 return iter
->head_page
== cpu_buffer
->commit_page
&&
2762 iter
->head
== rb_commit_index(cpu_buffer
);
2764 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2767 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2768 struct ring_buffer_event
*event
)
2772 switch (event
->type_len
) {
2773 case RINGBUF_TYPE_PADDING
:
2776 case RINGBUF_TYPE_TIME_EXTEND
:
2777 delta
= event
->array
[0];
2779 delta
+= event
->time_delta
;
2780 cpu_buffer
->read_stamp
+= delta
;
2783 case RINGBUF_TYPE_TIME_STAMP
:
2784 /* FIXME: not implemented */
2787 case RINGBUF_TYPE_DATA
:
2788 cpu_buffer
->read_stamp
+= event
->time_delta
;
2798 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2799 struct ring_buffer_event
*event
)
2803 switch (event
->type_len
) {
2804 case RINGBUF_TYPE_PADDING
:
2807 case RINGBUF_TYPE_TIME_EXTEND
:
2808 delta
= event
->array
[0];
2810 delta
+= event
->time_delta
;
2811 iter
->read_stamp
+= delta
;
2814 case RINGBUF_TYPE_TIME_STAMP
:
2815 /* FIXME: not implemented */
2818 case RINGBUF_TYPE_DATA
:
2819 iter
->read_stamp
+= event
->time_delta
;
2828 static struct buffer_page
*
2829 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2831 struct buffer_page
*reader
= NULL
;
2832 unsigned long flags
;
2836 local_irq_save(flags
);
2837 __raw_spin_lock(&cpu_buffer
->lock
);
2841 * This should normally only loop twice. But because the
2842 * start of the reader inserts an empty page, it causes
2843 * a case where we will loop three times. There should be no
2844 * reason to loop four times (that I know of).
2846 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2851 reader
= cpu_buffer
->reader_page
;
2853 /* If there's more to read, return this page */
2854 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2857 /* Never should we have an index greater than the size */
2858 if (RB_WARN_ON(cpu_buffer
,
2859 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2862 /* check if we caught up to the tail */
2864 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2868 * Reset the reader page to size zero.
2870 local_set(&cpu_buffer
->reader_page
->write
, 0);
2871 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2872 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2876 * Splice the empty reader page into the list around the head.
2878 reader
= rb_set_head_page(cpu_buffer
);
2879 cpu_buffer
->reader_page
->list
.next
= reader
->list
.next
;
2880 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2883 * cpu_buffer->pages just needs to point to the buffer, it
2884 * has no specific buffer page to point to. Lets move it out
2885 * of our way so we don't accidently swap it.
2887 cpu_buffer
->pages
= reader
->list
.prev
;
2889 /* The reader page will be pointing to the new head */
2890 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
2893 * Here's the tricky part.
2895 * We need to move the pointer past the header page.
2896 * But we can only do that if a writer is not currently
2897 * moving it. The page before the header page has the
2898 * flag bit '1' set if it is pointing to the page we want.
2899 * but if the writer is in the process of moving it
2900 * than it will be '2' or already moved '0'.
2903 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
2906 * If we did not convert it, then we must try again.
2912 * Yeah! We succeeded in replacing the page.
2914 * Now make the new head point back to the reader page.
2916 reader
->list
.next
->prev
= &cpu_buffer
->reader_page
->list
;
2917 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2919 /* Finally update the reader page to the new head */
2920 cpu_buffer
->reader_page
= reader
;
2921 rb_reset_reader_page(cpu_buffer
);
2926 __raw_spin_unlock(&cpu_buffer
->lock
);
2927 local_irq_restore(flags
);
2932 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
2934 struct ring_buffer_event
*event
;
2935 struct buffer_page
*reader
;
2938 reader
= rb_get_reader_page(cpu_buffer
);
2940 /* This function should not be called when buffer is empty */
2941 if (RB_WARN_ON(cpu_buffer
, !reader
))
2944 event
= rb_reader_event(cpu_buffer
);
2946 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
2949 rb_update_read_stamp(cpu_buffer
, event
);
2951 length
= rb_event_length(event
);
2952 cpu_buffer
->reader_page
->read
+= length
;
2955 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
2957 struct ring_buffer
*buffer
;
2958 struct ring_buffer_per_cpu
*cpu_buffer
;
2959 struct ring_buffer_event
*event
;
2962 cpu_buffer
= iter
->cpu_buffer
;
2963 buffer
= cpu_buffer
->buffer
;
2966 * Check if we are at the end of the buffer.
