intel-iommu: Ensure that PTE writes are 64-bit atomic, even on i386
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / intel-iommu.c
blobeea1006c860a18300c5a511e61a8ce2f8cc70e17
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
61 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67 are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
70 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
75 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
79 return mm_to_dma_pfn(page_to_pfn(pg));
81 static inline unsigned long virt_to_dma_pfn(void *p)
83 return page_to_dma_pfn(virt_to_page(p));
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
89 static int rwbf_quirk;
92 * 0: Present
93 * 1-11: Reserved
94 * 12-63: Context Ptr (12 - (haw-1))
95 * 64-127: Reserved
97 struct root_entry {
98 u64 val;
99 u64 rsvd1;
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
104 return (root->val & 1);
106 static inline void set_root_present(struct root_entry *root)
108 root->val |= 1;
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
112 root->val |= value & VTD_PAGE_MASK;
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
118 return (struct context_entry *)
119 (root_present(root)?phys_to_virt(
120 root->val & VTD_PAGE_MASK) :
121 NULL);
125 * low 64 bits:
126 * 0: present
127 * 1: fault processing disable
128 * 2-3: translation type
129 * 12-63: address space root
130 * high 64 bits:
131 * 0-2: address width
132 * 3-6: aval
133 * 8-23: domain id
135 struct context_entry {
136 u64 lo;
137 u64 hi;
140 static inline bool context_present(struct context_entry *context)
142 return (context->lo & 1);
144 static inline void context_set_present(struct context_entry *context)
146 context->lo |= 1;
149 static inline void context_set_fault_enable(struct context_entry *context)
151 context->lo &= (((u64)-1) << 2) | 1;
154 static inline void context_set_translation_type(struct context_entry *context,
155 unsigned long value)
157 context->lo &= (((u64)-1) << 4) | 3;
158 context->lo |= (value & 3) << 2;
161 static inline void context_set_address_root(struct context_entry *context,
162 unsigned long value)
164 context->lo |= value & VTD_PAGE_MASK;
167 static inline void context_set_address_width(struct context_entry *context,
168 unsigned long value)
170 context->hi |= value & 7;
173 static inline void context_set_domain_id(struct context_entry *context,
174 unsigned long value)
176 context->hi |= (value & ((1 << 16) - 1)) << 8;
179 static inline void context_clear_entry(struct context_entry *context)
181 context->lo = 0;
182 context->hi = 0;
186 * 0: readable
187 * 1: writable
188 * 2-6: reserved
189 * 7: super page
190 * 8-10: available
191 * 11: snoop behavior
192 * 12-63: Host physcial address
194 struct dma_pte {
195 u64 val;
198 static inline void dma_clear_pte(struct dma_pte *pte)
200 pte->val = 0;
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
205 pte->val |= DMA_PTE_READ;
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
210 pte->val |= DMA_PTE_WRITE;
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
215 pte->val |= DMA_PTE_SNP;
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
220 pte->val = (pte->val & ~3) | (prot & 3);
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
225 #ifdef CONFIG_64BIT
226 return pte->val & VTD_PAGE_MASK;
227 #else
228 /* Must have a full atomic 64-bit read */
229 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
230 #endif
233 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
235 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
238 static inline bool dma_pte_present(struct dma_pte *pte)
240 return (pte->val & 3) != 0;
244 * This domain is a statically identity mapping domain.
245 * 1. This domain creats a static 1:1 mapping to all usable memory.
246 * 2. It maps to each iommu if successful.
247 * 3. Each iommu mapps to this domain if successful.
249 struct dmar_domain *si_domain;
251 /* devices under the same p2p bridge are owned in one domain */
252 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
254 /* domain represents a virtual machine, more than one devices
255 * across iommus may be owned in one domain, e.g. kvm guest.
257 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
259 /* si_domain contains mulitple devices */
260 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
262 struct dmar_domain {
263 int id; /* domain id */
264 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
266 struct list_head devices; /* all devices' list */
267 struct iova_domain iovad; /* iova's that belong to this domain */
269 struct dma_pte *pgd; /* virtual address */
270 spinlock_t mapping_lock; /* page table lock */
271 int gaw; /* max guest address width */
273 /* adjusted guest address width, 0 is level 2 30-bit */
274 int agaw;
276 int flags; /* flags to find out type of domain */
278 int iommu_coherency;/* indicate coherency of iommu access */
279 int iommu_snooping; /* indicate snooping control feature*/
280 int iommu_count; /* reference count of iommu */
281 spinlock_t iommu_lock; /* protect iommu set in domain */
282 u64 max_addr; /* maximum mapped address */
285 /* PCI domain-device relationship */
286 struct device_domain_info {
287 struct list_head link; /* link to domain siblings */
288 struct list_head global; /* link to global list */
289 int segment; /* PCI domain */
290 u8 bus; /* PCI bus number */
291 u8 devfn; /* PCI devfn number */
292 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
293 struct intel_iommu *iommu; /* IOMMU used by this device */
294 struct dmar_domain *domain; /* pointer to domain */
297 static void flush_unmaps_timeout(unsigned long data);
299 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
301 #define HIGH_WATER_MARK 250
302 struct deferred_flush_tables {
303 int next;
304 struct iova *iova[HIGH_WATER_MARK];
305 struct dmar_domain *domain[HIGH_WATER_MARK];
308 static struct deferred_flush_tables *deferred_flush;
310 /* bitmap for indexing intel_iommus */
311 static int g_num_of_iommus;
313 static DEFINE_SPINLOCK(async_umap_flush_lock);
314 static LIST_HEAD(unmaps_to_do);
316 static int timer_on;
317 static long list_size;
319 static void domain_remove_dev_info(struct dmar_domain *domain);
321 #ifdef CONFIG_DMAR_DEFAULT_ON
322 int dmar_disabled = 0;
323 #else
324 int dmar_disabled = 1;
325 #endif /*CONFIG_DMAR_DEFAULT_ON*/
327 static int __initdata dmar_map_gfx = 1;
328 static int dmar_forcedac;
329 static int intel_iommu_strict;
331 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
332 static DEFINE_SPINLOCK(device_domain_lock);
333 static LIST_HEAD(device_domain_list);
335 static struct iommu_ops intel_iommu_ops;
337 static int __init intel_iommu_setup(char *str)
339 if (!str)
340 return -EINVAL;
341 while (*str) {
342 if (!strncmp(str, "on", 2)) {
343 dmar_disabled = 0;
344 printk(KERN_INFO "Intel-IOMMU: enabled\n");
345 } else if (!strncmp(str, "off", 3)) {
346 dmar_disabled = 1;
347 printk(KERN_INFO "Intel-IOMMU: disabled\n");
348 } else if (!strncmp(str, "igfx_off", 8)) {
349 dmar_map_gfx = 0;
350 printk(KERN_INFO
351 "Intel-IOMMU: disable GFX device mapping\n");
352 } else if (!strncmp(str, "forcedac", 8)) {
353 printk(KERN_INFO
354 "Intel-IOMMU: Forcing DAC for PCI devices\n");
355 dmar_forcedac = 1;
356 } else if (!strncmp(str, "strict", 6)) {
357 printk(KERN_INFO
358 "Intel-IOMMU: disable batched IOTLB flush\n");
359 intel_iommu_strict = 1;
362 str += strcspn(str, ",");
363 while (*str == ',')
364 str++;
366 return 0;
368 __setup("intel_iommu=", intel_iommu_setup);
370 static struct kmem_cache *iommu_domain_cache;
371 static struct kmem_cache *iommu_devinfo_cache;
372 static struct kmem_cache *iommu_iova_cache;
374 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
376 unsigned int flags;
377 void *vaddr;
379 /* trying to avoid low memory issues */
380 flags = current->flags & PF_MEMALLOC;
381 current->flags |= PF_MEMALLOC;
382 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
383 current->flags &= (~PF_MEMALLOC | flags);
384 return vaddr;
388 static inline void *alloc_pgtable_page(void)
390 unsigned int flags;
391 void *vaddr;
393 /* trying to avoid low memory issues */
394 flags = current->flags & PF_MEMALLOC;
395 current->flags |= PF_MEMALLOC;
396 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
397 current->flags &= (~PF_MEMALLOC | flags);
398 return vaddr;
401 static inline void free_pgtable_page(void *vaddr)
403 free_page((unsigned long)vaddr);
406 static inline void *alloc_domain_mem(void)
408 return iommu_kmem_cache_alloc(iommu_domain_cache);
411 static void free_domain_mem(void *vaddr)
413 kmem_cache_free(iommu_domain_cache, vaddr);
416 static inline void * alloc_devinfo_mem(void)
418 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
421 static inline void free_devinfo_mem(void *vaddr)
423 kmem_cache_free(iommu_devinfo_cache, vaddr);
426 struct iova *alloc_iova_mem(void)
428 return iommu_kmem_cache_alloc(iommu_iova_cache);
431 void free_iova_mem(struct iova *iova)
433 kmem_cache_free(iommu_iova_cache, iova);
437 static inline int width_to_agaw(int width);
439 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
441 unsigned long sagaw;
442 int agaw = -1;
444 sagaw = cap_sagaw(iommu->cap);
445 for (agaw = width_to_agaw(max_gaw);
446 agaw >= 0; agaw--) {
447 if (test_bit(agaw, &sagaw))
448 break;
451 return agaw;
455 * Calculate max SAGAW for each iommu.
457 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
459 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
463 * calculate agaw for each iommu.
464 * "SAGAW" may be different across iommus, use a default agaw, and
465 * get a supported less agaw for iommus that don't support the default agaw.
