Btrfs: use the global reserve when truncating the free space cache inode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc / mm / init_64.c
blob8e073d802139705aa9d6fc280c8e20f8d8f8e0f0
1 /*
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
53 #include "init_64.h"
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
71 #define MAX_BANKS 32
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
76 static int cmp_p64(const void *a, const void *b)
78 const struct linux_prom64_registers *x = a, *y = b;
80 if (x->phys_addr > y->phys_addr)
81 return 1;
82 if (x->phys_addr < y->phys_addr)
83 return -1;
84 return 0;
87 static void __init read_obp_memory(const char *property,
88 struct linux_prom64_registers *regs,
89 int *num_ents)
91 phandle node = prom_finddevice("/memory");
92 int prop_size = prom_getproplen(node, property);
93 int ents, ret, i;
95 ents = prop_size / sizeof(struct linux_prom64_registers);
96 if (ents > MAX_BANKS) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
99 property, MAX_BANKS);
100 prom_halt();
103 ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 if (ret == -1) {
105 prom_printf("Couldn't get %s property from /memory.\n");
106 prom_halt();
109 /* Sanitize what we got from the firmware, by page aligning
110 * everything.
112 for (i = 0; i < ents; i++) {
113 unsigned long base, size;
115 base = regs[i].phys_addr;
116 size = regs[i].reg_size;
118 size &= PAGE_MASK;
119 if (base & ~PAGE_MASK) {
120 unsigned long new_base = PAGE_ALIGN(base);
122 size -= new_base - base;
123 if ((long) size < 0L)
124 size = 0UL;
125 base = new_base;
127 if (size == 0UL) {
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
132 memmove(&regs[i], &regs[i + 1],
133 (ents - i - 1) * sizeof(regs[0]));
134 i--;
135 ents--;
136 continue;
138 regs[i].phys_addr = base;
139 regs[i].reg_size = size;
142 *num_ents = ents;
144 sort(regs, ents, sizeof(struct linux_prom64_registers),
145 cmp_p64, NULL);
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149 sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
152 /* Kernel physical address base and size in bytes. */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
170 int num_kernel_image_mappings;
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
179 inline void flush_dcache_page_impl(struct page *page)
181 BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes);
184 #endif
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page),
188 ((tlb_type == spitfire) &&
189 page_mapping(page) != NULL));
190 #else
191 if (page_mapping(page) != NULL &&
192 tlb_type == spitfire)
193 __flush_icache_page(__pa(page_address(page)));
194 #endif
197 #define PG_dcache_dirty PG_arch_1
198 #define PG_dcache_cpu_shift 32UL
199 #define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202 #define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
207 unsigned long mask = this_cpu;
208 unsigned long non_cpu_bits;
210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
213 __asm__ __volatile__("1:\n\t"
214 "ldx [%2], %%g7\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
218 "cmp %%g7, %%g1\n\t"
219 "bne,pn %%xcc, 1b\n\t"
220 " nop"
221 : /* no outputs */
222 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223 : "g1", "g7");
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
228 unsigned long mask = (1UL << PG_dcache_dirty);
230 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231 "1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "srlx %%g7, %4, %%g1\n\t"
234 "and %%g1, %3, %%g1\n\t"
235 "cmp %%g1, %0\n\t"
236 "bne,pn %%icc, 2f\n\t"
237 " andn %%g7, %1, %%g1\n\t"
238 "casx [%2], %%g7, %%g1\n\t"
239 "cmp %%g7, %%g1\n\t"
240 "bne,pn %%xcc, 1b\n\t"
241 " nop\n"
242 "2:"
243 : /* no outputs */
244 : "r" (cpu), "r" (mask), "r" (&page->flags),
245 "i" (PG_dcache_cpu_mask),
246 "i" (PG_dcache_cpu_shift)
247 : "g1", "g7");
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
252 unsigned long tsb_addr = (unsigned long) ent;
254 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255 tsb_addr = __pa(tsb_addr);
257 __tsb_insert(tsb_addr, tag, pte);
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
263 static void flush_dcache(unsigned long pfn)
265 struct page *page;
267 page = pfn_to_page(pfn);
268 if (page) {
269 unsigned long pg_flags;
271 pg_flags = page->flags;
272 if (pg_flags & (1UL << PG_dcache_dirty)) {
273 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274 PG_dcache_cpu_mask);
275 int this_cpu = get_cpu();
277 /* This is just to optimize away some function calls
278 * in the SMP case.
280 if (cpu == this_cpu)
281 flush_dcache_page_impl(page);
282 else
283 smp_flush_dcache_page_impl(page, cpu);
285 clear_dcache_dirty_cpu(page, cpu);
287 put_cpu();
292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
294 struct mm_struct *mm;
295 struct tsb *tsb;
296 unsigned long tag, flags;
297 unsigned long tsb_index, tsb_hash_shift;
298 pte_t pte = *ptep;
300 if (tlb_type != hypervisor) {
301 unsigned long pfn = pte_pfn(pte);
303 if (pfn_valid(pfn))
304 flush_dcache(pfn);
307 mm = vma->vm_mm;
309 tsb_index = MM_TSB_BASE;
310 tsb_hash_shift = PAGE_SHIFT;
312 spin_lock_irqsave(&mm->context.lock, flags);
314 #ifdef CONFIG_HUGETLB_PAGE
315 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316 if ((tlb_type == hypervisor &&
317 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318 (tlb_type != hypervisor &&
319 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320 tsb_index = MM_TSB_HUGE;
321 tsb_hash_shift = HPAGE_SHIFT;
324 #endif
326 tsb = mm->context.tsb_block[tsb_index].tsb;
327 tsb += ((address >> tsb_hash_shift) &
328 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329 tag = (address >> 22UL);
330 tsb_insert(tsb, tag, pte_val(pte));
332 spin_unlock_irqrestore(&mm->context.lock, flags);
335 void flush_dcache_page(struct page *page)
337 struct address_space *mapping;
338 int this_cpu;
340 if (tlb_type == hypervisor)
341 return;
343 /* Do not bother with the expensive D-cache flush if it
344 * is merely the zero page. The 'bigcore' testcase in GDB
345 * causes this case to run millions of times.