2968 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
2969 /* discarded commits can make the page empty */
2970 if (iter
->head_page
== cpu_buffer
->commit_page
)
2976 event
= rb_iter_head_event(iter
);
2978 length
= rb_event_length(event
);
2981 * This should not be called to advance the header if we are
2982 * at the tail of the buffer.
2984 if (RB_WARN_ON(cpu_buffer
,
2985 (iter
->head_page
== cpu_buffer
->commit_page
) &&
2986 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
2989 rb_update_iter_read_stamp(iter
, event
);
2991 iter
->head
+= length
;
2993 /* check for end of page padding */
2994 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
2995 (iter
->head_page
!= cpu_buffer
->commit_page
))
2996 rb_advance_iter(iter
);
2999 static struct ring_buffer_event
*
3000 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
)
3002 struct ring_buffer_event
*event
;
3003 struct buffer_page
*reader
;
3008 * We repeat when a timestamp is encountered. It is possible
3009 * to get multiple timestamps from an interrupt entering just
3010 * as one timestamp is about to be written, or from discarded
3011 * commits. The most that we can have is the number on a single page.
3013 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3016 reader
= rb_get_reader_page(cpu_buffer
);
3020 event
= rb_reader_event(cpu_buffer
);
3022 switch (event
->type_len
) {
3023 case RINGBUF_TYPE_PADDING
:
3024 if (rb_null_event(event
))
3025 RB_WARN_ON(cpu_buffer
, 1);
3027 * Because the writer could be discarding every
3028 * event it creates (which would probably be bad)
3029 * if we were to go back to "again" then we may never
3030 * catch up, and will trigger the warn on, or lock
3031 * the box. Return the padding, and we will release
3032 * the current locks, and try again.
3036 case RINGBUF_TYPE_TIME_EXTEND
:
3037 /* Internal data, OK to advance */
3038 rb_advance_reader(cpu_buffer
);
3041 case RINGBUF_TYPE_TIME_STAMP
:
3042 /* FIXME: not implemented */
3043 rb_advance_reader(cpu_buffer
);
3046 case RINGBUF_TYPE_DATA
:
3048 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3049 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3050 cpu_buffer
->cpu
, ts
);
3060 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3062 static struct ring_buffer_event
*
3063 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3065 struct ring_buffer
*buffer
;
3066 struct ring_buffer_per_cpu
*cpu_buffer
;
3067 struct ring_buffer_event
*event
;
3070 if (ring_buffer_iter_empty(iter
))
3073 cpu_buffer
= iter
->cpu_buffer
;
3074 buffer
= cpu_buffer
->buffer
;
3078 * We repeat when a timestamp is encountered.
3079 * We can get multiple timestamps by nested interrupts or also
3080 * if filtering is on (discarding commits). Since discarding
3081 * commits can be frequent we can get a lot of timestamps.
3082 * But we limit them by not adding timestamps if they begin
3083 * at the start of a page.
3085 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
3088 if (rb_per_cpu_empty(cpu_buffer
))
3091 event
= rb_iter_head_event(iter
);
3093 switch (event
->type_len
) {
3094 case RINGBUF_TYPE_PADDING
:
3095 if (rb_null_event(event
)) {
3099 rb_advance_iter(iter
);
3102 case RINGBUF_TYPE_TIME_EXTEND
:
3103 /* Internal data, OK to advance */
3104 rb_advance_iter(iter
);
3107 case RINGBUF_TYPE_TIME_STAMP
:
3108 /* FIXME: not implemented */
3109 rb_advance_iter(iter
);
3112 case RINGBUF_TYPE_DATA
:
3114 *ts
= iter
->read_stamp
+ event
->time_delta
;
3115 ring_buffer_normalize_time_stamp(buffer
,
3116 cpu_buffer
->cpu
, ts
);
3126 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3128 static inline int rb_ok_to_lock(void)
3131 * If an NMI die dumps out the content of the ring buffer
3132 * do not grab locks. We also permanently disable the ring
3133 * buffer too. A one time deal is all you get from reading
3134 * the ring buffer from an NMI.