467 int iommu_calculate_agaw(struct intel_iommu *iommu)
469 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
472 /* This functionin only returns single iommu in a domain */
473 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
475 int iommu_id;
477 /* si_domain and vm domain should not get here. */
478 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
479 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
481 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
482 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
483 return NULL;
485 return g_iommus[iommu_id];
488 static void domain_update_iommu_coherency(struct dmar_domain *domain)
490 int i;
492 domain->iommu_coherency = 1;
494 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
495 for (; i < g_num_of_iommus; ) {
496 if (!ecap_coherent(g_iommus[i]->ecap)) {
497 domain->iommu_coherency = 0;
498 break;
500 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
504 static void domain_update_iommu_snooping(struct dmar_domain *domain)
506 int i;
508 domain->iommu_snooping = 1;
510 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
511 for (; i < g_num_of_iommus; ) {
512 if (!ecap_sc_support(g_iommus[i]->ecap)) {
513 domain->iommu_snooping = 0;
514 break;
516 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
520 /* Some capabilities may be different across iommus */
521 static void domain_update_iommu_cap(struct dmar_domain *domain)
523 domain_update_iommu_coherency(domain);
524 domain_update_iommu_snooping(domain);
527 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
529 struct dmar_drhd_unit *drhd = NULL;
530 int i;
532 for_each_drhd_unit(drhd) {
533 if (drhd->ignored)
534 continue;
535 if (segment != drhd->segment)
536 continue;
538 for (i = 0; i < drhd->devices_cnt; i++) {
539 if (drhd->devices[i] &&
540 drhd->devices[i]->bus->number == bus &&
541 drhd->devices[i]->devfn == devfn)
542 return drhd->iommu;
543 if (drhd->devices[i] &&
544 drhd->devices[i]->subordinate &&
545 drhd->devices[i]->subordinate->number <= bus &&
546 drhd->devices[i]->subordinate->subordinate >= bus)
547 return drhd->iommu;
550 if (drhd->include_all)
551 return drhd->iommu;
554 return NULL;
557 static void domain_flush_cache(struct dmar_domain *domain,
558 void *addr, int size)
560 if (!domain->iommu_coherency)
561 clflush_cache_range(addr, size);
564 /* Gets context entry for a given bus and devfn */
565 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
566 u8 bus, u8 devfn)
568 struct root_entry *root;
569 struct context_entry *context;
570 unsigned long phy_addr;
571 unsigned long flags;
573 spin_lock_irqsave(&iommu->lock, flags);
574 root = &iommu->root_entry[bus];
575 context = get_context_addr_from_root(root);
576 if (!context) {
577 context = (struct context_entry *)alloc_pgtable_page();
578 if (!context) {
579 spin_unlock_irqrestore(&iommu->lock, flags);
580 return NULL;
582 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
583 phy_addr = virt_to_phys((void *)context);
584 set_root_value(root, phy_addr);
585 set_root_present(root);
586 __iommu_flush_cache(iommu, root, sizeof(*root));
588 spin_unlock_irqrestore(&iommu->lock, flags);
589 return &context[devfn];
592 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
594 struct root_entry *root;
595 struct context_entry *context;
596 int ret;
597 unsigned long flags;
599 spin_lock_irqsave(&iommu->lock, flags);
600 root = &iommu->root_entry[bus];
601 context = get_context_addr_from_root(root);
602 if (!context) {
603 ret = 0;
604 goto out;
606 ret = context_present(&context[devfn]);
607 out:
608 spin_unlock_irqrestore(&iommu->lock, flags);
609 return ret;
612 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
614 struct root_entry *root;
615 struct context_entry *context;
616 unsigned long flags;
618 spin_lock_irqsave(&iommu->lock, flags);
619 root = &iommu->root_entry[bus];
620 context = get_context_addr_from_root(root);
621 if (context) {
622 context_clear_entry(&context[devfn]);
623 __iommu_flush_cache(iommu, &context[devfn], \
624 sizeof(*context));
626 spin_unlock_irqrestore(&iommu->lock, flags);
629 static void free_context_table(struct intel_iommu *iommu)
631 struct root_entry *root;
632 int i;
633 unsigned long flags;
634 struct context_entry *context;
636 spin_lock_irqsave(&iommu->lock, flags);
637 if (!iommu->root_entry) {
638 goto out;
640 for (i = 0; i < ROOT_ENTRY_NR; i++) {
641 root = &iommu->root_entry[i];
642 context = get_context_addr_from_root(root);
643 if (context)
644 free_pgtable_page(context);
646 free_pgtable_page(iommu->root_entry);
647 iommu->root_entry = NULL;
648 out:
649 spin_unlock_irqrestore(&iommu->lock, flags);
652 /* page table handling */
653 #define LEVEL_STRIDE (9)
654 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
656 static inline int agaw_to_level(int agaw)
658 return agaw + 2;
661 static inline int agaw_to_width(int agaw)
663 return 30 + agaw * LEVEL_STRIDE;
667 static inline int width_to_agaw(int width)
669 return (width - 30) / LEVEL_STRIDE;
672 static inline unsigned int level_to_offset_bits(int level)
674 return (level - 1) * LEVEL_STRIDE;
677 static inline int pfn_level_offset(unsigned long pfn, int level)
679 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
682 static inline unsigned long level_mask(int level)
684 return -1UL << level_to_offset_bits(level);
687 static inline unsigned long level_size(int level)
689 return 1UL << level_to_offset_bits(level);
692 static inline unsigned long align_to_level(unsigned long pfn, int level)
694 return (pfn + level_size(level) - 1) & level_mask(level);
697 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
698 unsigned long pfn)
700 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
701 struct dma_pte *parent, *pte = NULL;
702 int level = agaw_to_level(domain->agaw);
703 int offset;
704 unsigned long flags;
706 BUG_ON(!domain->pgd);
707 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
708 parent = domain->pgd;
710 spin_lock_irqsave(&domain->mapping_lock, flags);
711 while (level > 0) {
712 void *tmp_page;
714 offset = pfn_level_offset(pfn, level);
715 pte = &parent[offset];
716 if (level == 1)
717 break;
719 if (!dma_pte_present(pte)) {
720 uint64_t pteval;
722 tmp_page = alloc_pgtable_page();
724 if (!tmp_page) {
725 spin_unlock_irqrestore(&domain->mapping_lock,
726 flags);
727 return NULL;
729 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
730 pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
731 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
732 /* Someone else set it while we were thinking; use theirs. */
733 free_pgtable_page(tmp_page);
734 } else {
735 dma_pte_addr(pte);
736 domain_flush_cache(domain, pte, sizeof(*pte));
739 parent = phys_to_virt(dma_pte_addr(pte));
740 level--;
743 spin_unlock_irqrestore(&domain->mapping_lock, flags);
744 return pte;
747 /* return address's pte at specific level */
748 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
749 unsigned long pfn,
750 int level)
752 struct dma_pte *parent, *pte = NULL;
753 int total = agaw_to_level(domain->agaw);
754 int offset;
756 parent = domain->pgd;
757 while (level <= total) {
758 offset = pfn_level_offset(pfn, total);
759 pte = &parent[offset];
760 if (level == total)
761 return pte;
763 if (!dma_pte_present(pte))
764 break;
765 parent = phys_to_virt(dma_pte_addr(pte));
766 total--;
768 return NULL;
771 /* clear last level pte, a tlb flush should be followed */
772 static void dma_pte_clear_range(struct dmar_domain *domain,
773 unsigned long start_pfn,
774 unsigned long last_pfn)
776 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
777 struct dma_pte *first_pte, *pte;
779 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
780 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
782 /* we don't need lock here; nobody else touches the iova range */
783 while (start_pfn <= last_pfn) {
784 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
785 if (!pte) {
786 start_pfn = align_to_level(start_pfn + 1, 2);
787 continue;
789 while (start_pfn <= last_pfn &&
790 (unsigned long)pte >> VTD_PAGE_SHIFT ==
791 (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
792 dma_clear_pte(pte);
793 start_pfn++;
794 pte++;
796 domain_flush_cache(domain, first_pte,
797 (void *)pte - (void *)first_pte);
801 /* free page table pages. last level pte should already be cleared */
802 static void dma_pte_free_pagetable(struct dmar_domain *domain,
803 unsigned long start_pfn,
804 unsigned long last_pfn)
806 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
807 struct dma_pte *first_pte, *pte;
808 int total = agaw_to_level(domain->agaw);
809 int level;
810 unsigned long tmp;
812 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
813 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
815 /* We don't need lock here; nobody else touches the iova range */
816 level = 2;
817 while (level <= total) {
818 tmp = align_to_level(start_pfn, level);
820 /* If we can't even clear one PTE at this level, we're done */
821 if (tmp + level_size(level) - 1 > last_pfn)
822 return;
824 while (tmp + level_size(level) - 1 <= last_pfn) {
825 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
826 if (!pte) {
827 tmp = align_to_level(tmp + 1, level + 1);
828 continue;
830 while (tmp + level_size(level) - 1 <= last_pfn &&
831 (unsigned long)pte >> VTD_PAGE_SHIFT ==
832 (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
833 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
834 dma_clear_pte(pte);
835 pte++;
836 tmp += level_size(level);
838 domain_flush_cache(domain, first_pte,
839 (void *)pte - (void *)first_pte);
842 level++;
844 /* free pgd */
845 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
846 free_pgtable_page(domain->pgd);
847 domain->pgd = NULL;
851 /* iommu handling */
852 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
854 struct root_entry *root;
855 unsigned long flags;
857 root = (struct root_entry *)alloc_pgtable_page();
858 if (!root)
859 return -ENOMEM;
861 __iommu_flush_cache(iommu, root, ROOT_SIZE);
863 spin_lock_irqsave(&iommu->lock, flags);
864 iommu->root_entry = root;
865 spin_unlock_irqrestore(&iommu->lock, flags);
867 return 0;
870 static void iommu_set_root_entry(struct intel_iommu *iommu)
872 void *addr;
873 u32 sts;
874 unsigned long flag;
876 addr = iommu->root_entry;
878 spin_lock_irqsave(&iommu->register_lock, flag);
879 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
881 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
883 /* Make sure hardware complete it */
884 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
885 readl, (sts & DMA_GSTS_RTPS), sts);
887 spin_unlock_irqrestore(&iommu->register_lock, flag);
890 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
892 u32 val;
893 unsigned long flag;
895 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
896 return;
898 spin_lock_irqsave(&iommu->register_lock, flag);
899 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
901 /* Make sure hardware complete it */
902 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
903 readl, (!(val & DMA_GSTS_WBFS)), val);
905 spin_unlock_irqrestore(&iommu->register_lock, flag);
908 /* return value determine if we need a write buffer flush */
909 static void __iommu_flush_context(struct intel_iommu *iommu,
910 u16 did, u16 source_id, u8 function_mask,
911 u64 type)
913 u64 val = 0;
914 unsigned long flag;
916 switch (type) {
917 case DMA_CCMD_GLOBAL_INVL:
918 val = DMA_CCMD_GLOBAL_INVL;
919 break;
920 case DMA_CCMD_DOMAIN_INVL:
921 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
922 break;
923 case DMA_CCMD_DEVICE_INVL:
924 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
925 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
926 break;
927 default:
928 BUG();
930 val |= DMA_CCMD_ICC;
932 spin_lock_irqsave(&iommu->register_lock, flag);
933 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
935 /* Make sure hardware complete it */
936 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
937 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
939 spin_unlock_irqrestore(&iommu->register_lock, flag);
942 /* return value determine if we need a write buffer flush */
943 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
944 u64 addr, unsigned int size_order, u64 type)
946 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
947 u64 val = 0, val_iva = 0;
948 unsigned long flag;
950 switch (type) {
951 case DMA_TLB_GLOBAL_FLUSH:
952 /* global flush doesn't need set IVA_REG */
953 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
954 break;
955 case DMA_TLB_DSI_FLUSH:
956 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
957 break;
958 case DMA_TLB_PSI_FLUSH:
959 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
960 /* Note: always flush non-leaf currently */
961 val_iva = size_order | addr;
962 break;
963 default:
964 BUG();
966 /* Note: set drain read/write */
967 #if 0
969 * This is probably to be super secure.. Looks like we can
970 * ignore it without any impact.
