plat-nomadik: implement suspend/resume for GPIO
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / kernel / smp.c
blob4539ebcb089fad0c9471310aed633da450cf963f
1 /*
2 * linux/arch/arm/kernel/smp.c
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/ftrace.h>
20 #include <linux/mm.h>
21 #include <linux/err.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/percpu.h>
27 #include <linux/clockchips.h>
28 #include <linux/completion.h>
30 #include <asm/atomic.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/processor.h>
38 #include <asm/sections.h>
39 #include <asm/tlbflush.h>
40 #include <asm/ptrace.h>
41 #include <asm/localtimer.h>
44 * as from 2.5, kernels no longer have an init_tasks structure
45 * so we need some other way of telling a new secondary core
46 * where to place its SVC stack
48 struct secondary_data secondary_data;
50 enum ipi_msg_type {
51 IPI_TIMER = 2,
52 IPI_RESCHEDULE,
53 IPI_CALL_FUNC,
54 IPI_CALL_FUNC_SINGLE,
55 IPI_CPU_STOP,
58 int __cpuinit __cpu_up(unsigned int cpu)
60 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
61 struct task_struct *idle = ci->idle;
62 pgd_t *pgd;
63 int ret;
66 * Spawn a new process manually, if not already done.
67 * Grab a pointer to its task struct so we can mess with it
69 if (!idle) {
70 idle = fork_idle(cpu);
71 if (IS_ERR(idle)) {
72 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
73 return PTR_ERR(idle);
75 ci->idle = idle;
76 } else {
78 * Since this idle thread is being re-used, call
79 * init_idle() to reinitialize the thread structure.
81 init_idle(idle, cpu);
85 * Allocate initial page tables to allow the new CPU to
86 * enable the MMU safely. This essentially means a set
87 * of our "standard" page tables, with the addition of
88 * a 1:1 mapping for the physical address of the kernel.
90 pgd = pgd_alloc(&init_mm);
91 if (!pgd)
92 return -ENOMEM;
94 if (PHYS_OFFSET != PAGE_OFFSET) {
95 #ifndef CONFIG_HOTPLUG_CPU
96 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
97 #endif
98 identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
99 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
103 * We need to tell the secondary core where to find
104 * its stack and the page tables.
106 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107 secondary_data.pgdir = virt_to_phys(pgd);
108 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
109 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
112 * Now bring the CPU into our world.
114 ret = boot_secondary(cpu, idle);
115 if (ret == 0) {
116 unsigned long timeout;
119 * CPU was successfully started, wait for it
120 * to come online or time out.
122 timeout = jiffies + HZ;
123 while (time_before(jiffies, timeout)) {
124 if (cpu_online(cpu))
125 break;
127 udelay(10);
128 barrier();
131 if (!cpu_online(cpu)) {
132 pr_crit("CPU%u: failed to come online\n", cpu);
133 ret = -EIO;
135 } else {
136 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
139 secondary_data.stack = NULL;
140 secondary_data.pgdir = 0;
142 if (PHYS_OFFSET != PAGE_OFFSET) {
143 #ifndef CONFIG_HOTPLUG_CPU
144 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
145 #endif
146 identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
147 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
150 pgd_free(&init_mm, pgd);
152 return ret;
155 #ifdef CONFIG_HOTPLUG_CPU
156 static void percpu_timer_stop(void);
159 * __cpu_disable runs on the processor to be shutdown.
161 int __cpu_disable(void)
163 unsigned int cpu = smp_processor_id();
164 struct task_struct *p;
165 int ret;
167 ret = platform_cpu_disable(cpu);
168 if (ret)
169 return ret;
172 * Take this CPU offline. Once we clear this, we can't return,
173 * and we must not schedule until we're ready to give up the cpu.
175 set_cpu_online(cpu, false);
178 * OK - migrate IRQs away from this CPU
180 migrate_irqs();
183 * Stop the local timer for this CPU.
185 percpu_timer_stop();
188 * Flush user cache and TLB mappings, and then remove this CPU
189 * from the vm mask set of all processes.
191 flush_cache_all();
192 local_flush_tlb_all();
194 read_lock(&tasklist_lock);
195 for_each_process(p) {
196 if (p->mm)
197 cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
199 read_unlock(&tasklist_lock);
201 return 0;
204 static DECLARE_COMPLETION(cpu_died);
207 * called on the thread which is asking for a CPU to be shutdown -
208 * waits until shutdown has completed, or it is timed out.
210 void __cpu_die(unsigned int cpu)
212 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
213 pr_err("CPU%u: cpu didn't die\n", cpu);
214 return;
216 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
218 if (!platform_cpu_kill(cpu))
219 printk("CPU%u: unable to kill\n", cpu);
223 * Called from the idle thread for the CPU which has been shutdown.