347 if (page == ZERO_PAGE(0))
348 return;
350 this_cpu = get_cpu();
352 mapping = page_mapping(page);
353 if (mapping && !mapping_mapped(mapping)) {
354 int dirty = test_bit(PG_dcache_dirty, &page->flags);
355 if (dirty) {
356 int dirty_cpu = dcache_dirty_cpu(page);
358 if (dirty_cpu == this_cpu)
359 goto out;
360 smp_flush_dcache_page_impl(page, dirty_cpu);
362 set_dcache_dirty(page, this_cpu);
363 } else {
364 /* We could delay the flush for the !page_mapping
365 * case too. But that case is for exec env/arg
366 * pages and those are %99 certainly going to get
367 * faulted into the tlb (and thus flushed) anyways.
369 flush_dcache_page_impl(page);
372 out:
373 put_cpu();
375 EXPORT_SYMBOL(flush_dcache_page);
377 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
379 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380 if (tlb_type == spitfire) {
381 unsigned long kaddr;
383 /* This code only runs on Spitfire cpus so this is
384 * why we can assume _PAGE_PADDR_4U.
386 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387 unsigned long paddr, mask = _PAGE_PADDR_4U;
389 if (kaddr >= PAGE_OFFSET)
390 paddr = kaddr & mask;
391 else {
392 pgd_t *pgdp = pgd_offset_k(kaddr);
393 pud_t *pudp = pud_offset(pgdp, kaddr);
394 pmd_t *pmdp = pmd_offset(pudp, kaddr);
395 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
397 paddr = pte_val(*ptep) & mask;
399 __flush_icache_page(paddr);
403 EXPORT_SYMBOL(flush_icache_range);
405 void mmu_info(struct seq_file *m)
407 if (tlb_type == cheetah)
408 seq_printf(m, "MMU Type\t: Cheetah\n");
409 else if (tlb_type == cheetah_plus)
410 seq_printf(m, "MMU Type\t: Cheetah+\n");
411 else if (tlb_type == spitfire)
412 seq_printf(m, "MMU Type\t: Spitfire\n");
413 else if (tlb_type == hypervisor)
414 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415 else
416 seq_printf(m, "MMU Type\t: ???\n");
418 #ifdef CONFIG_DEBUG_DCFLUSH
419 seq_printf(m, "DCPageFlushes\t: %d\n",
420 atomic_read(&dcpage_flushes));
421 #ifdef CONFIG_SMP
422 seq_printf(m, "DCPageFlushesXC\t: %d\n",
423 atomic_read(&dcpage_flushes_xcall));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
428 struct linux_prom_translation prom_trans[512] __read_mostly;
429 unsigned int prom_trans_ents __read_mostly;
431 unsigned long kern_locked_tte_data;
433 /* The obp translations are saved based on 8k pagesize, since obp can
434 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435 * HI_OBP_ADDRESS range are handled in ktlb.S.
437 static inline int in_obp_range(unsigned long vaddr)
439 return (vaddr >= LOW_OBP_ADDRESS &&
440 vaddr < HI_OBP_ADDRESS);
443 static int cmp_ptrans(const void *a, const void *b)
445 const struct linux_prom_translation *x = a, *y = b;
447 if (x->virt > y->virt)
448 return 1;
449 if (x->virt < y->virt)
450 return -1;
451 return 0;
454 /* Read OBP translations property into 'prom_trans[]'. */
455 static void __init read_obp_translations(void)
457 int n, node, ents, first, last, i;
459 node = prom_finddevice("/virtual-memory");
460 n = prom_getproplen(node, "translations");
461 if (unlikely(n == 0 || n == -1)) {
462 prom_printf("prom_mappings: Couldn't get size.\n");
463 prom_halt();
465 if (unlikely(n > sizeof(prom_trans))) {
466 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467 prom_halt();
470 if ((n = prom_getproperty(node, "translations",
471 (char *)&prom_trans[0],
472 sizeof(prom_trans))) == -1) {
473 prom_printf("prom_mappings: Couldn't get property.\n");
474 prom_halt();
477 n = n / sizeof(struct linux_prom_translation);
479 ents = n;
481 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482 cmp_ptrans, NULL);
484 /* Now kick out all the non-OBP entries. */
485 for (i = 0; i < ents; i++) {
486 if (in_obp_range(prom_trans[i].virt))
487 break;
489 first = i;
490 for (; i < ents; i++) {
491 if (!in_obp_range(prom_trans[i].virt))
492 break;
494 last = i;
496 for (i = 0; i < (last - first); i++) {
497 struct linux_prom_translation *src = &prom_trans[i + first];
498 struct linux_prom_translation *dest = &prom_trans[i];
500 *dest = *src;
502 for (; i < ents; i++) {
503 struct linux_prom_translation *dest = &prom_trans[i];
504 dest->virt = dest->size = dest->data = 0x0UL;
507 prom_trans_ents = last - first;
509 if (tlb_type == spitfire) {
510 /* Clear diag TTE bits. */
511 for (i = 0; i < prom_trans_ents; i++)
512 prom_trans[i].data &= ~0x0003fe0000000000UL;
515 /* Force execute bit on. */
516 for (i = 0; i < prom_trans_ents; i++)
517 prom_trans[i].data |= (tlb_type == hypervisor ?
518 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
521 static void __init hypervisor_tlb_lock(unsigned long vaddr,
522 unsigned long pte,
523 unsigned long mmu)
525 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
527 if (ret != 0) {
528 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
529 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
530 prom_halt();
534 static unsigned long kern_large_tte(unsigned long paddr);
536 static void __init remap_kernel(void)
538 unsigned long phys_page, tte_vaddr, tte_data;
539 int i, tlb_ent = sparc64_highest_locked_tlbent();
541 tte_vaddr = (unsigned long) KERNBASE;
542 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
543 tte_data = kern_large_tte(phys_page);
545 kern_locked_tte_data = tte_data;
547 /* Now lock us into the TLBs via Hypervisor or OBP. */
548 if (tlb_type == hypervisor) {
549 for (i = 0; i < num_kernel_image_mappings; i++) {
550 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
551 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
552 tte_vaddr += 0x400000;
553 tte_data += 0x400000;
555 } else {
556 for (i = 0; i < num_kernel_image_mappings; i++) {
557 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
559 tte_vaddr += 0x400000;
560 tte_data += 0x400000;
562 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
564 if (tlb_type == cheetah_plus) {
565 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
566 CTX_CHEETAH_PLUS_NUC);
567 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
568 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
573 static void __init inherit_prom_mappings(void)
575 /* Now fixup OBP's idea about where we really are mapped. */
576 printk("Remapping the kernel... ");
577 remap_kernel();
578 printk("done.\n");
581 void prom_world(int enter)
583 if (!enter)
584 set_fs((mm_segment_t) { get_thread_current_ds() });
586 __asm__ __volatile__("flushw");
589 void __flush_dcache_range(unsigned long start, unsigned long end)
591 unsigned long va;
593 if (tlb_type == spitfire) {
594 int n = 0;
596 for (va = start; va < end; va += 32) {
597 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
598 if (++n >= 512)
599 break;
601 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
602 start = __pa(start);
603 end = __pa(end);
604 for (va = start; va < end; va += 32)
605 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
606 "membar #Sync"
607 : /* no outputs */
608 : "r" (va),
609 "i" (ASI_DCACHE_INVALIDATE));
612 EXPORT_SYMBOL(__flush_dcache_range);
614 /* get_new_mmu_context() uses "cache + 1". */
615 DEFINE_SPINLOCK(ctx_alloc_lock);
616 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
617 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
618 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
619 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
621 /* Caller does TLB context flushing on local CPU if necessary.