972 if (cap_read_drain(iommu->cap))
973 val |= DMA_TLB_READ_DRAIN;
974 #endif
975 if (cap_write_drain(iommu->cap))
976 val |= DMA_TLB_WRITE_DRAIN;
978 spin_lock_irqsave(&iommu->register_lock, flag);
979 /* Note: Only uses first TLB reg currently */
980 if (val_iva)
981 dmar_writeq(iommu->reg + tlb_offset, val_iva);
982 dmar_writeq(iommu->reg + tlb_offset + 8, val);
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
986 dmar_readq, (!(val & DMA_TLB_IVT)), val);
988 spin_unlock_irqrestore(&iommu->register_lock, flag);
990 /* check IOTLB invalidation granularity */
991 if (DMA_TLB_IAIG(val) == 0)
992 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
993 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
994 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
995 (unsigned long long)DMA_TLB_IIRG(type),
996 (unsigned long long)DMA_TLB_IAIG(val));
999 static struct device_domain_info *iommu_support_dev_iotlb(
1000 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1002 int found = 0;
1003 unsigned long flags;
1004 struct device_domain_info *info;
1005 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1007 if (!ecap_dev_iotlb_support(iommu->ecap))
1008 return NULL;
1010 if (!iommu->qi)
1011 return NULL;
1013 spin_lock_irqsave(&device_domain_lock, flags);
1014 list_for_each_entry(info, &domain->devices, link)
1015 if (info->bus == bus && info->devfn == devfn) {
1016 found = 1;
1017 break;
1019 spin_unlock_irqrestore(&device_domain_lock, flags);
1021 if (!found || !info->dev)
1022 return NULL;
1024 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1025 return NULL;
1027 if (!dmar_find_matched_atsr_unit(info->dev))
1028 return NULL;
1030 info->iommu = iommu;
1032 return info;
1035 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1037 if (!info)
1038 return;
1040 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1043 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1045 if (!info->dev || !pci_ats_enabled(info->dev))
1046 return;
1048 pci_disable_ats(info->dev);
1051 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1052 u64 addr, unsigned mask)
1054 u16 sid, qdep;
1055 unsigned long flags;
1056 struct device_domain_info *info;
1058 spin_lock_irqsave(&device_domain_lock, flags);
1059 list_for_each_entry(info, &domain->devices, link) {
1060 if (!info->dev || !pci_ats_enabled(info->dev))
1061 continue;
1063 sid = info->bus << 8 | info->devfn;
1064 qdep = pci_ats_queue_depth(info->dev);
1065 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1067 spin_unlock_irqrestore(&device_domain_lock, flags);
1070 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1071 unsigned long pfn, unsigned int pages)
1073 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1074 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1076 BUG_ON(pages == 0);
1079 * Fallback to domain selective flush if no PSI support or the size is
1080 * too big.
1081 * PSI requires page size to be 2 ^ x, and the base address is naturally
1082 * aligned to the size
1084 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1085 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1086 DMA_TLB_DSI_FLUSH);
1087 else
1088 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1089 DMA_TLB_PSI_FLUSH);
1092 * In caching mode, domain ID 0 is reserved for non-present to present
1093 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1095 if (!cap_caching_mode(iommu->cap) || did)
1096 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1099 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1101 u32 pmen;
1102 unsigned long flags;
1104 spin_lock_irqsave(&iommu->register_lock, flags);
1105 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1106 pmen &= ~DMA_PMEN_EPM;
1107 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1109 /* wait for the protected region status bit to clear */
1110 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1111 readl, !(pmen & DMA_PMEN_PRS), pmen);
1113 spin_unlock_irqrestore(&iommu->register_lock, flags);
1116 static int iommu_enable_translation(struct intel_iommu *iommu)
1118 u32 sts;
1119 unsigned long flags;
1121 spin_lock_irqsave(&iommu->register_lock, flags);
1122 iommu->gcmd |= DMA_GCMD_TE;
1123 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1125 /* Make sure hardware complete it */
1126 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1127 readl, (sts & DMA_GSTS_TES), sts);
1129 spin_unlock_irqrestore(&iommu->register_lock, flags);
1130 return 0;
1133 static int iommu_disable_translation(struct intel_iommu *iommu)
1135 u32 sts;
1136 unsigned long flag;
1138 spin_lock_irqsave(&iommu->register_lock, flag);
1139 iommu->gcmd &= ~DMA_GCMD_TE;
1140 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1142 /* Make sure hardware complete it */
1143 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1144 readl, (!(sts & DMA_GSTS_TES)), sts);
1146 spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 return 0;
1151 static int iommu_init_domains(struct intel_iommu *iommu)
1153 unsigned long ndomains;
1154 unsigned long nlongs;
1156 ndomains = cap_ndoms(iommu->cap);
1157 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1158 nlongs = BITS_TO_LONGS(ndomains);
1160 /* TBD: there might be 64K domains,
1161 * consider other allocation for future chip
1163 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1164 if (!iommu->domain_ids) {
1165 printk(KERN_ERR "Allocating domain id array failed\n");
1166 return -ENOMEM;
1168 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1169 GFP_KERNEL);
1170 if (!iommu->domains) {
1171 printk(KERN_ERR "Allocating domain array failed\n");
1172 kfree(iommu->domain_ids);
1173 return -ENOMEM;
1176 spin_lock_init(&iommu->lock);
1179 * if Caching mode is set, then invalid translations are tagged
1180 * with domainid 0. Hence we need to pre-allocate it.
1182 if (cap_caching_mode(iommu->cap))
1183 set_bit(0, iommu->domain_ids);
1184 return 0;
1188 static void domain_exit(struct dmar_domain *domain);
1189 static void vm_domain_exit(struct dmar_domain *domain);
1191 void free_dmar_iommu(struct intel_iommu *iommu)
1193 struct dmar_domain *domain;
1194 int i;
1195 unsigned long flags;
1197 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1198 for (; i < cap_ndoms(iommu->cap); ) {
1199 domain = iommu->domains[i];
1200 clear_bit(i, iommu->domain_ids);
1202 spin_lock_irqsave(&domain->iommu_lock, flags);
1203 if (--domain->iommu_count == 0) {
1204 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1205 vm_domain_exit(domain);
1206 else
1207 domain_exit(domain);
1209 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1211 i = find_next_bit(iommu->domain_ids,
1212 cap_ndoms(iommu->cap), i+1);
1215 if (iommu->gcmd & DMA_GCMD_TE)
1216 iommu_disable_translation(iommu);
1218 if (iommu->irq) {
1219 set_irq_data(iommu->irq, NULL);
1220 /* This will mask the irq */
1221 free_irq(iommu->irq, iommu);
1222 destroy_irq(iommu->irq);
1225 kfree(iommu->domains);
1226 kfree(iommu->domain_ids);
1228 g_iommus[iommu->seq_id] = NULL;
1230 /* if all iommus are freed, free g_iommus */
1231 for (i = 0; i < g_num_of_iommus; i++) {
1232 if (g_iommus[i])
1233 break;
1236 if (i == g_num_of_iommus)
1237 kfree(g_iommus);
1239 /* free context mapping */
1240 free_context_table(iommu);
1243 static struct dmar_domain *alloc_domain(void)
1245 struct dmar_domain *domain;
1247 domain = alloc_domain_mem();
1248 if (!domain)
1249 return NULL;
1251 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1252 domain->flags = 0;
1254 return domain;
1257 static int iommu_attach_domain(struct dmar_domain *domain,
1258 struct intel_iommu *iommu)
1260 int num;
1261 unsigned long ndomains;
1262 unsigned long flags;
1264 ndomains = cap_ndoms(iommu->cap);
1266 spin_lock_irqsave(&iommu->lock, flags);
1268 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1269 if (num >= ndomains) {
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271 printk(KERN_ERR "IOMMU: no free domain ids\n");
1272 return -ENOMEM;
1275 domain->id = num;
1276 set_bit(num, iommu->domain_ids);
1277 set_bit(iommu->seq_id, &domain->iommu_bmp);
1278 iommu->domains[num] = domain;
1279 spin_unlock_irqrestore(&iommu->lock, flags);
1281 return 0;
1284 static void iommu_detach_domain(struct dmar_domain *domain,
1285 struct intel_iommu *iommu)
1287 unsigned long flags;
1288 int num, ndomains;
1289 int found = 0;
1291 spin_lock_irqsave(&iommu->lock, flags);
1292 ndomains = cap_ndoms(iommu->cap);
1293 num = find_first_bit(iommu->domain_ids, ndomains);
1294 for (; num < ndomains; ) {
1295 if (iommu->domains[num] == domain) {
1296 found = 1;
1297 break;
1299 num = find_next_bit(iommu->domain_ids,
1300 cap_ndoms(iommu->cap), num+1);
1303 if (found) {
1304 clear_bit(num, iommu->domain_ids);
1305 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1306 iommu->domains[num] = NULL;
1308 spin_unlock_irqrestore(&iommu->lock, flags);
1311 static struct iova_domain reserved_iova_list;
1312 static struct lock_class_key reserved_alloc_key;
1313 static struct lock_class_key reserved_rbtree_key;
1315 static void dmar_init_reserved_ranges(void)
1317 struct pci_dev *pdev = NULL;
1318 struct iova *iova;
1319 int i;
1321 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1323 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1324 &reserved_alloc_key);
1325 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1326 &reserved_rbtree_key);
1328 /* IOAPIC ranges shouldn't be accessed by DMA */
1329 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1330 IOVA_PFN(IOAPIC_RANGE_END));
1331 if (!iova)
1332 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1334 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1335 for_each_pci_dev(pdev) {
1336 struct resource *r;
1338 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1339 r = &pdev->resource[i];
1340 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1341 continue;
1342 iova = reserve_iova(&reserved_iova_list,
1343 IOVA_PFN(r->start),
1344 IOVA_PFN(r->end));
1345 if (!iova)
1346 printk(KERN_ERR "Reserve iova failed\n");
1352 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1354 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1357 static inline int guestwidth_to_adjustwidth(int gaw)
1359 int agaw;
1360 int r = (gaw - 12) % 9;
1362 if (r == 0)
1363 agaw = gaw;
1364 else
1365 agaw = gaw + 9 - r;
1366 if (agaw > 64)
1367 agaw = 64;
1368 return agaw;
1371 static int domain_init(struct dmar_domain *domain, int guest_width)
1373 struct intel_iommu *iommu;
1374 int adjust_width, agaw;
1375 unsigned long sagaw;
1377 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1378 spin_lock_init(&domain->mapping_lock);
1379 spin_lock_init(&domain->iommu_lock);
1381 domain_reserve_special_ranges(domain);
1383 /* calculate AGAW */
1384 iommu = domain_get_iommu(domain);
1385 if (guest_width > cap_mgaw(iommu->cap))
1386 guest_width = cap_mgaw(iommu->cap);
1387 domain->gaw = guest_width;
1388 adjust_width = guestwidth_to_adjustwidth(guest_width);
1389 agaw = width_to_agaw(adjust_width);
1390 sagaw = cap_sagaw(iommu->cap);
1391 if (!test_bit(agaw, &sagaw)) {
1392 /* hardware doesn't support it, choose a bigger one */
1393 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1394 agaw = find_next_bit(&sagaw, 5, agaw);
1395 if (agaw >= 5)
1396 return -ENODEV;
1398 domain->agaw = agaw;
1399 INIT_LIST_HEAD(&domain->devices);
1401 if (ecap_coherent(iommu->ecap))
1402 domain->iommu_coherency = 1;
1403 else
1404 domain->iommu_coherency = 0;
1406 if (ecap_sc_support(iommu->ecap))
1407 domain->iommu_snooping = 1;
1408 else
1409 domain->iommu_snooping = 0;
1411 domain->iommu_count = 1;
1413 /* always allocate the top pgd */
1414 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1415 if (!domain->pgd)
1416 return -ENOMEM;
1417 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1418 return 0;
1421 static void domain_exit(struct dmar_domain *domain)
1423 struct dmar_drhd_unit *drhd;
1424 struct intel_iommu *iommu;
1426 /* Domain 0 is reserved, so dont process it */
1427 if (!domain)
1428 return;
1430 domain_remove_dev_info(domain);
1431 /* destroy iovas */
1432 put_iova_domain(&domain->iovad);
1434 /* clear ptes */
1435 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1437 /* free page tables */
1438 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1440 for_each_active_iommu(iommu, drhd)
1441 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1442 iommu_detach_domain(domain, iommu);
1444 free_domain_mem(domain);
1447 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1448 u8 bus, u8 devfn, int translation)
1450 struct context_entry *context;
1451 unsigned long flags;
1452 struct intel_iommu *iommu;
1453 struct dma_pte *pgd;
1454 unsigned long num;
1455 unsigned long ndomains;
1456 int id;
1457 int agaw;
1458 struct device_domain_info *info = NULL;
1460 pr_debug("Set context mapping for %02x:%02x.%d\n",
1461 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1463 BUG_ON(!domain->pgd);
1464 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1465 translation != CONTEXT_TT_MULTI_LEVEL);
1467 iommu = device_to_iommu(segment, bus, devfn);
1468 if (!iommu)
1469 return -ENODEV;
1471 context = device_to_context_entry(iommu, bus, devfn);
1472 if (!context)
1473 return -ENOMEM;
1474 spin_lock_irqsave(&iommu->lock, flags);
1475 if (context_present(context)) {
1476 spin_unlock_irqrestore(&iommu->lock, flags);
1477 return 0;
1480 id = domain->id;
1481 pgd = domain->pgd;
1483 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1484 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1485 int found = 0;
1487 /* find an available domain id for this device in iommu */
1488 ndomains = cap_ndoms(iommu->cap);
1489 num = find_first_bit(iommu->domain_ids, ndomains);
1490 for (; num < ndomains; ) {
1491 if (iommu->domains[num] == domain) {
1492 id = num;
1493 found = 1;
1494 break;
1496 num = find_next_bit(iommu->domain_ids,
1497 cap_ndoms(iommu->cap), num+1);
1500 if (found == 0) {
1501 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1502 if (num >= ndomains) {
1503 spin_unlock_irqrestore(&iommu->lock, flags);
1504 printk(KERN_ERR "IOMMU: no free domain ids\n");
1505 return -EFAULT;
1508 set_bit(num, iommu->domain_ids);
1509 set_bit(iommu->seq_id, &domain->iommu_bmp);
1510 iommu->domains[num] = domain;
1511 id = num;
1514 /* Skip top levels of page tables for
1515 * iommu which has less agaw than default.
