1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.25"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name
[] = "Neterion";
93 static char s2io_driver_version
[] = DRV_VERSION
;
95 static int rxd_size
[2] = {32,48};
96 static int rxd_count
[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
102 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
103 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
123 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
348 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
349 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
350 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
351 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
352 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
353 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
356 static void s2io_vlan_rx_register(struct net_device
*dev
,
357 struct vlan_group
*grp
)
360 struct s2io_nic
*nic
= dev
->priv
;
361 unsigned long flags
[MAX_TX_FIFOS
];
362 struct mac_info
*mac_control
= &nic
->mac_control
;
363 struct config_param
*config
= &nic
->config
;
365 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
366 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
369 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
370 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
374 /* Unregister the vlan */
375 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
378 struct s2io_nic
*nic
= dev
->priv
;
379 unsigned long flags
[MAX_TX_FIFOS
];
380 struct mac_info
*mac_control
= &nic
->mac_control
;
381 struct config_param
*config
= &nic
->config
;
383 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
384 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
387 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
389 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
390 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
395 * Constants to be programmed into the Xena's registers, to configure
400 static const u64 herc_act_dtx_cfg
[] = {
402 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
404 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
406 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
408 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
410 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
412 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
414 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
416 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
421 static const u64 xena_dtx_cfg
[] = {
423 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
425 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
427 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
429 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
431 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
433 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
438 * Constants for Fixing the MacAddress problem seen mostly on
441 static const u64 fix_mac
[] = {
442 0x0060000000000000ULL
, 0x0060600000000000ULL
,
443 0x0040600000000000ULL
, 0x0000600000000000ULL
,
444 0x0020600000000000ULL
, 0x0060600000000000ULL
,
445 0x0020600000000000ULL
, 0x0060600000000000ULL
,
446 0x0020600000000000ULL
, 0x0060600000000000ULL
,
447 0x0020600000000000ULL
, 0x0060600000000000ULL
,
448 0x0020600000000000ULL
, 0x0060600000000000ULL
,
449 0x0020600000000000ULL
, 0x0060600000000000ULL
,
450 0x0020600000000000ULL
, 0x0060600000000000ULL
,
451 0x0020600000000000ULL
, 0x0060600000000000ULL
,
452 0x0020600000000000ULL
, 0x0060600000000000ULL
,
453 0x0020600000000000ULL
, 0x0060600000000000ULL
,
454 0x0020600000000000ULL
, 0x0000600000000000ULL
,
455 0x0040600000000000ULL
, 0x0060600000000000ULL
,
459 MODULE_LICENSE("GPL");
460 MODULE_VERSION(DRV_VERSION
);
463 /* Module Loadable parameters. */
464 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
465 S2IO_PARM_INT(rx_ring_num
, 1);
466 S2IO_PARM_INT(multiq
, 0);
467 S2IO_PARM_INT(rx_ring_mode
, 1);
468 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
469 S2IO_PARM_INT(rmac_pause_time
, 0x100);
470 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
471 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
472 S2IO_PARM_INT(shared_splits
, 0);
473 S2IO_PARM_INT(tmac_util_period
, 5);
474 S2IO_PARM_INT(rmac_util_period
, 5);
475 S2IO_PARM_INT(l3l4hdr_size
, 128);
476 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
477 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
478 /* Frequency of Rx desc syncs expressed as power of 2 */
479 S2IO_PARM_INT(rxsync_frequency
, 3);
480 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
481 S2IO_PARM_INT(intr_type
, 2);
482 /* Large receive offload feature */
483 static unsigned int lro_enable
;
484 module_param_named(lro
, lro_enable
, uint
, 0);
486 /* Max pkts to be aggregated by LRO at one time. If not specified,
487 * aggregation happens until we hit max IP pkt size(64K)
489 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
490 S2IO_PARM_INT(indicate_max_pkts
, 0);
492 S2IO_PARM_INT(napi
, 1);
493 S2IO_PARM_INT(ufo
, 0);
494 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
496 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
497 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
498 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
499 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
500 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
501 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
503 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
504 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
505 module_param_array(rts_frm_len
, uint
, NULL
, 0);
509 * This table lists all the devices that this driver supports.
511 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
512 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
513 PCI_ANY_ID
, PCI_ANY_ID
},
514 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
515 PCI_ANY_ID
, PCI_ANY_ID
},
516 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
517 PCI_ANY_ID
, PCI_ANY_ID
},
518 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
519 PCI_ANY_ID
, PCI_ANY_ID
},
523 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
525 static struct pci_error_handlers s2io_err_handler
= {
526 .error_detected
= s2io_io_error_detected
,
527 .slot_reset
= s2io_io_slot_reset
,
528 .resume
= s2io_io_resume
,
531 static struct pci_driver s2io_driver
= {
533 .id_table
= s2io_tbl
,
534 .probe
= s2io_init_nic
,
535 .remove
= __devexit_p(s2io_rem_nic
),
536 .err_handler
= &s2io_err_handler
,
539 /* A simplifier macro used both by init and free shared_mem Fns(). */
540 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
542 /* netqueue manipulation helper functions */
543 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
545 if (!sp
->config
.multiq
) {
548 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
549 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
551 netif_tx_stop_all_queues(sp
->dev
);
554 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
556 if (!sp
->config
.multiq
)
557 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
560 netif_tx_stop_all_queues(sp
->dev
);
563 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
565 if (!sp
->config
.multiq
) {
568 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
569 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
571 netif_tx_start_all_queues(sp
->dev
);
574 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
576 if (!sp
->config
.multiq
)
577 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
580 netif_tx_start_all_queues(sp
->dev
);
583 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
585 if (!sp
->config
.multiq
) {
588 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
589 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
591 netif_tx_wake_all_queues(sp
->dev
);
594 static inline void s2io_wake_tx_queue(
595 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
599 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
600 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
601 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
602 if (netif_queue_stopped(fifo
->dev
)) {
603 fifo
->queue_state
= FIFO_QUEUE_START
;
604 netif_wake_queue(fifo
->dev
);
610 * init_shared_mem - Allocation and Initialization of Memory
611 * @nic: Device private variable.
612 * Description: The function allocates all the memory areas shared
613 * between the NIC and the driver. This includes Tx descriptors,
614 * Rx descriptors and the statistics block.
617 static int init_shared_mem(struct s2io_nic
*nic
)
620 void *tmp_v_addr
, *tmp_v_addr_next
;
621 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
622 struct RxD_block
*pre_rxd_blk
= NULL
;
624 int lst_size
, lst_per_page
;
625 struct net_device
*dev
= nic
->dev
;
629 struct mac_info
*mac_control
;
630 struct config_param
*config
;
631 unsigned long long mem_allocated
= 0;
633 mac_control
= &nic
->mac_control
;
634 config
= &nic
->config
;
637 /* Allocation and initialization of TXDLs in FIOFs */
639 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
640 size
+= config
->tx_cfg
[i
].fifo_len
;
642 if (size
> MAX_AVAILABLE_TXDS
) {
643 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
644 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
649 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
650 size
= config
->tx_cfg
[i
].fifo_len
;
652 * Legal values are from 2 to 8192
655 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
656 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
657 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
663 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
664 lst_per_page
= PAGE_SIZE
/ lst_size
;
666 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
667 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
668 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
669 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
671 if (!mac_control
->fifos
[i
].list_info
) {
673 "Malloc failed for list_info\n");
676 mem_allocated
+= list_holder_size
;
678 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
679 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
681 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
682 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
683 config
->tx_cfg
[i
].fifo_len
- 1;
684 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
685 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
686 config
->tx_cfg
[i
].fifo_len
- 1;
687 mac_control
->fifos
[i
].fifo_no
= i
;
688 mac_control
->fifos
[i
].nic
= nic
;
689 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
690 mac_control
->fifos
[i
].dev
= dev
;
692 for (j
= 0; j
< page_num
; j
++) {
696 tmp_v
= pci_alloc_consistent(nic
->pdev
,
700 "pci_alloc_consistent ");
701 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
704 /* If we got a zero DMA address(can happen on
705 * certain platforms like PPC), reallocate.
706 * Store virtual address of page we don't want,
710 mac_control
->zerodma_virt_addr
= tmp_v
;
712 "%s: Zero DMA address for TxDL. ", dev
->name
);
714 "Virtual address %p\n", tmp_v
);
715 tmp_v
= pci_alloc_consistent(nic
->pdev
,
719 "pci_alloc_consistent ");
720 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
723 mem_allocated
+= PAGE_SIZE
;
725 while (k
< lst_per_page
) {
726 int l
= (j
* lst_per_page
) + k
;
727 if (l
== config
->tx_cfg
[i
].fifo_len
)
729 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
730 tmp_v
+ (k
* lst_size
);
731 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
732 tmp_p
+ (k
* lst_size
);
738 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
739 size
= config
->tx_cfg
[i
].fifo_len
;
740 mac_control
->fifos
[i
].ufo_in_band_v
741 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
742 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
744 mem_allocated
+= (size
* sizeof(u64
));
747 /* Allocation and initialization of RXDs in Rings */
749 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
750 if (config
->rx_cfg
[i
].num_rxd
%
751 (rxd_count
[nic
->rxd_mode
] + 1)) {
752 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
753 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
755 DBG_PRINT(ERR_DBG
, "RxDs per Block");
758 size
+= config
->rx_cfg
[i
].num_rxd
;
759 mac_control
->rings
[i
].block_count
=
760 config
->rx_cfg
[i
].num_rxd
/
761 (rxd_count
[nic
->rxd_mode
] + 1 );
762 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
763 mac_control
->rings
[i
].block_count
;
765 if (nic
->rxd_mode
== RXD_MODE_1
)
766 size
= (size
* (sizeof(struct RxD1
)));
768 size
= (size
* (sizeof(struct RxD3
)));
770 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
771 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
772 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
773 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
774 config
->rx_cfg
[i
].num_rxd
- 1;
775 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
776 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
777 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
778 config
->rx_cfg
[i
].num_rxd
- 1;
779 mac_control
->rings
[i
].nic
= nic
;
780 mac_control
->rings
[i
].ring_no
= i
;
781 mac_control
->rings
[i
].lro
= lro_enable
;
783 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
784 (rxd_count
[nic
->rxd_mode
] + 1);
785 /* Allocating all the Rx blocks */
786 for (j
= 0; j
< blk_cnt
; j
++) {
787 struct rx_block_info
*rx_blocks
;
790 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
791 size
= SIZE_OF_BLOCK
; //size is always page size
792 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
794 if (tmp_v_addr
== NULL
) {
796 * In case of failure, free_shared_mem()
797 * is called, which should free any
798 * memory that was alloced till the
801 rx_blocks
->block_virt_addr
= tmp_v_addr
;
804 mem_allocated
+= size
;
805 memset(tmp_v_addr
, 0, size
);
806 rx_blocks
->block_virt_addr
= tmp_v_addr
;
807 rx_blocks
->block_dma_addr
= tmp_p_addr
;
808 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
809 rxd_count
[nic
->rxd_mode
],
811 if (!rx_blocks
->rxds
)
814 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
815 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
816 rx_blocks
->rxds
[l
].virt_addr
=
817 rx_blocks
->block_virt_addr
+
818 (rxd_size
[nic
->rxd_mode
] * l
);
819 rx_blocks
->rxds
[l
].dma_addr
=
820 rx_blocks
->block_dma_addr
+
821 (rxd_size
[nic
->rxd_mode
] * l
);
824 /* Interlinking all Rx Blocks */
825 for (j
= 0; j
< blk_cnt
; j
++) {
827 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
829 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
830 blk_cnt
].block_virt_addr
;
832 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
834 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
835 blk_cnt
].block_dma_addr
;
837 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
838 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
839 (unsigned long) tmp_v_addr_next
;
840 pre_rxd_blk
->pNext_RxD_Blk_physical
=
841 (u64
) tmp_p_addr_next
;
844 if (nic
->rxd_mode
== RXD_MODE_3B
) {
846 * Allocation of Storages for buffer addresses in 2BUFF mode
847 * and the buffers as well.
849 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
850 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
851 (rxd_count
[nic
->rxd_mode
]+ 1);
852 mac_control
->rings
[i
].ba
=
853 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
855 if (!mac_control
->rings
[i
].ba
)
857 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
858 for (j
= 0; j
< blk_cnt
; j
++) {
860 mac_control
->rings
[i
].ba
[j
] =
861 kmalloc((sizeof(struct buffAdd
) *
862 (rxd_count
[nic
->rxd_mode
] + 1)),
864 if (!mac_control
->rings
[i
].ba
[j
])
866 mem_allocated
+= (sizeof(struct buffAdd
) * \
867 (rxd_count
[nic
->rxd_mode
] + 1));
868 while (k
!= rxd_count
[nic
->rxd_mode
]) {
869 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
871 ba
->ba_0_org
= (void *) kmalloc
872 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
876 (BUF0_LEN
+ ALIGN_SIZE
);
877 tmp
= (unsigned long)ba
->ba_0_org
;
879 tmp
&= ~((unsigned long) ALIGN_SIZE
);
880 ba
->ba_0
= (void *) tmp
;
882 ba
->ba_1_org
= (void *) kmalloc
883 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
887 += (BUF1_LEN
+ ALIGN_SIZE
);
888 tmp
= (unsigned long) ba
->ba_1_org
;
890 tmp
&= ~((unsigned long) ALIGN_SIZE
);
891 ba
->ba_1
= (void *) tmp
;
898 /* Allocation and initialization of Statistics block */
899 size
= sizeof(struct stat_block
);
900 mac_control
->stats_mem
= pci_alloc_consistent
901 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
903 if (!mac_control
->stats_mem
) {
905 * In case of failure, free_shared_mem() is called, which
906 * should free any memory that was alloced till the
911 mem_allocated
+= size
;
912 mac_control
->stats_mem_sz
= size
;
914 tmp_v_addr
= mac_control
->stats_mem
;
915 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
916 memset(tmp_v_addr
, 0, size
);
917 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
918 (unsigned long long) tmp_p_addr
);
919 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
924 * free_shared_mem - Free the allocated Memory
925 * @nic: Device private variable.
926 * Description: This function is to free all memory locations allocated by
927 * the init_shared_mem() function and return it to the kernel.
930 static void free_shared_mem(struct s2io_nic
*nic
)
932 int i
, j
, blk_cnt
, size
;
934 dma_addr_t tmp_p_addr
;
935 struct mac_info
*mac_control
;
936 struct config_param
*config
;
937 int lst_size
, lst_per_page
;
938 struct net_device
*dev
;
946 mac_control
= &nic
->mac_control
;
947 config
= &nic
->config
;
949 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
950 lst_per_page
= PAGE_SIZE
/ lst_size
;
952 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
953 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
955 for (j
= 0; j
< page_num
; j
++) {
956 int mem_blks
= (j
* lst_per_page
);
957 if (!mac_control
->fifos
[i
].list_info
)
959 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
962 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
963 mac_control
->fifos
[i
].
966 mac_control
->fifos
[i
].
969 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
972 /* If we got a zero DMA address during allocation,
975 if (mac_control
->zerodma_virt_addr
) {
976 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
977 mac_control
->zerodma_virt_addr
,
980 "%s: Freeing TxDL with zero DMA addr. ",
982 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
983 mac_control
->zerodma_virt_addr
);
984 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
987 kfree(mac_control
->fifos
[i
].list_info
);
988 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
989 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
992 size
= SIZE_OF_BLOCK
;
993 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
994 blk_cnt
= mac_control
->rings
[i
].block_count
;
995 for (j
= 0; j
< blk_cnt
; j
++) {
996 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
998 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1000 if (tmp_v_addr
== NULL
)
1002 pci_free_consistent(nic
->pdev
, size
,
1003 tmp_v_addr
, tmp_p_addr
);
1004 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
1005 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
1006 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1007 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
1011 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1012 /* Freeing buffer storage addresses in 2BUFF mode. */
1013 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1014 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
1015 (rxd_count
[nic
->rxd_mode
] + 1);
1016 for (j
= 0; j
< blk_cnt
; j
++) {
1018 if (!mac_control
->rings
[i
].ba
[j
])
1020 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1021 struct buffAdd
*ba
=
1022 &mac_control
->rings
[i
].ba
[j
][k
];
1023 kfree(ba
->ba_0_org
);
1024 nic
->mac_control
.stats_info
->sw_stat
.\
1025 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
1026 kfree(ba
->ba_1_org
);
1027 nic
->mac_control
.stats_info
->sw_stat
.\
1028 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
1031 kfree(mac_control
->rings
[i
].ba
[j
]);
1032 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1033 (sizeof(struct buffAdd
) *
1034 (rxd_count
[nic
->rxd_mode
] + 1));
1036 kfree(mac_control
->rings
[i
].ba
);
1037 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1038 (sizeof(struct buffAdd
*) * blk_cnt
);
1042 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1043 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
1044 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1045 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
1046 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
1050 if (mac_control
->stats_mem
) {
1051 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1052 mac_control
->stats_mem_sz
;
1053 pci_free_consistent(nic
->pdev
,
1054 mac_control
->stats_mem_sz
,
1055 mac_control
->stats_mem
,
1056 mac_control
->stats_mem_phy
);
1061 * s2io_verify_pci_mode -
1064 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1066 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1067 register u64 val64
= 0;
1070 val64
= readq(&bar0
->pci_mode
);
1071 mode
= (u8
)GET_PCI_MODE(val64
);
1073 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1074 return -1; /* Unknown PCI mode */
1078 #define NEC_VENID 0x1033
1079 #define NEC_DEVID 0x0125
1080 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1082 struct pci_dev
*tdev
= NULL
;
1083 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1084 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1085 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1094 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1096 * s2io_print_pci_mode -
1098 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1100 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1101 register u64 val64
= 0;
1103 struct config_param
*config
= &nic
->config
;
1105 val64
= readq(&bar0
->pci_mode
);
1106 mode
= (u8
)GET_PCI_MODE(val64
);
1108 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1109 return -1; /* Unknown PCI mode */
1111 config
->bus_speed
= bus_speed
[mode
];
1113 if (s2io_on_nec_bridge(nic
->pdev
)) {
1114 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1119 if (val64
& PCI_MODE_32_BITS
) {
1120 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1122 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1126 case PCI_MODE_PCI_33
:
1127 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1129 case PCI_MODE_PCI_66
:
1130 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1132 case PCI_MODE_PCIX_M1_66
:
1133 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1135 case PCI_MODE_PCIX_M1_100
:
1136 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1138 case PCI_MODE_PCIX_M1_133
:
1139 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1141 case PCI_MODE_PCIX_M2_66
:
1142 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1144 case PCI_MODE_PCIX_M2_100
:
1145 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1147 case PCI_MODE_PCIX_M2_133
:
1148 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1151 return -1; /* Unsupported bus speed */
1158 * init_tti - Initialization transmit traffic interrupt scheme
1159 * @nic: device private variable
1160 * @link: link status (UP/DOWN) used to enable/disable continuous
1161 * transmit interrupts
1162 * Description: The function configures transmit traffic interrupts
1163 * Return Value: SUCCESS on success and
1167 static int init_tti(struct s2io_nic
*nic
, int link
)
1169 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1170 register u64 val64
= 0;
1172 struct config_param
*config
;
1174 config
= &nic
->config
;
1176 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1178 * TTI Initialization. Default Tx timer gets us about
1179 * 250 interrupts per sec. Continuous interrupts are enabled
1182 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1183 int count
= (nic
->config
.bus_speed
* 125)/2;
1184 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1186 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1188 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1189 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1190 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1191 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1193 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1194 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1195 writeq(val64
, &bar0
->tti_data1_mem
);
1197 if (nic
->config
.intr_type
== MSI_X
) {
1198 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1199 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1200 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1201 TTI_DATA2_MEM_TX_UFC_D(0x300);
1203 if ((nic
->config
.tx_steering_type
==
1204 TX_DEFAULT_STEERING
) &&
1205 (config
->tx_fifo_num
> 1) &&
1206 (i
>= nic
->udp_fifo_idx
) &&
1207 (i
< (nic
->udp_fifo_idx
+
1208 nic
->total_udp_fifos
)))
1209 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x120);
1214 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1215 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1216 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1217 TTI_DATA2_MEM_TX_UFC_D(0x80);
1220 writeq(val64
, &bar0
->tti_data2_mem
);
1222 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1223 TTI_CMD_MEM_OFFSET(i
);
1224 writeq(val64
, &bar0
->tti_command_mem
);
1226 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1227 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1235 * init_nic - Initialization of hardware
1236 * @nic: device private variable
1237 * Description: The function sequentially configures every block
1238 * of the H/W from their reset values.
1239 * Return Value: SUCCESS on success and
1240 * '-1' on failure (endian settings incorrect).
1243 static int init_nic(struct s2io_nic
*nic
)
1245 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1246 struct net_device
*dev
= nic
->dev
;
1247 register u64 val64
= 0;
1251 struct mac_info
*mac_control
;
1252 struct config_param
*config
;
1254 unsigned long long mem_share
;
1257 mac_control
= &nic
->mac_control
;
1258 config
= &nic
->config
;
1260 /* to set the swapper controle on the card */
1261 if(s2io_set_swapper(nic
)) {
1262 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1267 * Herc requires EOI to be removed from reset before XGXS, so..
1269 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1270 val64
= 0xA500000000ULL
;
1271 writeq(val64
, &bar0
->sw_reset
);
1273 val64
= readq(&bar0
->sw_reset
);
1276 /* Remove XGXS from reset state */
1278 writeq(val64
, &bar0
->sw_reset
);
1280 val64
= readq(&bar0
->sw_reset
);
1282 /* Ensure that it's safe to access registers by checking
1283 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1285 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1286 for (i
= 0; i
< 50; i
++) {
1287 val64
= readq(&bar0
->adapter_status
);
1288 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1296 /* Enable Receiving broadcasts */
1297 add
= &bar0
->mac_cfg
;
1298 val64
= readq(&bar0
->mac_cfg
);
1299 val64
|= MAC_RMAC_BCAST_ENABLE
;
1300 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1301 writel((u32
) val64
, add
);
1302 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1303 writel((u32
) (val64
>> 32), (add
+ 4));
1305 /* Read registers in all blocks */
1306 val64
= readq(&bar0
->mac_int_mask
);
1307 val64
= readq(&bar0
->mc_int_mask
);
1308 val64
= readq(&bar0
->xgxs_int_mask
);
1312 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1314 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1315 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1316 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1317 &bar0
->dtx_control
, UF
);
1319 msleep(1); /* Necessary!! */
1323 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1324 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1325 &bar0
->dtx_control
, UF
);
1326 val64
= readq(&bar0
->dtx_control
);
1331 /* Tx DMA Initialization */
1333 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1334 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1335 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1336 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1339 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1341 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1342 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1345 if (i
== (config
->tx_fifo_num
- 1)) {
1352 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1357 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1362 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1367 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1378 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1379 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1381 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1382 (nic
->pdev
->revision
< 4))
1383 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1385 val64
= readq(&bar0
->tx_fifo_partition_0
);
1386 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1387 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1390 * Initialization of Tx_PA_CONFIG register to ignore packet
1391 * integrity checking.