622 * The caller also ensures that CTX_VALID(mm->context) is false.
624 * We must be careful about boundary cases so that we never
625 * let the user have CTX 0 (nucleus) or we ever use a CTX
626 * version of zero (and thus NO_CONTEXT would not be caught
627 * by version mis-match tests in mmu_context.h).
629 * Always invoked with interrupts disabled.
631 void get_new_mmu_context(struct mm_struct *mm)
633 unsigned long ctx, new_ctx;
634 unsigned long orig_pgsz_bits;
635 unsigned long flags;
636 int new_version;
638 spin_lock_irqsave(&ctx_alloc_lock, flags);
639 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
640 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
641 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
642 new_version = 0;
643 if (new_ctx >= (1 << CTX_NR_BITS)) {
644 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
645 if (new_ctx >= ctx) {
646 int i;
647 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
648 CTX_FIRST_VERSION;
649 if (new_ctx == 1)
650 new_ctx = CTX_FIRST_VERSION;
652 /* Don't call memset, for 16 entries that's just
653 * plain silly...
655 mmu_context_bmap[0] = 3;
656 mmu_context_bmap[1] = 0;
657 mmu_context_bmap[2] = 0;
658 mmu_context_bmap[3] = 0;
659 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
660 mmu_context_bmap[i + 0] = 0;
661 mmu_context_bmap[i + 1] = 0;
662 mmu_context_bmap[i + 2] = 0;
663 mmu_context_bmap[i + 3] = 0;
665 new_version = 1;
666 goto out;
669 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
670 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
671 out:
672 tlb_context_cache = new_ctx;
673 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
674 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
676 if (unlikely(new_version))
677 smp_new_mmu_context_version();
680 static int numa_enabled = 1;
681 static int numa_debug;
683 static int __init early_numa(char *p)
685 if (!p)
686 return 0;
688 if (strstr(p, "off"))
689 numa_enabled = 0;
691 if (strstr(p, "debug"))
692 numa_debug = 1;
694 return 0;
696 early_param("numa", early_numa);
698 #define numadbg(f, a...) \
699 do { if (numa_debug) \
700 printk(KERN_INFO f, ## a); \
701 } while (0)
703 static void __init find_ramdisk(unsigned long phys_base)
705 #ifdef CONFIG_BLK_DEV_INITRD
706 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
707 unsigned long ramdisk_image;
709 /* Older versions of the bootloader only supported a
710 * 32-bit physical address for the ramdisk image
711 * location, stored at sparc_ramdisk_image. Newer
712 * SILO versions set sparc_ramdisk_image to zero and
713 * provide a full 64-bit physical address at
714 * sparc_ramdisk_image64.
716 ramdisk_image = sparc_ramdisk_image;
717 if (!ramdisk_image)
718 ramdisk_image = sparc_ramdisk_image64;
720 /* Another bootloader quirk. The bootloader normalizes
721 * the physical address to KERNBASE, so we have to
722 * factor that back out and add in the lowest valid
723 * physical page address to get the true physical address.
725 ramdisk_image -= KERNBASE;
726 ramdisk_image += phys_base;
728 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
729 ramdisk_image, sparc_ramdisk_size);
731 initrd_start = ramdisk_image;
732 initrd_end = ramdisk_image + sparc_ramdisk_size;
734 memblock_reserve(initrd_start, sparc_ramdisk_size);
736 initrd_start += PAGE_OFFSET;
737 initrd_end += PAGE_OFFSET;
739 #endif
742 struct node_mem_mask {
743 unsigned long mask;
744 unsigned long val;
745 unsigned long bootmem_paddr;
747 static struct node_mem_mask node_masks[MAX_NUMNODES];
748 static int num_node_masks;
750 int numa_cpu_lookup_table[NR_CPUS];
751 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
753 #ifdef CONFIG_NEED_MULTIPLE_NODES
755 struct mdesc_mblock {
756 u64 base;
757 u64 size;
758 u64 offset; /* RA-to-PA */
760 static struct mdesc_mblock *mblocks;
761 static int num_mblocks;
763 static unsigned long ra_to_pa(unsigned long addr)
765 int i;
767 for (i = 0; i < num_mblocks; i++) {
768 struct mdesc_mblock *m = &mblocks[i];
770 if (addr >= m->base &&
771 addr < (m->base + m->size)) {
772 addr += m->offset;
773 break;
776 return addr;
779 static int find_node(unsigned long addr)
781 int i;
783 addr = ra_to_pa(addr);
784 for (i = 0; i < num_node_masks; i++) {
785 struct node_mem_mask *p = &node_masks[i];
787 if ((addr & p->mask) == p->val)
788 return i;
790 return -1;
793 u64 memblock_nid_range(u64 start, u64 end, int *nid)
795 *nid = find_node(start);
796 start += PAGE_SIZE;
797 while (start < end) {
798 int n = find_node(start);
800 if (n != *nid)
801 break;
802 start += PAGE_SIZE;
805 if (start > end)
806 start = end;
808 return start;
810 #else
811 u64 memblock_nid_range(u64 start, u64 end, int *nid)
813 *nid = 0;
814 return end;
816 #endif
818 /* This must be invoked after performing all of the necessary
819 * add_active_range() calls for 'nid'. We need to be able to get
820 * correct data from get_pfn_range_for_nid().