1517 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1518 pgd = phys_to_virt(dma_pte_addr(pgd));
1519 if (!dma_pte_present(pgd)) {
1520 spin_unlock_irqrestore(&iommu->lock, flags);
1521 return -ENOMEM;
1526 context_set_domain_id(context, id);
1528 if (translation != CONTEXT_TT_PASS_THROUGH) {
1529 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1530 translation = info ? CONTEXT_TT_DEV_IOTLB :
1531 CONTEXT_TT_MULTI_LEVEL;
1534 * In pass through mode, AW must be programmed to indicate the largest
1535 * AGAW value supported by hardware. And ASR is ignored by hardware.
1537 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1538 context_set_address_width(context, iommu->msagaw);
1539 else {
1540 context_set_address_root(context, virt_to_phys(pgd));
1541 context_set_address_width(context, iommu->agaw);
1544 context_set_translation_type(context, translation);
1545 context_set_fault_enable(context);
1546 context_set_present(context);
1547 domain_flush_cache(domain, context, sizeof(*context));
1550 * It's a non-present to present mapping. If hardware doesn't cache
1551 * non-present entry we only need to flush the write-buffer. If the
1552 * _does_ cache non-present entries, then it does so in the special
1553 * domain #0, which we have to flush:
1555 if (cap_caching_mode(iommu->cap)) {
1556 iommu->flush.flush_context(iommu, 0,
1557 (((u16)bus) << 8) | devfn,
1558 DMA_CCMD_MASK_NOBIT,
1559 DMA_CCMD_DEVICE_INVL);
1560 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1561 } else {
1562 iommu_flush_write_buffer(iommu);
1564 iommu_enable_dev_iotlb(info);
1565 spin_unlock_irqrestore(&iommu->lock, flags);
1567 spin_lock_irqsave(&domain->iommu_lock, flags);
1568 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1569 domain->iommu_count++;
1570 domain_update_iommu_cap(domain);
1572 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1573 return 0;
1576 static int
1577 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1578 int translation)
1580 int ret;
1581 struct pci_dev *tmp, *parent;
1583 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1584 pdev->bus->number, pdev->devfn,
1585 translation);
1586 if (ret)
1587 return ret;
1589 /* dependent device mapping */
1590 tmp = pci_find_upstream_pcie_bridge(pdev);
1591 if (!tmp)
1592 return 0;
1593 /* Secondary interface's bus number and devfn 0 */
1594 parent = pdev->bus->self;
1595 while (parent != tmp) {
1596 ret = domain_context_mapping_one(domain,
1597 pci_domain_nr(parent->bus),
1598 parent->bus->number,
1599 parent->devfn, translation);
1600 if (ret)
1601 return ret;
1602 parent = parent->bus->self;
1604 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1605 return domain_context_mapping_one(domain,
1606 pci_domain_nr(tmp->subordinate),
1607 tmp->subordinate->number, 0,
1608 translation);
1609 else /* this is a legacy PCI bridge */
1610 return domain_context_mapping_one(domain,
1611 pci_domain_nr(tmp->bus),
1612 tmp->bus->number,
1613 tmp->devfn,
1614 translation);
1617 static int domain_context_mapped(struct pci_dev *pdev)
1619 int ret;
1620 struct pci_dev *tmp, *parent;
1621 struct intel_iommu *iommu;
1623 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1624 pdev->devfn);
1625 if (!iommu)
1626 return -ENODEV;
1628 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1629 if (!ret)
1630 return ret;
1631 /* dependent device mapping */
1632 tmp = pci_find_upstream_pcie_bridge(pdev);
1633 if (!tmp)
1634 return ret;
1635 /* Secondary interface's bus number and devfn 0 */
1636 parent = pdev->bus->self;
1637 while (parent != tmp) {
1638 ret = device_context_mapped(iommu, parent->bus->number,
1639 parent->devfn);
1640 if (!ret)
1641 return ret;
1642 parent = parent->bus->self;
1644 if (tmp->is_pcie)
1645 return device_context_mapped(iommu, tmp->subordinate->number,
1647 else
1648 return device_context_mapped(iommu, tmp->bus->number,
1649 tmp->devfn);
1652 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1653 struct scatterlist *sg, unsigned long phys_pfn,
1654 unsigned long nr_pages, int prot)
1656 struct dma_pte *first_pte = NULL, *pte = NULL;
1657 phys_addr_t uninitialized_var(pteval);
1658 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1659 unsigned long sg_res;
1661 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1663 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1664 return -EINVAL;
1666 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1668 if (sg)
1669 sg_res = 0;
1670 else {
1671 sg_res = nr_pages + 1;
1672 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1675 while (nr_pages--) {
1676 uint64_t tmp;
1678 if (!sg_res) {
1679 sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
1680 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1681 sg->dma_length = sg->length;
1682 pteval = page_to_phys(sg_page(sg)) | prot;
1684 if (!pte) {
1685 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1686 if (!pte)
1687 return -ENOMEM;
1689 /* We don't need lock here, nobody else
1690 * touches the iova range
1692 tmp = cmpxchg64(&pte->val, 0ULL, pteval);
1693 if (tmp) {
1694 static int dumps = 5;
1695 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1696 iov_pfn, tmp, (unsigned long long)pteval);
1697 if (dumps) {
1698 dumps--;
1699 debug_dma_dump_mappings(NULL);
1701 WARN_ON(1);
1703 pte++;
1704 if (!nr_pages ||
1705 (unsigned long)pte >> VTD_PAGE_SHIFT !=
1706 (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
1707 domain_flush_cache(domain, first_pte,
1708 (void *)pte - (void *)first_pte);
1709 pte = NULL;
1711 iov_pfn++;
1712 pteval += VTD_PAGE_SIZE;
1713 sg_res--;
1714 if (!sg_res)
1715 sg = sg_next(sg);
1717 return 0;
1720 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1721 struct scatterlist *sg, unsigned long nr_pages,
1722 int prot)
1724 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1727 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1728 unsigned long phys_pfn, unsigned long nr_pages,
1729 int prot)
1731 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1734 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1736 if (!iommu)
1737 return;
1739 clear_context_table(iommu, bus, devfn);
1740 iommu->flush.flush_context(iommu, 0, 0, 0,
1741 DMA_CCMD_GLOBAL_INVL);
1742 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1745 static void domain_remove_dev_info(struct dmar_domain *domain)
1747 struct device_domain_info *info;
1748 unsigned long flags;
1749 struct intel_iommu *iommu;
1751 spin_lock_irqsave(&device_domain_lock, flags);
1752 while (!list_empty(&domain->devices)) {
1753 info = list_entry(domain->devices.next,
1754 struct device_domain_info, link);
1755 list_del(&info->link);
1756 list_del(&info->global);
1757 if (info->dev)
1758 info->dev->dev.archdata.iommu = NULL;
1759 spin_unlock_irqrestore(&device_domain_lock, flags);
1761 iommu_disable_dev_iotlb(info);
1762 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1763 iommu_detach_dev(iommu, info->bus, info->devfn);
1764 free_devinfo_mem(info);
1766 spin_lock_irqsave(&device_domain_lock, flags);
1768 spin_unlock_irqrestore(&device_domain_lock, flags);
1772 * find_domain
1773 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1775 static struct dmar_domain *
1776 find_domain(struct pci_dev *pdev)
1778 struct device_domain_info *info;
1780 /* No lock here, assumes no domain exit in normal case */
1781 info = pdev->dev.archdata.iommu;
1782 if (info)
1783 return info->domain;
1784 return NULL;
1787 /* domain is initialized */
1788 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1790 struct dmar_domain *domain, *found = NULL;
1791 struct intel_iommu *iommu;
1792 struct dmar_drhd_unit *drhd;
1793 struct device_domain_info *info, *tmp;
1794 struct pci_dev *dev_tmp;
1795 unsigned long flags;
1796 int bus = 0, devfn = 0;
1797 int segment;
1798 int ret;
1800 domain = find_domain(pdev);
1801 if (domain)
1802 return domain;
1804 segment = pci_domain_nr(pdev->bus);
1806 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1807 if (dev_tmp) {
1808 if (dev_tmp->is_pcie) {
1809 bus = dev_tmp->subordinate->number;
1810 devfn = 0;
1811 } else {
1812 bus = dev_tmp->bus->number;
1813 devfn = dev_tmp->devfn;
1815 spin_lock_irqsave(&device_domain_lock, flags);
1816 list_for_each_entry(info, &device_domain_list, global) {
1817 if (info->segment == segment &&
1818 info->bus == bus && info->devfn == devfn) {
1819 found = info->domain;
1820 break;
1823 spin_unlock_irqrestore(&device_domain_lock, flags);
1824 /* pcie-pci bridge already has a domain, uses it */
1825 if (found) {
1826 domain = found;
1827 goto found_domain;
1831 domain = alloc_domain();
1832 if (!domain)
1833 goto error;
1835 /* Allocate new domain for the device */
1836 drhd = dmar_find_matched_drhd_unit(pdev);
1837 if (!drhd) {
1838 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1839 pci_name(pdev));
1840 return NULL;
1842 iommu = drhd->iommu;
1844 ret = iommu_attach_domain(domain, iommu);
1845 if (ret) {
1846 domain_exit(domain);
1847 goto error;
1850 if (domain_init(domain, gaw)) {
1851 domain_exit(domain);
1852 goto error;
1855 /* register pcie-to-pci device */
1856 if (dev_tmp) {
1857 info = alloc_devinfo_mem();
1858 if (!info) {
1859 domain_exit(domain);
1860 goto error;
1862 info->segment = segment;
1863 info->bus = bus;
1864 info->devfn = devfn;
1865 info->dev = NULL;
1866 info->domain = domain;
1867 /* This domain is shared by devices under p2p bridge */
1868 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1870 /* pcie-to-pci bridge already has a domain, uses it */
1871 found = NULL;
1872 spin_lock_irqsave(&device_domain_lock, flags);
1873 list_for_each_entry(tmp, &device_domain_list, global) {
1874 if (tmp->segment == segment &&
1875 tmp->bus == bus && tmp->devfn == devfn) {
1876 found = tmp->domain;
1877 break;
1880 if (found) {
1881 free_devinfo_mem(info);