225 * Note that we disable IRQs here, but do not re-enable them
226 * before returning to the caller. This is also the behaviour
227 * of the other hotplug-cpu capable cores, so presumably coming
228 * out of idle fixes this.
230 void __ref cpu_die(void)
232 unsigned int cpu = smp_processor_id();
234 idle_task_exit();
236 local_irq_disable();
237 mb();
239 /* Tell __cpu_die() that this CPU is now safe to dispose of */
240 complete(&cpu_died);
243 * actual CPU shutdown procedure is at least platform (if not
244 * CPU) specific.
246 platform_cpu_die(cpu);
249 * Do not return to the idle loop - jump back to the secondary
250 * cpu initialisation. There's some initialisation which needs
251 * to be repeated to undo the effects of taking the CPU offline.
253 __asm__("mov sp, %0\n"
254 " mov fp, #0\n"
255 " b secondary_start_kernel"
257 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
259 #endif /* CONFIG_HOTPLUG_CPU */
262 * Called by both boot and secondaries to move global data into
263 * per-processor storage.
265 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
267 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
269 cpu_info->loops_per_jiffy = loops_per_jiffy;
273 * This is the secondary CPU boot entry. We're using this CPUs
274 * idle thread stack, but a set of temporary page tables.
276 asmlinkage void __cpuinit secondary_start_kernel(void)
278 struct mm_struct *mm = &init_mm;
279 unsigned int cpu = smp_processor_id();
281 printk("CPU%u: Booted secondary processor\n", cpu);
284 * All kernel threads share the same mm context; grab a
285 * reference and switch to it.
287 atomic_inc(&mm->mm_count);
288 current->active_mm = mm;
289 cpumask_set_cpu(cpu, mm_cpumask(mm));
290 cpu_switch_mm(mm->pgd, mm);
291 enter_lazy_tlb(mm, current);
292 local_flush_tlb_all();
294 cpu_init();
295 preempt_disable();
296 trace_hardirqs_off();
299 * Give the platform a chance to do its own initialisation.
301 platform_secondary_init(cpu);
304 * Enable local interrupts.
306 notify_cpu_starting(cpu);
307 local_irq_enable();
308 local_fiq_enable();
311 * Setup the percpu timer for this CPU.
313 percpu_timer_setup();
315 calibrate_delay();
317 smp_store_cpu_info(cpu);
320 * OK, now it's safe to let the boot CPU continue
322 set_cpu_online(cpu, true);
325 * OK, it's off to the idle thread for us
327 cpu_idle();
330 void __init smp_cpus_done(unsigned int max_cpus)
332 int cpu;
333 unsigned long bogosum = 0;
335 for_each_online_cpu(cpu)
336 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
338 printk(KERN_INFO "SMP: Total of %d processors activated "
339 "(%lu.%02lu BogoMIPS).\n",
340 num_online_cpus(),
341 bogosum / (500000/HZ),
342 (bogosum / (5000/HZ)) % 100);
345 void __init smp_prepare_boot_cpu(void)
347 unsigned int cpu = smp_processor_id();
349 per_cpu(cpu_data, cpu).idle = current;
352 void __init smp_prepare_cpus(unsigned int max_cpus)
354 unsigned int ncores = num_possible_cpus();
356 smp_store_cpu_info(smp_processor_id());
359 * are we trying to boot more cores than exist?
361 if (max_cpus > ncores)
362 max_cpus = ncores;
364 if (max_cpus > 1) {
366 * Enable the local timer or broadcast device for the
367 * boot CPU, but only if we have more than one CPU.
369 percpu_timer_setup();
372 * Initialise the SCU if there are more than one CPU
373 * and let them know where to start.