822 static void __init allocate_node_data(int nid)
824 unsigned long paddr, num_pages, start_pfn, end_pfn;
825 struct pglist_data *p;
827 #ifdef CONFIG_NEED_MULTIPLE_NODES
828 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
829 if (!paddr) {
830 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
831 prom_halt();
833 NODE_DATA(nid) = __va(paddr);
834 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
836 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
837 #endif
839 p = NODE_DATA(nid);
841 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
842 p->node_start_pfn = start_pfn;
843 p->node_spanned_pages = end_pfn - start_pfn;
845 if (p->node_spanned_pages) {
846 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
848 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
849 if (!paddr) {
850 prom_printf("Cannot allocate bootmap for nid[%d]\n",
851 nid);
852 prom_halt();
854 node_masks[nid].bootmem_paddr = paddr;
858 static void init_node_masks_nonnuma(void)
860 int i;
862 numadbg("Initializing tables for non-numa.\n");
864 node_masks[0].mask = node_masks[0].val = 0;
865 num_node_masks = 1;
867 for (i = 0; i < NR_CPUS; i++)
868 numa_cpu_lookup_table[i] = 0;
870 cpumask_setall(&numa_cpumask_lookup_table[0]);
873 #ifdef CONFIG_NEED_MULTIPLE_NODES
874 struct pglist_data *node_data[MAX_NUMNODES];
876 EXPORT_SYMBOL(numa_cpu_lookup_table);
877 EXPORT_SYMBOL(numa_cpumask_lookup_table);
878 EXPORT_SYMBOL(node_data);
880 struct mdesc_mlgroup {
881 u64 node;
882 u64 latency;
883 u64 match;
884 u64 mask;
886 static struct mdesc_mlgroup *mlgroups;
887 static int num_mlgroups;
889 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
890 u32 cfg_handle)
892 u64 arc;
894 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
895 u64 target = mdesc_arc_target(md, arc);
896 const u64 *val;
898 val = mdesc_get_property(md, target,
899 "cfg-handle", NULL);
900 if (val && *val == cfg_handle)
901 return 0;
903 return -ENODEV;
906 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
907 u32 cfg_handle)
909 u64 arc, candidate, best_latency = ~(u64)0;
911 candidate = MDESC_NODE_NULL;
912 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
913 u64 target = mdesc_arc_target(md, arc);
914 const char *name = mdesc_node_name(md, target);
915 const u64 *val;
917 if (strcmp(name, "pio-latency-group"))
918 continue;
920 val = mdesc_get_property(md, target, "latency", NULL);
921 if (!val)
922 continue;
924 if (*val < best_latency) {
925 candidate = target;
926 best_latency = *val;
930 if (candidate == MDESC_NODE_NULL)
931 return -ENODEV;
933 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
936 int of_node_to_nid(struct device_node *dp)
938 const struct linux_prom64_registers *regs;
939 struct mdesc_handle *md;
940 u32 cfg_handle;
941 int count, nid;
942 u64 grp;
944 /* This is the right thing to do on currently supported
945 * SUN4U NUMA platforms as well, as the PCI controller does
946 * not sit behind any particular memory controller.
948 if (!mlgroups)
949 return -1;
951 regs = of_get_property(dp, "reg", NULL);
952 if (!regs)
953 return -1;
955 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
957 md = mdesc_grab();
959 count = 0;
960 nid = -1;
961 mdesc_for_each_node_by_name(md, grp, "group") {
962 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
963 nid = count;
964 break;
966 count++;
969 mdesc_release(md);
971 return nid;
974 static void __init add_node_ranges(void)
976 struct memblock_region *reg;
978 for_each_memblock(memory, reg) {
979 unsigned long size = reg->size;
980 unsigned long start, end;
982 start = reg->base;
983 end = start + size;
984 while (start < end) {
985 unsigned long this_end;
986 int nid;
988 this_end = memblock_nid_range(start, end, &nid);
990 numadbg("Adding active range nid[%d] "
991 "start[%lx] end[%lx]\n",
992 nid, start, this_end);
994 add_active_range(nid,
995 start >> PAGE_SHIFT,
996 this_end >> PAGE_SHIFT);
998 start = this_end;
1003 static int __init grab_mlgroups(struct mdesc_handle *md)
1005 unsigned long paddr;
1006 int count = 0;
1007 u64 node;
1009 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1010 count++;
1011 if (!count)
1012 return -ENOENT;
1014 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1015 SMP_CACHE_BYTES);
1016 if (!paddr)
1017 return -ENOMEM;
1019 mlgroups = __va(paddr);
1020 num_mlgroups = count;
1022 count = 0;
1023 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1024 struct mdesc_mlgroup *m = &mlgroups[count++];
1025 const u64 *val;
1027 m->node = node;
1029 val = mdesc_get_property(md, node, "latency", NULL);
1030 m->latency = *val;
1031 val = mdesc_get_property(md, node, "address-match", NULL);
1032 m->match = *val;
1033 val = mdesc_get_property(md, node, "address-mask", NULL);
1034 m->mask = *val;
1036 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1037 "match[%llx] mask[%llx]\n",
1038 count - 1, m->node, m->latency, m->match, m->mask);
1041 return 0;
1044 static int __init grab_mblocks(struct mdesc_handle *md)
1046 unsigned long paddr;
1047 int count = 0;
1048 u64 node;
1050 mdesc_for_each_node_by_name(md, node, "mblock")
1051 count++;
1052 if (!count)
1053 return -ENOENT;
1055 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1056 SMP_CACHE_BYTES);
1057 if (!paddr)
1058 return -ENOMEM;
1060 mblocks = __va(paddr);
1061 num_mblocks = count;
1063 count = 0;
1064 mdesc_for_each_node_by_name(md, node, "mblock") {
1065 struct mdesc_mblock *m = &mblocks[count++];