1393 val64
= readq(&bar0
->tx_pa_cfg
);
1394 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1395 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1396 writeq(val64
, &bar0
->tx_pa_cfg
);
1398 /* Rx DMA intialization. */
1400 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1402 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1405 writeq(val64
, &bar0
->rx_queue_priority
);
1408 * Allocating equal share of memory to all the
1412 if (nic
->device_type
& XFRAME_II_DEVICE
)
1417 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1420 mem_share
= (mem_size
/ config
->rx_ring_num
+
1421 mem_size
% config
->rx_ring_num
);
1422 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1425 mem_share
= (mem_size
/ config
->rx_ring_num
);
1426 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1429 mem_share
= (mem_size
/ config
->rx_ring_num
);
1430 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1433 mem_share
= (mem_size
/ config
->rx_ring_num
);
1434 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1437 mem_share
= (mem_size
/ config
->rx_ring_num
);
1438 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1441 mem_share
= (mem_size
/ config
->rx_ring_num
);
1442 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1445 mem_share
= (mem_size
/ config
->rx_ring_num
);
1446 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1449 mem_share
= (mem_size
/ config
->rx_ring_num
);
1450 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1454 writeq(val64
, &bar0
->rx_queue_cfg
);
1457 * Filling Tx round robin registers
1458 * as per the number of FIFOs for equal scheduling priority
1460 switch (config
->tx_fifo_num
) {
1463 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1464 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1465 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1466 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1467 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1470 val64
= 0x0001000100010001ULL
;
1471 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1472 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1473 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1474 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1475 val64
= 0x0001000100000000ULL
;
1476 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1479 val64
= 0x0001020001020001ULL
;
1480 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1481 val64
= 0x0200010200010200ULL
;
1482 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1483 val64
= 0x0102000102000102ULL
;
1484 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1485 val64
= 0x0001020001020001ULL
;
1486 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1487 val64
= 0x0200010200000000ULL
;
1488 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1491 val64
= 0x0001020300010203ULL
;
1492 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1493 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1494 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1495 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1496 val64
= 0x0001020300000000ULL
;
1497 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1500 val64
= 0x0001020304000102ULL
;
1501 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1502 val64
= 0x0304000102030400ULL
;
1503 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1504 val64
= 0x0102030400010203ULL
;
1505 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1506 val64
= 0x0400010203040001ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1508 val64
= 0x0203040000000000ULL
;
1509 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1512 val64
= 0x0001020304050001ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1514 val64
= 0x0203040500010203ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1516 val64
= 0x0405000102030405ULL
;
1517 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1518 val64
= 0x0001020304050001ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1520 val64
= 0x0203040500000000ULL
;
1521 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1524 val64
= 0x0001020304050600ULL
;
1525 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1526 val64
= 0x0102030405060001ULL
;
1527 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1528 val64
= 0x0203040506000102ULL
;
1529 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1530 val64
= 0x0304050600010203ULL
;
1531 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1532 val64
= 0x0405060000000000ULL
;
1533 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1536 val64
= 0x0001020304050607ULL
;
1537 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1538 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1539 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1540 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1541 val64
= 0x0001020300000000ULL
;
1542 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1546 /* Enable all configured Tx FIFO partitions */
1547 val64
= readq(&bar0
->tx_fifo_partition_0
);
1548 val64
|= (TX_FIFO_PARTITION_EN
);
1549 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1551 /* Filling the Rx round robin registers as per the
1552 * number of Rings and steering based on QoS with
1555 switch (config
->rx_ring_num
) {
1558 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1559 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1560 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1561 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1562 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1564 val64
= 0x8080808080808080ULL
;
1565 writeq(val64
, &bar0
->rts_qos_steering
);
1568 val64
= 0x0001000100010001ULL
;
1569 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1570 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1571 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1572 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1573 val64
= 0x0001000100000000ULL
;
1574 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1576 val64
= 0x8080808040404040ULL
;
1577 writeq(val64
, &bar0
->rts_qos_steering
);
1580 val64
= 0x0001020001020001ULL
;
1581 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1582 val64
= 0x0200010200010200ULL
;
1583 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1584 val64
= 0x0102000102000102ULL
;
1585 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1586 val64
= 0x0001020001020001ULL
;
1587 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1588 val64
= 0x0200010200000000ULL
;
1589 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1591 val64
= 0x8080804040402020ULL
;
1592 writeq(val64
, &bar0
->rts_qos_steering
);
1595 val64
= 0x0001020300010203ULL
;
1596 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1597 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1598 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1599 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1600 val64
= 0x0001020300000000ULL
;
1601 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1603 val64
= 0x8080404020201010ULL
;
1604 writeq(val64
, &bar0
->rts_qos_steering
);
1607 val64
= 0x0001020304000102ULL
;
1608 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1609 val64
= 0x0304000102030400ULL
;
1610 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1611 val64
= 0x0102030400010203ULL
;
1612 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1613 val64
= 0x0400010203040001ULL
;
1614 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1615 val64
= 0x0203040000000000ULL
;
1616 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1618 val64
= 0x8080404020201008ULL
;
1619 writeq(val64
, &bar0
->rts_qos_steering
);
1622 val64
= 0x0001020304050001ULL
;
1623 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1624 val64
= 0x0203040500010203ULL
;
1625 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1626 val64
= 0x0405000102030405ULL
;
1627 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1628 val64
= 0x0001020304050001ULL
;
1629 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1630 val64
= 0x0203040500000000ULL
;
1631 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1633 val64
= 0x8080404020100804ULL
;
1634 writeq(val64
, &bar0
->rts_qos_steering
);
1637 val64
= 0x0001020304050600ULL
;
1638 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1639 val64
= 0x0102030405060001ULL
;
1640 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1641 val64
= 0x0203040506000102ULL
;
1642 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1643 val64
= 0x0304050600010203ULL
;
1644 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1645 val64
= 0x0405060000000000ULL
;
1646 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1648 val64
= 0x8080402010080402ULL
;
1649 writeq(val64
, &bar0
->rts_qos_steering
);
1652 val64
= 0x0001020304050607ULL
;
1653 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1654 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1655 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1656 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1657 val64
= 0x0001020300000000ULL
;
1658 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1660 val64
= 0x8040201008040201ULL
;
1661 writeq(val64
, &bar0
->rts_qos_steering
);
1667 for (i
= 0; i
< 8; i
++)
1668 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1670 /* Set the default rts frame length for the rings configured */
1671 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1672 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1673 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1675 /* Set the frame length for the configured rings
1676 * desired by the user
1678 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1679 /* If rts_frm_len[i] == 0 then it is assumed that user not
1680 * specified frame length steering.
1681 * If the user provides the frame length then program
1682 * the rts_frm_len register for those values or else
1683 * leave it as it is.
1685 if (rts_frm_len
[i
] != 0) {
1686 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1687 &bar0
->rts_frm_len_n
[i
]);
1691 /* Disable differentiated services steering logic */
1692 for (i
= 0; i
< 64; i
++) {
1693 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1694 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1696 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1701 /* Program statistics memory */
1702 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1704 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1705 val64
= STAT_BC(0x320);
1706 writeq(val64
, &bar0
->stat_byte_cnt
);
1710 * Initializing the sampling rate for the device to calculate the
1711 * bandwidth utilization.
1713 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1714 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1715 writeq(val64
, &bar0
->mac_link_util
);
1718 * Initializing the Transmit and Receive Traffic Interrupt
1722 /* Initialize TTI */
1723 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1726 /* RTI Initialization */
1727 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1729 * Programmed to generate Apprx 500 Intrs per
1732 int count
= (nic
->config
.bus_speed
* 125)/4;
1733 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1735 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1736 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1737 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1738 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1740 writeq(val64
, &bar0
->rti_data1_mem
);
1742 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1743 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1744 if (nic
->config
.intr_type
== MSI_X
)
1745 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1746 RTI_DATA2_MEM_RX_UFC_D(0x40));
1748 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1749 RTI_DATA2_MEM_RX_UFC_D(0x80));
1750 writeq(val64
, &bar0
->rti_data2_mem
);
1752 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1753 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1754 | RTI_CMD_MEM_OFFSET(i
);
1755 writeq(val64
, &bar0
->rti_command_mem
);
1758 * Once the operation completes, the Strobe bit of the
1759 * command register will be reset. We poll for this
1760 * particular condition. We wait for a maximum of 500ms
1761 * for the operation to complete, if it's not complete
1762 * by then we return error.
1766 val64
= readq(&bar0
->rti_command_mem
);
1767 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1771 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1781 * Initializing proper values as Pause threshold into all
1782 * the 8 Queues on Rx side.
1784 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1785 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1787 /* Disable RMAC PAD STRIPPING */
1788 add
= &bar0
->mac_cfg
;
1789 val64
= readq(&bar0
->mac_cfg
);
1790 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1791 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1792 writel((u32
) (val64
), add
);
1793 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1794 writel((u32
) (val64
>> 32), (add
+ 4));
1795 val64
= readq(&bar0
->mac_cfg
);
1797 /* Enable FCS stripping by adapter */
1798 add
= &bar0
->mac_cfg
;
1799 val64
= readq(&bar0
->mac_cfg
);
1800 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1801 if (nic
->device_type
== XFRAME_II_DEVICE
)
1802 writeq(val64
, &bar0
->mac_cfg
);
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1805 writel((u32
) (val64
), add
);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1807 writel((u32
) (val64
>> 32), (add
+ 4));
1811 * Set the time value to be inserted in the pause frame
1812 * generated by xena.
1814 val64
= readq(&bar0
->rmac_pause_cfg
);
1815 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1816 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1817 writeq(val64
, &bar0
->rmac_pause_cfg
);
1820 * Set the Threshold Limit for Generating the pause frame
1821 * If the amount of data in any Queue exceeds ratio of
1822 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1823 * pause frame is generated
1826 for (i
= 0; i
< 4; i
++) {
1828 (((u64
) 0xFF00 | nic
->mac_control
.
1829 mc_pause_threshold_q0q3
)
1832 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1835 for (i
= 0; i
< 4; i
++) {
1837 (((u64
) 0xFF00 | nic
->mac_control
.
1838 mc_pause_threshold_q4q7
)
1841 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1844 * TxDMA will stop Read request if the number of read split has
1845 * exceeded the limit pointed by shared_splits
1847 val64
= readq(&bar0
->pic_control
);
1848 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1849 writeq(val64
, &bar0
->pic_control
);
1851 if (nic
->config
.bus_speed
== 266) {
1852 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1853 writeq(0x0, &bar0
->read_retry_delay
);
1854 writeq(0x0, &bar0
->write_retry_delay
);
1858 * Programming the Herc to split every write transaction
1859 * that does not start on an ADB to reduce disconnects.
1861 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1862 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1863 MISC_LINK_STABILITY_PRD(3);
1864 writeq(val64
, &bar0
->misc_control
);
1865 val64
= readq(&bar0
->pic_control2
);
1866 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1867 writeq(val64
, &bar0
->pic_control2
);
1869 if (strstr(nic
->product_name
, "CX4")) {
1870 val64
= TMAC_AVG_IPG(0x17);
1871 writeq(val64
, &bar0
->tmac_avg_ipg
);
1876 #define LINK_UP_DOWN_INTERRUPT 1
1877 #define MAC_RMAC_ERR_TIMER 2
1879 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1881 if (nic
->device_type
== XFRAME_II_DEVICE
)
1882 return LINK_UP_DOWN_INTERRUPT
;
1884 return MAC_RMAC_ERR_TIMER
;
1888 * do_s2io_write_bits - update alarm bits in alarm register
1889 * @value: alarm bits
1890 * @flag: interrupt status
1891 * @addr: address value
1892 * Description: update alarm bits in alarm register
1896 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1900 temp64
= readq(addr
);
1902 if(flag
== ENABLE_INTRS
)
1903 temp64
&= ~((u64
) value
);
1905 temp64
|= ((u64
) value
);
1906 writeq(temp64
, addr
);
1909 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1911 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1912 register u64 gen_int_mask
= 0;
1915 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1916 if (mask
& TX_DMA_INTR
) {
1918 gen_int_mask
|= TXDMA_INT_M
;
1920 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1921 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1922 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1923 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1925 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1926 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1927 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1928 &bar0
->pfc_err_mask
);
1930 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1931 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1932 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1934 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1935 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1936 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1937 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1938 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1939 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1941 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1942 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1944 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1945 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1946 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1947 flag
, &bar0
->lso_err_mask
);
1949 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1950 flag
, &bar0
->tpa_err_mask
);
1952 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1956 if (mask
& TX_MAC_INTR
) {
1957 gen_int_mask
|= TXMAC_INT_M
;
1958 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1959 &bar0
->mac_int_mask
);
1960 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1961 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1962 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1963 flag
, &bar0
->mac_tmac_err_mask
);
1966 if (mask
& TX_XGXS_INTR
) {
1967 gen_int_mask
|= TXXGXS_INT_M
;
1968 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1969 &bar0
->xgxs_int_mask
);
1970 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1971 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1972 flag
, &bar0
->xgxs_txgxs_err_mask
);
1975 if (mask
& RX_DMA_INTR
) {
1976 gen_int_mask
|= RXDMA_INT_M
;
1977 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1978 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1979 flag
, &bar0
->rxdma_int_mask
);
1980 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1981 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1982 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1983 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1984 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1985 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1986 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1987 &bar0
->prc_pcix_err_mask
);
1988 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1989 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1990 &bar0
->rpa_err_mask
);
1991 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1992 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1993 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1994 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
1995 flag
, &bar0
->rda_err_mask
);
1996 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1997 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1998 flag
, &bar0
->rti_err_mask
);
2001 if (mask
& RX_MAC_INTR
) {
2002 gen_int_mask
|= RXMAC_INT_M
;
2003 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2004 &bar0
->mac_int_mask
);
2005 interruptible
= RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2006 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2007 RMAC_DOUBLE_ECC_ERR
;
2008 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2009 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2010 do_s2io_write_bits(interruptible
,
2011 flag
, &bar0
->mac_rmac_err_mask
);
2014 if (mask
& RX_XGXS_INTR
)
2016 gen_int_mask
|= RXXGXS_INT_M
;
2017 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2018 &bar0
->xgxs_int_mask
);
2019 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2020 &bar0
->xgxs_rxgxs_err_mask
);
2023 if (mask
& MC_INTR
) {
2024 gen_int_mask
|= MC_INT_M
;
2025 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
2026 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2027 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2028 &bar0
->mc_err_mask
);
2030 nic
->general_int_mask
= gen_int_mask
;
2032 /* Remove this line when alarm interrupts are enabled */
2033 nic
->general_int_mask
= 0;
2036 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2037 * @nic: device private variable,
2038 * @mask: A mask indicating which Intr block must be modified and,
2039 * @flag: A flag indicating whether to enable or disable the Intrs.
2040 * Description: This function will either disable or enable the interrupts
2041 * depending on the flag argument. The mask argument can be used to
2042 * enable/disable any Intr block.
2043 * Return Value: NONE.
2046 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2048 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2049 register u64 temp64
= 0, intr_mask
= 0;
2051 intr_mask
= nic
->general_int_mask
;
2053 /* Top level interrupt classification */
2054 /* PIC Interrupts */
2055 if (mask
& TX_PIC_INTR
) {
2056 /* Enable PIC Intrs in the general intr mask register */
2057 intr_mask
|= TXPIC_INT_M
;
2058 if (flag
== ENABLE_INTRS
) {
2060 * If Hercules adapter enable GPIO otherwise
2061 * disable all PCIX, Flash, MDIO, IIC and GPIO
2062 * interrupts for now.
2065 if (s2io_link_fault_indication(nic
) ==
2066 LINK_UP_DOWN_INTERRUPT
) {
2067 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2068 &bar0
->pic_int_mask
);
2069 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2070 &bar0
->gpio_int_mask
);
2072 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2073 } else if (flag
== DISABLE_INTRS
) {
2075 * Disable PIC Intrs in the general
2076 * intr mask register
2078 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2082 /* Tx traffic interrupts */
2083 if (mask
& TX_TRAFFIC_INTR
) {
2084 intr_mask
|= TXTRAFFIC_INT_M
;
2085 if (flag
== ENABLE_INTRS
) {
2087 * Enable all the Tx side interrupts
2088 * writing 0 Enables all 64 TX interrupt levels
2090 writeq(0x0, &bar0
->tx_traffic_mask
);
2091 } else if (flag
== DISABLE_INTRS
) {
2093 * Disable Tx Traffic Intrs in the general intr mask
2096 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2100 /* Rx traffic interrupts */
2101 if (mask
& RX_TRAFFIC_INTR
) {
2102 intr_mask
|= RXTRAFFIC_INT_M
;
2103 if (flag
== ENABLE_INTRS
) {
2104 /* writing 0 Enables all 8 RX interrupt levels */
2105 writeq(0x0, &bar0
->rx_traffic_mask
);
2106 } else if (flag
== DISABLE_INTRS
) {
2108 * Disable Rx Traffic Intrs in the general intr mask
2111 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2115 temp64
= readq(&bar0
->general_int_mask
);
2116 if (flag
== ENABLE_INTRS
)
2117 temp64
&= ~((u64
) intr_mask
);
2119 temp64
= DISABLE_ALL_INTRS
;
2120 writeq(temp64
, &bar0
->general_int_mask
);
2122 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2126 * verify_pcc_quiescent- Checks for PCC quiescent state
2127 * Return: 1 If PCC is quiescence
2128 * 0 If PCC is not quiescence
2130 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2133 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2134 u64 val64
= readq(&bar0
->adapter_status
);
2136 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2138 if (flag
== FALSE
) {
2139 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2140 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2143 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2147 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2148 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2149 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2152 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2153 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2161 * verify_xena_quiescence - Checks whether the H/W is ready
2162 * Description: Returns whether the H/W is ready to go or not. Depending
2163 * on whether adapter enable bit was written or not the comparison
2164 * differs and the calling function passes the input argument flag to
2166 * Return: 1 If xena is quiescence
2167 * 0 If Xena is not quiescence
2170 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2173 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2174 u64 val64
= readq(&bar0
->adapter_status
);
2175 mode
= s2io_verify_pci_mode(sp
);
2177 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2178 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2181 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2182 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2185 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2186 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2189 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2190 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2193 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2194 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2197 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2198 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2201 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2202 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2205 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2206 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2211 * In PCI 33 mode, the P_PLL is not used, and therefore,
2212 * the the P_PLL_LOCK bit in the adapter_status register will
2215 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2216 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2218 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2221 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2222 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2223 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2230 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2231 * @sp: Pointer to device specifc structure
2233 * New procedure to clear mac address reading problems on Alpha platforms
2237 static void fix_mac_address(struct s2io_nic
* sp
)
2239 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2243 while (fix_mac
[i
] != END_SIGN
) {
2244 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2246 val64
= readq(&bar0
->gpio_control
);
2251 * start_nic - Turns the device on
2252 * @nic : device private variable.
2254 * This function actually turns the device on. Before this function is
2255 * called,all Registers are configured from their reset states
2256 * and shared memory is allocated but the NIC is still quiescent. On
2257 * calling this function, the device interrupts are cleared and the NIC is
2258 * literally switched on by writing into the adapter control register.
2260 * SUCCESS on success and -1 on failure.
2263 static int start_nic(struct s2io_nic
*nic
)
2265 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2266 struct net_device
*dev
= nic
->dev
;
2267 register u64 val64
= 0;
2269 struct mac_info
*mac_control
;
2270 struct config_param
*config
;
2272 mac_control
= &nic
->mac_control
;
2273 config
= &nic
->config
;
2275 /* PRC Initialization and configuration */
2276 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2277 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2278 &bar0
->prc_rxd0_n
[i
]);
2280 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2281 if (nic
->rxd_mode
== RXD_MODE_1
)
2282 val64
|= PRC_CTRL_RC_ENABLED
;
2284 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2285 if (nic
->device_type
== XFRAME_II_DEVICE
)
2286 val64
|= PRC_CTRL_GROUP_READS
;
2287 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2288 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2289 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2292 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2293 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2294 val64
= readq(&bar0
->rx_pa_cfg
);
2295 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2296 writeq(val64
, &bar0
->rx_pa_cfg
);
2299 if (vlan_tag_strip
== 0) {
2300 val64
= readq(&bar0
->rx_pa_cfg
);
2301 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2302 writeq(val64
, &bar0
->rx_pa_cfg
);
2303 nic
->vlan_strip_flag
= 0;
2307 * Enabling MC-RLDRAM. After enabling the device, we timeout
2308 * for around 100ms, which is approximately the time required
2309 * for the device to be ready for operation.
2311 val64
= readq(&bar0
->mc_rldram_mrs
);
2312 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2313 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2314 val64
= readq(&bar0
->mc_rldram_mrs
);
2316 msleep(100); /* Delay by around 100 ms. */
2318 /* Enabling ECC Protection. */
2319 val64
= readq(&bar0
->adapter_control
);
2320 val64
&= ~ADAPTER_ECC_EN
;
2321 writeq(val64
, &bar0
->adapter_control
);
2324 * Verify if the device is ready to be enabled, if so enable
2327 val64
= readq(&bar0
->adapter_status
);
2328 if (!verify_xena_quiescence(nic
)) {
2329 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2330 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2331 (unsigned long long) val64
);
2336 * With some switches, link might be already up at this point.
2337 * Because of this weird behavior, when we enable laser,
2338 * we may not get link. We need to handle this. We cannot
2339 * figure out which switch is misbehaving. So we are forced to
2340 * make a global change.
2343 /* Enabling Laser. */
2344 val64
= readq(&bar0
->adapter_control
);
2345 val64
|= ADAPTER_EOI_TX_ON
;
2346 writeq(val64
, &bar0
->adapter_control
);
2348 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2350 * Dont see link state interrupts initally on some switches,
2351 * so directly scheduling the link state task here.
2353 schedule_work(&nic
->set_link_task
);
2355 /* SXE-002: Initialize link and activity LED */
2356 subid
= nic
->pdev
->subsystem_device
;
2357 if (((subid
& 0xFF) >= 0x07) &&
2358 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2359 val64
= readq(&bar0
->gpio_control
);
2360 val64
|= 0x0000800000000000ULL
;
2361 writeq(val64
, &bar0
->gpio_control
);
2362 val64
= 0x0411040400000000ULL
;
2363 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2369 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2371 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2372 TxD
*txdlp
, int get_off
)
2374 struct s2io_nic
*nic
= fifo_data
->nic
;
2375 struct sk_buff
*skb
;
2380 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2381 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2382 txds
->Buffer_Pointer
, sizeof(u64
),
2387 skb
= (struct sk_buff
*) ((unsigned long)
2388 txds
->Host_Control
);
2390 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2393 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2394 txds
->Buffer_Pointer
,
2395 skb
->len
- skb
->data_len
,
2397 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2400 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2401 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2402 if (!txds
->Buffer_Pointer
)
2404 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2405 txds
->Buffer_Pointer
,
2406 frag
->size
, PCI_DMA_TODEVICE
);
2409 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2414 * free_tx_buffers - Free all queued Tx buffers
2415 * @nic : device private variable.