375 platform_smp_prepare_cpus(max_cpus);
379 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
381 smp_cross_call(mask, IPI_CALL_FUNC);
384 void arch_send_call_function_single_ipi(int cpu)
386 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
389 static const char *ipi_types[NR_IPI] = {
390 #define S(x,s) [x - IPI_TIMER] = s
391 S(IPI_TIMER, "Timer broadcast interrupts"),
392 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
393 S(IPI_CALL_FUNC, "Function call interrupts"),
394 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
395 S(IPI_CPU_STOP, "CPU stop interrupts"),
398 void show_ipi_list(struct seq_file *p, int prec)
400 unsigned int cpu, i;
402 for (i = 0; i < NR_IPI; i++) {
403 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
405 for_each_present_cpu(cpu)
406 seq_printf(p, "%10u ",
407 __get_irq_stat(cpu, ipi_irqs[i]));
409 seq_printf(p, " %s\n", ipi_types[i]);
413 u64 smp_irq_stat_cpu(unsigned int cpu)
415 u64 sum = 0;
416 int i;
418 for (i = 0; i < NR_IPI; i++)
419 sum += __get_irq_stat(cpu, ipi_irqs[i]);
421 #ifdef CONFIG_LOCAL_TIMERS
422 sum += __get_irq_stat(cpu, local_timer_irqs);
423 #endif
425 return sum;
429 * Timer (local or broadcast) support
431 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
433 static void ipi_timer(void)
435 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
436 irq_enter();
437 evt->event_handler(evt);
438 irq_exit();
441 #ifdef CONFIG_LOCAL_TIMERS
442 asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
444 struct pt_regs *old_regs = set_irq_regs(regs);
445 int cpu = smp_processor_id();
447 if (local_timer_ack()) {
448 __inc_irq_stat(cpu, local_timer_irqs);
449 ipi_timer();
452 set_irq_regs(old_regs);
455 void show_local_irqs(struct seq_file *p, int prec)
457 unsigned int cpu;
459 seq_printf(p, "%*s: ", prec, "LOC");
461 for_each_present_cpu(cpu)
462 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
464 seq_printf(p, " Local timer interrupts\n");
466 #endif
468 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
469 static void smp_timer_broadcast(const struct cpumask *mask)
471 smp_cross_call(mask, IPI_TIMER);
473 #else
474 #define smp_timer_broadcast NULL
475 #endif
477 #ifndef CONFIG_LOCAL_TIMERS
478 static void broadcast_timer_set_mode(enum clock_event_mode mode,
479 struct clock_event_device *evt)
483 static void local_timer_setup(struct clock_event_device *evt)
485 evt->name = "dummy_timer";
486 evt->features = CLOCK_EVT_FEAT_ONESHOT |
487 CLOCK_EVT_FEAT_PERIODIC |
488 CLOCK_EVT_FEAT_DUMMY;
489 evt->rating = 400;
490 evt->mult = 1;
491 evt->set_mode = broadcast_timer_set_mode;
493 clockevents_register_device(evt);
495 #endif
497 void __cpuinit percpu_timer_setup(void)
499 unsigned int cpu = smp_processor_id();
500 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
502 evt->cpumask = cpumask_of(cpu);
503 evt->broadcast = smp_timer_broadcast;
505 local_timer_setup(evt);
508 #ifdef CONFIG_HOTPLUG_CPU
510 * The generic clock events code purposely does not stop the local timer
511 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
512 * manually here.
514 static void percpu_timer_stop(void)
516 unsigned int cpu = smp_processor_id();
517 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
519 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
521 #endif
523 static DEFINE_SPINLOCK(stop_lock);
526 * ipi_cpu_stop - handle IPI from smp_send_stop()
528 static void ipi_cpu_stop(unsigned int cpu)
530 if (system_state == SYSTEM_BOOTING ||
531 system_state == SYSTEM_RUNNING) {
532 spin_lock(&stop_lock);
533 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
534 dump_stack();
535 spin_unlock(&stop_lock);
538 set_cpu_online(cpu, false);
540 local_fiq_disable();
541 local_irq_disable();
543 while (1)
544 cpu_relax();
548 * Main handler for inter-processor interrupts
550 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
552 unsigned int cpu = smp_processor_id();
553 struct pt_regs *old_regs = set_irq_regs(regs);
555 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
556 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
558 switch (ipinr) {
559 case IPI_TIMER:
560 ipi_timer();
561 break;
563 case IPI_RESCHEDULE:
565 * nothing more to do - eveything is
566 * done on the interrupt return path
568 break;
570 case IPI_CALL_FUNC:
571 generic_smp_call_function_interrupt();
572 break;
574 case IPI_CALL_FUNC_SINGLE:
575 generic_smp_call_function_single_interrupt();
576 break;
578 case IPI_CPU_STOP:
579 ipi_cpu_stop(cpu);
580 break;
582 default:
583 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
584 cpu, ipinr);
585 break;
587 set_irq_regs(old_regs);
590 void smp_send_reschedule(int cpu)
592 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
595 void smp_send_stop(void)
597 unsigned long timeout;
599 if (num_online_cpus() > 1) {
600 cpumask_t mask = cpu_online_map;
601 cpu_clear(smp_processor_id(), mask);
603 smp_cross_call(&mask, IPI_CPU_STOP);
606 /* Wait up to one second for other CPUs to stop */
607 timeout = USEC_PER_SEC;
608 while (num_online_cpus() > 1 && timeout--)
609 udelay(1);
611 if (num_online_cpus() > 1)
612 pr_warning("SMP: failed to stop secondary CPUs\n");
616 * not supported here
618 int setup_profiling_timer(unsigned int multiplier)
620 return -EINVAL;