1882 domain_exit(domain);
1883 domain = found;
1884 } else {
1885 list_add(&info->link, &domain->devices);
1886 list_add(&info->global, &device_domain_list);
1888 spin_unlock_irqrestore(&device_domain_lock, flags);
1891 found_domain:
1892 info = alloc_devinfo_mem();
1893 if (!info)
1894 goto error;
1895 info->segment = segment;
1896 info->bus = pdev->bus->number;
1897 info->devfn = pdev->devfn;
1898 info->dev = pdev;
1899 info->domain = domain;
1900 spin_lock_irqsave(&device_domain_lock, flags);
1901 /* somebody is fast */
1902 found = find_domain(pdev);
1903 if (found != NULL) {
1904 spin_unlock_irqrestore(&device_domain_lock, flags);
1905 if (found != domain) {
1906 domain_exit(domain);
1907 domain = found;
1909 free_devinfo_mem(info);
1910 return domain;
1912 list_add(&info->link, &domain->devices);
1913 list_add(&info->global, &device_domain_list);
1914 pdev->dev.archdata.iommu = info;
1915 spin_unlock_irqrestore(&device_domain_lock, flags);
1916 return domain;
1917 error:
1918 /* recheck it here, maybe others set it */
1919 return find_domain(pdev);
1922 static int iommu_identity_mapping;
1924 static int iommu_domain_identity_map(struct dmar_domain *domain,
1925 unsigned long long start,
1926 unsigned long long end)
1928 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1929 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1931 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1932 dma_to_mm_pfn(last_vpfn))) {
1933 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1934 return -ENOMEM;
1937 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1938 start, end, domain->id);
1940 * RMRR range might have overlap with physical memory range,
1941 * clear it first
1943 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1945 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1946 last_vpfn - first_vpfn + 1,
1947 DMA_PTE_READ|DMA_PTE_WRITE);
1950 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1951 unsigned long long start,
1952 unsigned long long end)
1954 struct dmar_domain *domain;
1955 int ret;
1957 printk(KERN_INFO
1958 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1959 pci_name(pdev), start, end);
1961 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1962 if (!domain)
1963 return -ENOMEM;
1965 ret = iommu_domain_identity_map(domain, start, end);
1966 if (ret)
1967 goto error;
1969 /* context entry init */
1970 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1971 if (ret)
1972 goto error;
1974 return 0;
1976 error:
1977 domain_exit(domain);
1978 return ret;
1981 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1982 struct pci_dev *pdev)
1984 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1985 return 0;
1986 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1987 rmrr->end_address + 1);
1990 #ifdef CONFIG_DMAR_FLOPPY_WA
1991 static inline void iommu_prepare_isa(void)
1993 struct pci_dev *pdev;
1994 int ret;
1996 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1997 if (!pdev)
1998 return;
2000 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2001 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2003 if (ret)
2004 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2005 "floppy might not work\n");
2008 #else
2009 static inline void iommu_prepare_isa(void)
2011 return;
2013 #endif /* !CONFIG_DMAR_FLPY_WA */
2015 /* Initialize each context entry as pass through.*/
2016 static int __init init_context_pass_through(void)
2018 struct pci_dev *pdev = NULL;
2019 struct dmar_domain *domain;
2020 int ret;
2022 for_each_pci_dev(pdev) {
2023 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2024 ret = domain_context_mapping(domain, pdev,
2025 CONTEXT_TT_PASS_THROUGH);
2026 if (ret)
2027 return ret;
2029 return 0;
2032 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2034 static int __init si_domain_work_fn(unsigned long start_pfn,
2035 unsigned long end_pfn, void *datax)
2037 int *ret = datax;
2039 *ret = iommu_domain_identity_map(si_domain,
2040 (uint64_t)start_pfn << PAGE_SHIFT,
2041 (uint64_t)end_pfn << PAGE_SHIFT);
2042 return *ret;
2046 static int si_domain_init(void)
2048 struct dmar_drhd_unit *drhd;
2049 struct intel_iommu *iommu;
2050 int nid, ret = 0;
2052 si_domain = alloc_domain();
2053 if (!si_domain)
2054 return -EFAULT;
2056 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2058 for_each_active_iommu(iommu, drhd) {
2059 ret = iommu_attach_domain(si_domain, iommu);
2060 if (ret) {
2061 domain_exit(si_domain);
2062 return -EFAULT;
2066 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2067 domain_exit(si_domain);
2068 return -EFAULT;
2071 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2073 for_each_online_node(nid) {
2074 work_with_active_regions(nid, si_domain_work_fn, &ret);
2075 if (ret)
2076 return ret;
2079 return 0;
2082 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2083 struct pci_dev *pdev);
2084 static int identity_mapping(struct pci_dev *pdev)
2086 struct device_domain_info *info;
2088 if (likely(!iommu_identity_mapping))
2089 return 0;
2092 list_for_each_entry(info, &si_domain->devices, link)
2093 if (info->dev == pdev)
2094 return 1;
2095 return 0;
2098 static int domain_add_dev_info(struct dmar_domain *domain,
2099 struct pci_dev *pdev)
2101 struct device_domain_info *info;
2102 unsigned long flags;
2104 info = alloc_devinfo_mem();
2105 if (!info)
2106 return -ENOMEM;
2108 info->segment = pci_domain_nr(pdev->bus);
2109 info->bus = pdev->bus->number;
2110 info->devfn = pdev->devfn;
2111 info->dev = pdev;
2112 info->domain = domain;
2114 spin_lock_irqsave(&device_domain_lock, flags);
2115 list_add(&info->link, &domain->devices);
2116 list_add(&info->global, &device_domain_list);
2117 pdev->dev.archdata.iommu = info;
2118 spin_unlock_irqrestore(&device_domain_lock, flags);
2120 return 0;
2123 static int iommu_prepare_static_identity_mapping(void)
2125 struct pci_dev *pdev = NULL;
2126 int ret;
2128 ret = si_domain_init();
2129 if (ret)
2130 return -EFAULT;
2132 for_each_pci_dev(pdev) {
2133 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2134 pci_name(pdev));
2136 ret = domain_context_mapping(si_domain, pdev,
2137 CONTEXT_TT_MULTI_LEVEL);
2138 if (ret)
2139 return ret;
2140 ret = domain_add_dev_info(si_domain, pdev);
2141 if (ret)
2142 return ret;
2145 return 0;
2148 int __init init_dmars(void)
2150 struct dmar_drhd_unit *drhd;
2151 struct dmar_rmrr_unit *rmrr;
2152 struct pci_dev *pdev;
2153 struct intel_iommu *iommu;
2154 int i, ret;
2155 int pass_through = 1;
2158 * In case pass through can not be enabled, iommu tries to use identity
2159 * mapping.
2161 if (iommu_pass_through)
2162 iommu_identity_mapping = 1;
2165 * for each drhd
2166 * allocate root
2167 * initialize and program root entry to not present
2168 * endfor
2170 for_each_drhd_unit(drhd) {
2171 g_num_of_iommus++;
2173 * lock not needed as this is only incremented in the single
2174 * threaded kernel __init code path all other access are read
2175 * only
2179 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2180 GFP_KERNEL);
2181 if (!g_iommus) {
2182 printk(KERN_ERR "Allocating global iommu array failed\n");
2183 ret = -ENOMEM;
2184 goto error;
2187 deferred_flush = kzalloc(g_num_of_iommus *
2188 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2189 if (!deferred_flush) {
2190 kfree(g_iommus);
2191 ret = -ENOMEM;
2192 goto error;
2195 for_each_drhd_unit(drhd) {
2196 if (drhd->ignored)
2197 continue;
2199 iommu = drhd->iommu;
2200 g_iommus[iommu->seq_id] = iommu;
2202 ret = iommu_init_domains(iommu);
2203 if (ret)
2204 goto error;
2207 * TBD:
2208 * we could share the same root & context tables
2209 * amoung all IOMMU's. Need to Split it later.
2211 ret = iommu_alloc_root_entry(iommu);
2212 if (ret) {
2213 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2214 goto error;
2216 if (!ecap_pass_through(iommu->ecap))
2217 pass_through = 0;
2219 if (iommu_pass_through)
2220 if (!pass_through) {
2221 printk(KERN_INFO
2222 "Pass Through is not supported by hardware.\n");
2223 iommu_pass_through = 0;
2227 * Start from the sane iommu hardware state.
2229 for_each_drhd_unit(drhd) {
2230 if (drhd->ignored)
2231 continue;
2233 iommu = drhd->iommu;
2236 * If the queued invalidation is already initialized by us
2237 * (for example, while enabling interrupt-remapping) then
2238 * we got the things already rolling from a sane state.
2240 if (iommu->qi)
2241 continue;
2244 * Clear any previous faults.
2246 dmar_fault(-1, iommu);
2248 * Disable queued invalidation if supported and already enabled
2249 * before OS handover.
2251 dmar_disable_qi(iommu);
2254 for_each_drhd_unit(drhd) {
2255 if (drhd->ignored)
2256 continue;
2258 iommu = drhd->iommu;
2260 if (dmar_enable_qi(iommu)) {
2262 * Queued Invalidate not enabled, use Register Based
2263 * Invalidate
2265 iommu->flush.flush_context = __iommu_flush_context;
2266 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2267 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2268 "invalidation\n",
2269 (unsigned long long)drhd->reg_base_addr);
2270 } else {
2271 iommu->flush.flush_context = qi_flush_context;
2272 iommu->flush.flush_iotlb = qi_flush_iotlb;
2273 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2274 "invalidation\n",
2275 (unsigned long long)drhd->reg_base_addr);
2280 * If pass through is set and enabled, context entries of all pci
2281 * devices are intialized by pass through translation type.
2283 if (iommu_pass_through) {
2284 ret = init_context_pass_through();
2285 if (ret) {
2286 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2287 iommu_pass_through = 0;
2292 * If pass through is not set or not enabled, setup context entries for
2293 * identity mappings for rmrr, gfx, and isa and may fall back to static
2294 * identity mapping if iommu_identity_mapping is set.