2417 * Free all queued Tx buffers.
2418 * Return Value: void
2421 static void free_tx_buffers(struct s2io_nic
*nic
)
2423 struct net_device
*dev
= nic
->dev
;
2424 struct sk_buff
*skb
;
2427 struct mac_info
*mac_control
;
2428 struct config_param
*config
;
2431 mac_control
= &nic
->mac_control
;
2432 config
= &nic
->config
;
2434 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2435 unsigned long flags
;
2436 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2437 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
; j
++) {
2438 txdp
= (struct TxD
*) \
2439 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2440 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2442 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2449 "%s:forcibly freeing %d skbs on FIFO%d\n",
2451 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2452 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2453 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2458 * stop_nic - To stop the nic
2459 * @nic ; device private variable.
2461 * This function does exactly the opposite of what the start_nic()
2462 * function does. This function is called to stop the device.
2467 static void stop_nic(struct s2io_nic
*nic
)
2469 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2470 register u64 val64
= 0;
2472 struct mac_info
*mac_control
;
2473 struct config_param
*config
;
2475 mac_control
= &nic
->mac_control
;
2476 config
= &nic
->config
;
2478 /* Disable all interrupts */
2479 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2480 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2481 interruptible
|= TX_PIC_INTR
;
2482 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2484 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2485 val64
= readq(&bar0
->adapter_control
);
2486 val64
&= ~(ADAPTER_CNTL_EN
);
2487 writeq(val64
, &bar0
->adapter_control
);
2491 * fill_rx_buffers - Allocates the Rx side skbs
2492 * @ring_info: per ring structure
2493 * @from_card_up: If this is true, we will map the buffer to get
2494 * the dma address for buf0 and buf1 to give it to the card.
2495 * Else we will sync the already mapped buffer to give it to the card.
2497 * The function allocates Rx side skbs and puts the physical
2498 * address of these buffers into the RxD buffer pointers, so that the NIC
2499 * can DMA the received frame into these locations.
2500 * The NIC supports 3 receive modes, viz
2502 * 2. three buffer and
2503 * 3. Five buffer modes.
2504 * Each mode defines how many fragments the received frame will be split
2505 * up into by the NIC. The frame is split into L3 header, L4 Header,
2506 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2507 * is split into 3 fragments. As of now only single buffer mode is
2510 * SUCCESS on success or an appropriate -ve value on failure.
2512 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2515 struct sk_buff
*skb
;
2517 int off
, size
, block_no
, block_no1
;
2522 struct RxD_t
*first_rxdp
= NULL
;
2523 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2527 struct swStat
*stats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2529 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2531 block_no1
= ring
->rx_curr_get_info
.block_index
;
2532 while (alloc_tab
< alloc_cnt
) {
2533 block_no
= ring
->rx_curr_put_info
.block_index
;
2535 off
= ring
->rx_curr_put_info
.offset
;
2537 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2539 rxd_index
= off
+ 1;
2541 rxd_index
+= (block_no
* ring
->rxd_count
);
2543 if ((block_no
== block_no1
) &&
2544 (off
== ring
->rx_curr_get_info
.offset
) &&
2545 (rxdp
->Host_Control
)) {
2546 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2548 DBG_PRINT(INTR_DBG
, " info equated\n");
2551 if (off
&& (off
== ring
->rxd_count
)) {
2552 ring
->rx_curr_put_info
.block_index
++;
2553 if (ring
->rx_curr_put_info
.block_index
==
2555 ring
->rx_curr_put_info
.block_index
= 0;
2556 block_no
= ring
->rx_curr_put_info
.block_index
;
2558 ring
->rx_curr_put_info
.offset
= off
;
2559 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2560 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2561 ring
->dev
->name
, rxdp
);
2565 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2566 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2567 (rxdp
->Control_2
& s2BIT(0)))) {
2568 ring
->rx_curr_put_info
.offset
= off
;
2571 /* calculate size of skb based on ring mode */
2572 size
= ring
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2573 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2574 if (ring
->rxd_mode
== RXD_MODE_1
)
2575 size
+= NET_IP_ALIGN
;
2577 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2580 skb
= dev_alloc_skb(size
);
2582 DBG_PRINT(INFO_DBG
, "%s: Out of ", ring
->dev
->name
);
2583 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2586 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2588 stats
->mem_alloc_fail_cnt
++;
2592 stats
->mem_allocated
+= skb
->truesize
;
2594 if (ring
->rxd_mode
== RXD_MODE_1
) {
2595 /* 1 buffer mode - normal operation mode */
2596 rxdp1
= (struct RxD1
*)rxdp
;
2597 memset(rxdp
, 0, sizeof(struct RxD1
));
2598 skb_reserve(skb
, NET_IP_ALIGN
);
2599 rxdp1
->Buffer0_ptr
= pci_map_single
2600 (ring
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2601 PCI_DMA_FROMDEVICE
);
2602 if (pci_dma_mapping_error(nic
->pdev
,
2603 rxdp1
->Buffer0_ptr
))
2604 goto pci_map_failed
;
2607 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2608 rxdp
->Host_Control
= (unsigned long) (skb
);
2609 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2612 * 2 buffer mode provides 128
2613 * byte aligned receive buffers.
2616 rxdp3
= (struct RxD3
*)rxdp
;
2617 /* save buffer pointers to avoid frequent dma mapping */
2618 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2619 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2620 memset(rxdp
, 0, sizeof(struct RxD3
));
2621 /* restore the buffer pointers for dma sync*/
2622 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2623 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2625 ba
= &ring
->ba
[block_no
][off
];
2626 skb_reserve(skb
, BUF0_LEN
);
2627 tmp
= (u64
)(unsigned long) skb
->data
;
2630 skb
->data
= (void *) (unsigned long)tmp
;
2631 skb_reset_tail_pointer(skb
);
2634 rxdp3
->Buffer0_ptr
=
2635 pci_map_single(ring
->pdev
, ba
->ba_0
,
2636 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2637 if (pci_dma_mapping_error(nic
->pdev
,
2638 rxdp3
->Buffer0_ptr
))
2639 goto pci_map_failed
;
2641 pci_dma_sync_single_for_device(ring
->pdev
,
2642 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2643 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2645 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2646 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2647 /* Two buffer mode */
2650 * Buffer2 will have L3/L4 header plus
2653 rxdp3
->Buffer2_ptr
= pci_map_single
2654 (ring
->pdev
, skb
->data
, ring
->mtu
+ 4,
2655 PCI_DMA_FROMDEVICE
);
2657 if (pci_dma_mapping_error(nic
->pdev
,
2658 rxdp3
->Buffer2_ptr
))
2659 goto pci_map_failed
;
2662 rxdp3
->Buffer1_ptr
=
2663 pci_map_single(ring
->pdev
,
2665 PCI_DMA_FROMDEVICE
);
2667 if (pci_dma_mapping_error(nic
->pdev
,
2668 rxdp3
->Buffer1_ptr
)) {
2671 (dma_addr_t
)(unsigned long)
2674 PCI_DMA_FROMDEVICE
);
2675 goto pci_map_failed
;
2678 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2679 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2682 rxdp
->Control_2
|= s2BIT(0);
2683 rxdp
->Host_Control
= (unsigned long) (skb
);
2685 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2686 rxdp
->Control_1
|= RXD_OWN_XENA
;
2688 if (off
== (ring
->rxd_count
+ 1))
2690 ring
->rx_curr_put_info
.offset
= off
;
2692 rxdp
->Control_2
|= SET_RXD_MARKER
;
2693 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2696 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2700 ring
->rx_bufs_left
+= 1;
2705 /* Transfer ownership of first descriptor to adapter just before
2706 * exiting. Before that, use memory barrier so that ownership
2707 * and other fields are seen by adapter correctly.
2711 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2716 stats
->pci_map_fail_cnt
++;
2717 stats
->mem_freed
+= skb
->truesize
;
2718 dev_kfree_skb_irq(skb
);
2722 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2724 struct net_device
*dev
= sp
->dev
;
2726 struct sk_buff
*skb
;
2728 struct mac_info
*mac_control
;
2733 mac_control
= &sp
->mac_control
;
2734 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2735 rxdp
= mac_control
->rings
[ring_no
].
2736 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2737 skb
= (struct sk_buff
*)
2738 ((unsigned long) rxdp
->Host_Control
);
2742 if (sp
->rxd_mode
== RXD_MODE_1
) {
2743 rxdp1
= (struct RxD1
*)rxdp
;
2744 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2747 HEADER_ETHERNET_II_802_3_SIZE
2748 + HEADER_802_2_SIZE
+
2750 PCI_DMA_FROMDEVICE
);
2751 memset(rxdp
, 0, sizeof(struct RxD1
));
2752 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2753 rxdp3
= (struct RxD3
*)rxdp
;
2754 ba
= &mac_control
->rings
[ring_no
].
2756 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2759 PCI_DMA_FROMDEVICE
);
2760 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2763 PCI_DMA_FROMDEVICE
);
2764 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2767 PCI_DMA_FROMDEVICE
);
2768 memset(rxdp
, 0, sizeof(struct RxD3
));
2770 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2772 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2777 * free_rx_buffers - Frees all Rx buffers
2778 * @sp: device private variable.
2780 * This function will free all Rx buffers allocated by host.
2785 static void free_rx_buffers(struct s2io_nic
*sp
)
2787 struct net_device
*dev
= sp
->dev
;
2788 int i
, blk
= 0, buf_cnt
= 0;
2789 struct mac_info
*mac_control
;
2790 struct config_param
*config
;
2792 mac_control
= &sp
->mac_control
;
2793 config
= &sp
->config
;
2795 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2796 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2797 free_rxd_blk(sp
,i
,blk
);
2799 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2800 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2801 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2802 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2803 mac_control
->rings
[i
].rx_bufs_left
= 0;
2804 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2805 dev
->name
, buf_cnt
, i
);
2809 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2811 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2812 DBG_PRINT(INFO_DBG
, "%s:Out of memory", ring
->dev
->name
);
2813 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
2819 * s2io_poll - Rx interrupt handler for NAPI support
2820 * @napi : pointer to the napi structure.
2821 * @budget : The number of packets that were budgeted to be processed
2822 * during one pass through the 'Poll" function.
2824 * Comes into picture only if NAPI support has been incorporated. It does
2825 * the same thing that rx_intr_handler does, but not in a interrupt context
2826 * also It will process only a given number of packets.
2828 * 0 on success and 1 if there are No Rx packets to be processed.
2831 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2833 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2834 struct net_device
*dev
= ring
->dev
;
2835 struct config_param
*config
;
2836 struct mac_info
*mac_control
;
2837 int pkts_processed
= 0;
2838 u8 __iomem
*addr
= NULL
;
2840 struct s2io_nic
*nic
= dev
->priv
;
2841 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2842 int budget_org
= budget
;
2844 config
= &nic
->config
;
2845 mac_control
= &nic
->mac_control
;
2847 if (unlikely(!is_s2io_card_up(nic
)))
2850 pkts_processed
= rx_intr_handler(ring
, budget
);
2851 s2io_chk_rx_buffers(nic
, ring
);
2853 if (pkts_processed
< budget_org
) {
2854 netif_rx_complete(dev
, napi
);
2855 /*Re Enable MSI-Rx Vector*/
2856 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2857 addr
+= 7 - ring
->ring_no
;
2858 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2862 return pkts_processed
;
2864 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2866 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2867 struct ring_info
*ring
;
2868 struct net_device
*dev
= nic
->dev
;
2869 struct config_param
*config
;
2870 struct mac_info
*mac_control
;
2871 int pkts_processed
= 0;
2872 int ring_pkts_processed
, i
;
2873 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2874 int budget_org
= budget
;
2876 config
= &nic
->config
;
2877 mac_control
= &nic
->mac_control
;
2879 if (unlikely(!is_s2io_card_up(nic
)))
2882 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2883 ring
= &mac_control
->rings
[i
];
2884 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2885 s2io_chk_rx_buffers(nic
, ring
);
2886 pkts_processed
+= ring_pkts_processed
;
2887 budget
-= ring_pkts_processed
;
2891 if (pkts_processed
< budget_org
) {
2892 netif_rx_complete(dev
, napi
);
2893 /* Re enable the Rx interrupts for the ring */
2894 writeq(0, &bar0
->rx_traffic_mask
);
2895 readl(&bar0
->rx_traffic_mask
);
2897 return pkts_processed
;
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 * s2io_netpoll - netpoll event handler entry point
2903 * @dev : pointer to the device structure.
2905 * This function will be called by upper layer to check for events on the
2906 * interface in situations where interrupts are disabled. It is used for
2907 * specific in-kernel networking tasks, such as remote consoles and kernel
2908 * debugging over the network (example netdump in RedHat).
2910 static void s2io_netpoll(struct net_device
*dev
)
2912 struct s2io_nic
*nic
= dev
->priv
;
2913 struct mac_info
*mac_control
;
2914 struct config_param
*config
;
2915 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2916 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2919 if (pci_channel_offline(nic
->pdev
))
2922 disable_irq(dev
->irq
);
2924 mac_control
= &nic
->mac_control
;
2925 config
= &nic
->config
;
2927 writeq(val64
, &bar0
->rx_traffic_int
);
2928 writeq(val64
, &bar0
->tx_traffic_int
);
2930 /* we need to free up the transmitted skbufs or else netpoll will
2931 * run out of skbs and will fail and eventually netpoll application such
2932 * as netdump will fail.
2934 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2935 tx_intr_handler(&mac_control
->fifos
[i
]);
2937 /* check for received packet and indicate up to network */
2938 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2939 rx_intr_handler(&mac_control
->rings
[i
], 0);
2941 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2942 if (fill_rx_buffers(nic
, &mac_control
->rings
[i
], 0) ==
2944 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2945 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2949 enable_irq(dev
->irq
);
2955 * rx_intr_handler - Rx interrupt handler
2956 * @ring_info: per ring structure.
2957 * @budget: budget for napi processing.
2959 * If the interrupt is because of a received frame or if the
2960 * receive ring contains fresh as yet un-processed frames,this function is
2961 * called. It picks out the RxD at which place the last Rx processing had
2962 * stopped and sends the skb to the OSM's Rx handler and then increments
2965 * No. of napi packets processed.
2967 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2969 int get_block
, put_block
;
2970 struct rx_curr_get_info get_info
, put_info
;
2972 struct sk_buff
*skb
;
2973 int pkt_cnt
= 0, napi_pkts
= 0;
2978 get_info
= ring_data
->rx_curr_get_info
;
2979 get_block
= get_info
.block_index
;
2980 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2981 put_block
= put_info
.block_index
;
2982 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2984 while (RXD_IS_UP2DT(rxdp
)) {
2986 * If your are next to put index then it's
2987 * FIFO full condition
2989 if ((get_block
== put_block
) &&
2990 (get_info
.offset
+ 1) == put_info
.offset
) {
2991 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2992 ring_data
->dev
->name
);
2995 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2997 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2998 ring_data
->dev
->name
);
2999 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
3002 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
3003 rxdp1
= (struct RxD1
*)rxdp
;
3004 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3007 HEADER_ETHERNET_II_802_3_SIZE
+
3010 PCI_DMA_FROMDEVICE
);
3011 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3012 rxdp3
= (struct RxD3
*)rxdp
;
3013 pci_dma_sync_single_for_cpu(ring_data
->pdev
, (dma_addr_t
)
3015 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
3016 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3019 PCI_DMA_FROMDEVICE
);
3021 prefetch(skb
->data
);
3022 rx_osm_handler(ring_data
, rxdp
);
3024 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3025 rxdp
= ring_data
->rx_blocks
[get_block
].
3026 rxds
[get_info
.offset
].virt_addr
;
3027 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3028 get_info
.offset
= 0;
3029 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3031 if (get_block
== ring_data
->block_count
)
3033 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3034 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3037 if (ring_data
->nic
->config
.napi
) {
3044 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3047 if (ring_data
->lro
) {
3048 /* Clear all LRO sessions before exiting */
3049 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
3050 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3052 update_L3L4_header(ring_data
->nic
, lro
);
3053 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3054 clear_lro_session(lro
);
3062 * tx_intr_handler - Transmit interrupt handler
3063 * @nic : device private variable
3065 * If an interrupt was raised to indicate DMA complete of the
3066 * Tx packet, this function is called. It identifies the last TxD
3067 * whose buffer was freed and frees all skbs whose data have already
3068 * DMA'ed into the NICs internal memory.
3073 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3075 struct s2io_nic
*nic
= fifo_data
->nic
;
3076 struct tx_curr_get_info get_info
, put_info
;
3077 struct sk_buff
*skb
= NULL
;
3080 unsigned long flags
= 0;
3083 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3086 get_info
= fifo_data
->tx_curr_get_info
;
3087 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3088 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
3090 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3091 (get_info
.offset
!= put_info
.offset
) &&
3092 (txdlp
->Host_Control
)) {
3093 /* Check for TxD errors */
3094 if (txdlp
->Control_1
& TXD_T_CODE
) {
3095 unsigned long long err
;
3096 err
= txdlp
->Control_1
& TXD_T_CODE
;
3098 nic
->mac_control
.stats_info
->sw_stat
.
3102 /* update t_code statistics */
3103 err_mask
= err
>> 48;
3106 nic
->mac_control
.stats_info
->sw_stat
.
3111 nic
->mac_control
.stats_info
->sw_stat
.
3112 tx_desc_abort_cnt
++;
3116 nic
->mac_control
.stats_info
->sw_stat
.
3117 tx_parity_err_cnt
++;
3121 nic
->mac_control
.stats_info
->sw_stat
.
3126 nic
->mac_control
.stats_info
->sw_stat
.
3127 tx_list_proc_err_cnt
++;
3132 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3134 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3135 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3137 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3142 /* Updating the statistics block */
3143 nic
->dev
->stats
.tx_bytes
+= skb
->len
;
3144 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3145 dev_kfree_skb_irq(skb
);
3148 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3149 get_info
.offset
= 0;
3150 txdlp
= (struct TxD
*) fifo_data
->list_info
3151 [get_info
.offset
].list_virt_addr
;
3152 fifo_data
->tx_curr_get_info
.offset
=
3156 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3158 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3162 * s2io_mdio_write - Function to write in to MDIO registers
3163 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3164 * @addr : address value
3165 * @value : data value
3166 * @dev : pointer to net_device structure
3168 * This function is used to write values to the MDIO registers
3171 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3174 struct s2io_nic
*sp
= dev
->priv
;
3175 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3177 //address transaction
3178 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3179 | MDIO_MMD_DEV_ADDR(mmd_type
)
3180 | MDIO_MMS_PRT_ADDR(0x0);
3181 writeq(val64
, &bar0
->mdio_control
);
3182 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64
, &bar0
->mdio_control
);
3188 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3189 | MDIO_MMD_DEV_ADDR(mmd_type
)
3190 | MDIO_MMS_PRT_ADDR(0x0)
3191 | MDIO_MDIO_DATA(value
)
3192 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3193 writeq(val64
, &bar0
->mdio_control
);
3194 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3195 writeq(val64
, &bar0
->mdio_control
);
3199 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3200 | MDIO_MMD_DEV_ADDR(mmd_type
)
3201 | MDIO_MMS_PRT_ADDR(0x0)
3202 | MDIO_OP(MDIO_OP_READ_TRANS
);
3203 writeq(val64
, &bar0
->mdio_control
);
3204 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3205 writeq(val64
, &bar0
->mdio_control
);
3211 * s2io_mdio_read - Function to write in to MDIO registers
3212 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3213 * @addr : address value
3214 * @dev : pointer to net_device structure
3216 * This function is used to read values to the MDIO registers
3219 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3223 struct s2io_nic
*sp
= dev
->priv
;
3224 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3226 /* address transaction */
3227 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3228 | MDIO_MMD_DEV_ADDR(mmd_type
)
3229 | MDIO_MMS_PRT_ADDR(0x0);
3230 writeq(val64
, &bar0
->mdio_control
);
3231 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3232 writeq(val64
, &bar0
->mdio_control
);
3235 /* Data transaction */
3237 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3238 | MDIO_MMD_DEV_ADDR(mmd_type
)
3239 | MDIO_MMS_PRT_ADDR(0x0)
3240 | MDIO_OP(MDIO_OP_READ_TRANS
);
3241 writeq(val64
, &bar0
->mdio_control
);
3242 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3243 writeq(val64
, &bar0
->mdio_control
);
3246 /* Read the value from regs */
3247 rval64
= readq(&bar0
->mdio_control
);
3248 rval64
= rval64
& 0xFFFF0000;
3249 rval64
= rval64
>> 16;
3253 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3254 * @counter : couter value to be updated
3255 * @flag : flag to indicate the status
3256 * @type : counter type
3258 * This function is to check the status of the xpak counters value
3262 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3267 for(i
= 0; i
<index
; i
++)
3272 *counter
= *counter
+ 1;
3273 val64
= *regs_stat
& mask
;
3274 val64
= val64
>> (index
* 0x2);
3281 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3282 "service. Excessive temperatures may "
3283 "result in premature transceiver "
3287 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3288 "service Excessive bias currents may "
3289 "indicate imminent laser diode "
3293 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3294 "service Excessive laser output "
3295 "power may saturate far-end "
3299 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3304 val64
= val64
<< (index
* 0x2);
3305 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3308 *regs_stat
= *regs_stat
& (~mask
);
3313 * s2io_updt_xpak_counter - Function to update the xpak counters
3314 * @dev : pointer to net_device struct
3316 * This function is to upate the status of the xpak counters value
3319 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3327 struct s2io_nic
*sp
= dev
->priv
;
3328 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3330 /* Check the communication with the MDIO slave */
3333 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3334 if((val64
== 0xFFFF) || (val64
== 0x0000))
3336 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3337 "Returned %llx\n", (unsigned long long)val64
);
3341 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3344 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3345 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3346 (unsigned long long)val64
);
3350 /* Loading the DOM register to MDIO register */
3352 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3353 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3355 /* Reading the Alarm flags */
3358 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3360 flag
= CHECKBIT(val64
, 0x7);
3362 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3363 &stat_info
->xpak_stat
.xpak_regs_stat
,
3366 if(CHECKBIT(val64
, 0x6))
3367 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3369 flag
= CHECKBIT(val64
, 0x3);
3371 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3372 &stat_info
->xpak_stat
.xpak_regs_stat
,
3375 if(CHECKBIT(val64
, 0x2))
3376 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3378 flag
= CHECKBIT(val64
, 0x1);
3380 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3381 &stat_info
->xpak_stat
.xpak_regs_stat
,
3384 if(CHECKBIT(val64
, 0x0))
3385 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3387 /* Reading the Warning flags */
3390 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3392 if(CHECKBIT(val64
, 0x7))
3393 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3395 if(CHECKBIT(val64
, 0x6))
3396 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3398 if(CHECKBIT(val64
, 0x3))
3399 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3401 if(CHECKBIT(val64
, 0x2))
3402 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3404 if(CHECKBIT(val64
, 0x1))
3405 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3407 if(CHECKBIT(val64
, 0x0))
3408 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3412 * wait_for_cmd_complete - waits for a command to complete.