3136 if (likely(!in_nmi()))
3139 tracing_off_permanent();
3144 * ring_buffer_peek - peek at the next event to be read
3145 * @buffer: The ring buffer to read
3146 * @cpu: The cpu to peak at
3147 * @ts: The timestamp counter of this event.
3149 * This will return the event that will be read next, but does
3150 * not consume the data.
3152 struct ring_buffer_event
*
3153 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
3155 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3156 struct ring_buffer_event
*event
;
3157 unsigned long flags
;
3160 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3163 dolock
= rb_ok_to_lock();
3165 local_irq_save(flags
);
3167 spin_lock(&cpu_buffer
->reader_lock
);
3168 event
= rb_buffer_peek(cpu_buffer
, ts
);
3169 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3170 rb_advance_reader(cpu_buffer
);
3172 spin_unlock(&cpu_buffer
->reader_lock
);
3173 local_irq_restore(flags
);
3175 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3182 * ring_buffer_iter_peek - peek at the next event to be read
3183 * @iter: The ring buffer iterator
3184 * @ts: The timestamp counter of this event.
3186 * This will return the event that will be read next, but does
3187 * not increment the iterator.
3189 struct ring_buffer_event
*
3190 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3192 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3193 struct ring_buffer_event
*event
;
3194 unsigned long flags
;
3197 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3198 event
= rb_iter_peek(iter
, ts
);
3199 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3201 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3208 * ring_buffer_consume - return an event and consume it
3209 * @buffer: The ring buffer to get the next event from
3211 * Returns the next event in the ring buffer, and that event is consumed.
3212 * Meaning, that sequential reads will keep returning a different event,
3213 * and eventually empty the ring buffer if the producer is slower.
3215 struct ring_buffer_event
*
3216 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
3218 struct ring_buffer_per_cpu
*cpu_buffer
;
3219 struct ring_buffer_event
*event
= NULL
;
3220 unsigned long flags
;
3223 dolock
= rb_ok_to_lock();
3226 /* might be called in atomic */
3229 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3232 cpu_buffer
= buffer
->buffers
[cpu
];
3233 local_irq_save(flags
);
3235 spin_lock(&cpu_buffer
->reader_lock
);
3237 event
= rb_buffer_peek(cpu_buffer
, ts
);
3239 rb_advance_reader(cpu_buffer
);
3242 spin_unlock(&cpu_buffer
->reader_lock
);
3243 local_irq_restore(flags
);
3248 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3253 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3256 * ring_buffer_read_start - start a non consuming read of the buffer
3257 * @buffer: The ring buffer to read from
3258 * @cpu: The cpu buffer to iterate over
3260 * This starts up an iteration through the buffer. It also disables
3261 * the recording to the buffer until the reading is finished.
3262 * This prevents the reading from being corrupted. This is not
3263 * a consuming read, so a producer is not expected.
3265 * Must be paired with ring_buffer_finish.
3267 struct ring_buffer_iter
*
3268 ring_buffer_read_start(struct ring_buffer
*buffer
, int cpu
)
3270 struct ring_buffer_per_cpu
*cpu_buffer
;
3271 struct ring_buffer_iter
*iter
;
3272 unsigned long flags
;
3274 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3277 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3281 cpu_buffer
= buffer
->buffers
[cpu
];
3283 iter
->cpu_buffer
= cpu_buffer
;
3285 atomic_inc(&cpu_buffer
->record_disabled
);
3286 synchronize_sched();
3288 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3289 __raw_spin_lock(&cpu_buffer
->lock
);
3290 rb_iter_reset(iter
);
3291 __raw_spin_unlock(&cpu_buffer
->lock
);
3292 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3296 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3299 * ring_buffer_finish - finish reading the iterator of the buffer
3300 * @iter: The iterator retrieved by ring_buffer_start
3302 * This re-enables the recording to the buffer, and frees the
3306 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3308 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3310 atomic_dec(&cpu_buffer
->record_disabled
);
3313 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3316 * ring_buffer_read - read the next item in the ring buffer by the iterator
3317 * @iter: The ring buffer iterator
3318 * @ts: The time stamp of the event read.