2296 if (!iommu_pass_through) {
2297 if (iommu_identity_mapping)
2298 iommu_prepare_static_identity_mapping();
2300 * For each rmrr
2301 * for each dev attached to rmrr
2302 * do
2303 * locate drhd for dev, alloc domain for dev
2304 * allocate free domain
2305 * allocate page table entries for rmrr
2306 * if context not allocated for bus
2307 * allocate and init context
2308 * set present in root table for this bus
2309 * init context with domain, translation etc
2310 * endfor
2311 * endfor
2313 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2314 for_each_rmrr_units(rmrr) {
2315 for (i = 0; i < rmrr->devices_cnt; i++) {
2316 pdev = rmrr->devices[i];
2318 * some BIOS lists non-exist devices in DMAR
2319 * table.
2321 if (!pdev)
2322 continue;
2323 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2324 if (ret)
2325 printk(KERN_ERR
2326 "IOMMU: mapping reserved region failed\n");
2330 iommu_prepare_isa();
2334 * for each drhd
2335 * enable fault log
2336 * global invalidate context cache
2337 * global invalidate iotlb
2338 * enable translation
2340 for_each_drhd_unit(drhd) {
2341 if (drhd->ignored)
2342 continue;
2343 iommu = drhd->iommu;
2345 iommu_flush_write_buffer(iommu);
2347 ret = dmar_set_interrupt(iommu);
2348 if (ret)
2349 goto error;
2351 iommu_set_root_entry(iommu);
2353 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2354 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2355 iommu_disable_protect_mem_regions(iommu);
2357 ret = iommu_enable_translation(iommu);
2358 if (ret)
2359 goto error;
2362 return 0;
2363 error:
2364 for_each_drhd_unit(drhd) {
2365 if (drhd->ignored)
2366 continue;
2367 iommu = drhd->iommu;
2368 free_iommu(iommu);
2370 kfree(g_iommus);
2371 return ret;
2374 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2375 size_t size)
2377 host_addr &= ~PAGE_MASK;
2378 host_addr += size + PAGE_SIZE - 1;
2380 return host_addr >> VTD_PAGE_SHIFT;
2383 static struct iova *intel_alloc_iova(struct device *dev,
2384 struct dmar_domain *domain,
2385 unsigned long nrpages, uint64_t dma_mask)
2387 struct pci_dev *pdev = to_pci_dev(dev);
2388 struct iova *iova = NULL;
2390 /* Restrict dma_mask to the width that the iommu can handle */
2391 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2393 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2395 * First try to allocate an io virtual address in
2396 * DMA_BIT_MASK(32) and if that fails then try allocating
2397 * from higher range
2399 iova = alloc_iova(&domain->iovad, nrpages,
2400 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2401 if (iova)
2402 return iova;
2404 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2405 if (unlikely(!iova)) {
2406 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2407 nrpages, pci_name(pdev));
2408 return NULL;
2411 return iova;
2414 static struct dmar_domain *
2415 get_valid_domain_for_dev(struct pci_dev *pdev)
2417 struct dmar_domain *domain;
2418 int ret;
2420 domain = get_domain_for_dev(pdev,
2421 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2422 if (!domain) {
2423 printk(KERN_ERR
2424 "Allocating domain for %s failed", pci_name(pdev));
2425 return NULL;
2428 /* make sure context mapping is ok */
2429 if (unlikely(!domain_context_mapped(pdev))) {
2430 ret = domain_context_mapping(domain, pdev,
2431 CONTEXT_TT_MULTI_LEVEL);
2432 if (ret) {
2433 printk(KERN_ERR
2434 "Domain context map for %s failed",
2435 pci_name(pdev));
2436 return NULL;
2440 return domain;
2443 static int iommu_dummy(struct pci_dev *pdev)
2445 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2448 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2449 static int iommu_no_mapping(struct pci_dev *pdev)
2451 int found;
2453 if (!iommu_identity_mapping)
2454 return iommu_dummy(pdev);
2456 found = identity_mapping(pdev);
2457 if (found) {
2458 if (pdev->dma_mask > DMA_BIT_MASK(32))
2459 return 1;
2460 else {
2462 * 32 bit DMA is removed from si_domain and fall back
2463 * to non-identity mapping.
2465 domain_remove_one_dev_info(si_domain, pdev);
2466 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2467 pci_name(pdev));
2468 return 0;
2470 } else {
2472 * In case of a detached 64 bit DMA device from vm, the device
2473 * is put into si_domain for identity mapping.
2475 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2476 int ret;
2477 ret = domain_add_dev_info(si_domain, pdev);
2478 if (!ret) {
2479 printk(KERN_INFO "64bit %s uses identity mapping\n",
2480 pci_name(pdev));
2481 return 1;
2486 return iommu_dummy(pdev);
2489 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2490 size_t size, int dir, u64 dma_mask)
2492 struct pci_dev *pdev = to_pci_dev(hwdev);
2493 struct dmar_domain *domain;
2494 phys_addr_t start_paddr;
2495 struct iova *iova;
2496 int prot = 0;
2497 int ret;
2498 struct intel_iommu *iommu;
2500 BUG_ON(dir == DMA_NONE);
2502 if (iommu_no_mapping(pdev))
2503 return paddr;
2505 domain = get_valid_domain_for_dev(pdev);
2506 if (!domain)
2507 return 0;
2509 iommu = domain_get_iommu(domain);
2510 size = aligned_nrpages(paddr, size);
2512 iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2513 if (!iova)
2514 goto error;
2517 * Check if DMAR supports zero-length reads on write only
2518 * mappings..
2520 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2521 !cap_zlr(iommu->cap))
2522 prot |= DMA_PTE_READ;
2523 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2524 prot |= DMA_PTE_WRITE;
2526 * paddr - (paddr + size) might be partial page, we should map the whole
2527 * page. Note: if two part of one page are separately mapped, we
2528 * might have two guest_addr mapping to the same host paddr, but this
2529 * is not a big problem
2531 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2532 paddr >> VTD_PAGE_SHIFT, size, prot);
2533 if (ret)
2534 goto error;
2536 /* it's a non-present to present mapping. Only flush if caching mode */
2537 if (cap_caching_mode(iommu->cap))
2538 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2539 else
2540 iommu_flush_write_buffer(iommu);
2542 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2543 start_paddr += paddr & ~PAGE_MASK;
2544 return start_paddr;
2546 error:
2547 if (iova)
2548 __free_iova(&domain->iovad, iova);
2549 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2550 pci_name(pdev), size, (unsigned long long)paddr, dir);
2551 return 0;
2554 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2555 unsigned long offset, size_t size,
2556 enum dma_data_direction dir,
2557 struct dma_attrs *attrs)
2559 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2560 dir, to_pci_dev(dev)->dma_mask);
2563 static void flush_unmaps(void)
2565 int i, j;
2567 timer_on = 0;
2569 /* just flush them all */
2570 for (i = 0; i < g_num_of_iommus; i++) {
2571 struct intel_iommu *iommu = g_iommus[i];
2572 if (!iommu)
2573 continue;
2575 if (!deferred_flush[i].next)
2576 continue;
2578 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2579 DMA_TLB_GLOBAL_FLUSH);
2580 for (j = 0; j < deferred_flush[i].next; j++) {
2581 unsigned long mask;
2582 struct iova *iova = deferred_flush[i].iova[j];
2584 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2585 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2586 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2587 iova->pfn_lo << PAGE_SHIFT, mask);
2588 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2590 deferred_flush[i].next = 0;
2593 list_size = 0;
2596 static void flush_unmaps_timeout(unsigned long data)
2598 unsigned long flags;
2600 spin_lock_irqsave(&async_umap_flush_lock, flags);
2601 flush_unmaps();
2602 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2605 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2607 unsigned long flags;
2608 int next, iommu_id;
2609 struct intel_iommu *iommu;
2611 spin_lock_irqsave(&async_umap_flush_lock, flags);
2612 if (list_size == HIGH_WATER_MARK)
2613 flush_unmaps();
2615 iommu = domain_get_iommu(dom);
2616 iommu_id = iommu->seq_id;
2618 next = deferred_flush[iommu_id].next;
2619 deferred_flush[iommu_id].domain[next] = dom;
2620 deferred_flush[iommu_id].iova[next] = iova;
2621 deferred_flush[iommu_id].next++;
2623 if (!timer_on) {
2624 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2625 timer_on = 1;
2627 list_size++;
2628 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2631 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2632 size_t size, enum dma_data_direction dir,
2633 struct dma_attrs *attrs)
2635 struct pci_dev *pdev = to_pci_dev(dev);
2636 struct dmar_domain *domain;
2637 unsigned long start_pfn, last_pfn;
2638 struct iova *iova;
2639 struct intel_iommu *iommu;
2641 if (iommu_no_mapping(pdev))
2642 return;
2644 domain = find_domain(pdev);
2645 BUG_ON(!domain);
2647 iommu = domain_get_iommu(domain);
2649 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2650 if (!iova)
2651 return;
2653 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2654 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2656 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2657 pci_name(pdev), start_pfn, last_pfn);
2659 /* clear the whole page */
2660 dma_pte_clear_range(domain, start_pfn, last_pfn);
2662 /* free page tables */
2663 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2665 if (intel_iommu_strict) {
2666 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2667 last_pfn - start_pfn + 1);
2668 /* free iova */
2669 __free_iova(&domain->iovad, iova);
2670 } else {
2671 add_unmap(domain, iova);
2673 * queue up the release of the unmap to save the 1/6th of the
2674 * cpu used up by the iotlb flush operation...
2679 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2680 int dir)
2682 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2685 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2686 dma_addr_t *dma_handle, gfp_t flags)
2688 void *vaddr;
2689 int order;
2691 size = PAGE_ALIGN(size);
2692 order = get_order(size);
2693 flags &= ~(GFP_DMA | GFP_DMA32);
2695 vaddr = (void *)__get_free_pages(flags, order);
2696 if (!vaddr)
2697 return NULL;
2698 memset(vaddr, 0, size);
2700 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2701 DMA_BIDIRECTIONAL,
2702 hwdev->coherent_dma_mask);
2703 if (*dma_handle)
2704 return vaddr;
2705 free_pages((unsigned long)vaddr, order);
2706 return NULL;
2709 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2710 dma_addr_t dma_handle)
2712 int order;
2714 size = PAGE_ALIGN(size);
2715 order = get_order(size);
2717 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2718 free_pages((unsigned long)vaddr, order);
2721 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2722 int nelems, enum dma_data_direction dir,
2723 struct dma_attrs *attrs)
2725 struct pci_dev *pdev = to_pci_dev(hwdev);
2726 struct dmar_domain *domain;
2727 unsigned long start_pfn, last_pfn;
2728 struct iova *iova;
2729 struct intel_iommu *iommu;
2731 if (iommu_no_mapping(pdev))
2732 return;
2734 domain = find_domain(pdev);
2735 BUG_ON(!domain);
2737 iommu = domain_get_iommu(domain);
2739 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2740 if (!iova)
2741 return;
2743 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2744 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2746 /* clear the whole page */
2747 dma_pte_clear_range(domain, start_pfn, last_pfn);
2749 /* free page tables */
2750 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2752 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2753 (last_pfn - start_pfn + 1));
2755 /* free iova */
2756 __free_iova(&domain->iovad, iova);
2759 static int intel_nontranslate_map_sg(struct device *hddev,
2760 struct scatterlist *sglist, int nelems, int dir)
2762 int i;
2763 struct scatterlist *sg;
2765 for_each_sg(sglist, sg, nelems, i) {
2766 BUG_ON(!sg_page(sg));
2767 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2768 sg->dma_length = sg->length;
2770 return nelems;
2773 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2774 enum dma_data_direction dir, struct dma_attrs *attrs)
2776 int i;
2777 struct pci_dev *pdev = to_pci_dev(hwdev);
2778 struct dmar_domain *domain;
2779 size_t size = 0;
2780 int prot = 0;
2781 size_t offset_pfn = 0;
2782 struct iova *iova = NULL;
2783 int ret;
2784 struct scatterlist *sg;
2785 unsigned long start_vpfn;
2786 struct intel_iommu *iommu;
2788 BUG_ON(dir == DMA_NONE);
2789 if (iommu_no_mapping(pdev))
2790 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2792 domain = get_valid_domain_for_dev(pdev);
2793 if (!domain)
2794 return 0;
2796 iommu = domain_get_iommu(domain);
2798 for_each_sg(sglist, sg, nelems, i)
2799 size += aligned_nrpages(sg->offset, sg->length);
2801 iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2802 if (!iova) {
2803 sglist->dma_length = 0;
2804 return 0;
2808 * Check if DMAR supports zero-length reads on write only
2809 * mappings..