3413 * @sp : private member of the device structure, which is a pointer to the
3414 * s2io_nic structure.
3415 * Description: Function that waits for a command to Write into RMAC
3416 * ADDR DATA registers to be completed and returns either success or
3417 * error depending on whether the command was complete or not.
3419 * SUCCESS on success and FAILURE on failure.
3422 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3425 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3428 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3432 val64
= readq(addr
);
3433 if (bit_state
== S2IO_BIT_RESET
) {
3434 if (!(val64
& busy_bit
)) {
3439 if (!(val64
& busy_bit
)) {
3456 * check_pci_device_id - Checks if the device id is supported
3458 * Description: Function to check if the pci device id is supported by driver.
3459 * Return value: Actual device id if supported else PCI_ANY_ID
3461 static u16
check_pci_device_id(u16 id
)
3464 case PCI_DEVICE_ID_HERC_WIN
:
3465 case PCI_DEVICE_ID_HERC_UNI
:
3466 return XFRAME_II_DEVICE
;
3467 case PCI_DEVICE_ID_S2IO_UNI
:
3468 case PCI_DEVICE_ID_S2IO_WIN
:
3469 return XFRAME_I_DEVICE
;
3476 * s2io_reset - Resets the card.
3477 * @sp : private member of the device structure.
3478 * Description: Function to Reset the card. This function then also
3479 * restores the previously saved PCI configuration space registers as
3480 * the card reset also resets the configuration space.
3485 static void s2io_reset(struct s2io_nic
* sp
)
3487 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3492 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3493 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3495 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3496 __func__
, sp
->dev
->name
);
3498 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3499 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3501 val64
= SW_RESET_ALL
;
3502 writeq(val64
, &bar0
->sw_reset
);
3503 if (strstr(sp
->product_name
, "CX4")) {
3507 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3509 /* Restore the PCI state saved during initialization. */
3510 pci_restore_state(sp
->pdev
);
3511 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3512 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3517 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3518 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __func__
);
3521 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3525 /* Set swapper to enable I/O register access */
3526 s2io_set_swapper(sp
);
3528 /* restore mac_addr entries */
3529 do_s2io_restore_unicast_mc(sp
);
3531 /* Restore the MSIX table entries from local variables */
3532 restore_xmsi_data(sp
);
3534 /* Clear certain PCI/PCI-X fields after reset */
3535 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3536 /* Clear "detected parity error" bit */
3537 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3539 /* Clearing PCIX Ecc status register */
3540 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3542 /* Clearing PCI_STATUS error reflected here */
3543 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3546 /* Reset device statistics maintained by OS */
3547 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3549 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3550 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3551 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3552 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3553 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3554 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3555 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3556 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3557 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3558 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3559 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3560 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3561 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3562 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3563 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3564 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3565 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3566 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3567 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3569 /* SXE-002: Configure link and activity LED to turn it off */
3570 subid
= sp
->pdev
->subsystem_device
;
3571 if (((subid
& 0xFF) >= 0x07) &&
3572 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3573 val64
= readq(&bar0
->gpio_control
);
3574 val64
|= 0x0000800000000000ULL
;
3575 writeq(val64
, &bar0
->gpio_control
);
3576 val64
= 0x0411040400000000ULL
;
3577 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3581 * Clear spurious ECC interrupts that would have occured on
3582 * XFRAME II cards after reset.
3584 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3585 val64
= readq(&bar0
->pcc_err_reg
);
3586 writeq(val64
, &bar0
->pcc_err_reg
);
3589 sp
->device_enabled_once
= FALSE
;
3593 * s2io_set_swapper - to set the swapper controle on the card
3594 * @sp : private member of the device structure,
3595 * pointer to the s2io_nic structure.
3596 * Description: Function to set the swapper control on the card
3597 * correctly depending on the 'endianness' of the system.
3599 * SUCCESS on success and FAILURE on failure.
3602 static int s2io_set_swapper(struct s2io_nic
* sp
)
3604 struct net_device
*dev
= sp
->dev
;
3605 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3606 u64 val64
, valt
, valr
;
3609 * Set proper endian settings and verify the same by reading
3610 * the PIF Feed-back register.
3613 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3614 if (val64
!= 0x0123456789ABCDEFULL
) {
3616 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3617 0x8100008181000081ULL
, /* FE=1, SE=0 */
3618 0x4200004242000042ULL
, /* FE=0, SE=1 */
3619 0}; /* FE=0, SE=0 */
3622 writeq(value
[i
], &bar0
->swapper_ctrl
);
3623 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3624 if (val64
== 0x0123456789ABCDEFULL
)
3629 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3631 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3632 (unsigned long long) val64
);
3637 valr
= readq(&bar0
->swapper_ctrl
);
3640 valt
= 0x0123456789ABCDEFULL
;
3641 writeq(valt
, &bar0
->xmsi_address
);
3642 val64
= readq(&bar0
->xmsi_address
);
3646 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3647 0x0081810000818100ULL
, /* FE=1, SE=0 */
3648 0x0042420000424200ULL
, /* FE=0, SE=1 */
3649 0}; /* FE=0, SE=0 */
3652 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3653 writeq(valt
, &bar0
->xmsi_address
);
3654 val64
= readq(&bar0
->xmsi_address
);
3660 unsigned long long x
= val64
;
3661 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3662 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3666 val64
= readq(&bar0
->swapper_ctrl
);
3667 val64
&= 0xFFFF000000000000ULL
;
3671 * The device by default set to a big endian format, so a
3672 * big endian driver need not set anything.
3674 val64
|= (SWAPPER_CTRL_TXP_FE
|
3675 SWAPPER_CTRL_TXP_SE
|
3676 SWAPPER_CTRL_TXD_R_FE
|
3677 SWAPPER_CTRL_TXD_W_FE
|
3678 SWAPPER_CTRL_TXF_R_FE
|
3679 SWAPPER_CTRL_RXD_R_FE
|
3680 SWAPPER_CTRL_RXD_W_FE
|
3681 SWAPPER_CTRL_RXF_W_FE
|
3682 SWAPPER_CTRL_XMSI_FE
|
3683 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3684 if (sp
->config
.intr_type
== INTA
)
3685 val64
|= SWAPPER_CTRL_XMSI_SE
;
3686 writeq(val64
, &bar0
->swapper_ctrl
);
3689 * Initially we enable all bits to make it accessible by the
3690 * driver, then we selectively enable only those bits that
3693 val64
|= (SWAPPER_CTRL_TXP_FE
|
3694 SWAPPER_CTRL_TXP_SE
|
3695 SWAPPER_CTRL_TXD_R_FE
|
3696 SWAPPER_CTRL_TXD_R_SE
|
3697 SWAPPER_CTRL_TXD_W_FE
|
3698 SWAPPER_CTRL_TXD_W_SE
|
3699 SWAPPER_CTRL_TXF_R_FE
|
3700 SWAPPER_CTRL_RXD_R_FE
|
3701 SWAPPER_CTRL_RXD_R_SE
|
3702 SWAPPER_CTRL_RXD_W_FE
|
3703 SWAPPER_CTRL_RXD_W_SE
|
3704 SWAPPER_CTRL_RXF_W_FE
|
3705 SWAPPER_CTRL_XMSI_FE
|
3706 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3707 if (sp
->config
.intr_type
== INTA
)
3708 val64
|= SWAPPER_CTRL_XMSI_SE
;
3709 writeq(val64
, &bar0
->swapper_ctrl
);
3711 val64
= readq(&bar0
->swapper_ctrl
);
3714 * Verifying if endian settings are accurate by reading a
3715 * feedback register.
3717 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3718 if (val64
!= 0x0123456789ABCDEFULL
) {
3719 /* Endian settings are incorrect, calls for another dekko. */
3720 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3722 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3723 (unsigned long long) val64
);
3730 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3732 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3734 int ret
= 0, cnt
= 0;
3737 val64
= readq(&bar0
->xmsi_access
);
3738 if (!(val64
& s2BIT(15)))
3744 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3751 static void restore_xmsi_data(struct s2io_nic
*nic
)
3753 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3758 if (nic
->device_type
== XFRAME_I_DEVICE
)
3761 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3762 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3763 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3764 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3765 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3766 writeq(val64
, &bar0
->xmsi_access
);
3767 if (wait_for_msix_trans(nic
, msix_index
)) {
3768 DBG_PRINT(ERR_DBG
, "failed in %s\n", __func__
);
3774 static void store_xmsi_data(struct s2io_nic
*nic
)
3776 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3777 u64 val64
, addr
, data
;
3780 if (nic
->device_type
== XFRAME_I_DEVICE
)
3783 /* Store and display */
3784 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3785 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3786 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3787 writeq(val64
, &bar0
->xmsi_access
);
3788 if (wait_for_msix_trans(nic
, msix_index
)) {
3789 DBG_PRINT(ERR_DBG
, "failed in %s\n", __func__
);
3792 addr
= readq(&bar0
->xmsi_address
);
3793 data
= readq(&bar0
->xmsi_data
);
3795 nic
->msix_info
[i
].addr
= addr
;
3796 nic
->msix_info
[i
].data
= data
;
3801 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3803 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3805 u16 msi_control
; /* Temp variable */
3806 int ret
, i
, j
, msix_indx
= 1;
3808 nic
->entries
= kmalloc(nic
->num_entries
* sizeof(struct msix_entry
),
3810 if (!nic
->entries
) {
3811 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3813 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3816 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3817 += (nic
->num_entries
* sizeof(struct msix_entry
));
3819 memset(nic
->entries
, 0, nic
->num_entries
* sizeof(struct msix_entry
));
3822 kmalloc(nic
->num_entries
* sizeof(struct s2io_msix_entry
),
3824 if (!nic
->s2io_entries
) {
3825 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3827 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3828 kfree(nic
->entries
);
3829 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3830 += (nic
->num_entries
* sizeof(struct msix_entry
));
3833 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3834 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3835 memset(nic
->s2io_entries
, 0,
3836 nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3838 nic
->entries
[0].entry
= 0;
3839 nic
->s2io_entries
[0].entry
= 0;
3840 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3841 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3842 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3844 for (i
= 1; i
< nic
->num_entries
; i
++) {
3845 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3846 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3847 nic
->s2io_entries
[i
].arg
= NULL
;
3848 nic
->s2io_entries
[i
].in_use
= 0;
3851 rx_mat
= readq(&bar0
->rx_mat
);
3852 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3853 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3854 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3855 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3856 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3859 writeq(rx_mat
, &bar0
->rx_mat
);
3860 readq(&bar0
->rx_mat
);
3862 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3863 /* We fail init if error or we get less vectors than min required */
3865 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3866 kfree(nic
->entries
);
3867 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3868 += (nic
->num_entries
* sizeof(struct msix_entry
));
3869 kfree(nic
->s2io_entries
);
3870 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3871 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3872 nic
->entries
= NULL
;
3873 nic
->s2io_entries
= NULL
;
3878 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3879 * in the herc NIC. (Temp change, needs to be removed later)
3881 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3882 msi_control
|= 0x1; /* Enable MSI */
3883 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3888 /* Handle software interrupt used during MSI(X) test */
3889 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3891 struct s2io_nic
*sp
= dev_id
;
3893 sp
->msi_detected
= 1;
3894 wake_up(&sp
->msi_wait
);
3899 /* Test interrupt path by forcing a a software IRQ */
3900 static int s2io_test_msi(struct s2io_nic
*sp
)
3902 struct pci_dev
*pdev
= sp
->pdev
;
3903 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3907 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3910 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3911 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3915 init_waitqueue_head (&sp
->msi_wait
);
3916 sp
->msi_detected
= 0;
3918 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3919 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3920 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3921 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3922 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3924 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3926 if (!sp
->msi_detected
) {
3927 /* MSI(X) test failed, go back to INTx mode */
3928 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3929 "using MSI(X) during test\n", sp
->dev
->name
,
3935 free_irq(sp
->entries
[1].vector
, sp
);
3937 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3942 static void remove_msix_isr(struct s2io_nic
*sp
)
3947 for (i
= 0; i
< sp
->num_entries
; i
++) {
3948 if (sp
->s2io_entries
[i
].in_use
==
3949 MSIX_REGISTERED_SUCCESS
) {
3950 int vector
= sp
->entries
[i
].vector
;
3951 void *arg
= sp
->s2io_entries
[i
].arg
;
3952 free_irq(vector
, arg
);
3957 kfree(sp
->s2io_entries
);
3959 sp
->s2io_entries
= NULL
;
3961 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3962 msi_control
&= 0xFFFE; /* Disable MSI */
3963 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3965 pci_disable_msix(sp
->pdev
);
3968 static void remove_inta_isr(struct s2io_nic
*sp
)
3970 struct net_device
*dev
= sp
->dev
;
3972 free_irq(sp
->pdev
->irq
, dev
);
3975 /* ********************************************************* *
3976 * Functions defined below concern the OS part of the driver *
3977 * ********************************************************* */
3980 * s2io_open - open entry point of the driver
3981 * @dev : pointer to the device structure.
3983 * This function is the open entry point of the driver. It mainly calls a
3984 * function to allocate Rx buffers and inserts them into the buffer
3985 * descriptors and then enables the Rx part of the NIC.
3987 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3991 static int s2io_open(struct net_device
*dev
)
3993 struct s2io_nic
*sp
= dev
->priv
;
3997 * Make sure you have link off by default every time
3998 * Nic is initialized
4000 netif_carrier_off(dev
);
4001 sp
->last_link_state
= 0;
4003 /* Initialize H/W and enable interrupts */
4004 err
= s2io_card_up(sp
);
4006 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
4008 goto hw_init_failed
;
4011 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4012 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4015 goto hw_init_failed
;
4017 s2io_start_all_tx_queue(sp
);
4021 if (sp
->config
.intr_type
== MSI_X
) {
4024 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4025 += (sp
->num_entries
* sizeof(struct msix_entry
));
4027 if (sp
->s2io_entries
) {
4028 kfree(sp
->s2io_entries
);
4029 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4030 += (sp
->num_entries
* sizeof(struct s2io_msix_entry
));
4037 * s2io_close -close entry point of the driver
4038 * @dev : device pointer.
4040 * This is the stop entry point of the driver. It needs to undo exactly
4041 * whatever was done by the open entry point,thus it's usually referred to
4042 * as the close function.Among other things this function mainly stops the
4043 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4045 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4049 static int s2io_close(struct net_device
*dev
)
4051 struct s2io_nic
*sp
= dev
->priv
;
4052 struct config_param
*config
= &sp
->config
;
4056 /* Return if the device is already closed *
4057 * Can happen when s2io_card_up failed in change_mtu *
4059 if (!is_s2io_card_up(sp
))
4062 s2io_stop_all_tx_queue(sp
);
4063 /* delete all populated mac entries */
4064 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4065 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4066 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4067 do_s2io_delete_unicast_mc(sp
, tmp64
);
4076 * s2io_xmit - Tx entry point of te driver
4077 * @skb : the socket buffer containing the Tx data.
4078 * @dev : device pointer.
4080 * This function is the Tx entry point of the driver. S2IO NIC supports
4081 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4082 * NOTE: when device cant queue the pkt,just the trans_start variable will
4085 * 0 on success & 1 on failure.
4088 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4090 struct s2io_nic
*sp
= dev
->priv
;
4091 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4094 struct TxFIFO_element __iomem
*tx_fifo
;
4095 unsigned long flags
= 0;
4097 struct fifo_info
*fifo
= NULL
;
4098 struct mac_info
*mac_control
;
4099 struct config_param
*config
;
4100 int do_spin_lock
= 1;
4102 int enable_per_list_interrupt
= 0;
4103 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4105 mac_control
= &sp
->mac_control
;
4106 config
= &sp
->config
;
4108 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4110 if (unlikely(skb
->len
<= 0)) {
4111 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4112 dev_kfree_skb_any(skb
);
4116 if (!is_s2io_card_up(sp
)) {
4117 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4124 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4125 vlan_tag
= vlan_tx_tag_get(skb
);
4126 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4127 if (skb
->protocol
== htons(ETH_P_IP
)) {
4132 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4133 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4136 if (ip
->protocol
== IPPROTO_TCP
) {
4137 queue_len
= sp
->total_tcp_fifos
;
4138 queue
= (ntohs(th
->source
) +
4140 sp
->fifo_selector
[queue_len
- 1];
4141 if (queue
>= queue_len
)
4142 queue
= queue_len
- 1;
4143 } else if (ip
->protocol
== IPPROTO_UDP
) {
4144 queue_len
= sp
->total_udp_fifos
;
4145 queue
= (ntohs(th
->source
) +
4147 sp
->fifo_selector
[queue_len
- 1];
4148 if (queue
>= queue_len
)
4149 queue
= queue_len
- 1;
4150 queue
+= sp
->udp_fifo_idx
;
4151 if (skb
->len
> 1024)
4152 enable_per_list_interrupt
= 1;
4157 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4158 /* get fifo number based on skb->priority value */
4159 queue
= config
->fifo_mapping
4160 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4161 fifo
= &mac_control
->fifos
[queue
];
4164 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4166 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4167 return NETDEV_TX_LOCKED
;
4170 if (sp
->config
.multiq
) {
4171 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4172 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4173 return NETDEV_TX_BUSY
;
4175 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4176 if (netif_queue_stopped(dev
)) {
4177 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4178 return NETDEV_TX_BUSY
;
4182 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4183 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4184 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4186 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4187 /* Avoid "put" pointer going beyond "get" pointer */
4188 if (txdp
->Host_Control
||
4189 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4190 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4191 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4193 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4197 offload_type
= s2io_offload_type(skb
);
4198 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4199 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4200 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4202 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4204 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4207 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4208 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4209 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4210 if (enable_per_list_interrupt
)
4211 if (put_off
& (queue_len
>> 5))
4212 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4214 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4215 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4218 frg_len
= skb
->len
- skb
->data_len
;
4219 if (offload_type
== SKB_GSO_UDP
) {
4222 ufo_size
= s2io_udp_mss(skb
);
4224 txdp
->Control_1
|= TXD_UFO_EN
;
4225 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4226 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4228 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4229 fifo
->ufo_in_band_v
[put_off
] =
4230 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4232 fifo
->ufo_in_band_v
[put_off
] =
4233 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4235 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4236 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4237 fifo
->ufo_in_band_v
,
4238 sizeof(u64
), PCI_DMA_TODEVICE
);
4239 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4240 goto pci_map_failed
;
4244 txdp
->Buffer_Pointer
= pci_map_single
4245 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4246 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4247 goto pci_map_failed
;
4249 txdp
->Host_Control
= (unsigned long) skb
;
4250 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4251 if (offload_type
== SKB_GSO_UDP
)
4252 txdp
->Control_1
|= TXD_UFO_EN
;
4254 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4255 /* For fragmented SKB. */
4256 for (i
= 0; i
< frg_cnt
; i
++) {
4257 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4258 /* A '0' length fragment will be ignored */
4262 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4263 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4264 frag
->size
, PCI_DMA_TODEVICE
);
4265 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4266 if (offload_type
== SKB_GSO_UDP
)
4267 txdp
->Control_1
|= TXD_UFO_EN
;
4269 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4271 if (offload_type
== SKB_GSO_UDP
)
4272 frg_cnt
++; /* as Txd0 was used for inband header */
4274 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4275 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4276 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4278 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4281 val64
|= TX_FIFO_SPECIAL_FUNC
;
4283 writeq(val64
, &tx_fifo
->List_Control
);
4288 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4290 fifo
->tx_curr_put_info
.offset
= put_off
;
4292 /* Avoid "put" pointer going beyond "get" pointer */
4293 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4294 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4296 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4298 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4300 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4301 dev
->trans_start
= jiffies
;
4302 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4304 if (sp
->config
.intr_type
== MSI_X
)
4305 tx_intr_handler(fifo
);
4309 stats
->pci_map_fail_cnt
++;
4310 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4311 stats
->mem_freed
+= skb
->truesize
;
4313 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4318 s2io_alarm_handle(unsigned long data
)
4320 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4321 struct net_device
*dev
= sp
->dev
;
4323 s2io_handle_errors(dev
);
4324 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4327 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4329 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4330 struct s2io_nic
*sp
= ring
->nic
;
4331 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4332 struct net_device
*dev
= sp
->dev
;
4334 if (unlikely(!is_s2io_card_up(sp
)))
4337 if (sp
->config
.napi
) {
4338 u8 __iomem
*addr
= NULL
;
4341 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4342 addr
+= (7 - ring
->ring_no
);
4343 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4346 netif_rx_schedule(dev
, &ring
->napi
);
4348 rx_intr_handler(ring
, 0);
4349 s2io_chk_rx_buffers(sp
, ring
);
4355 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4358 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4359 struct s2io_nic
*sp
= fifos
->nic
;
4360 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4361 struct config_param
*config
= &sp
->config
;
4364 if (unlikely(!is_s2io_card_up(sp
)))
4367 reason
= readq(&bar0
->general_int_status
);
4368 if (unlikely(reason
== S2IO_MINUS_ONE
))
4369 /* Nothing much can be done. Get out */
4372 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4373 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4375 if (reason
& GEN_INTR_TXPIC
)
4376 s2io_txpic_intr_handle(sp
);
4378 if (reason
& GEN_INTR_TXTRAFFIC
)
4379 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4381 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4382 tx_intr_handler(&fifos
[i
]);
4384 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4385 readl(&bar0
->general_int_status
);
4388 /* The interrupt was not raised by us */
4392 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4394 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4397 val64
= readq(&bar0
->pic_int_status
);
4398 if (val64
& PIC_INT_GPIO
) {
4399 val64
= readq(&bar0
->gpio_int_reg
);
4400 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4401 (val64
& GPIO_INT_REG_LINK_UP
)) {
4403 * This is unstable state so clear both up/down
4404 * interrupt and adapter to re-evaluate the link state.