1066 const u64 *val;
1068 val = mdesc_get_property(md, node, "base", NULL);
1069 m->base = *val;
1070 val = mdesc_get_property(md, node, "size", NULL);
1071 m->size = *val;
1072 val = mdesc_get_property(md, node,
1073 "address-congruence-offset", NULL);
1074 m->offset = *val;
1076 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1077 count - 1, m->base, m->size, m->offset);
1080 return 0;
1083 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1084 u64 grp, cpumask_t *mask)
1086 u64 arc;
1088 cpumask_clear(mask);
1090 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1091 u64 target = mdesc_arc_target(md, arc);
1092 const char *name = mdesc_node_name(md, target);
1093 const u64 *id;
1095 if (strcmp(name, "cpu"))
1096 continue;
1097 id = mdesc_get_property(md, target, "id", NULL);
1098 if (*id < nr_cpu_ids)
1099 cpumask_set_cpu(*id, mask);
1103 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1105 int i;
1107 for (i = 0; i < num_mlgroups; i++) {
1108 struct mdesc_mlgroup *m = &mlgroups[i];
1109 if (m->node == node)
1110 return m;
1112 return NULL;
1115 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1116 int index)
1118 struct mdesc_mlgroup *candidate = NULL;
1119 u64 arc, best_latency = ~(u64)0;
1120 struct node_mem_mask *n;
1122 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1123 u64 target = mdesc_arc_target(md, arc);
1124 struct mdesc_mlgroup *m = find_mlgroup(target);
1125 if (!m)
1126 continue;
1127 if (m->latency < best_latency) {
1128 candidate = m;
1129 best_latency = m->latency;
1132 if (!candidate)
1133 return -ENOENT;
1135 if (num_node_masks != index) {
1136 printk(KERN_ERR "Inconsistent NUMA state, "
1137 "index[%d] != num_node_masks[%d]\n",
1138 index, num_node_masks);
1139 return -EINVAL;
1142 n = &node_masks[num_node_masks++];
1144 n->mask = candidate->mask;
1145 n->val = candidate->match;
1147 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1148 index, n->mask, n->val, candidate->latency);
1150 return 0;
1153 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1154 int index)
1156 cpumask_t mask;
1157 int cpu;
1159 numa_parse_mdesc_group_cpus(md, grp, &mask);
1161 for_each_cpu(cpu, &mask)
1162 numa_cpu_lookup_table[cpu] = index;
1163 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1165 if (numa_debug) {
1166 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1167 for_each_cpu(cpu, &mask)
1168 printk("%d ", cpu);
1169 printk("]\n");
1172 return numa_attach_mlgroup(md, grp, index);
1175 static int __init numa_parse_mdesc(void)
1177 struct mdesc_handle *md = mdesc_grab();
1178 int i, err, count;
1179 u64 node;
1181 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1182 if (node == MDESC_NODE_NULL) {
1183 mdesc_release(md);
1184 return -ENOENT;
1187 err = grab_mblocks(md);
1188 if (err < 0)
1189 goto out;
1191 err = grab_mlgroups(md);
1192 if (err < 0)
1193 goto out;
1195 count = 0;
1196 mdesc_for_each_node_by_name(md, node, "group") {
1197 err = numa_parse_mdesc_group(md, node, count);
1198 if (err < 0)
1199 break;
1200 count++;
1203 add_node_ranges();
1205 for (i = 0; i < num_node_masks; i++) {
1206 allocate_node_data(i);
1207 node_set_online(i);
1210 err = 0;
1211 out:
1212 mdesc_release(md);
1213 return err;
1216 static int __init numa_parse_jbus(void)
1218 unsigned long cpu, index;
1220 /* NUMA node id is encoded in bits 36 and higher, and there is
1221 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1223 index = 0;
1224 for_each_present_cpu(cpu) {
1225 numa_cpu_lookup_table[cpu] = index;
1226 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1227 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1228 node_masks[index].val = cpu << 36UL;
1230 index++;
1232 num_node_masks = index;
1234 add_node_ranges();
1236 for (index = 0; index < num_node_masks; index++) {
1237 allocate_node_data(index);
1238 node_set_online(index);
1241 return 0;
1244 static int __init numa_parse_sun4u(void)
1246 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1247 unsigned long ver;
1249 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1250 if ((ver >> 32UL) == __JALAPENO_ID ||
1251 (ver >> 32UL) == __SERRANO_ID)
1252 return numa_parse_jbus();
1254 return -1;
1257 static int __init bootmem_init_numa(void)
1259 int err = -1;
1261 numadbg("bootmem_init_numa()\n");
1263 if (numa_enabled) {
1264 if (tlb_type == hypervisor)
1265 err = numa_parse_mdesc();
1266 else
1267 err = numa_parse_sun4u();
1269 return err;
1272 #else
1274 static int bootmem_init_numa(void)
1276 return -1;
1279 #endif
1281 static void __init bootmem_init_nonnuma(void)
1283 unsigned long top_of_ram = memblock_end_of_DRAM();
1284 unsigned long total_ram = memblock_phys_mem_size();
1285 struct memblock_region *reg;
1287 numadbg("bootmem_init_nonnuma()\n");
1289 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1290 top_of_ram, total_ram);
1291 printk(KERN_INFO "Memory hole size: %ldMB\n",
1292 (top_of_ram - total_ram) >> 20);
1294 init_node_masks_nonnuma();
1296 for_each_memblock(memory, reg) {
1297 unsigned long start_pfn, end_pfn;
1299 if (!reg->size)
1300 continue;
1302 start_pfn = memblock_region_memory_base_pfn(reg);
1303 end_pfn = memblock_region_memory_end_pfn(reg);
1304 add_active_range(0, start_pfn, end_pfn);
1307 allocate_node_data(0);
1309 node_set_online(0);
1312 static void __init reserve_range_in_node(int nid, unsigned long start,
1313 unsigned long end)