2811 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2812 !cap_zlr(iommu->cap))
2813 prot |= DMA_PTE_READ;
2814 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2815 prot |= DMA_PTE_WRITE;
2817 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2819 ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
2820 if (unlikely(ret)) {
2821 /* clear the page */
2822 dma_pte_clear_range(domain, start_vpfn,
2823 start_vpfn + size - 1);
2824 /* free page tables */
2825 dma_pte_free_pagetable(domain, start_vpfn,
2826 start_vpfn + size - 1);
2827 /* free iova */
2828 __free_iova(&domain->iovad, iova);
2829 return 0;
2832 /* it's a non-present to present mapping. Only flush if caching mode */
2833 if (cap_caching_mode(iommu->cap))
2834 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2835 else
2836 iommu_flush_write_buffer(iommu);
2838 return nelems;
2841 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2843 return !dma_addr;
2846 struct dma_map_ops intel_dma_ops = {
2847 .alloc_coherent = intel_alloc_coherent,
2848 .free_coherent = intel_free_coherent,
2849 .map_sg = intel_map_sg,
2850 .unmap_sg = intel_unmap_sg,
2851 .map_page = intel_map_page,
2852 .unmap_page = intel_unmap_page,
2853 .mapping_error = intel_mapping_error,
2856 static inline int iommu_domain_cache_init(void)
2858 int ret = 0;
2860 iommu_domain_cache = kmem_cache_create("iommu_domain",
2861 sizeof(struct dmar_domain),
2863 SLAB_HWCACHE_ALIGN,
2865 NULL);
2866 if (!iommu_domain_cache) {
2867 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2868 ret = -ENOMEM;
2871 return ret;
2874 static inline int iommu_devinfo_cache_init(void)
2876 int ret = 0;
2878 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2879 sizeof(struct device_domain_info),
2881 SLAB_HWCACHE_ALIGN,
2882 NULL);
2883 if (!iommu_devinfo_cache) {
2884 printk(KERN_ERR "Couldn't create devinfo cache\n");
2885 ret = -ENOMEM;
2888 return ret;
2891 static inline int iommu_iova_cache_init(void)
2893 int ret = 0;
2895 iommu_iova_cache = kmem_cache_create("iommu_iova",
2896 sizeof(struct iova),
2898 SLAB_HWCACHE_ALIGN,
2899 NULL);
2900 if (!iommu_iova_cache) {
2901 printk(KERN_ERR "Couldn't create iova cache\n");
2902 ret = -ENOMEM;
2905 return ret;
2908 static int __init iommu_init_mempool(void)
2910 int ret;
2911 ret = iommu_iova_cache_init();
2912 if (ret)
2913 return ret;
2915 ret = iommu_domain_cache_init();
2916 if (ret)
2917 goto domain_error;
2919 ret = iommu_devinfo_cache_init();
2920 if (!ret)
2921 return ret;
2923 kmem_cache_destroy(iommu_domain_cache);
2924 domain_error:
2925 kmem_cache_destroy(iommu_iova_cache);
2927 return -ENOMEM;
2930 static void __init iommu_exit_mempool(void)
2932 kmem_cache_destroy(iommu_devinfo_cache);
2933 kmem_cache_destroy(iommu_domain_cache);
2934 kmem_cache_destroy(iommu_iova_cache);
2938 static void __init init_no_remapping_devices(void)
2940 struct dmar_drhd_unit *drhd;
2942 for_each_drhd_unit(drhd) {
2943 if (!drhd->include_all) {
2944 int i;
2945 for (i = 0; i < drhd->devices_cnt; i++)
2946 if (drhd->devices[i] != NULL)
2947 break;
2948 /* ignore DMAR unit if no pci devices exist */
2949 if (i == drhd->devices_cnt)
2950 drhd->ignored = 1;
2954 if (dmar_map_gfx)
2955 return;
2957 for_each_drhd_unit(drhd) {
2958 int i;
2959 if (drhd->ignored || drhd->include_all)
2960 continue;
2962 for (i = 0; i < drhd->devices_cnt; i++)
2963 if (drhd->devices[i] &&
2964 !IS_GFX_DEVICE(drhd->devices[i]))
2965 break;
2967 if (i < drhd->devices_cnt)
2968 continue;
2970 /* bypass IOMMU if it is just for gfx devices */
2971 drhd->ignored = 1;
2972 for (i = 0; i < drhd->devices_cnt; i++) {
2973 if (!drhd->devices[i])
2974 continue;
2975 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2980 #ifdef CONFIG_SUSPEND
2981 static int init_iommu_hw(void)
2983 struct dmar_drhd_unit *drhd;
2984 struct intel_iommu *iommu = NULL;
2986 for_each_active_iommu(iommu, drhd)
2987 if (iommu->qi)
2988 dmar_reenable_qi(iommu);
2990 for_each_active_iommu(iommu, drhd) {
2991 iommu_flush_write_buffer(iommu);
2993 iommu_set_root_entry(iommu);
2995 iommu->flush.flush_context(iommu, 0, 0, 0,
2996 DMA_CCMD_GLOBAL_INVL);
2997 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2998 DMA_TLB_GLOBAL_FLUSH);
2999 iommu_disable_protect_mem_regions(iommu);
3000 iommu_enable_translation(iommu);
3003 return 0;
3006 static void iommu_flush_all(void)
3008 struct dmar_drhd_unit *drhd;
3009 struct intel_iommu *iommu;
3011 for_each_active_iommu(iommu, drhd) {
3012 iommu->flush.flush_context(iommu, 0, 0, 0,
3013 DMA_CCMD_GLOBAL_INVL);
3014 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3015 DMA_TLB_GLOBAL_FLUSH);
3019 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3021 struct dmar_drhd_unit *drhd;
3022 struct intel_iommu *iommu = NULL;
3023 unsigned long flag;
3025 for_each_active_iommu(iommu, drhd) {
3026 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3027 GFP_ATOMIC);
3028 if (!iommu->iommu_state)
3029 goto nomem;
3032 iommu_flush_all();
3034 for_each_active_iommu(iommu, drhd) {
3035 iommu_disable_translation(iommu);
3037 spin_lock_irqsave(&iommu->register_lock, flag);
3039 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3040 readl(iommu->reg + DMAR_FECTL_REG);
3041 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3042 readl(iommu->reg + DMAR_FEDATA_REG);
3043 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3044 readl(iommu->reg + DMAR_FEADDR_REG);
3045 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3046 readl(iommu->reg + DMAR_FEUADDR_REG);
3048 spin_unlock_irqrestore(&iommu->register_lock, flag);
3050 return 0;
3052 nomem:
3053 for_each_active_iommu(iommu, drhd)
3054 kfree(iommu->iommu_state);
3056 return -ENOMEM;
3059 static int iommu_resume(struct sys_device *dev)
3061 struct dmar_drhd_unit *drhd;
3062 struct intel_iommu *iommu = NULL;
3063 unsigned long flag;
3065 if (init_iommu_hw()) {
3066 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3067 return -EIO;
3070 for_each_active_iommu(iommu, drhd) {
3072 spin_lock_irqsave(&iommu->register_lock, flag);
3074 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3075 iommu->reg + DMAR_FECTL_REG);
3076 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3077 iommu->reg + DMAR_FEDATA_REG);
3078 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3079 iommu->reg + DMAR_FEADDR_REG);
3080 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3081 iommu->reg + DMAR_FEUADDR_REG);
3083 spin_unlock_irqrestore(&iommu->register_lock, flag);
3086 for_each_active_iommu(iommu, drhd)
3087 kfree(iommu->iommu_state);
3089 return 0;
3092 static struct sysdev_class iommu_sysclass = {
3093 .name = "iommu",
3094 .resume = iommu_resume,
3095 .suspend = iommu_suspend,
3098 static struct sys_device device_iommu = {
3099 .cls = &iommu_sysclass,
3102 static int __init init_iommu_sysfs(void)
3104 int error;
3106 error = sysdev_class_register(&iommu_sysclass);
3107 if (error)
3108 return error;
3110 error = sysdev_register(&device_iommu);
3111 if (error)
3112 sysdev_class_unregister(&iommu_sysclass);
3114 return error;
3117 #else
3118 static int __init init_iommu_sysfs(void)
3120 return 0;
3122 #endif /* CONFIG_PM */
3124 int __init intel_iommu_init(void)
3126 int ret = 0;
3128 if (dmar_table_init())
3129 return -ENODEV;
3131 if (dmar_dev_scope_init())
3132 return -ENODEV;
3135 * Check the need for DMA-remapping initialization now.
3136 * Above initialization will also be used by Interrupt-remapping.