4406 val64
|= GPIO_INT_REG_LINK_DOWN
;
4407 val64
|= GPIO_INT_REG_LINK_UP
;
4408 writeq(val64
, &bar0
->gpio_int_reg
);
4409 val64
= readq(&bar0
->gpio_int_mask
);
4410 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4411 GPIO_INT_MASK_LINK_DOWN
);
4412 writeq(val64
, &bar0
->gpio_int_mask
);
4414 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4415 val64
= readq(&bar0
->adapter_status
);
4416 /* Enable Adapter */
4417 val64
= readq(&bar0
->adapter_control
);
4418 val64
|= ADAPTER_CNTL_EN
;
4419 writeq(val64
, &bar0
->adapter_control
);
4420 val64
|= ADAPTER_LED_ON
;
4421 writeq(val64
, &bar0
->adapter_control
);
4422 if (!sp
->device_enabled_once
)
4423 sp
->device_enabled_once
= 1;
4425 s2io_link(sp
, LINK_UP
);
4427 * unmask link down interrupt and mask link-up
4430 val64
= readq(&bar0
->gpio_int_mask
);
4431 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4432 val64
|= GPIO_INT_MASK_LINK_UP
;
4433 writeq(val64
, &bar0
->gpio_int_mask
);
4435 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4436 val64
= readq(&bar0
->adapter_status
);
4437 s2io_link(sp
, LINK_DOWN
);
4438 /* Link is down so unmaks link up interrupt */
4439 val64
= readq(&bar0
->gpio_int_mask
);
4440 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4441 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4442 writeq(val64
, &bar0
->gpio_int_mask
);
4445 val64
= readq(&bar0
->adapter_control
);
4446 val64
= val64
&(~ADAPTER_LED_ON
);
4447 writeq(val64
, &bar0
->adapter_control
);
4450 val64
= readq(&bar0
->gpio_int_mask
);
4454 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4455 * @value: alarm bits
4456 * @addr: address value
4457 * @cnt: counter variable
4458 * Description: Check for alarm and increment the counter
4460 * 1 - if alarm bit set
4461 * 0 - if alarm bit is not set
4463 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4464 unsigned long long *cnt
)
4467 val64
= readq(addr
);
4468 if ( val64
& value
) {
4469 writeq(val64
, addr
);
4478 * s2io_handle_errors - Xframe error indication handler
4479 * @nic: device private variable
4480 * Description: Handle alarms such as loss of link, single or
4481 * double ECC errors, critical and serious errors.
4485 static void s2io_handle_errors(void * dev_id
)
4487 struct net_device
*dev
= (struct net_device
*) dev_id
;
4488 struct s2io_nic
*sp
= dev
->priv
;
4489 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4490 u64 temp64
= 0,val64
=0;
4493 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4494 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4496 if (!is_s2io_card_up(sp
))
4499 if (pci_channel_offline(sp
->pdev
))
4502 memset(&sw_stat
->ring_full_cnt
, 0,
4503 sizeof(sw_stat
->ring_full_cnt
));
4505 /* Handling the XPAK counters update */
4506 if(stats
->xpak_timer_count
< 72000) {
4507 /* waiting for an hour */
4508 stats
->xpak_timer_count
++;
4510 s2io_updt_xpak_counter(dev
);
4511 /* reset the count to zero */
4512 stats
->xpak_timer_count
= 0;
4515 /* Handling link status change error Intr */
4516 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4517 val64
= readq(&bar0
->mac_rmac_err_reg
);
4518 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4519 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4520 schedule_work(&sp
->set_link_task
);
4523 /* In case of a serious error, the device will be Reset. */
4524 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4525 &sw_stat
->serious_err_cnt
))
4528 /* Check for data parity error */
4529 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4530 &sw_stat
->parity_err_cnt
))
4533 /* Check for ring full counter */
4534 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4535 val64
= readq(&bar0
->ring_bump_counter1
);
4536 for (i
=0; i
<4; i
++) {
4537 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4538 temp64
>>= 64 - ((i
+1)*16);
4539 sw_stat
->ring_full_cnt
[i
] += temp64
;
4542 val64
= readq(&bar0
->ring_bump_counter2
);
4543 for (i
=0; i
<4; i
++) {
4544 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4545 temp64
>>= 64 - ((i
+1)*16);
4546 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4550 val64
= readq(&bar0
->txdma_int_status
);
4551 /*check for pfc_err*/
4552 if (val64
& TXDMA_PFC_INT
) {
4553 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4554 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4555 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4556 &sw_stat
->pfc_err_cnt
))
4558 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4559 &sw_stat
->pfc_err_cnt
);
4562 /*check for tda_err*/
4563 if (val64
& TXDMA_TDA_INT
) {
4564 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4565 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4566 &sw_stat
->tda_err_cnt
))
4568 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4569 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4571 /*check for pcc_err*/
4572 if (val64
& TXDMA_PCC_INT
) {
4573 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4574 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4575 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4576 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4577 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4578 &sw_stat
->pcc_err_cnt
))
4580 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4581 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4584 /*check for tti_err*/
4585 if (val64
& TXDMA_TTI_INT
) {
4586 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4587 &sw_stat
->tti_err_cnt
))
4589 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4590 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4593 /*check for lso_err*/
4594 if (val64
& TXDMA_LSO_INT
) {
4595 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4596 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4597 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4599 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4600 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4603 /*check for tpa_err*/
4604 if (val64
& TXDMA_TPA_INT
) {
4605 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4606 &sw_stat
->tpa_err_cnt
))
4608 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4609 &sw_stat
->tpa_err_cnt
);
4612 /*check for sm_err*/
4613 if (val64
& TXDMA_SM_INT
) {
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4615 &sw_stat
->sm_err_cnt
))
4619 val64
= readq(&bar0
->mac_int_status
);
4620 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4622 &bar0
->mac_tmac_err_reg
,
4623 &sw_stat
->mac_tmac_err_cnt
))
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4626 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4627 &bar0
->mac_tmac_err_reg
,
4628 &sw_stat
->mac_tmac_err_cnt
);
4631 val64
= readq(&bar0
->xgxs_int_status
);
4632 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4634 &bar0
->xgxs_txgxs_err_reg
,
4635 &sw_stat
->xgxs_txgxs_err_cnt
))
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4638 &bar0
->xgxs_txgxs_err_reg
,
4639 &sw_stat
->xgxs_txgxs_err_cnt
);
4642 val64
= readq(&bar0
->rxdma_int_status
);
4643 if (val64
& RXDMA_INT_RC_INT_M
) {
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4645 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4646 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4648 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4649 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4650 &sw_stat
->rc_err_cnt
);
4651 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4652 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4653 &sw_stat
->prc_pcix_err_cnt
))
4655 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4656 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4657 &sw_stat
->prc_pcix_err_cnt
);
4660 if (val64
& RXDMA_INT_RPA_INT_M
) {
4661 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4662 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4664 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4665 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4668 if (val64
& RXDMA_INT_RDA_INT_M
) {
4669 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4670 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4671 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4672 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4674 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4675 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4676 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4679 if (val64
& RXDMA_INT_RTI_INT_M
) {
4680 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4681 &sw_stat
->rti_err_cnt
))
4683 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4684 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4687 val64
= readq(&bar0
->mac_int_status
);
4688 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4689 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4690 &bar0
->mac_rmac_err_reg
,
4691 &sw_stat
->mac_rmac_err_cnt
))
4693 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4694 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4695 &sw_stat
->mac_rmac_err_cnt
);
4698 val64
= readq(&bar0
->xgxs_int_status
);
4699 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4700 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4701 &bar0
->xgxs_rxgxs_err_reg
,
4702 &sw_stat
->xgxs_rxgxs_err_cnt
))
4706 val64
= readq(&bar0
->mc_int_status
);
4707 if(val64
& MC_INT_STATUS_MC_INT
) {
4708 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4709 &sw_stat
->mc_err_cnt
))
4712 /* Handling Ecc errors */
4713 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4714 writeq(val64
, &bar0
->mc_err_reg
);
4715 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4716 sw_stat
->double_ecc_errs
++;
4717 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4719 * Reset XframeI only if critical error
4722 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4723 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4727 sw_stat
->single_ecc_errs
++;
4733 s2io_stop_all_tx_queue(sp
);
4734 schedule_work(&sp
->rst_timer_task
);
4735 sw_stat
->soft_reset_cnt
++;
4740 * s2io_isr - ISR handler of the device .
4741 * @irq: the irq of the device.
4742 * @dev_id: a void pointer to the dev structure of the NIC.
4743 * Description: This function is the ISR handler of the device. It
4744 * identifies the reason for the interrupt and calls the relevant
4745 * service routines. As a contongency measure, this ISR allocates the
4746 * recv buffers, if their numbers are below the panic value which is
4747 * presently set to 25% of the original number of rcv buffers allocated.
4749 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4750 * IRQ_NONE: will be returned if interrupt is not from our device
4752 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4754 struct net_device
*dev
= (struct net_device
*) dev_id
;
4755 struct s2io_nic
*sp
= dev
->priv
;
4756 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4759 struct mac_info
*mac_control
;
4760 struct config_param
*config
;
4762 /* Pretend we handled any irq's from a disconnected card */
4763 if (pci_channel_offline(sp
->pdev
))
4766 if (!is_s2io_card_up(sp
))
4769 mac_control
= &sp
->mac_control
;
4770 config
= &sp
->config
;
4773 * Identify the cause for interrupt and call the appropriate
4774 * interrupt handler. Causes for the interrupt could be;
4779 reason
= readq(&bar0
->general_int_status
);
4781 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4782 /* Nothing much can be done. Get out */
4786 if (reason
& (GEN_INTR_RXTRAFFIC
|
4787 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4789 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4792 if (reason
& GEN_INTR_RXTRAFFIC
) {
4793 netif_rx_schedule(dev
, &sp
->napi
);
4794 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4795 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4796 readl(&bar0
->rx_traffic_int
);
4800 * rx_traffic_int reg is an R1 register, writing all 1's
4801 * will ensure that the actual interrupt causing bit
4802 * get's cleared and hence a read can be avoided.
4804 if (reason
& GEN_INTR_RXTRAFFIC
)
4805 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4807 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4808 rx_intr_handler(&mac_control
->rings
[i
], 0);
4812 * tx_traffic_int reg is an R1 register, writing all 1's
4813 * will ensure that the actual interrupt causing bit get's
4814 * cleared and hence a read can be avoided.
4816 if (reason
& GEN_INTR_TXTRAFFIC
)
4817 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4819 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4820 tx_intr_handler(&mac_control
->fifos
[i
]);
4822 if (reason
& GEN_INTR_TXPIC
)
4823 s2io_txpic_intr_handle(sp
);
4826 * Reallocate the buffers from the interrupt handler itself.
4828 if (!config
->napi
) {
4829 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4830 s2io_chk_rx_buffers(sp
, &mac_control
->rings
[i
]);
4832 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4833 readl(&bar0
->general_int_status
);
4839 /* The interrupt was not raised by us */
4849 static void s2io_updt_stats(struct s2io_nic
*sp
)
4851 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4855 if (is_s2io_card_up(sp
)) {
4856 /* Apprx 30us on a 133 MHz bus */
4857 val64
= SET_UPDT_CLICKS(10) |
4858 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4859 writeq(val64
, &bar0
->stat_cfg
);
4862 val64
= readq(&bar0
->stat_cfg
);
4863 if (!(val64
& s2BIT(0)))
4867 break; /* Updt failed */
4873 * s2io_get_stats - Updates the device statistics structure.
4874 * @dev : pointer to the device structure.
4876 * This function updates the device statistics structure in the s2io_nic
4877 * structure and returns a pointer to the same.
4879 * pointer to the updated net_device_stats structure.
4882 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4884 struct s2io_nic
*sp
= dev
->priv
;
4885 struct mac_info
*mac_control
;
4886 struct config_param
*config
;
4890 mac_control
= &sp
->mac_control
;
4891 config
= &sp
->config
;
4893 /* Configure Stats for immediate updt */
4894 s2io_updt_stats(sp
);
4896 /* Using sp->stats as a staging area, because reset (due to mtu
4897 change, for example) will clear some hardware counters */
4898 dev
->stats
.tx_packets
+=
4899 le32_to_cpu(mac_control
->stats_info
->tmac_frms
) -
4900 sp
->stats
.tx_packets
;
4901 sp
->stats
.tx_packets
=
4902 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4903 dev
->stats
.tx_errors
+=
4904 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
) -
4905 sp
->stats
.tx_errors
;
4906 sp
->stats
.tx_errors
=
4907 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4908 dev
->stats
.rx_errors
+=
4909 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
) -
4910 sp
->stats
.rx_errors
;
4911 sp
->stats
.rx_errors
=
4912 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4913 dev
->stats
.multicast
=
4914 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
) -
4915 sp
->stats
.multicast
;
4916 sp
->stats
.multicast
=
4917 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4918 dev
->stats
.rx_length_errors
=
4919 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
) -
4920 sp
->stats
.rx_length_errors
;
4921 sp
->stats
.rx_length_errors
=
4922 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4924 /* collect per-ring rx_packets and rx_bytes */
4925 dev
->stats
.rx_packets
= dev
->stats
.rx_bytes
= 0;
4926 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4927 dev
->stats
.rx_packets
+= mac_control
->rings
[i
].rx_packets
;
4928 dev
->stats
.rx_bytes
+= mac_control
->rings
[i
].rx_bytes
;
4931 return (&dev
->stats
);
4935 * s2io_set_multicast - entry point for multicast address enable/disable.
4936 * @dev : pointer to the device structure
4938 * This function is a driver entry point which gets called by the kernel
4939 * whenever multicast addresses must be enabled/disabled. This also gets
4940 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4941 * determine, if multicast address must be enabled or if promiscuous mode
4942 * is to be disabled etc.
4947 static void s2io_set_multicast(struct net_device
*dev
)
4950 struct dev_mc_list
*mclist
;
4951 struct s2io_nic
*sp
= dev
->priv
;
4952 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4953 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4955 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4957 struct config_param
*config
= &sp
->config
;
4959 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4960 /* Enable all Multicast addresses */
4961 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4962 &bar0
->rmac_addr_data0_mem
);
4963 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4964 &bar0
->rmac_addr_data1_mem
);
4965 val64
= RMAC_ADDR_CMD_MEM_WE
|
4966 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4967 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4968 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4969 /* Wait till command completes */
4970 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4971 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4975 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4976 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4977 /* Disable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4979 &bar0
->rmac_addr_data0_mem
);
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4981 &bar0
->rmac_addr_data1_mem
);
4982 val64
= RMAC_ADDR_CMD_MEM_WE
|
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4984 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4985 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4986 /* Wait till command completes */
4987 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4992 sp
->all_multi_pos
= 0;
4995 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4996 /* Put the NIC into promiscuous mode */
4997 add
= &bar0
->mac_cfg
;
4998 val64
= readq(&bar0
->mac_cfg
);
4999 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5001 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5002 writel((u32
) val64
, add
);
5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5004 writel((u32
) (val64
>> 32), (add
+ 4));
5006 if (vlan_tag_strip
!= 1) {
5007 val64
= readq(&bar0
->rx_pa_cfg
);
5008 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5009 writeq(val64
, &bar0
->rx_pa_cfg
);
5010 sp
->vlan_strip_flag
= 0;
5013 val64
= readq(&bar0
->mac_cfg
);
5014 sp
->promisc_flg
= 1;
5015 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5017 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5018 /* Remove the NIC from promiscuous mode */
5019 add
= &bar0
->mac_cfg
;
5020 val64
= readq(&bar0
->mac_cfg
);
5021 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5023 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5024 writel((u32
) val64
, add
);
5025 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5026 writel((u32
) (val64
>> 32), (add
+ 4));
5028 if (vlan_tag_strip
!= 0) {
5029 val64
= readq(&bar0
->rx_pa_cfg
);
5030 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5031 writeq(val64
, &bar0
->rx_pa_cfg
);
5032 sp
->vlan_strip_flag
= 1;
5035 val64
= readq(&bar0
->mac_cfg
);
5036 sp
->promisc_flg
= 0;
5037 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
5041 /* Update individual M_CAST address list */
5042 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
5044 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5045 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
5047 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
5048 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
5052 prev_cnt
= sp
->mc_addr_count
;
5053 sp
->mc_addr_count
= dev
->mc_count
;
5055 /* Clear out the previous list of Mc in the H/W. */
5056 for (i
= 0; i
< prev_cnt
; i
++) {
5057 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5058 &bar0
->rmac_addr_data0_mem
);
5059 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5060 &bar0
->rmac_addr_data1_mem
);
5061 val64
= RMAC_ADDR_CMD_MEM_WE
|
5062 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5063 RMAC_ADDR_CMD_MEM_OFFSET
5064 (config
->mc_start_offset
+ i
);
5065 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5067 /* Wait for command completes */
5068 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5069 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5071 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5073 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5078 /* Create the new Rx filter list and update the same in H/W. */
5079 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
5080 i
++, mclist
= mclist
->next
) {
5081 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5084 for (j
= 0; j
< ETH_ALEN
; j
++) {
5085 mac_addr
|= mclist
->dmi_addr
[j
];
5089 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5090 &bar0
->rmac_addr_data0_mem
);
5091 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5092 &bar0
->rmac_addr_data1_mem
);
5093 val64
= RMAC_ADDR_CMD_MEM_WE
|
5094 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5095 RMAC_ADDR_CMD_MEM_OFFSET
5096 (i
+ config
->mc_start_offset
);
5097 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5099 /* Wait for command completes */
5100 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5101 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5103 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5105 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5112 /* read from CAM unicast & multicast addresses and store it in
5113 * def_mac_addr structure
5115 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5119 struct config_param
*config
= &sp
->config
;
5121 /* store unicast & multicast mac addresses */
5122 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5123 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5124 /* if read fails disable the entry */
5125 if (mac_addr
== FAILURE
)
5126 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5127 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5131 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5132 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5135 struct config_param
*config
= &sp
->config
;
5136 /* restore unicast mac address */
5137 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5138 do_s2io_prog_unicast(sp
->dev
,
5139 sp
->def_mac_addr
[offset
].mac_addr
);
5141 /* restore multicast mac address */
5142 for (offset
= config
->mc_start_offset
;
5143 offset
< config
->max_mc_addr
; offset
++)
5144 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5147 /* add a multicast MAC address to CAM */
5148 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5152 struct config_param
*config
= &sp
->config
;
5154 for (i
= 0; i
< ETH_ALEN
; i
++) {
5156 mac_addr
|= addr
[i
];
5158 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5161 /* check if the multicast mac already preset in CAM */
5162 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5164 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5165 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5168 if (tmp64
== mac_addr
)
5171 if (i
== config
->max_mc_addr
) {
5173 "CAM full no space left for multicast MAC\n");
5176 /* Update the internal structure with this new mac address */
5177 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5179 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5182 /* add MAC address to CAM */
5183 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5186 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5188 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5189 &bar0
->rmac_addr_data0_mem
);
5192 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5193 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5194 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5196 /* Wait till command completes */
5197 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5198 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5200 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5205 /* deletes a specified unicast/multicast mac entry from CAM */
5206 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5209 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5210 struct config_param
*config
= &sp
->config
;
5213 offset
< config
->max_mc_addr
; offset
++) {
5214 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5215 if (tmp64
== addr
) {
5216 /* disable the entry by writing 0xffffffffffffULL */
5217 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5219 /* store the new mac list from CAM */
5220 do_s2io_store_unicast_mc(sp
);
5224 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5225 (unsigned long long)addr
);
5229 /* read mac entries from CAM */
5230 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5232 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5233 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5237 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5238 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5239 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5241 /* Wait till command completes */
5242 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5243 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5245 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5248 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5249 return (tmp64
>> 16);
5253 * s2io_set_mac_addr driver entry point
5256 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5258 struct sockaddr
*addr
= p
;
5260 if (!is_valid_ether_addr(addr
->sa_data
))
5263 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5265 /* store the MAC address in CAM */
5266 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5269 * do_s2io_prog_unicast - Programs the Xframe mac address
5270 * @dev : pointer to the device structure.
5271 * @addr: a uchar pointer to the new mac address which is to be set.
5272 * Description : This procedure will program the Xframe to receive
5273 * frames with new Mac Address
5274 * Return value: SUCCESS on success and an appropriate (-)ve integer
5275 * as defined in errno.h file on failure.
5278 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5280 struct s2io_nic
*sp
= dev
->priv
;
5281 register u64 mac_addr
= 0, perm_addr
= 0;
5284 struct config_param
*config
= &sp
->config
;
5287 * Set the new MAC address as the new unicast filter and reflect this
5288 * change on the device address registered with the OS. It will be
5291 for (i
= 0; i
< ETH_ALEN
; i
++) {
5293 mac_addr
|= addr
[i
];
5295 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5298 /* check if the dev_addr is different than perm_addr */
5299 if (mac_addr
== perm_addr
)
5302 /* check if the mac already preset in CAM */
5303 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5304 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5305 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5308 if (tmp64
== mac_addr
) {
5310 "MAC addr:0x%llx already present in CAM\n",
5311 (unsigned long long)mac_addr
);
5315 if (i
== config
->max_mac_addr
) {
5316 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5319 /* Update the internal structure with this new mac address */
5320 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5321 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5325 * s2io_ethtool_sset - Sets different link parameters.
5326 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5327 * @info: pointer to the structure with parameters given by ethtool to set
5330 * The function sets different link parameters provided by the user onto
5336 static int s2io_ethtool_sset(struct net_device
*dev
,
5337 struct ethtool_cmd
*info
)
5339 struct s2io_nic
*sp
= dev
->priv
;
5340 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5341 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5344 s2io_close(sp
->dev
);
5352 * s2io_ethtol_gset - Return link specific information.
5353 * @sp : private member of the device structure, pointer to the
5354 * s2io_nic structure.
5355 * @info : pointer to the structure with parameters given by ethtool
5356 * to return link information.
5358 * Returns link specific information like speed, duplex etc.. to ethtool.
5360 * return 0 on success.
5363 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5365 struct s2io_nic
*sp
= dev
->priv
;
5366 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5367 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5368 info
->port
= PORT_FIBRE
;
5370 /* info->transceiver */
5371 info
->transceiver
= XCVR_EXTERNAL
;
5373 if (netif_carrier_ok(sp
->dev
)) {
5374 info
->speed
= 10000;
5375 info
->duplex
= DUPLEX_FULL
;
5381 info
->autoneg
= AUTONEG_DISABLE
;
5386 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5387 * @sp : private member of the device structure, which is a pointer to the
5388 * s2io_nic structure.
5389 * @info : pointer to the structure with parameters given by ethtool to
5390 * return driver information.
5392 * Returns driver specefic information like name, version etc.. to ethtool.
5397 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5398 struct ethtool_drvinfo
*info
)
5400 struct s2io_nic
*sp
= dev
->priv
;
5402 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5403 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5404 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5405 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5406 info
->regdump_len
= XENA_REG_SPACE
;
5407 info
->eedump_len
= XENA_EEPROM_SPACE
;
5411 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5412 * @sp: private member of the device structure, which is a pointer to the
5413 * s2io_nic structure.