1315 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1316 nid, start, end);
1317 while (start < end) {
1318 unsigned long this_end;
1319 int n;
1321 this_end = memblock_nid_range(start, end, &n);
1322 if (n == nid) {
1323 numadbg(" MATCH reserving range [%lx:%lx]\n",
1324 start, this_end);
1325 reserve_bootmem_node(NODE_DATA(nid), start,
1326 (this_end - start), BOOTMEM_DEFAULT);
1327 } else
1328 numadbg(" NO MATCH, advancing start to %lx\n",
1329 this_end);
1331 start = this_end;
1335 static void __init trim_reserved_in_node(int nid)
1337 struct memblock_region *reg;
1339 numadbg(" trim_reserved_in_node(%d)\n", nid);
1341 for_each_memblock(reserved, reg)
1342 reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1345 static void __init bootmem_init_one_node(int nid)
1347 struct pglist_data *p;
1349 numadbg("bootmem_init_one_node(%d)\n", nid);
1351 p = NODE_DATA(nid);
1353 if (p->node_spanned_pages) {
1354 unsigned long paddr = node_masks[nid].bootmem_paddr;
1355 unsigned long end_pfn;
1357 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1359 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1360 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1362 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1363 p->node_start_pfn, end_pfn);
1365 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1366 nid, end_pfn);
1367 free_bootmem_with_active_regions(nid, end_pfn);
1369 trim_reserved_in_node(nid);
1371 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1372 nid);
1373 sparse_memory_present_with_active_regions(nid);
1377 static unsigned long __init bootmem_init(unsigned long phys_base)
1379 unsigned long end_pfn;
1380 int nid;
1382 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1383 max_pfn = max_low_pfn = end_pfn;
1384 min_low_pfn = (phys_base >> PAGE_SHIFT);
1386 if (bootmem_init_numa() < 0)
1387 bootmem_init_nonnuma();
1389 /* XXX cpu notifier XXX */
1391 for_each_online_node(nid)
1392 bootmem_init_one_node(nid);
1394 sparse_init();
1396 return end_pfn;
1399 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1400 static int pall_ents __initdata;
1402 #ifdef CONFIG_DEBUG_PAGEALLOC
1403 static unsigned long __ref kernel_map_range(unsigned long pstart,
1404 unsigned long pend, pgprot_t prot)
1406 unsigned long vstart = PAGE_OFFSET + pstart;
1407 unsigned long vend = PAGE_OFFSET + pend;
1408 unsigned long alloc_bytes = 0UL;
1410 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1411 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1412 vstart, vend);
1413 prom_halt();
1416 while (vstart < vend) {
1417 unsigned long this_end, paddr = __pa(vstart);
1418 pgd_t *pgd = pgd_offset_k(vstart);
1419 pud_t *pud;
1420 pmd_t *pmd;
1421 pte_t *pte;
1423 pud = pud_offset(pgd, vstart);
1424 if (pud_none(*pud)) {
1425 pmd_t *new;
1427 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428 alloc_bytes += PAGE_SIZE;
1429 pud_populate(&init_mm, pud, new);
1432 pmd = pmd_offset(pud, vstart);
1433 if (!pmd_present(*pmd)) {
1434 pte_t *new;
1436 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1437 alloc_bytes += PAGE_SIZE;
1438 pmd_populate_kernel(&init_mm, pmd, new);
1441 pte = pte_offset_kernel(pmd, vstart);
1442 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1443 if (this_end > vend)
1444 this_end = vend;
1446 while (vstart < this_end) {
1447 pte_val(*pte) = (paddr | pgprot_val(prot));
1449 vstart += PAGE_SIZE;
1450 paddr += PAGE_SIZE;
1451 pte++;
1455 return alloc_bytes;
1458 extern unsigned int kvmap_linear_patch[1];
1459 #endif /* CONFIG_DEBUG_PAGEALLOC */
1461 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1463 const unsigned long shift_256MB = 28;
1464 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1465 const unsigned long size_256MB = (1UL << shift_256MB);
1467 while (start < end) {
1468 long remains;
1470 remains = end - start;
1471 if (remains < size_256MB)
1472 break;
1474 if (start & mask_256MB) {
1475 start = (start + size_256MB) & ~mask_256MB;
1476 continue;
1479 while (remains >= size_256MB) {
1480 unsigned long index = start >> shift_256MB;
1482 __set_bit(index, kpte_linear_bitmap);
1484 start += size_256MB;
1485 remains -= size_256MB;
1490 static void __init init_kpte_bitmap(void)
1492 unsigned long i;
1494 for (i = 0; i < pall_ents; i++) {
1495 unsigned long phys_start, phys_end;
1497 phys_start = pall[i].phys_addr;
1498 phys_end = phys_start + pall[i].reg_size;
1500 mark_kpte_bitmap(phys_start, phys_end);
1504 static void __init kernel_physical_mapping_init(void)
1506 #ifdef CONFIG_DEBUG_PAGEALLOC
1507 unsigned long i, mem_alloced = 0UL;
1509 for (i = 0; i < pall_ents; i++) {
1510 unsigned long phys_start, phys_end;
1512 phys_start = pall[i].phys_addr;
1513 phys_end = phys_start + pall[i].reg_size;
1515 mem_alloced += kernel_map_range(phys_start, phys_end,
1516 PAGE_KERNEL);
1519 printk("Allocated %ld bytes for kernel page tables.\n",
1520 mem_alloced);
1522 kvmap_linear_patch[0] = 0x01000000; /* nop */
1523 flushi(&kvmap_linear_patch[0]);
1525 __flush_tlb_all();
1526 #endif
1529 #ifdef CONFIG_DEBUG_PAGEALLOC
1530 void kernel_map_pages(struct page *page, int numpages, int enable)
1532 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1535 kernel_map_range(phys_start, phys_end,
1536 (enable ? PAGE_KERNEL : __pgprot(0)));
1538 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539 PAGE_OFFSET + phys_end);
1541 /* we should perform an IPI and flush all tlbs,
1542 * but that can deadlock->flush only current cpu.