3320 * This reads the next event in the ring buffer and increments the iterator.
3322 struct ring_buffer_event
*
3323 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3325 struct ring_buffer_event
*event
;
3326 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3327 unsigned long flags
;
3329 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3331 event
= rb_iter_peek(iter
, ts
);
3335 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3338 rb_advance_iter(iter
);
3340 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3344 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3347 * ring_buffer_size - return the size of the ring buffer (in bytes)
3348 * @buffer: The ring buffer.
3350 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3352 return BUF_PAGE_SIZE
* buffer
->pages
;
3354 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3357 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3359 rb_head_page_deactivate(cpu_buffer
);
3361 cpu_buffer
->head_page
3362 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3363 local_set(&cpu_buffer
->head_page
->write
, 0);
3364 local_set(&cpu_buffer
->head_page
->entries
, 0);
3365 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3367 cpu_buffer
->head_page
->read
= 0;
3369 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3370 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3372 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3373 local_set(&cpu_buffer
->reader_page
->write
, 0);
3374 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3375 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3376 cpu_buffer
->reader_page
->read
= 0;
3378 local_set(&cpu_buffer
->commit_overrun
, 0);
3379 local_set(&cpu_buffer
->overrun
, 0);
3380 local_set(&cpu_buffer
->entries
, 0);
3381 local_set(&cpu_buffer
->committing
, 0);
3382 local_set(&cpu_buffer
->commits
, 0);
3383 cpu_buffer
->read
= 0;
3385 cpu_buffer
->write_stamp
= 0;
3386 cpu_buffer
->read_stamp
= 0;
3388 rb_head_page_activate(cpu_buffer
);
3392 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3393 * @buffer: The ring buffer to reset a per cpu buffer of
3394 * @cpu: The CPU buffer to be reset
3396 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3398 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3399 unsigned long flags
;
3401 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3404 atomic_inc(&cpu_buffer
->record_disabled
);
3406 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3408 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3411 __raw_spin_lock(&cpu_buffer
->lock
);
3413 rb_reset_cpu(cpu_buffer
);
3415 __raw_spin_unlock(&cpu_buffer
->lock
);
3418 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3420 atomic_dec(&cpu_buffer
->record_disabled
);
3422 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3425 * ring_buffer_reset - reset a ring buffer
3426 * @buffer: The ring buffer to reset all cpu buffers
3428 void ring_buffer_reset(struct ring_buffer
*buffer
)
3432 for_each_buffer_cpu(buffer
, cpu
)
3433 ring_buffer_reset_cpu(buffer
, cpu
);
3435 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3438 * rind_buffer_empty - is the ring buffer empty?
3439 * @buffer: The ring buffer to test
3441 int ring_buffer_empty(struct ring_buffer
*buffer
)
3443 struct ring_buffer_per_cpu
*cpu_buffer
;
3444 unsigned long flags
;
3449 dolock
= rb_ok_to_lock();
3451 /* yes this is racy, but if you don't like the race, lock the buffer */
3452 for_each_buffer_cpu(buffer
, cpu
) {
3453 cpu_buffer
= buffer
->buffers
[cpu
];
3454 local_irq_save(flags
);
3456 spin_lock(&cpu_buffer
->reader_lock
);
3457 ret
= rb_per_cpu_empty(cpu_buffer
);
3459 spin_unlock(&cpu_buffer
->reader_lock
);
3460 local_irq_restore(flags
);
3468 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3471 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3472 * @buffer: The ring buffer
3473 * @cpu: The CPU buffer to test
3475 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3477 struct ring_buffer_per_cpu
*cpu_buffer
;
3478 unsigned long flags
;
3482 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3485 dolock
= rb_ok_to_lock();
3487 cpu_buffer
= buffer
->buffers
[cpu
];
3488 local_irq_save(flags
);
3490 spin_lock(&cpu_buffer
->reader_lock
);
3491 ret
= rb_per_cpu_empty(cpu_buffer
);
3493 spin_unlock(&cpu_buffer
->reader_lock
);
3494 local_irq_restore(flags
);
3498 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3500 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3502 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3503 * @buffer_a: One buffer to swap with
3504 * @buffer_b: The other buffer to swap with
3506 * This function is useful for tracers that want to take a "snapshot"
3507 * of a CPU buffer and has another back up buffer lying around.