5414 * @regs : pointer to the structure with parameters given by ethtool for
5415 * dumping the registers.
5416 * @reg_space: The input argumnet into which all the registers are dumped.
5418 * Dumps the entire register space of xFrame NIC into the user given
5424 static void s2io_ethtool_gregs(struct net_device
*dev
,
5425 struct ethtool_regs
*regs
, void *space
)
5429 u8
*reg_space
= (u8
*) space
;
5430 struct s2io_nic
*sp
= dev
->priv
;
5432 regs
->len
= XENA_REG_SPACE
;
5433 regs
->version
= sp
->pdev
->subsystem_device
;
5435 for (i
= 0; i
< regs
->len
; i
+= 8) {
5436 reg
= readq(sp
->bar0
+ i
);
5437 memcpy((reg_space
+ i
), ®
, 8);
5442 * s2io_phy_id - timer function that alternates adapter LED.
5443 * @data : address of the private member of the device structure, which
5444 * is a pointer to the s2io_nic structure, provided as an u32.
5445 * Description: This is actually the timer function that alternates the
5446 * adapter LED bit of the adapter control bit to set/reset every time on
5447 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5448 * once every second.
5450 static void s2io_phy_id(unsigned long data
)
5452 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5453 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5457 subid
= sp
->pdev
->subsystem_device
;
5458 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5459 ((subid
& 0xFF) >= 0x07)) {
5460 val64
= readq(&bar0
->gpio_control
);
5461 val64
^= GPIO_CTRL_GPIO_0
;
5462 writeq(val64
, &bar0
->gpio_control
);
5464 val64
= readq(&bar0
->adapter_control
);
5465 val64
^= ADAPTER_LED_ON
;
5466 writeq(val64
, &bar0
->adapter_control
);
5469 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5473 * s2io_ethtool_idnic - To physically identify the nic on the system.
5474 * @sp : private member of the device structure, which is a pointer to the
5475 * s2io_nic structure.
5476 * @id : pointer to the structure with identification parameters given by
5478 * Description: Used to physically identify the NIC on the system.
5479 * The Link LED will blink for a time specified by the user for
5481 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5482 * identification is possible only if it's link is up.
5484 * int , returns 0 on success
5487 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5489 u64 val64
= 0, last_gpio_ctrl_val
;
5490 struct s2io_nic
*sp
= dev
->priv
;
5491 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5494 subid
= sp
->pdev
->subsystem_device
;
5495 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5496 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5497 ((subid
& 0xFF) < 0x07)) {
5498 val64
= readq(&bar0
->adapter_control
);
5499 if (!(val64
& ADAPTER_CNTL_EN
)) {
5501 "Adapter Link down, cannot blink LED\n");
5505 if (sp
->id_timer
.function
== NULL
) {
5506 init_timer(&sp
->id_timer
);
5507 sp
->id_timer
.function
= s2io_phy_id
;
5508 sp
->id_timer
.data
= (unsigned long) sp
;
5510 mod_timer(&sp
->id_timer
, jiffies
);
5512 msleep_interruptible(data
* HZ
);
5514 msleep_interruptible(MAX_FLICKER_TIME
);
5515 del_timer_sync(&sp
->id_timer
);
5517 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5518 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5519 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5525 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5526 struct ethtool_ringparam
*ering
)
5528 struct s2io_nic
*sp
= dev
->priv
;
5529 int i
,tx_desc_count
=0,rx_desc_count
=0;
5531 if (sp
->rxd_mode
== RXD_MODE_1
)
5532 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5533 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5534 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5536 ering
->tx_max_pending
= MAX_TX_DESC
;
5537 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5538 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5540 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5541 ering
->tx_pending
= tx_desc_count
;
5543 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5544 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5546 ering
->rx_pending
= rx_desc_count
;
5548 ering
->rx_mini_max_pending
= 0;
5549 ering
->rx_mini_pending
= 0;
5550 if(sp
->rxd_mode
== RXD_MODE_1
)
5551 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5552 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5553 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5554 ering
->rx_jumbo_pending
= rx_desc_count
;
5558 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5559 * @sp : private member of the device structure, which is a pointer to the
5560 * s2io_nic structure.
5561 * @ep : pointer to the structure with pause parameters given by ethtool.
5563 * Returns the Pause frame generation and reception capability of the NIC.
5567 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5568 struct ethtool_pauseparam
*ep
)
5571 struct s2io_nic
*sp
= dev
->priv
;
5572 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5574 val64
= readq(&bar0
->rmac_pause_cfg
);
5575 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5576 ep
->tx_pause
= TRUE
;
5577 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5578 ep
->rx_pause
= TRUE
;
5579 ep
->autoneg
= FALSE
;
5583 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5584 * @sp : private member of the device structure, which is a pointer to the
5585 * s2io_nic structure.
5586 * @ep : pointer to the structure with pause parameters given by ethtool.
5588 * It can be used to set or reset Pause frame generation or reception
5589 * support of the NIC.
5591 * int, returns 0 on Success
5594 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5595 struct ethtool_pauseparam
*ep
)
5598 struct s2io_nic
*sp
= dev
->priv
;
5599 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5601 val64
= readq(&bar0
->rmac_pause_cfg
);
5603 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5605 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5607 val64
|= RMAC_PAUSE_RX_ENABLE
;
5609 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5610 writeq(val64
, &bar0
->rmac_pause_cfg
);
5615 * read_eeprom - reads 4 bytes of data from user given offset.
5616 * @sp : private member of the device structure, which is a pointer to the
5617 * s2io_nic structure.
5618 * @off : offset at which the data must be written
5619 * @data : Its an output parameter where the data read at the given
5622 * Will read 4 bytes of data from the user given offset and return the
5624 * NOTE: Will allow to read only part of the EEPROM visible through the
5627 * -1 on failure and 0 on success.
5630 #define S2IO_DEV_ID 5
5631 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5636 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5638 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5639 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5640 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5641 I2C_CONTROL_CNTL_START
;
5642 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5644 while (exit_cnt
< 5) {
5645 val64
= readq(&bar0
->i2c_control
);
5646 if (I2C_CONTROL_CNTL_END(val64
)) {
5647 *data
= I2C_CONTROL_GET_DATA(val64
);
5656 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5657 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5658 SPI_CONTROL_BYTECNT(0x3) |
5659 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5660 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5661 val64
|= SPI_CONTROL_REQ
;
5662 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5663 while (exit_cnt
< 5) {
5664 val64
= readq(&bar0
->spi_control
);
5665 if (val64
& SPI_CONTROL_NACK
) {
5668 } else if (val64
& SPI_CONTROL_DONE
) {
5669 *data
= readq(&bar0
->spi_data
);
5682 * write_eeprom - actually writes the relevant part of the data value.
5683 * @sp : private member of the device structure, which is a pointer to the
5684 * s2io_nic structure.
5685 * @off : offset at which the data must be written
5686 * @data : The data that is to be written
5687 * @cnt : Number of bytes of the data that are actually to be written into
5688 * the Eeprom. (max of 3)
5690 * Actually writes the relevant part of the data value into the Eeprom
5691 * through the I2C bus.
5693 * 0 on success, -1 on failure.
5696 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5698 int exit_cnt
= 0, ret
= -1;
5700 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5702 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5703 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5704 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5705 I2C_CONTROL_CNTL_START
;
5706 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5708 while (exit_cnt
< 5) {
5709 val64
= readq(&bar0
->i2c_control
);
5710 if (I2C_CONTROL_CNTL_END(val64
)) {
5711 if (!(val64
& I2C_CONTROL_NACK
))
5720 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5721 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5722 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5724 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5725 SPI_CONTROL_BYTECNT(write_cnt
) |
5726 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5727 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5728 val64
|= SPI_CONTROL_REQ
;
5729 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5730 while (exit_cnt
< 5) {
5731 val64
= readq(&bar0
->spi_control
);
5732 if (val64
& SPI_CONTROL_NACK
) {
5735 } else if (val64
& SPI_CONTROL_DONE
) {
5745 static void s2io_vpd_read(struct s2io_nic
*nic
)
5749 int i
=0, cnt
, fail
= 0;
5750 int vpd_addr
= 0x80;
5752 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5753 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5757 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5760 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5762 vpd_data
= kmalloc(256, GFP_KERNEL
);
5764 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5767 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5769 for (i
= 0; i
< 256; i
+=4 ) {
5770 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5771 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5772 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5773 for (cnt
= 0; cnt
<5; cnt
++) {
5775 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5780 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5784 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5785 (u32
*)&vpd_data
[i
]);
5789 /* read serial number of adapter */
5790 for (cnt
= 0; cnt
< 256; cnt
++) {
5791 if ((vpd_data
[cnt
] == 'S') &&
5792 (vpd_data
[cnt
+1] == 'N') &&
5793 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5794 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5795 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5802 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5803 memset(nic
->product_name
, 0, vpd_data
[1]);
5804 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5807 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5811 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5812 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5813 * @eeprom : pointer to the user level structure provided by ethtool,
5814 * containing all relevant information.
5815 * @data_buf : user defined value to be written into Eeprom.
5816 * Description: Reads the values stored in the Eeprom at given offset
5817 * for a given length. Stores these values int the input argument data
5818 * buffer 'data_buf' and returns these to the caller (ethtool.)
5823 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5824 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5828 struct s2io_nic
*sp
= dev
->priv
;
5830 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5832 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5833 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5835 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5836 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5837 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5841 memcpy((data_buf
+ i
), &valid
, 4);
5847 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5848 * @sp : private member of the device structure, which is a pointer to the
5849 * s2io_nic structure.
5850 * @eeprom : pointer to the user level structure provided by ethtool,
5851 * containing all relevant information.
5852 * @data_buf ; user defined value to be written into Eeprom.
5854 * Tries to write the user provided value in the Eeprom, at the offset
5855 * given by the user.
5857 * 0 on success, -EFAULT on failure.
5860 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5861 struct ethtool_eeprom
*eeprom
,
5864 int len
= eeprom
->len
, cnt
= 0;
5865 u64 valid
= 0, data
;
5866 struct s2io_nic
*sp
= dev
->priv
;
5868 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5870 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5871 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5877 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5879 valid
= (u32
) (data
<< 24);
5883 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5885 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5887 "write into the specified offset\n");
5898 * s2io_register_test - reads and writes into all clock domains.
5899 * @sp : private member of the device structure, which is a pointer to the
5900 * s2io_nic structure.
5901 * @data : variable that returns the result of each of the test conducted b
5904 * Read and write into all clock domains. The NIC has 3 clock domains,
5905 * see that registers in all the three regions are accessible.
5910 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5912 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5913 u64 val64
= 0, exp_val
;
5916 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5917 if (val64
!= 0x123456789abcdefULL
) {
5919 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5922 val64
= readq(&bar0
->rmac_pause_cfg
);
5923 if (val64
!= 0xc000ffff00000000ULL
) {
5925 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5928 val64
= readq(&bar0
->rx_queue_cfg
);
5929 if (sp
->device_type
== XFRAME_II_DEVICE
)
5930 exp_val
= 0x0404040404040404ULL
;
5932 exp_val
= 0x0808080808080808ULL
;
5933 if (val64
!= exp_val
) {
5935 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5938 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5939 if (val64
!= 0x000000001923141EULL
) {
5941 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5944 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5945 writeq(val64
, &bar0
->xmsi_data
);
5946 val64
= readq(&bar0
->xmsi_data
);
5947 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5949 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5952 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5953 writeq(val64
, &bar0
->xmsi_data
);
5954 val64
= readq(&bar0
->xmsi_data
);
5955 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5957 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5965 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5966 * @sp : private member of the device structure, which is a pointer to the
5967 * s2io_nic structure.
5968 * @data:variable that returns the result of each of the test conducted by
5971 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5977 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5980 u64 ret_data
, org_4F0
, org_7F0
;
5981 u8 saved_4F0
= 0, saved_7F0
= 0;
5982 struct net_device
*dev
= sp
->dev
;
5984 /* Test Write Error at offset 0 */
5985 /* Note that SPI interface allows write access to all areas
5986 * of EEPROM. Hence doing all negative testing only for Xframe I.
5988 if (sp
->device_type
== XFRAME_I_DEVICE
)
5989 if (!write_eeprom(sp
, 0, 0, 3))
5992 /* Save current values at offsets 0x4F0 and 0x7F0 */
5993 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5995 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5998 /* Test Write at offset 4f0 */
5999 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6001 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6004 if (ret_data
!= 0x012345) {
6005 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6006 "Data written %llx Data read %llx\n",
6007 dev
->name
, (unsigned long long)0x12345,
6008 (unsigned long long)ret_data
);
6012 /* Reset the EEPROM data go FFFF */
6013 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6015 /* Test Write Request Error at offset 0x7c */
6016 if (sp
->device_type
== XFRAME_I_DEVICE
)
6017 if (!write_eeprom(sp
, 0x07C, 0, 3))
6020 /* Test Write Request at offset 0x7f0 */
6021 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6023 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6026 if (ret_data
!= 0x012345) {
6027 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6028 "Data written %llx Data read %llx\n",
6029 dev
->name
, (unsigned long long)0x12345,
6030 (unsigned long long)ret_data
);
6034 /* Reset the EEPROM data go FFFF */
6035 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6037 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6038 /* Test Write Error at offset 0x80 */
6039 if (!write_eeprom(sp
, 0x080, 0, 3))
6042 /* Test Write Error at offset 0xfc */
6043 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6046 /* Test Write Error at offset 0x100 */
6047 if (!write_eeprom(sp
, 0x100, 0, 3))
6050 /* Test Write Error at offset 4ec */
6051 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6055 /* Restore values at offsets 0x4F0 and 0x7F0 */
6057 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6059 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6066 * s2io_bist_test - invokes the MemBist test of the card .
6067 * @sp : private member of the device structure, which is a pointer to the
6068 * s2io_nic structure.
6069 * @data:variable that returns the result of each of the test conducted by
6072 * This invokes the MemBist test of the card. We give around
6073 * 2 secs time for the Test to complete. If it's still not complete
6074 * within this peiod, we consider that the test failed.
6076 * 0 on success and -1 on failure.
6079 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
6082 int cnt
= 0, ret
= -1;
6084 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6085 bist
|= PCI_BIST_START
;
6086 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6089 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6090 if (!(bist
& PCI_BIST_START
)) {
6091 *data
= (bist
& PCI_BIST_CODE_MASK
);
6103 * s2io-link_test - verifies the link state of the nic
6104 * @sp ; private member of the device structure, which is a pointer to the
6105 * s2io_nic structure.
6106 * @data: variable that returns the result of each of the test conducted by
6109 * The function verifies the link state of the NIC and updates the input
6110 * argument 'data' appropriately.
6115 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
6117 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6120 val64
= readq(&bar0
->adapter_status
);
6121 if(!(LINK_IS_UP(val64
)))
6130 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6131 * @sp - private member of the device structure, which is a pointer to the
6132 * s2io_nic structure.
6133 * @data - variable that returns the result of each of the test
6134 * conducted by the driver.
6136 * This is one of the offline test that tests the read and write
6137 * access to the RldRam chip on the NIC.
6142 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
6144 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6146 int cnt
, iteration
= 0, test_fail
= 0;
6148 val64
= readq(&bar0
->adapter_control
);
6149 val64
&= ~ADAPTER_ECC_EN
;
6150 writeq(val64
, &bar0
->adapter_control
);
6152 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6153 val64
|= MC_RLDRAM_TEST_MODE
;
6154 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6156 val64
= readq(&bar0
->mc_rldram_mrs
);
6157 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6158 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6160 val64
|= MC_RLDRAM_MRS_ENABLE
;
6161 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6163 while (iteration
< 2) {
6164 val64
= 0x55555555aaaa0000ULL
;
6165 if (iteration
== 1) {
6166 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6168 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6170 val64
= 0xaaaa5a5555550000ULL
;
6171 if (iteration
== 1) {
6172 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6174 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6176 val64
= 0x55aaaaaaaa5a0000ULL
;
6177 if (iteration
== 1) {
6178 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6180 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6182 val64
= (u64
) (0x0000003ffffe0100ULL
);
6183 writeq(val64
, &bar0
->mc_rldram_test_add
);
6185 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6187 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6189 for (cnt
= 0; cnt
< 5; cnt
++) {
6190 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6191 if (val64
& MC_RLDRAM_TEST_DONE
)
6199 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6200 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6202 for (cnt
= 0; cnt
< 5; cnt
++) {
6203 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6204 if (val64
& MC_RLDRAM_TEST_DONE
)
6212 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6213 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6221 /* Bring the adapter out of test mode */
6222 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6228 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6229 * @sp : private member of the device structure, which is a pointer to the
6230 * s2io_nic structure.
6231 * @ethtest : pointer to a ethtool command specific structure that will be
6232 * returned to the user.
6233 * @data : variable that returns the result of each of the test
6234 * conducted by the driver.
6236 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6237 * the health of the card.
6242 static void s2io_ethtool_test(struct net_device
*dev
,
6243 struct ethtool_test
*ethtest
,
6246 struct s2io_nic
*sp
= dev
->priv
;
6247 int orig_state
= netif_running(sp
->dev
);
6249 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6250 /* Offline Tests. */
6252 s2io_close(sp
->dev
);
6254 if (s2io_register_test(sp
, &data
[0]))
6255 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6259 if (s2io_rldram_test(sp
, &data
[3]))
6260 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6264 if (s2io_eeprom_test(sp
, &data
[1]))
6265 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6267 if (s2io_bist_test(sp
, &data
[4]))
6268 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6278 "%s: is not up, cannot run test\n",
6287 if (s2io_link_test(sp
, &data
[2]))
6288 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6297 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6298 struct ethtool_stats
*estats
,
6302 struct s2io_nic
*sp
= dev
->priv
;
6303 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6305 s2io_updt_stats(sp
);
6307 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6308 le32_to_cpu(stat_info
->tmac_frms
);
6310 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6311 le32_to_cpu(stat_info
->tmac_data_octets
);
6312 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6314 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6315 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6317 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6318 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6319 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6321 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6322 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6324 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6325 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6327 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6328 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6330 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6331 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6332 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6333 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6335 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6336 le32_to_cpu(stat_info
->tmac_vld_ip
);
6338 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6339 le32_to_cpu(stat_info
->tmac_drop_ip
);
6341 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6342 le32_to_cpu(stat_info
->tmac_icmp
);
6344 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6345 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6346 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6347 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6348 le32_to_cpu(stat_info
->tmac_udp
);
6350 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6351 le32_to_cpu(stat_info
->rmac_vld_frms
);
6353 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6354 le32_to_cpu(stat_info
->rmac_data_octets
);
6355 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6356 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6358 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6359 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6361 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6362 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6363 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6364 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6365 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6366 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6367 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6369 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6370 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6372 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6373 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6375 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6376 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6378 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6379 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6381 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6382 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6383 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6384 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6386 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6387 le32_to_cpu(stat_info
->rmac_usized_frms
);
6389 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6390 le32_to_cpu(stat_info
->rmac_osized_frms
);
6392 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6393 le32_to_cpu(stat_info
->rmac_frag_frms
);
6395 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6396 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6397 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6398 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6399 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6400 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6401 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6402 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6404 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6405 le32_to_cpu(stat_info
->rmac_ip
);
6406 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6407 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6409 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6410 le32_to_cpu(stat_info
->rmac_drop_ip
);
6412 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6413 le32_to_cpu(stat_info
->rmac_icmp
);
6414 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6416 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6417 le32_to_cpu(stat_info
->rmac_udp
);
6419 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6420 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6421 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6422 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6423 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6424 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6425 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6426 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6427 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6428 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6429 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6430 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6431 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6432 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6433 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6434 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6435 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6436 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6437 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6439 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6440 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6441 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6442 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6444 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6445 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6446 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6447 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6448 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6449 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6450 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6451 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6452 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6453 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6454 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6455 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6456 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6457 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6458 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6459 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6460 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6461 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6462 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6463 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6464 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6466 /* Enhanced statistics exist only for Hercules */
6467 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6469 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6471 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6473 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6474 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6475 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6476 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6477 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6478 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6479 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6480 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6481 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6482 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6483 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6484 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6485 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6486 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6490 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6491 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6492 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6493 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6494 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6495 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6496 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6497 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6498 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6499 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6500 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6501 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6502 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6503 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6504 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6505 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6506 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6507 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6508 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6509 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6510 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6511 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6512 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6513 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6514 if (stat_info
->sw_stat
.num_aggregations
) {
6515 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6518 * Since 64-bit divide does not work on all platforms,
6519 * do repeated subtraction.
6521 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6522 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6525 tmp_stats
[i
++] = count
;
6529 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6530 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6531 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6532 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6533 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6534 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6535 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6536 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6537 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6539 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6540 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6541 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6542 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6543 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6545 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6546 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6547 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6548 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6549 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6550 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6551 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6552 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6553 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6554 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6555 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6556 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6557 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6558 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6559 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6560 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6561 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6562 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6563 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6564 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6565 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6566 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6567 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6568 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6569 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6570 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6573 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6575 return (XENA_REG_SPACE
);
6579 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6581 struct s2io_nic
*sp
= dev
->priv
;
6583 return (sp
->rx_csum
);
6586 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6588 struct s2io_nic
*sp
= dev
->priv
;
6598 static int s2io_get_eeprom_len(struct net_device
*dev
)
6600 return (XENA_EEPROM_SPACE
);
6603 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6605 struct s2io_nic
*sp
= dev
->priv
;
6609 return S2IO_TEST_LEN
;
6611 switch(sp
->device_type
) {
6612 case XFRAME_I_DEVICE
:
6613 return XFRAME_I_STAT_LEN
;
6614 case XFRAME_II_DEVICE
:
6615 return XFRAME_II_STAT_LEN
;
6624 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6625 u32 stringset
, u8
* data
)
6628 struct s2io_nic
*sp
= dev
->priv
;
6630 switch (stringset
) {
6632 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6635 stat_size
= sizeof(ethtool_xena_stats_keys
);
6636 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6637 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6638 memcpy(data
+ stat_size
,
6639 ðtool_enhanced_stats_keys
,
6640 sizeof(ethtool_enhanced_stats_keys
));
6641 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6644 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6645 sizeof(ethtool_driver_stats_keys
));
6649 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6652 dev
->features
|= NETIF_F_IP_CSUM
;
6654 dev
->features
&= ~NETIF_F_IP_CSUM
;
6659 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6661 return (dev
->features
& NETIF_F_TSO
) != 0;
6663 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6666 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6668 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6673 static const struct ethtool_ops netdev_ethtool_ops
= {
6674 .get_settings
= s2io_ethtool_gset
,
6675 .set_settings
= s2io_ethtool_sset
,
6676 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6677 .get_regs_len
= s2io_ethtool_get_regs_len
,
6678 .get_regs
= s2io_ethtool_gregs
,
6679 .get_link
= ethtool_op_get_link
,
6680 .get_eeprom_len
= s2io_get_eeprom_len
,
6681 .get_eeprom
= s2io_ethtool_geeprom
,
6682 .set_eeprom
= s2io_ethtool_seeprom
,
6683 .get_ringparam
= s2io_ethtool_gringparam
,
6684 .get_pauseparam
= s2io_ethtool_getpause_data
,
6685 .set_pauseparam
= s2io_ethtool_setpause_data
,
6686 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6687 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6688 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6689 .set_sg
= ethtool_op_set_sg
,
6690 .get_tso
= s2io_ethtool_op_get_tso
,
6691 .set_tso
= s2io_ethtool_op_set_tso
,
6692 .set_ufo
= ethtool_op_set_ufo
,
6693 .self_test
= s2io_ethtool_test
,
6694 .get_strings
= s2io_ethtool_get_strings
,
6695 .phys_id
= s2io_ethtool_idnic
,
6696 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6697 .get_sset_count
= s2io_get_sset_count
,
6701 * s2io_ioctl - Entry point for the Ioctl
6702 * @dev : Device pointer.