1544 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545 PAGE_OFFSET + phys_end);
1547 #endif
1549 unsigned long __init find_ecache_flush_span(unsigned long size)
1551 int i;
1553 for (i = 0; i < pavail_ents; i++) {
1554 if (pavail[i].reg_size >= size)
1555 return pavail[i].phys_addr;
1558 return ~0UL;
1561 static void __init tsb_phys_patch(void)
1563 struct tsb_ldquad_phys_patch_entry *pquad;
1564 struct tsb_phys_patch_entry *p;
1566 pquad = &__tsb_ldquad_phys_patch;
1567 while (pquad < &__tsb_ldquad_phys_patch_end) {
1568 unsigned long addr = pquad->addr;
1570 if (tlb_type == hypervisor)
1571 *(unsigned int *) addr = pquad->sun4v_insn;
1572 else
1573 *(unsigned int *) addr = pquad->sun4u_insn;
1574 wmb();
1575 __asm__ __volatile__("flush %0"
1576 : /* no outputs */
1577 : "r" (addr));
1579 pquad++;
1582 p = &__tsb_phys_patch;
1583 while (p < &__tsb_phys_patch_end) {
1584 unsigned long addr = p->addr;
1586 *(unsigned int *) addr = p->insn;
1587 wmb();
1588 __asm__ __volatile__("flush %0"
1589 : /* no outputs */
1590 : "r" (addr));
1592 p++;
1596 /* Don't mark as init, we give this to the Hypervisor. */
1597 #ifndef CONFIG_DEBUG_PAGEALLOC
1598 #define NUM_KTSB_DESCR 2
1599 #else
1600 #define NUM_KTSB_DESCR 1
1601 #endif
1602 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1603 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1605 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1607 pa >>= KTSB_PHYS_SHIFT;
1609 while (start < end) {
1610 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1612 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1613 __asm__ __volatile__("flush %0" : : "r" (ia));
1615 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1616 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1618 start++;
1622 static void ktsb_phys_patch(void)
1624 extern unsigned int __swapper_tsb_phys_patch;
1625 extern unsigned int __swapper_tsb_phys_patch_end;
1626 unsigned long ktsb_pa;
1628 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1629 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1630 &__swapper_tsb_phys_patch_end, ktsb_pa);
1631 #ifndef CONFIG_DEBUG_PAGEALLOC
1633 extern unsigned int __swapper_4m_tsb_phys_patch;
1634 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1635 ktsb_pa = (kern_base +
1636 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1637 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1638 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1640 #endif
1643 static void __init sun4v_ktsb_init(void)
1645 unsigned long ktsb_pa;
1647 /* First KTSB for PAGE_SIZE mappings. */
1648 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1650 switch (PAGE_SIZE) {
1651 case 8 * 1024:
1652 default:
1653 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1654 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1655 break;
1657 case 64 * 1024:
1658 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1659 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1660 break;
1662 case 512 * 1024:
1663 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1664 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1665 break;
1667 case 4 * 1024 * 1024:
1668 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1669 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1670 break;
1673 ktsb_descr[0].assoc = 1;
1674 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1675 ktsb_descr[0].ctx_idx = 0;
1676 ktsb_descr[0].tsb_base = ktsb_pa;
1677 ktsb_descr[0].resv = 0;
1679 #ifndef CONFIG_DEBUG_PAGEALLOC
1680 /* Second KTSB for 4MB/256MB mappings. */
1681 ktsb_pa = (kern_base +
1682 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1684 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1685 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1686 HV_PGSZ_MASK_256MB);
1687 ktsb_descr[1].assoc = 1;
1688 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1689 ktsb_descr[1].ctx_idx = 0;
1690 ktsb_descr[1].tsb_base = ktsb_pa;
1691 ktsb_descr[1].resv = 0;
1692 #endif
1695 void __cpuinit sun4v_ktsb_register(void)
1697 unsigned long pa, ret;
1699 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1701 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1702 if (ret != 0) {
1703 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1704 "errors with %lx\n", pa, ret);
1705 prom_halt();
1709 /* paging_init() sets up the page tables */
1711 static unsigned long last_valid_pfn;
1712 pgd_t swapper_pg_dir[2048];
1714 static void sun4u_pgprot_init(void);
1715 static void sun4v_pgprot_init(void);
1717 void __init paging_init(void)
1719 unsigned long end_pfn, shift, phys_base;
1720 unsigned long real_end, i;
1722 /* These build time checkes make sure that the dcache_dirty_cpu()
1723 * page->flags usage will work.
1725 * When a page gets marked as dcache-dirty, we store the
1726 * cpu number starting at bit 32 in the page->flags. Also,
1727 * functions like clear_dcache_dirty_cpu use the cpu mask
1728 * in 13-bit signed-immediate instruction fields.
1732 * Page flags must not reach into upper 32 bits that are used
1733 * for the cpu number
1735 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1738 * The bit fields placed in the high range must not reach below
1739 * the 32 bit boundary. Otherwise we cannot place the cpu field
1740 * at the 32 bit boundary.
1742 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1743 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1745 BUILD_BUG_ON(NR_CPUS > 4096);
1747 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1748 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1750 /* Invalidate both kernel TSBs. */
1751 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1752 #ifndef CONFIG_DEBUG_PAGEALLOC
1753 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1754 #endif
1756 if (tlb_type == hypervisor)
1757 sun4v_pgprot_init();
1758 else
1759 sun4u_pgprot_init();
1761 if (tlb_type == cheetah_plus ||
1762 tlb_type == hypervisor) {
1763 tsb_phys_patch();
1764 ktsb_phys_patch();
1767 if (tlb_type == hypervisor) {
1768 sun4v_patch_tlb_handlers();
1769 sun4v_ktsb_init();
1772 memblock_init();
1774 /* Find available physical memory...
1776 * Read it twice in order to work around a bug in openfirmware.
1777 * The call to grab this table itself can cause openfirmware to
1778 * allocate memory, which in turn can take away some space from
1779 * the list of available memory. Reading it twice makes sure
1780 * we really do get the final value.
1782 read_obp_translations();
1783 read_obp_memory("reg", &pall[0], &pall_ents);
1784 read_obp_memory("available", &pavail[0], &pavail_ents);
1785 read_obp_memory("available", &pavail[0], &pavail_ents);
1787 phys_base = 0xffffffffffffffffUL;
1788 for (i = 0; i < pavail_ents; i++) {
1789 phys_base = min(phys_base, pavail[i].phys_addr);
1790 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1793 memblock_reserve(kern_base, kern_size);
1795 find_ramdisk(phys_base);
1797 memblock_enforce_memory_limit(cmdline_memory_size);
1799 memblock_analyze();
1800 memblock_dump_all();
1802 set_bit(0, mmu_context_bmap);
1804 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1806 real_end = (unsigned long)_end;
1807 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1808 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1809 num_kernel_image_mappings);
1811 /* Set kernel pgd to upper alias so physical page computations
1812 * work.
1814 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1816 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1818 /* Now can init the kernel/bad page tables. */
1819 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1820 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1822 inherit_prom_mappings();
1824 init_kpte_bitmap();
1826 /* Ok, we can use our TLB miss and window trap handlers safely. */
1827 setup_tba();
1829 __flush_tlb_all();
1831 if (tlb_type == hypervisor)
1832 sun4v_ktsb_register();
1834 prom_build_devicetree();
1835 of_populate_present_mask();
1836 #ifndef CONFIG_SMP
1837 of_fill_in_cpu_data();
1838 #endif
1840 if (tlb_type == hypervisor) {
1841 sun4v_mdesc_init();
1842 mdesc_populate_present_mask(cpu_all_mask);
1843 #ifndef CONFIG_SMP
1844 mdesc_fill_in_cpu_data(cpu_all_mask);
1845 #endif
1848 /* Once the OF device tree and MDESC have been setup, we know
1849 * the list of possible cpus. Therefore we can allocate the
1850 * IRQ stacks.