3508 * it is expected that the tracer handles the cpu buffer not being
3509 * used at the moment.
3511 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3512 struct ring_buffer
*buffer_b
, int cpu
)
3514 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3515 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3518 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3519 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3522 /* At least make sure the two buffers are somewhat the same */
3523 if (buffer_a
->pages
!= buffer_b
->pages
)
3528 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3531 if (atomic_read(&buffer_a
->record_disabled
))
3534 if (atomic_read(&buffer_b
->record_disabled
))
3537 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3538 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3540 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3543 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3547 * We can't do a synchronize_sched here because this
3548 * function can be called in atomic context.
3549 * Normally this will be called from the same CPU as cpu.
3550 * If not it's up to the caller to protect this.
3552 atomic_inc(&cpu_buffer_a
->record_disabled
);
3553 atomic_inc(&cpu_buffer_b
->record_disabled
);
3556 if (local_read(&cpu_buffer_a
->committing
))
3558 if (local_read(&cpu_buffer_b
->committing
))
3561 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3562 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3564 cpu_buffer_b
->buffer
= buffer_a
;
3565 cpu_buffer_a
->buffer
= buffer_b
;
3570 atomic_dec(&cpu_buffer_a
->record_disabled
);
3571 atomic_dec(&cpu_buffer_b
->record_disabled
);
3575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3579 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3580 * @buffer: the buffer to allocate for.
3582 * This function is used in conjunction with ring_buffer_read_page.
3583 * When reading a full page from the ring buffer, these functions
3584 * can be used to speed up the process. The calling function should
3585 * allocate a few pages first with this function. Then when it
3586 * needs to get pages from the ring buffer, it passes the result
3587 * of this function into ring_buffer_read_page, which will swap
3588 * the page that was allocated, with the read page of the buffer.
3591 * The page allocated, or NULL on error.
3593 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
)
3595 struct buffer_data_page
*bpage
;
3598 addr
= __get_free_page(GFP_KERNEL
);
3602 bpage
= (void *)addr
;
3604 rb_init_page(bpage
);
3608 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3611 * ring_buffer_free_read_page - free an allocated read page
3612 * @buffer: the buffer the page was allocate for
3613 * @data: the page to free
3615 * Free a page allocated from ring_buffer_alloc_read_page.
3617 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3619 free_page((unsigned long)data
);
3621 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3624 * ring_buffer_read_page - extract a page from the ring buffer
3625 * @buffer: buffer to extract from
3626 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3627 * @len: amount to extract
3628 * @cpu: the cpu of the buffer to extract
3629 * @full: should the extraction only happen when the page is full.
3631 * This function will pull out a page from the ring buffer and consume it.
3632 * @data_page must be the address of the variable that was returned
3633 * from ring_buffer_alloc_read_page. This is because the page might be used
3634 * to swap with a page in the ring buffer.
3637 * rpage = ring_buffer_alloc_read_page(buffer);
3640 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3642 * process_page(rpage, ret);
3644 * When @full is set, the function will not return true unless
3645 * the writer is off the reader page.
3647 * Note: it is up to the calling functions to handle sleeps and wakeups.
3648 * The ring buffer can be used anywhere in the kernel and can not
3649 * blindly call wake_up. The layer that uses the ring buffer must be
3650 * responsible for that.
3653 * >=0 if data has been transferred, returns the offset of consumed data.
3654 * <0 if no data has been transferred.
3656 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3657 void **data_page
, size_t len
, int cpu
, int full
)
3659 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3660 struct ring_buffer_event
*event
;
3661 struct buffer_data_page
*bpage
;
3662 struct buffer_page
*reader
;
3663 unsigned long flags
;
3664 unsigned int commit
;
3669 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3673 * If len is not big enough to hold the page header, then
3674 * we can not copy anything.