6703 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6704 * a proprietary structure used to pass information to the driver.
6705 * @cmd : This is used to distinguish between the different commands that
6706 * can be passed to the IOCTL functions.
6708 * Currently there are no special functionality supported in IOCTL, hence
6709 * function always return EOPNOTSUPPORTED
6712 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6718 * s2io_change_mtu - entry point to change MTU size for the device.
6719 * @dev : device pointer.
6720 * @new_mtu : the new MTU size for the device.
6721 * Description: A driver entry point to change MTU size for the device.
6722 * Before changing the MTU the device must be stopped.
6724 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6728 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6730 struct s2io_nic
*sp
= dev
->priv
;
6733 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6734 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6740 if (netif_running(dev
)) {
6741 s2io_stop_all_tx_queue(sp
);
6743 ret
= s2io_card_up(sp
);
6745 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6749 s2io_wake_all_tx_queue(sp
);
6750 } else { /* Device is down */
6751 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6752 u64 val64
= new_mtu
;
6754 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6761 * s2io_set_link - Set the LInk status
6762 * @data: long pointer to device private structue
6763 * Description: Sets the link status for the adapter
6766 static void s2io_set_link(struct work_struct
*work
)
6768 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6769 struct net_device
*dev
= nic
->dev
;
6770 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6776 if (!netif_running(dev
))
6779 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6780 /* The card is being reset, no point doing anything */
6784 subid
= nic
->pdev
->subsystem_device
;
6785 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6787 * Allow a small delay for the NICs self initiated
6788 * cleanup to complete.
6793 val64
= readq(&bar0
->adapter_status
);
6794 if (LINK_IS_UP(val64
)) {
6795 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6796 if (verify_xena_quiescence(nic
)) {
6797 val64
= readq(&bar0
->adapter_control
);
6798 val64
|= ADAPTER_CNTL_EN
;
6799 writeq(val64
, &bar0
->adapter_control
);
6800 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6801 nic
->device_type
, subid
)) {
6802 val64
= readq(&bar0
->gpio_control
);
6803 val64
|= GPIO_CTRL_GPIO_0
;
6804 writeq(val64
, &bar0
->gpio_control
);
6805 val64
= readq(&bar0
->gpio_control
);
6807 val64
|= ADAPTER_LED_ON
;
6808 writeq(val64
, &bar0
->adapter_control
);
6810 nic
->device_enabled_once
= TRUE
;
6812 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6813 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6814 s2io_stop_all_tx_queue(nic
);
6817 val64
= readq(&bar0
->adapter_control
);
6818 val64
|= ADAPTER_LED_ON
;
6819 writeq(val64
, &bar0
->adapter_control
);
6820 s2io_link(nic
, LINK_UP
);
6822 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6824 val64
= readq(&bar0
->gpio_control
);
6825 val64
&= ~GPIO_CTRL_GPIO_0
;
6826 writeq(val64
, &bar0
->gpio_control
);
6827 val64
= readq(&bar0
->gpio_control
);
6830 val64
= readq(&bar0
->adapter_control
);
6831 val64
= val64
&(~ADAPTER_LED_ON
);
6832 writeq(val64
, &bar0
->adapter_control
);
6833 s2io_link(nic
, LINK_DOWN
);
6835 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6841 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6843 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6844 u64
*temp2
, int size
)
6846 struct net_device
*dev
= sp
->dev
;
6847 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6849 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6850 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6853 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6855 * As Rx frame are not going to be processed,
6856 * using same mapped address for the Rxd
6859 rxdp1
->Buffer0_ptr
= *temp0
;
6861 *skb
= dev_alloc_skb(size
);
6863 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6864 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6865 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6866 sp
->mac_control
.stats_info
->sw_stat
. \
6867 mem_alloc_fail_cnt
++;
6870 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6871 += (*skb
)->truesize
;
6872 /* storing the mapped addr in a temp variable
6873 * such it will be used for next rxd whose
6874 * Host Control is NULL
6876 rxdp1
->Buffer0_ptr
= *temp0
=
6877 pci_map_single( sp
->pdev
, (*skb
)->data
,
6878 size
- NET_IP_ALIGN
,
6879 PCI_DMA_FROMDEVICE
);
6880 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6881 goto memalloc_failed
;
6882 rxdp
->Host_Control
= (unsigned long) (*skb
);
6884 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6885 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6886 /* Two buffer Mode */
6888 rxdp3
->Buffer2_ptr
= *temp2
;
6889 rxdp3
->Buffer0_ptr
= *temp0
;
6890 rxdp3
->Buffer1_ptr
= *temp1
;
6892 *skb
= dev_alloc_skb(size
);
6894 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6895 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6896 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6897 sp
->mac_control
.stats_info
->sw_stat
. \
6898 mem_alloc_fail_cnt
++;
6901 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6902 += (*skb
)->truesize
;
6903 rxdp3
->Buffer2_ptr
= *temp2
=
6904 pci_map_single(sp
->pdev
, (*skb
)->data
,
6906 PCI_DMA_FROMDEVICE
);
6907 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6908 goto memalloc_failed
;
6909 rxdp3
->Buffer0_ptr
= *temp0
=
6910 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6911 PCI_DMA_FROMDEVICE
);
6912 if (pci_dma_mapping_error(sp
->pdev
,
6913 rxdp3
->Buffer0_ptr
)) {
6914 pci_unmap_single (sp
->pdev
,
6915 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6916 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6917 goto memalloc_failed
;
6919 rxdp
->Host_Control
= (unsigned long) (*skb
);
6921 /* Buffer-1 will be dummy buffer not used */
6922 rxdp3
->Buffer1_ptr
= *temp1
=
6923 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6924 PCI_DMA_FROMDEVICE
);
6925 if (pci_dma_mapping_error(sp
->pdev
,
6926 rxdp3
->Buffer1_ptr
)) {
6927 pci_unmap_single (sp
->pdev
,
6928 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6929 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6930 pci_unmap_single (sp
->pdev
,
6931 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6932 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6933 goto memalloc_failed
;
6939 stats
->pci_map_fail_cnt
++;
6940 stats
->mem_freed
+= (*skb
)->truesize
;
6941 dev_kfree_skb(*skb
);
6945 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6948 struct net_device
*dev
= sp
->dev
;
6949 if (sp
->rxd_mode
== RXD_MODE_1
) {
6950 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6951 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6952 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6953 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6954 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6958 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6960 int i
, j
, k
, blk_cnt
= 0, size
;
6961 struct mac_info
* mac_control
= &sp
->mac_control
;
6962 struct config_param
*config
= &sp
->config
;
6963 struct net_device
*dev
= sp
->dev
;
6964 struct RxD_t
*rxdp
= NULL
;
6965 struct sk_buff
*skb
= NULL
;
6966 struct buffAdd
*ba
= NULL
;
6967 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6969 /* Calculate the size based on ring mode */
6970 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6971 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6972 if (sp
->rxd_mode
== RXD_MODE_1
)
6973 size
+= NET_IP_ALIGN
;
6974 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6975 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6977 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6978 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6979 (rxd_count
[sp
->rxd_mode
] +1);
6981 for (j
= 0; j
< blk_cnt
; j
++) {
6982 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6983 rxdp
= mac_control
->rings
[i
].
6984 rx_blocks
[j
].rxds
[k
].virt_addr
;
6985 if(sp
->rxd_mode
== RXD_MODE_3B
)
6986 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6987 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6988 &skb
,(u64
*)&temp0_64
,
6995 set_rxd_buffer_size(sp
, rxdp
, size
);
6997 /* flip the Ownership bit to Hardware */
6998 rxdp
->Control_1
|= RXD_OWN_XENA
;
7006 static int s2io_add_isr(struct s2io_nic
* sp
)
7009 struct net_device
*dev
= sp
->dev
;
7012 if (sp
->config
.intr_type
== MSI_X
)
7013 ret
= s2io_enable_msi_x(sp
);
7015 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7016 sp
->config
.intr_type
= INTA
;
7019 /* Store the values of the MSIX table in the struct s2io_nic structure */
7020 store_xmsi_data(sp
);
7022 /* After proper initialization of H/W, register ISR */
7023 if (sp
->config
.intr_type
== MSI_X
) {
7024 int i
, msix_rx_cnt
= 0;
7026 for (i
= 0; i
< sp
->num_entries
; i
++) {
7027 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7028 if (sp
->s2io_entries
[i
].type
==
7030 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7032 err
= request_irq(sp
->entries
[i
].vector
,
7033 s2io_msix_ring_handle
, 0,
7035 sp
->s2io_entries
[i
].arg
);
7036 } else if (sp
->s2io_entries
[i
].type
==
7038 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7040 err
= request_irq(sp
->entries
[i
].vector
,
7041 s2io_msix_fifo_handle
, 0,
7043 sp
->s2io_entries
[i
].arg
);
7046 /* if either data or addr is zero print it. */
7047 if (!(sp
->msix_info
[i
].addr
&&
7048 sp
->msix_info
[i
].data
)) {
7050 "%s @Addr:0x%llx Data:0x%llx\n",
7052 (unsigned long long)
7053 sp
->msix_info
[i
].addr
,
7054 (unsigned long long)
7055 ntohl(sp
->msix_info
[i
].data
));
7059 remove_msix_isr(sp
);
7062 "%s:MSI-X-%d registration "
7063 "failed\n", dev
->name
, i
);
7066 "%s: Defaulting to INTA\n",
7068 sp
->config
.intr_type
= INTA
;
7071 sp
->s2io_entries
[i
].in_use
=
7072 MSIX_REGISTERED_SUCCESS
;
7076 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
7078 DBG_PRINT(INFO_DBG
, "MSI-X-TX entries enabled"
7079 " through alarm vector\n");
7082 if (sp
->config
.intr_type
== INTA
) {
7083 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7086 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7093 static void s2io_rem_isr(struct s2io_nic
* sp
)
7095 if (sp
->config
.intr_type
== MSI_X
)
7096 remove_msix_isr(sp
);
7098 remove_inta_isr(sp
);
7101 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
7104 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7105 register u64 val64
= 0;
7106 struct config_param
*config
;
7107 config
= &sp
->config
;
7109 if (!is_s2io_card_up(sp
))
7112 del_timer_sync(&sp
->alarm_timer
);
7113 /* If s2io_set_link task is executing, wait till it completes. */
7114 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7117 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7120 if (sp
->config
.napi
) {
7122 if (config
->intr_type
== MSI_X
) {
7123 for (; off
< sp
->config
.rx_ring_num
; off
++)
7124 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7127 napi_disable(&sp
->napi
);
7130 /* disable Tx and Rx traffic on the NIC */
7136 /* stop the tx queue, indicate link down */
7137 s2io_link(sp
, LINK_DOWN
);
7139 /* Check if the device is Quiescent and then Reset the NIC */
7141 /* As per the HW requirement we need to replenish the
7142 * receive buffer to avoid the ring bump. Since there is
7143 * no intention of processing the Rx frame at this pointwe are
7144 * just settting the ownership bit of rxd in Each Rx
7145 * ring to HW and set the appropriate buffer size
7146 * based on the ring mode
7148 rxd_owner_bit_reset(sp
);
7150 val64
= readq(&bar0
->adapter_status
);
7151 if (verify_xena_quiescence(sp
)) {
7152 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7160 "s2io_close:Device not Quiescent ");
7161 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7162 (unsigned long long) val64
);
7169 /* Free all Tx buffers */
7170 free_tx_buffers(sp
);
7172 /* Free all Rx buffers */
7173 free_rx_buffers(sp
);
7175 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7178 static void s2io_card_down(struct s2io_nic
* sp
)
7180 do_s2io_card_down(sp
, 1);
7183 static int s2io_card_up(struct s2io_nic
* sp
)
7186 struct mac_info
*mac_control
;
7187 struct config_param
*config
;
7188 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7191 /* Initialize the H/W I/O registers */
7194 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7202 * Initializing the Rx buffers. For now we are considering only 1
7203 * Rx ring and initializing buffers into 30 Rx blocks
7205 mac_control
= &sp
->mac_control
;
7206 config
= &sp
->config
;
7208 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7209 mac_control
->rings
[i
].mtu
= dev
->mtu
;
7210 ret
= fill_rx_buffers(sp
, &mac_control
->rings
[i
], 1);
7212 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7215 free_rx_buffers(sp
);
7218 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7219 mac_control
->rings
[i
].rx_bufs_left
);
7222 /* Initialise napi */
7225 if (config
->intr_type
== MSI_X
) {
7226 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7227 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7229 napi_enable(&sp
->napi
);
7233 /* Maintain the state prior to the open */
7234 if (sp
->promisc_flg
)
7235 sp
->promisc_flg
= 0;
7236 if (sp
->m_cast_flg
) {
7238 sp
->all_multi_pos
= 0;
7241 /* Setting its receive mode */
7242 s2io_set_multicast(dev
);
7245 /* Initialize max aggregatable pkts per session based on MTU */
7246 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7247 /* Check if we can use(if specified) user provided value */
7248 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7249 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7252 /* Enable Rx Traffic and interrupts on the NIC */
7253 if (start_nic(sp
)) {
7254 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7256 free_rx_buffers(sp
);
7260 /* Add interrupt service routine */
7261 if (s2io_add_isr(sp
) != 0) {
7262 if (sp
->config
.intr_type
== MSI_X
)
7265 free_rx_buffers(sp
);
7269 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7271 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7273 /* Enable select interrupts */
7274 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7275 if (sp
->config
.intr_type
!= INTA
) {
7276 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7277 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7279 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7280 interruptible
|= TX_PIC_INTR
;
7281 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7288 * s2io_restart_nic - Resets the NIC.
7289 * @data : long pointer to the device private structure
7291 * This function is scheduled to be run by the s2io_tx_watchdog
7292 * function after 0.5 secs to reset the NIC. The idea is to reduce
7293 * the run time of the watch dog routine which is run holding a
7297 static void s2io_restart_nic(struct work_struct
*work
)
7299 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7300 struct net_device
*dev
= sp
->dev
;
7304 if (!netif_running(dev
))
7308 if (s2io_card_up(sp
)) {
7309 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7312 s2io_wake_all_tx_queue(sp
);
7313 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7320 * s2io_tx_watchdog - Watchdog for transmit side.
7321 * @dev : Pointer to net device structure
7323 * This function is triggered if the Tx Queue is stopped
7324 * for a pre-defined amount of time when the Interface is still up.
7325 * If the Interface is jammed in such a situation, the hardware is
7326 * reset (by s2io_close) and restarted again (by s2io_open) to
7327 * overcome any problem that might have been caused in the hardware.
7332 static void s2io_tx_watchdog(struct net_device
*dev
)
7334 struct s2io_nic
*sp
= dev
->priv
;
7336 if (netif_carrier_ok(dev
)) {
7337 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7338 schedule_work(&sp
->rst_timer_task
);
7339 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7344 * rx_osm_handler - To perform some OS related operations on SKB.
7345 * @sp: private member of the device structure,pointer to s2io_nic structure.
7346 * @skb : the socket buffer pointer.
7347 * @len : length of the packet
7348 * @cksum : FCS checksum of the frame.
7349 * @ring_no : the ring from which this RxD was extracted.
7351 * This function is called by the Rx interrupt serivce routine to perform
7352 * some OS related operations on the SKB before passing it to the upper
7353 * layers. It mainly checks if the checksum is OK, if so adds it to the
7354 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7355 * to the upper layer. If the checksum is wrong, it increments the Rx
7356 * packet error count, frees the SKB and returns error.
7358 * SUCCESS on success and -1 on failure.
7360 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7362 struct s2io_nic
*sp
= ring_data
->nic
;
7363 struct net_device
*dev
= (struct net_device
*) ring_data
->dev
;
7364 struct sk_buff
*skb
= (struct sk_buff
*)
7365 ((unsigned long) rxdp
->Host_Control
);
7366 int ring_no
= ring_data
->ring_no
;
7367 u16 l3_csum
, l4_csum
;
7368 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7375 /* Check for parity error */
7377 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7379 err_mask
= err
>> 48;
7382 sp
->mac_control
.stats_info
->sw_stat
.
7383 rx_parity_err_cnt
++;
7387 sp
->mac_control
.stats_info
->sw_stat
.
7392 sp
->mac_control
.stats_info
->sw_stat
.
7393 rx_parity_abort_cnt
++;
7397 sp
->mac_control
.stats_info
->sw_stat
.
7402 sp
->mac_control
.stats_info
->sw_stat
.
7407 sp
->mac_control
.stats_info
->sw_stat
.
7412 sp
->mac_control
.stats_info
->sw_stat
.
7413 rx_buf_size_err_cnt
++;
7417 sp
->mac_control
.stats_info
->sw_stat
.
7418 rx_rxd_corrupt_cnt
++;
7422 sp
->mac_control
.stats_info
->sw_stat
.
7427 * Drop the packet if bad transfer code. Exception being
7428 * 0x5, which could be due to unsupported IPv6 extension header.
7429 * In this case, we let stack handle the packet.
7430 * Note that in this case, since checksum will be incorrect,
7431 * stack will validate the same.
7433 if (err_mask
!= 0x5) {
7434 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7435 dev
->name
, err_mask
);
7436 dev
->stats
.rx_crc_errors
++;
7437 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7440 ring_data
->rx_bufs_left
-= 1;
7441 rxdp
->Host_Control
= 0;
7446 /* Updating statistics */
7447 ring_data
->rx_packets
++;
7448 rxdp
->Host_Control
= 0;
7449 if (sp
->rxd_mode
== RXD_MODE_1
) {
7450 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7452 ring_data
->rx_bytes
+= len
;
7455 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7456 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7457 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7458 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7459 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7460 unsigned char *buff
= skb_push(skb
, buf0_len
);
7462 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7463 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7464 memcpy(buff
, ba
->ba_0
, buf0_len
);
7465 skb_put(skb
, buf2_len
);
7468 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!ring_data
->lro
) ||
7469 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7471 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7472 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7473 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7475 * NIC verifies if the Checksum of the received
7476 * frame is Ok or not and accordingly returns
7477 * a flag in the RxD.
7479 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7480 if (ring_data
->lro
) {
7485 ret
= s2io_club_tcp_session(ring_data
,
7486 skb
->data
, &tcp
, &tcp_len
, &lro
,
7489 case 3: /* Begin anew */
7492 case 1: /* Aggregate */
7494 lro_append_pkt(sp
, lro
,
7498 case 4: /* Flush session */
7500 lro_append_pkt(sp
, lro
,
7502 queue_rx_frame(lro
->parent
,
7504 clear_lro_session(lro
);
7505 sp
->mac_control
.stats_info
->
7506 sw_stat
.flush_max_pkts
++;
7509 case 2: /* Flush both */
7510 lro
->parent
->data_len
=
7512 sp
->mac_control
.stats_info
->
7513 sw_stat
.sending_both
++;
7514 queue_rx_frame(lro
->parent
,
7516 clear_lro_session(lro
);
7518 case 0: /* sessions exceeded */
7519 case -1: /* non-TCP or not
7523 * First pkt in session not
7524 * L3/L4 aggregatable
7529 "%s: Samadhana!!\n",
7536 * Packet with erroneous checksum, let the
7537 * upper layers deal with it.
7539 skb
->ip_summed
= CHECKSUM_NONE
;
7542 skb
->ip_summed
= CHECKSUM_NONE
;
7544 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7546 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7547 dev
->last_rx
= jiffies
;
7549 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7554 * s2io_link - stops/starts the Tx queue.
7555 * @sp : private member of the device structure, which is a pointer to the
7556 * s2io_nic structure.
7557 * @link : inidicates whether link is UP/DOWN.
7559 * This function stops/starts the Tx queue depending on whether the link
7560 * status of the NIC is is down or up. This is called by the Alarm
7561 * interrupt handler whenever a link change interrupt comes up.
7566 static void s2io_link(struct s2io_nic
* sp
, int link
)
7568 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7570 if (link
!= sp
->last_link_state
) {
7572 if (link
== LINK_DOWN
) {
7573 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7574 s2io_stop_all_tx_queue(sp
);
7575 netif_carrier_off(dev
);
7576 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7577 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7578 jiffies
- sp
->start_time
;
7579 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7581 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7582 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7583 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7584 jiffies
- sp
->start_time
;
7585 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7586 netif_carrier_on(dev
);
7587 s2io_wake_all_tx_queue(sp
);
7590 sp
->last_link_state
= link
;
7591 sp
->start_time
= jiffies
;
7595 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7596 * @sp : private member of the device structure, which is a pointer to the
7597 * s2io_nic structure.
7599 * This function initializes a few of the PCI and PCI-X configuration registers
7600 * with recommended values.
7605 static void s2io_init_pci(struct s2io_nic
* sp
)
7607 u16 pci_cmd
= 0, pcix_cmd
= 0;
7609 /* Enable Data Parity Error Recovery in PCI-X command register. */
7610 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7612 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7614 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7617 /* Set the PErr Response bit in PCI command register. */
7618 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7619 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7620 (pci_cmd
| PCI_COMMAND_PARITY
));
7621 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7624 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7627 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7628 (tx_fifo_num
< 1)) {
7629 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7630 "(%d) not supported\n", tx_fifo_num
);
7632 if (tx_fifo_num
< 1)
7635 tx_fifo_num
= MAX_TX_FIFOS
;
7637 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7638 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7642 *dev_multiq
= multiq
;
7644 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7645 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7647 "s2io: Tx steering is not supported with "
7648 "one fifo. Disabling Tx steering.\n");
7649 tx_steering_type
= NO_STEERING
;
7652 if ((tx_steering_type
< NO_STEERING
) ||
7653 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7654 DBG_PRINT(ERR_DBG
, "s2io: Requested transmit steering not "
7656 DBG_PRINT(ERR_DBG
, "s2io: Disabling transmit steering\n");
7657 tx_steering_type
= NO_STEERING
;
7660 if (rx_ring_num
> MAX_RX_RINGS
) {
7661 DBG_PRINT(ERR_DBG
, "s2io: Requested number of rx rings not "
7663 DBG_PRINT(ERR_DBG
, "s2io: Default to %d rx rings\n",
7665 rx_ring_num
= MAX_RX_RINGS
;
7668 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7669 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7670 "Defaulting to INTA\n");
7671 *dev_intr_type
= INTA
;
7674 if ((*dev_intr_type
== MSI_X
) &&
7675 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7676 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7677 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7678 "Defaulting to INTA\n");
7679 *dev_intr_type
= INTA
;
7682 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7683 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7684 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7691 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7692 * or Traffic class respectively.