3138 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3139 return -ENODEV;
3141 iommu_init_mempool();
3142 dmar_init_reserved_ranges();
3144 init_no_remapping_devices();
3146 ret = init_dmars();
3147 if (ret) {
3148 printk(KERN_ERR "IOMMU: dmar init failed\n");
3149 put_iova_domain(&reserved_iova_list);
3150 iommu_exit_mempool();
3151 return ret;
3153 printk(KERN_INFO
3154 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3156 init_timer(&unmap_timer);
3157 force_iommu = 1;
3159 if (!iommu_pass_through) {
3160 printk(KERN_INFO
3161 "Multi-level page-table translation for DMAR.\n");
3162 dma_ops = &intel_dma_ops;
3163 } else
3164 printk(KERN_INFO
3165 "DMAR: Pass through translation for DMAR.\n");
3167 init_iommu_sysfs();
3169 register_iommu(&intel_iommu_ops);
3171 return 0;
3174 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3175 struct pci_dev *pdev)
3177 struct pci_dev *tmp, *parent;
3179 if (!iommu || !pdev)
3180 return;
3182 /* dependent device detach */
3183 tmp = pci_find_upstream_pcie_bridge(pdev);
3184 /* Secondary interface's bus number and devfn 0 */
3185 if (tmp) {
3186 parent = pdev->bus->self;
3187 while (parent != tmp) {
3188 iommu_detach_dev(iommu, parent->bus->number,
3189 parent->devfn);
3190 parent = parent->bus->self;
3192 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3193 iommu_detach_dev(iommu,
3194 tmp->subordinate->number, 0);
3195 else /* this is a legacy PCI bridge */
3196 iommu_detach_dev(iommu, tmp->bus->number,
3197 tmp->devfn);
3201 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3202 struct pci_dev *pdev)
3204 struct device_domain_info *info;
3205 struct intel_iommu *iommu;
3206 unsigned long flags;
3207 int found = 0;
3208 struct list_head *entry, *tmp;
3210 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3211 pdev->devfn);
3212 if (!iommu)
3213 return;
3215 spin_lock_irqsave(&device_domain_lock, flags);
3216 list_for_each_safe(entry, tmp, &domain->devices) {
3217 info = list_entry(entry, struct device_domain_info, link);
3218 /* No need to compare PCI domain; it has to be the same */
3219 if (info->bus == pdev->bus->number &&
3220 info->devfn == pdev->devfn) {
3221 list_del(&info->link);
3222 list_del(&info->global);
3223 if (info->dev)
3224 info->dev->dev.archdata.iommu = NULL;
3225 spin_unlock_irqrestore(&device_domain_lock, flags);
3227 iommu_disable_dev_iotlb(info);
3228 iommu_detach_dev(iommu, info->bus, info->devfn);
3229 iommu_detach_dependent_devices(iommu, pdev);
3230 free_devinfo_mem(info);
3232 spin_lock_irqsave(&device_domain_lock, flags);
3234 if (found)
3235 break;
3236 else
3237 continue;
3240 /* if there is no other devices under the same iommu
3241 * owned by this domain, clear this iommu in iommu_bmp
3242 * update iommu count and coherency
3244 if (iommu == device_to_iommu(info->segment, info->bus,
3245 info->devfn))
3246 found = 1;
3249 if (found == 0) {
3250 unsigned long tmp_flags;
3251 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3252 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3253 domain->iommu_count--;
3254 domain_update_iommu_cap(domain);
3255 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3258 spin_unlock_irqrestore(&device_domain_lock, flags);
3261 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3263 struct device_domain_info *info;
3264 struct intel_iommu *iommu;
3265 unsigned long flags1, flags2;
3267 spin_lock_irqsave(&device_domain_lock, flags1);
3268 while (!list_empty(&domain->devices)) {
3269 info = list_entry(domain->devices.next,
3270 struct device_domain_info, link);
3271 list_del(&info->link);
3272 list_del(&info->global);
3273 if (info->dev)
3274 info->dev->dev.archdata.iommu = NULL;
3276 spin_unlock_irqrestore(&device_domain_lock, flags1);
3278 iommu_disable_dev_iotlb(info);
3279 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3280 iommu_detach_dev(iommu, info->bus, info->devfn);
3281 iommu_detach_dependent_devices(iommu, info->dev);
3283 /* clear this iommu in iommu_bmp, update iommu count
3284 * and capabilities
3286 spin_lock_irqsave(&domain->iommu_lock, flags2);
3287 if (test_and_clear_bit(iommu->seq_id,
3288 &domain->iommu_bmp)) {
3289 domain->iommu_count--;
3290 domain_update_iommu_cap(domain);
3292 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3294 free_devinfo_mem(info);
3295 spin_lock_irqsave(&device_domain_lock, flags1);
3297 spin_unlock_irqrestore(&device_domain_lock, flags1);
3300 /* domain id for virtual machine, it won't be set in context */
3301 static unsigned long vm_domid;
3303 static int vm_domain_min_agaw(struct dmar_domain *domain)
3305 int i;
3306 int min_agaw = domain->agaw;
3308 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3309 for (; i < g_num_of_iommus; ) {
3310 if (min_agaw > g_iommus[i]->agaw)
3311 min_agaw = g_iommus[i]->agaw;
3313 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3316 return min_agaw;
3319 static struct dmar_domain *iommu_alloc_vm_domain(void)
3321 struct dmar_domain *domain;
3323 domain = alloc_domain_mem();
3324 if (!domain)
3325 return NULL;
3327 domain->id = vm_domid++;
3328 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3329 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3331 return domain;
3334 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3336 int adjust_width;
3338 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3339 spin_lock_init(&domain->mapping_lock);
3340 spin_lock_init(&domain->iommu_lock);
3342 domain_reserve_special_ranges(domain);
3344 /* calculate AGAW */
3345 domain->gaw = guest_width;
3346 adjust_width = guestwidth_to_adjustwidth(guest_width);
3347 domain->agaw = width_to_agaw(adjust_width);
3349 INIT_LIST_HEAD(&domain->devices);
3351 domain->iommu_count = 0;
3352 domain->iommu_coherency = 0;
3353 domain->max_addr = 0;
3355 /* always allocate the top pgd */
3356 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3357 if (!domain->pgd)
3358 return -ENOMEM;
3359 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3360 return 0;
3363 static void iommu_free_vm_domain(struct dmar_domain *domain)
3365 unsigned long flags;
3366 struct dmar_drhd_unit *drhd;
3367 struct intel_iommu *iommu;
3368 unsigned long i;
3369 unsigned long ndomains;
3371 for_each_drhd_unit(drhd) {
3372 if (drhd->ignored)
3373 continue;
3374 iommu = drhd->iommu;
3376 ndomains = cap_ndoms(iommu->cap);
3377 i = find_first_bit(iommu->domain_ids, ndomains);
3378 for (; i < ndomains; ) {
3379 if (iommu->domains[i] == domain) {
3380 spin_lock_irqsave(&iommu->lock, flags);
3381 clear_bit(i, iommu->domain_ids);
3382 iommu->domains[i] = NULL;
3383 spin_unlock_irqrestore(&iommu->lock, flags);
3384 break;
3386 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3391 static void vm_domain_exit(struct dmar_domain *domain)
3393 /* Domain 0 is reserved, so dont process it */
3394 if (!domain)
3395 return;
3397 vm_domain_remove_all_dev_info(domain);
3398 /* destroy iovas */
3399 put_iova_domain(&domain->iovad);
3401 /* clear ptes */
3402 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3404 /* free page tables */
3405 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3407 iommu_free_vm_domain(domain);
3408 free_domain_mem(domain);
3411 static int intel_iommu_domain_init(struct iommu_domain *domain)
3413 struct dmar_domain *dmar_domain;
3415 dmar_domain = iommu_alloc_vm_domain();
3416 if (!dmar_domain) {
3417 printk(KERN_ERR
3418 "intel_iommu_domain_init: dmar_domain == NULL\n");
3419 return -ENOMEM;
3421 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3422 printk(KERN_ERR
3423 "intel_iommu_domain_init() failed\n");
3424 vm_domain_exit(dmar_domain);
3425 return -ENOMEM;
3427 domain->priv = dmar_domain;
3429 return 0;
3432 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3434 struct dmar_domain *dmar_domain = domain->priv;
3436 domain->priv = NULL;
3437 vm_domain_exit(dmar_domain);
3440 static int intel_iommu_attach_device(struct iommu_domain *domain,
3441 struct device *dev)
3443 struct dmar_domain *dmar_domain = domain->priv;
3444 struct pci_dev *pdev = to_pci_dev(dev);
3445 struct intel_iommu *iommu;
3446 int addr_width;
3447 u64 end;
3448 int ret;
3450 /* normally pdev is not mapped */
3451 if (unlikely(domain_context_mapped(pdev))) {
3452 struct dmar_domain *old_domain;
3454 old_domain = find_domain(pdev);
3455 if (old_domain) {
3456 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3457 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3458 domain_remove_one_dev_info(old_domain, pdev);
3459 else
3460 domain_remove_dev_info(old_domain);
3464 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3465 pdev->devfn);
3466 if (!iommu)
3467 return -ENODEV;
3469 /* check if this iommu agaw is sufficient for max mapped address */
3470 addr_width = agaw_to_width(iommu->agaw);
3471 end = DOMAIN_MAX_ADDR(addr_width);
3472 end = end & VTD_PAGE_MASK;
3473 if (end < dmar_domain->max_addr) {
3474 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3475 "sufficient for the mapped address (%llx)\n",
3476 __func__, iommu->agaw, dmar_domain->max_addr);
3477 return -EFAULT;
3480 ret = domain_add_dev_info(dmar_domain, pdev);
3481 if (ret)
3482 return ret;
3484 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3485 return ret;
3488 static void intel_iommu_detach_device(struct iommu_domain *domain,
3489 struct device *dev)
3491 struct dmar_domain *dmar_domain = domain->priv;
3492 struct pci_dev *pdev = to_pci_dev(dev);
3494 domain_remove_one_dev_info(dmar_domain, pdev);
3497 static int intel_iommu_map_range(struct iommu_domain *domain,
3498 unsigned long iova, phys_addr_t hpa,
3499 size_t size, int iommu_prot)
3501 struct dmar_domain *dmar_domain = domain->priv;
3502 u64 max_addr;
3503 int addr_width;
3504 int prot = 0;
3505 int ret;
3507 if (iommu_prot & IOMMU_READ)
3508 prot |= DMA_PTE_READ;
3509 if (iommu_prot & IOMMU_WRITE)
3510 prot |= DMA_PTE_WRITE;
3511 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3512 prot |= DMA_PTE_SNP;
3514 max_addr = iova + size;
3515 if (dmar_domain->max_addr < max_addr) {
3516 int min_agaw;
3517 u64 end;
3519 /* check if minimum agaw is sufficient for mapped address */
3520 min_agaw = vm_domain_min_agaw(dmar_domain);
3521 addr_width = agaw_to_width(min_agaw);
3522 end = DOMAIN_MAX_ADDR(addr_width);
3523 end = end & VTD_PAGE_MASK;
3524 if (end < max_addr) {
3525 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3526 "sufficient for the mapped address (%llx)\n",
3527 __func__, min_agaw, max_addr);
3528 return -EFAULT;
3530 dmar_domain->max_addr = max_addr;
3532 /* Round up size to next multiple of PAGE_SIZE, if it and
3533 the low bits of hpa would take us onto the next page */
3534 size = aligned_nrpages(hpa, size);
3535 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3536 hpa >> VTD_PAGE_SHIFT, size, prot);
3537 return ret;
3540 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3541 unsigned long iova, size_t size)
3543 struct dmar_domain *dmar_domain = domain->priv;
3545 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3546 (iova + size - 1) >> VTD_PAGE_SHIFT);
3548 if (dmar_domain->max_addr == iova + size)
3549 dmar_domain->max_addr = iova;
3552 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3553 unsigned long iova)
3555 struct dmar_domain *dmar_domain = domain->priv;
3556 struct dma_pte *pte;
3557 u64 phys = 0;
3559 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3560 if (pte)
3561 phys = dma_pte_addr(pte);
3563 return phys;
3566 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3567 unsigned long cap)
3569 struct dmar_domain *dmar_domain = domain->priv;
3571 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3572 return dmar_domain->iommu_snooping;
3574 return 0;
3577 static struct iommu_ops intel_iommu_ops = {
3578 .domain_init = intel_iommu_domain_init,
3579 .domain_destroy = intel_iommu_domain_destroy,
3580 .attach_dev = intel_iommu_attach_device,
3581 .detach_dev = intel_iommu_detach_device,
3582 .map = intel_iommu_map_range,
3583 .unmap = intel_iommu_unmap_range,
3584 .iova_to_phys = intel_iommu_iova_to_phys,
3585 .domain_has_cap = intel_iommu_domain_has_cap,
3588 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3591 * Mobile 4 Series Chipset neglects to set RWBF capability,
3592 * but needs it:
3594 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3595 rwbf_quirk = 1;
3598 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);