3676 if (len
<= BUF_PAGE_HDR_SIZE
)
3679 len
-= BUF_PAGE_HDR_SIZE
;
3688 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3690 reader
= rb_get_reader_page(cpu_buffer
);
3694 event
= rb_reader_event(cpu_buffer
);
3696 read
= reader
->read
;
3697 commit
= rb_page_commit(reader
);
3700 * If this page has been partially read or
3701 * if len is not big enough to read the rest of the page or
3702 * a writer is still on the page, then
3703 * we must copy the data from the page to the buffer.
3704 * Otherwise, we can simply swap the page with the one passed in.
3706 if (read
|| (len
< (commit
- read
)) ||
3707 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3708 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3709 unsigned int rpos
= read
;
3710 unsigned int pos
= 0;
3716 if (len
> (commit
- read
))
3717 len
= (commit
- read
);
3719 size
= rb_event_length(event
);
3724 /* save the current timestamp, since the user will need it */
3725 save_timestamp
= cpu_buffer
->read_stamp
;
3727 /* Need to copy one event at a time */
3729 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3733 rb_advance_reader(cpu_buffer
);
3734 rpos
= reader
->read
;
3737 event
= rb_reader_event(cpu_buffer
);
3738 size
= rb_event_length(event
);
3739 } while (len
> size
);
3742 local_set(&bpage
->commit
, pos
);
3743 bpage
->time_stamp
= save_timestamp
;
3745 /* we copied everything to the beginning */
3748 /* update the entry counter */
3749 cpu_buffer
->read
+= rb_page_entries(reader
);
3751 /* swap the pages */
3752 rb_init_page(bpage
);
3753 bpage
= reader
->page
;
3754 reader
->page
= *data_page
;
3755 local_set(&reader
->write
, 0);
3756 local_set(&reader
->entries
, 0);
3763 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3768 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3770 #ifdef CONFIG_TRACING
3772 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3773 size_t cnt
, loff_t
*ppos
)
3775 unsigned long *p
= filp
->private_data
;
3779 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3780 r
= sprintf(buf
, "permanently disabled\n");
3782 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3784 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3788 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3789 size_t cnt
, loff_t
*ppos
)
3791 unsigned long *p
= filp
->private_data
;
3796 if (cnt
>= sizeof(buf
))
3799 if (copy_from_user(&buf
, ubuf
, cnt
))
3804 ret
= strict_strtoul(buf
, 10, &val
);
3809 set_bit(RB_BUFFERS_ON_BIT
, p
);
3811 clear_bit(RB_BUFFERS_ON_BIT
, p
);
3818 static const struct file_operations rb_simple_fops
= {
3819 .open
= tracing_open_generic
,
3820 .read
= rb_simple_read
,
3821 .write
= rb_simple_write
,
3825 static __init
int rb_init_debugfs(void)
3827 struct dentry
*d_tracer
;
3829 d_tracer
= tracing_init_dentry();
3831 trace_create_file("tracing_on", 0644, d_tracer
,
3832 &ring_buffer_flags
, &rb_simple_fops
);
3837 fs_initcall(rb_init_debugfs
);
3840 #ifdef CONFIG_HOTPLUG_CPU
3841 static int rb_cpu_notify(struct notifier_block
*self
,
3842 unsigned long action
, void *hcpu
)
3844 struct ring_buffer
*buffer
=
3845 container_of(self
, struct ring_buffer
, cpu_notify
);
3846 long cpu
= (long)hcpu
;
3849 case CPU_UP_PREPARE
:
3850 case CPU_UP_PREPARE_FROZEN
:
3851 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
3854 buffer
->buffers
[cpu
] =
3855 rb_allocate_cpu_buffer(buffer
, cpu
);
3856 if (!buffer
->buffers
[cpu
]) {
3857 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3862 cpumask_set_cpu(cpu
, buffer
->cpumask
);
3864 case CPU_DOWN_PREPARE
:
3865 case CPU_DOWN_PREPARE_FROZEN
:
3868 * If we were to free the buffer, then the user would
3869 * lose any trace that was in the buffer.