7693 * @nic: device private variable
7694 * Description: The function configures the receive steering to
7695 * desired receive ring.
7696 * Return Value: SUCCESS on success and
7697 * '-1' on failure (endian settings incorrect).
7699 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7701 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7702 register u64 val64
= 0;
7704 if (ds_codepoint
> 63)
7707 val64
= RTS_DS_MEM_DATA(ring
);
7708 writeq(val64
, &bar0
->rts_ds_mem_data
);
7710 val64
= RTS_DS_MEM_CTRL_WE
|
7711 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7712 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7714 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7716 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7717 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7722 * s2io_init_nic - Initialization of the adapter .
7723 * @pdev : structure containing the PCI related information of the device.
7724 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7726 * The function initializes an adapter identified by the pci_dec structure.
7727 * All OS related initialization including memory and device structure and
7728 * initlaization of the device private variable is done. Also the swapper
7729 * control register is initialized to enable read and write into the I/O
7730 * registers of the device.
7732 * returns 0 on success and negative on failure.
7735 static int __devinit
7736 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7738 struct s2io_nic
*sp
;
7739 struct net_device
*dev
;
7741 int dma_flag
= FALSE
;
7742 u32 mac_up
, mac_down
;
7743 u64 val64
= 0, tmp64
= 0;
7744 struct XENA_dev_config __iomem
*bar0
= NULL
;
7746 struct mac_info
*mac_control
;
7747 struct config_param
*config
;
7749 u8 dev_intr_type
= intr_type
;
7751 DECLARE_MAC_BUF(mac
);
7753 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7757 if ((ret
= pci_enable_device(pdev
))) {
7759 "s2io_init_nic: pci_enable_device failed\n");
7763 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7764 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7766 if (pci_set_consistent_dma_mask
7767 (pdev
, DMA_64BIT_MASK
)) {
7769 "Unable to obtain 64bit DMA for \
7770 consistent allocations\n");
7771 pci_disable_device(pdev
);
7774 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7775 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7777 pci_disable_device(pdev
);
7780 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7781 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __func__
, ret
);
7782 pci_disable_device(pdev
);
7786 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7788 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7790 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7791 pci_disable_device(pdev
);
7792 pci_release_regions(pdev
);
7796 pci_set_master(pdev
);
7797 pci_set_drvdata(pdev
, dev
);
7798 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7800 /* Private member variable initialized to s2io NIC structure */
7802 memset(sp
, 0, sizeof(struct s2io_nic
));
7805 sp
->high_dma_flag
= dma_flag
;
7806 sp
->device_enabled_once
= FALSE
;
7807 if (rx_ring_mode
== 1)
7808 sp
->rxd_mode
= RXD_MODE_1
;
7809 if (rx_ring_mode
== 2)
7810 sp
->rxd_mode
= RXD_MODE_3B
;
7812 sp
->config
.intr_type
= dev_intr_type
;
7814 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7815 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7816 sp
->device_type
= XFRAME_II_DEVICE
;
7818 sp
->device_type
= XFRAME_I_DEVICE
;
7820 sp
->lro
= lro_enable
;
7822 /* Initialize some PCI/PCI-X fields of the NIC. */
7826 * Setting the device configuration parameters.
7827 * Most of these parameters can be specified by the user during
7828 * module insertion as they are module loadable parameters. If
7829 * these parameters are not not specified during load time, they
7830 * are initialized with default values.
7832 mac_control
= &sp
->mac_control
;
7833 config
= &sp
->config
;
7835 config
->napi
= napi
;
7836 config
->tx_steering_type
= tx_steering_type
;
7838 /* Tx side parameters. */
7839 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7840 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7842 config
->tx_fifo_num
= tx_fifo_num
;
7844 /* Initialize the fifos used for tx steering */
7845 if (config
->tx_fifo_num
< 5) {
7846 if (config
->tx_fifo_num
== 1)
7847 sp
->total_tcp_fifos
= 1;
7849 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7850 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7851 sp
->total_udp_fifos
= 1;
7852 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7854 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7855 FIFO_OTHER_MAX_NUM
);
7856 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7857 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7858 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7861 config
->multiq
= dev_multiq
;
7862 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7863 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7864 config
->tx_cfg
[i
].fifo_priority
= i
;
7867 /* mapping the QoS priority to the configured fifos */
7868 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7869 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7871 /* map the hashing selector table to the configured fifos */
7872 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7873 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7876 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7877 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7878 config
->tx_cfg
[i
].f_no_snoop
=
7879 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7880 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7881 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7885 /* + 2 because one Txd for skb->data and one Txd for UFO */
7886 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7888 /* Rx side parameters. */
7889 config
->rx_ring_num
= rx_ring_num
;
7890 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7891 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7892 (rxd_count
[sp
->rxd_mode
] + 1);
7893 config
->rx_cfg
[i
].ring_priority
= i
;
7894 mac_control
->rings
[i
].rx_bufs_left
= 0;
7895 mac_control
->rings
[i
].rxd_mode
= sp
->rxd_mode
;
7896 mac_control
->rings
[i
].rxd_count
= rxd_count
[sp
->rxd_mode
];
7897 mac_control
->rings
[i
].pdev
= sp
->pdev
;
7898 mac_control
->rings
[i
].dev
= sp
->dev
;
7901 for (i
= 0; i
< rx_ring_num
; i
++) {
7902 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7903 config
->rx_cfg
[i
].f_no_snoop
=
7904 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7907 /* Setting Mac Control parameters */
7908 mac_control
->rmac_pause_time
= rmac_pause_time
;
7909 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7910 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7913 /* initialize the shared memory used by the NIC and the host */
7914 if (init_shared_mem(sp
)) {
7915 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7918 goto mem_alloc_failed
;
7921 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7922 pci_resource_len(pdev
, 0));
7924 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7927 goto bar0_remap_failed
;
7930 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7931 pci_resource_len(pdev
, 2));
7933 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7936 goto bar1_remap_failed
;
7939 dev
->irq
= pdev
->irq
;
7940 dev
->base_addr
= (unsigned long) sp
->bar0
;
7942 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7943 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7944 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7945 (sp
->bar1
+ (j
* 0x00020000));
7948 /* Driver entry points */
7949 dev
->open
= &s2io_open
;
7950 dev
->stop
= &s2io_close
;
7951 dev
->hard_start_xmit
= &s2io_xmit
;
7952 dev
->get_stats
= &s2io_get_stats
;
7953 dev
->set_multicast_list
= &s2io_set_multicast
;
7954 dev
->do_ioctl
= &s2io_ioctl
;
7955 dev
->set_mac_address
= &s2io_set_mac_addr
;
7956 dev
->change_mtu
= &s2io_change_mtu
;
7957 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7958 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7959 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7960 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
7963 * will use eth_mac_addr() for dev->set_mac_address
7964 * mac address will be set every time dev->open() is called
7966 #ifdef CONFIG_NET_POLL_CONTROLLER
7967 dev
->poll_controller
= s2io_netpoll
;
7970 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7971 if (sp
->high_dma_flag
== TRUE
)
7972 dev
->features
|= NETIF_F_HIGHDMA
;
7973 dev
->features
|= NETIF_F_TSO
;
7974 dev
->features
|= NETIF_F_TSO6
;
7975 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7976 dev
->features
|= NETIF_F_UFO
;
7977 dev
->features
|= NETIF_F_HW_CSUM
;
7979 dev
->tx_timeout
= &s2io_tx_watchdog
;
7980 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7981 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7982 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7984 pci_save_state(sp
->pdev
);
7986 /* Setting swapper control on the NIC, for proper reset operation */
7987 if (s2io_set_swapper(sp
)) {
7988 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7991 goto set_swap_failed
;
7994 /* Verify if the Herc works on the slot its placed into */
7995 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7996 mode
= s2io_verify_pci_mode(sp
);
7998 DBG_PRINT(ERR_DBG
, "%s: ", __func__
);
7999 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8001 goto set_swap_failed
;
8005 if (sp
->config
.intr_type
== MSI_X
) {
8006 sp
->num_entries
= config
->rx_ring_num
+ 1;
8007 ret
= s2io_enable_msi_x(sp
);
8010 ret
= s2io_test_msi(sp
);
8011 /* rollback MSI-X, will re-enable during add_isr() */
8012 remove_msix_isr(sp
);
8017 "%s: MSI-X requested but failed to enable\n",
8019 sp
->config
.intr_type
= INTA
;
8023 if (config
->intr_type
== MSI_X
) {
8024 for (i
= 0; i
< config
->rx_ring_num
; i
++)
8025 netif_napi_add(dev
, &mac_control
->rings
[i
].napi
,
8026 s2io_poll_msix
, 64);
8028 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8031 /* Not needed for Herc */
8032 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8034 * Fix for all "FFs" MAC address problems observed on
8037 fix_mac_address(sp
);
8042 * MAC address initialization.
8043 * For now only one mac address will be read and used.
8046 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8047 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8048 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8049 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8050 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
8051 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8052 mac_down
= (u32
) tmp64
;
8053 mac_up
= (u32
) (tmp64
>> 32);
8055 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8056 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8057 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8058 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8059 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8060 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8062 /* Set the factory defined MAC address initially */
8063 dev
->addr_len
= ETH_ALEN
;
8064 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8065 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8067 /* initialize number of multicast & unicast MAC entries variables */
8068 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8069 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8070 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8071 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8072 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8073 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8074 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8075 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8078 /* store mac addresses from CAM to s2io_nic structure */
8079 do_s2io_store_unicast_mc(sp
);
8081 /* Configure MSIX vector for number of rings configured plus one */
8082 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8083 (config
->intr_type
== MSI_X
))
8084 sp
->num_entries
= config
->rx_ring_num
+ 1;
8086 /* Store the values of the MSIX table in the s2io_nic structure */
8087 store_xmsi_data(sp
);
8088 /* reset Nic and bring it to known state */
8092 * Initialize link state flags
8093 * and the card state parameter
8097 /* Initialize spinlocks */
8098 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8099 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
8102 * SXE-002: Configure link and activity LED to init state
8105 subid
= sp
->pdev
->subsystem_device
;
8106 if ((subid
& 0xFF) >= 0x07) {
8107 val64
= readq(&bar0
->gpio_control
);
8108 val64
|= 0x0000800000000000ULL
;
8109 writeq(val64
, &bar0
->gpio_control
);
8110 val64
= 0x0411040400000000ULL
;
8111 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
8112 val64
= readq(&bar0
->gpio_control
);
8115 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8117 if (register_netdev(dev
)) {
8118 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8120 goto register_failed
;
8123 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8124 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
8125 sp
->product_name
, pdev
->revision
);
8126 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8127 s2io_driver_version
);
8128 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
8129 dev
->name
, print_mac(mac
, dev
->dev_addr
));
8130 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
8131 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8132 mode
= s2io_print_pci_mode(sp
);
8134 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8136 unregister_netdev(dev
);
8137 goto set_swap_failed
;
8140 switch(sp
->rxd_mode
) {
8142 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8146 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8151 switch (sp
->config
.napi
) {
8153 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8156 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8160 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8161 sp
->config
.tx_fifo_num
);
8163 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8164 sp
->config
.rx_ring_num
);
8166 switch(sp
->config
.intr_type
) {
8168 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8171 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8174 if (sp
->config
.multiq
) {
8175 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8176 mac_control
->fifos
[i
].multiq
= config
->multiq
;
8177 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8180 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8183 switch (sp
->config
.tx_steering_type
) {
8185 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for"
8186 " transmit\n", dev
->name
);
8188 case TX_PRIORITY_STEERING
:
8189 DBG_PRINT(ERR_DBG
, "%s: Priority steering enabled for"
8190 " transmit\n", dev
->name
);
8192 case TX_DEFAULT_STEERING
:
8193 DBG_PRINT(ERR_DBG
, "%s: Default steering enabled for"
8194 " transmit\n", dev
->name
);
8198 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8201 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
8202 " enabled\n", dev
->name
);
8203 /* Initialize device name */
8204 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8207 sp
->vlan_strip_flag
= 1;
8209 sp
->vlan_strip_flag
= 0;
8212 * Make Link state as off at this point, when the Link change
8213 * interrupt comes the state will be automatically changed to
8216 netif_carrier_off(dev
);
8227 free_shared_mem(sp
);
8228 pci_disable_device(pdev
);
8229 pci_release_regions(pdev
);
8230 pci_set_drvdata(pdev
, NULL
);
8237 * s2io_rem_nic - Free the PCI device
8238 * @pdev: structure containing the PCI related information of the device.
8239 * Description: This function is called by the Pci subsystem to release a
8240 * PCI device and free up all resource held up by the device. This could
8241 * be in response to a Hot plug event or when the driver is to be removed
8245 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8247 struct net_device
*dev
=
8248 (struct net_device
*) pci_get_drvdata(pdev
);
8249 struct s2io_nic
*sp
;
8252 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8256 flush_scheduled_work();
8259 unregister_netdev(dev
);
8261 free_shared_mem(sp
);
8264 pci_release_regions(pdev
);
8265 pci_set_drvdata(pdev
, NULL
);
8267 pci_disable_device(pdev
);
8271 * s2io_starter - Entry point for the driver
8272 * Description: This function is the entry point for the driver. It verifies
8273 * the module loadable parameters and initializes PCI configuration space.
8276 static int __init
s2io_starter(void)
8278 return pci_register_driver(&s2io_driver
);
8282 * s2io_closer - Cleanup routine for the driver
8283 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8286 static __exit
void s2io_closer(void)
8288 pci_unregister_driver(&s2io_driver
);
8289 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8292 module_init(s2io_starter
);
8293 module_exit(s2io_closer
);
8295 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8296 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8297 struct s2io_nic
*sp
)
8300 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8302 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8303 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8308 /* Checking for DIX type or DIX type with VLAN */
8310 || (l2_type
== 4)) {
8311 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8313 * If vlan stripping is disabled and the frame is VLAN tagged,
8314 * shift the offset by the VLAN header size bytes.
8316 if ((!sp
->vlan_strip_flag
) &&
8317 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8318 ip_off
+= HEADER_VLAN_SIZE
;
8320 /* LLC, SNAP etc are considered non-mergeable */
8324 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8325 ip_len
= (u8
)((*ip
)->ihl
);
8327 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8332 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8335 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __func__
);
8336 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8337 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8342 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8344 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8347 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8348 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
, u16 vlan_tag
)
8350 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __func__
);
8354 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8355 lro
->tcp_ack
= tcp
->ack_seq
;
8357 lro
->total_len
= ntohs(ip
->tot_len
);
8359 lro
->vlan_tag
= vlan_tag
;
8361 * check if we saw TCP timestamp. Other consistency checks have
8362 * already been done.
8364 if (tcp
->doff
== 8) {
8366 ptr
= (__be32
*)(tcp
+1);
8368 lro
->cur_tsval
= ntohl(*(ptr
+1));
8369 lro
->cur_tsecr
= *(ptr
+2);
8374 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8376 struct iphdr
*ip
= lro
->iph
;
8377 struct tcphdr
*tcp
= lro
->tcph
;
8379 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8380 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __func__
);
8382 /* Update L3 header */
8383 ip
->tot_len
= htons(lro
->total_len
);
8385 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8388 /* Update L4 header */
8389 tcp
->ack_seq
= lro
->tcp_ack
;
8390 tcp
->window
= lro
->window
;
8392 /* Update tsecr field if this session has timestamps enabled */
8394 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8395 *(ptr
+2) = lro
->cur_tsecr
;
8398 /* Update counters required for calculation of
8399 * average no. of packets aggregated.
8401 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8402 statinfo
->sw_stat
.num_aggregations
++;
8405 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8406 struct tcphdr
*tcp
, u32 l4_pyld
)
8408 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __func__
);
8409 lro
->total_len
+= l4_pyld
;
8410 lro
->frags_len
+= l4_pyld
;
8411 lro
->tcp_next_seq
+= l4_pyld
;
8414 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8415 lro
->tcp_ack
= tcp
->ack_seq
;
8416 lro
->window
= tcp
->window
;
8420 /* Update tsecr and tsval from this packet */
8421 ptr
= (__be32
*)(tcp
+1);
8422 lro
->cur_tsval
= ntohl(*(ptr
+1));
8423 lro
->cur_tsecr
= *(ptr
+ 2);
8427 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8428 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8432 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __func__
);
8434 if (!tcp_pyld_len
) {
8435 /* Runt frame or a pure ack */
8439 if (ip
->ihl
!= 5) /* IP has options */
8442 /* If we see CE codepoint in IP header, packet is not mergeable */
8443 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8446 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8447 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8448 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8450 * Currently recognize only the ack control word and
8451 * any other control field being set would result in
8452 * flushing the LRO session
8458 * Allow only one TCP timestamp option. Don't aggregate if
8459 * any other options are detected.
8461 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8464 if (tcp
->doff
== 8) {
8465 ptr
= (u8
*)(tcp
+ 1);
8466 while (*ptr
== TCPOPT_NOP
)
8468 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8471 /* Ensure timestamp value increases monotonically */
8473 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8476 /* timestamp echo reply should be non-zero */
8477 if (*((__be32
*)(ptr
+6)) == 0)
8485 s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
, u8
**tcp
,
8486 u32
*tcp_len
, struct lro
**lro
, struct RxD_t
*rxdp
,
8487 struct s2io_nic
*sp
)
8490 struct tcphdr
*tcph
;
8494 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8496 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8497 ip
->saddr
, ip
->daddr
);
8501 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8502 tcph
= (struct tcphdr
*)*tcp
;
8503 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8504 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8505 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8506 if (l_lro
->in_use
) {
8507 if (check_for_socket_match(l_lro
, ip
, tcph
))
8509 /* Sock pair matched */
8512 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8513 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8514 "0x%x, actual 0x%x\n", __func__
,
8515 (*lro
)->tcp_next_seq
,
8518 sp
->mac_control
.stats_info
->
8519 sw_stat
.outof_sequence_pkts
++;
8524 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8525 ret
= 1; /* Aggregate */
8527 ret
= 2; /* Flush both */
8533 /* Before searching for available LRO objects,
8534 * check if the pkt is L3/L4 aggregatable. If not
8535 * don't create new LRO session. Just send this
8538 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8542 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8543 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8544 if (!(l_lro
->in_use
)) {
8546 ret
= 3; /* Begin anew */
8552 if (ret
== 0) { /* sessions exceeded */
8553 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8561 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8565 update_L3L4_header(sp
, *lro
);
8568 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8569 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8570 update_L3L4_header(sp
, *lro
);
8571 ret
= 4; /* Flush the LRO */
8575 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8583 static void clear_lro_session(struct lro
*lro
)
8585 static u16 lro_struct_size
= sizeof(struct lro
);
8587 memset(lro
, 0, lro_struct_size
);
8590 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8592 struct net_device
*dev
= skb
->dev
;
8593 struct s2io_nic
*sp
= dev
->priv
;
8595 skb
->protocol
= eth_type_trans(skb
, dev
);
8596 if (sp
->vlgrp
&& vlan_tag
8597 && (sp
->vlan_strip_flag
)) {
8598 /* Queueing the vlan frame to the upper layer */
8599 if (sp
->config
.napi
)
8600 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8602 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8604 if (sp
->config
.napi
)
8605 netif_receive_skb(skb
);
8611 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8612 struct sk_buff
*skb
,
8615 struct sk_buff
*first
= lro
->parent
;
8617 first
->len
+= tcp_len
;
8618 first
->data_len
= lro
->frags_len
;
8619 skb_pull(skb
, (skb
->len
- tcp_len
));
8620 if (skb_shinfo(first
)->frag_list
)
8621 lro
->last_frag
->next
= skb
;
8623 skb_shinfo(first
)->frag_list
= skb
;
8624 first
->truesize
+= skb
->truesize
;
8625 lro
->last_frag
= skb
;
8626 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8631 * s2io_io_error_detected - called when PCI error is detected
8632 * @pdev: Pointer to PCI device
8633 * @state: The current pci connection state
8635 * This function is called after a PCI bus error affecting
8636 * this device has been detected.
8638 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8639 pci_channel_state_t state
)
8641 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8642 struct s2io_nic
*sp
= netdev
->priv
;
8644 netif_device_detach(netdev
);
8646 if (netif_running(netdev
)) {
8647 /* Bring down the card, while avoiding PCI I/O */
8648 do_s2io_card_down(sp
, 0);
8650 pci_disable_device(pdev
);
8652 return PCI_ERS_RESULT_NEED_RESET
;
8656 * s2io_io_slot_reset - called after the pci bus has been reset.
8657 * @pdev: Pointer to PCI device
8659 * Restart the card from scratch, as if from a cold-boot.
8660 * At this point, the card has exprienced a hard reset,
8661 * followed by fixups by BIOS, and has its config space
8662 * set up identically to what it was at cold boot.
8664 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8666 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8667 struct s2io_nic
*sp
= netdev
->priv
;
8669 if (pci_enable_device(pdev
)) {
8670 printk(KERN_ERR
"s2io: "
8671 "Cannot re-enable PCI device after reset.\n");
8672 return PCI_ERS_RESULT_DISCONNECT
;
8675 pci_set_master(pdev
);
8678 return PCI_ERS_RESULT_RECOVERED
;
8682 * s2io_io_resume - called when traffic can start flowing again.
8683 * @pdev: Pointer to PCI device
8685 * This callback is called when the error recovery driver tells
8686 * us that its OK to resume normal operation.
8688 static void s2io_io_resume(struct pci_dev
*pdev
)
8690 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8691 struct s2io_nic
*sp
= netdev
->priv
;
8693 if (netif_running(netdev
)) {
8694 if (s2io_card_up(sp
)) {
8695 printk(KERN_ERR
"s2io: "
8696 "Can't bring device back up after reset.\n");
8700 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8702 printk(KERN_ERR
"s2io: "
8703 "Can't resetore mac addr after reset.\n");
8708 netif_device_attach(netdev
);
8709 netif_tx_wake_all_queues(netdev
);