1852 for_each_possible_cpu(i) {
1853 /* XXX Use node local allocations... XXX */
1854 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1855 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1858 /* Setup bootmem... */
1859 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1861 #ifndef CONFIG_NEED_MULTIPLE_NODES
1862 max_mapnr = last_valid_pfn;
1863 #endif
1864 kernel_physical_mapping_init();
1867 unsigned long max_zone_pfns[MAX_NR_ZONES];
1869 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1871 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1873 free_area_init_nodes(max_zone_pfns);
1876 printk("Booting Linux...\n");
1879 int __devinit page_in_phys_avail(unsigned long paddr)
1881 int i;
1883 paddr &= PAGE_MASK;
1885 for (i = 0; i < pavail_ents; i++) {
1886 unsigned long start, end;
1888 start = pavail[i].phys_addr;
1889 end = start + pavail[i].reg_size;
1891 if (paddr >= start && paddr < end)
1892 return 1;
1894 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1895 return 1;
1896 #ifdef CONFIG_BLK_DEV_INITRD
1897 if (paddr >= __pa(initrd_start) &&
1898 paddr < __pa(PAGE_ALIGN(initrd_end)))
1899 return 1;
1900 #endif
1902 return 0;
1905 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1906 static int pavail_rescan_ents __initdata;
1908 /* Certain OBP calls, such as fetching "available" properties, can
1909 * claim physical memory. So, along with initializing the valid
1910 * address bitmap, what we do here is refetch the physical available
1911 * memory list again, and make sure it provides at least as much
1912 * memory as 'pavail' does.
1914 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1916 int i;
1918 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1920 for (i = 0; i < pavail_ents; i++) {
1921 unsigned long old_start, old_end;
1923 old_start = pavail[i].phys_addr;
1924 old_end = old_start + pavail[i].reg_size;
1925 while (old_start < old_end) {
1926 int n;
1928 for (n = 0; n < pavail_rescan_ents; n++) {
1929 unsigned long new_start, new_end;
1931 new_start = pavail_rescan[n].phys_addr;
1932 new_end = new_start +
1933 pavail_rescan[n].reg_size;
1935 if (new_start <= old_start &&
1936 new_end >= (old_start + PAGE_SIZE)) {
1937 set_bit(old_start >> 22, bitmap);
1938 goto do_next_page;
1942 prom_printf("mem_init: Lost memory in pavail\n");
1943 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1944 pavail[i].phys_addr,
1945 pavail[i].reg_size);
1946 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1947 pavail_rescan[i].phys_addr,
1948 pavail_rescan[i].reg_size);
1949 prom_printf("mem_init: Cannot continue, aborting.\n");
1950 prom_halt();
1952 do_next_page:
1953 old_start += PAGE_SIZE;
1958 static void __init patch_tlb_miss_handler_bitmap(void)
1960 extern unsigned int valid_addr_bitmap_insn[];
1961 extern unsigned int valid_addr_bitmap_patch[];
1963 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1964 mb();
1965 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1966 flushi(&valid_addr_bitmap_insn[0]);
1969 void __init mem_init(void)
1971 unsigned long codepages, datapages, initpages;
1972 unsigned long addr, last;
1974 addr = PAGE_OFFSET + kern_base;
1975 last = PAGE_ALIGN(kern_size) + addr;
1976 while (addr < last) {
1977 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1978 addr += PAGE_SIZE;
1981 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1982 patch_tlb_miss_handler_bitmap();
1984 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1986 #ifdef CONFIG_NEED_MULTIPLE_NODES
1988 int i;
1989 for_each_online_node(i) {
1990 if (NODE_DATA(i)->node_spanned_pages != 0) {
1991 totalram_pages +=
1992 free_all_bootmem_node(NODE_DATA(i));
1996 #else
1997 totalram_pages = free_all_bootmem();
1998 #endif
2000 /* We subtract one to account for the mem_map_zero page
2001 * allocated below.
2003 totalram_pages -= 1;
2004 num_physpages = totalram_pages;
2007 * Set up the zero page, mark it reserved, so that page count
2008 * is not manipulated when freeing the page from user ptes.
2010 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2011 if (mem_map_zero == NULL) {
2012 prom_printf("paging_init: Cannot alloc zero page.\n");
2013 prom_halt();
2015 SetPageReserved(mem_map_zero);
2017 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2018 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2019 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2020 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2021 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2022 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2024 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2025 nr_free_pages() << (PAGE_SHIFT-10),
2026 codepages << (PAGE_SHIFT-10),
2027 datapages << (PAGE_SHIFT-10),
2028 initpages << (PAGE_SHIFT-10),
2029 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2031 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2032 cheetah_ecache_flush_init();
2035 void free_initmem(void)
2037 unsigned long addr, initend;
2038 int do_free = 1;
2040 /* If the physical memory maps were trimmed by kernel command
2041 * line options, don't even try freeing this initmem stuff up.
2042 * The kernel image could have been in the trimmed out region
2043 * and if so the freeing below will free invalid page structs.
2045 if (cmdline_memory_size)
2046 do_free = 0;
2049 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2051 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2052 initend = (unsigned long)(__init_end) & PAGE_MASK;
2053 for (; addr < initend; addr += PAGE_SIZE) {
2054 unsigned long page;
2055 struct page *p;
2057 page = (addr +
2058 ((unsigned long) __va(kern_base)) -
2059 ((unsigned long) KERNBASE));
2060 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2062 if (do_free) {
2063 p = virt_to_page(page);
2065 ClearPageReserved(p);
2066 init_page_count(p);
2067 __free_page(p);
2068 num_physpages++;
2069 totalram_pages++;
2074 #ifdef CONFIG_BLK_DEV_INITRD
2075 void free_initrd_mem(unsigned long start, unsigned long end)
2077 if (start < end)
2078 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2079 for (; start < end; start += PAGE_SIZE) {
2080 struct page *p = virt_to_page(start);
2082 ClearPageReserved(p);
2083 init_page_count(p);
2084 __free_page(p);
2085 num_physpages++;
2086 totalram_pages++;
2089 #endif
2091 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2092 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2093 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2094 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2095 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2096 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2098 pgprot_t PAGE_KERNEL __read_mostly;
2099 EXPORT_SYMBOL(PAGE_KERNEL);
2101 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2102 pgprot_t PAGE_COPY __read_mostly;
2104 pgprot_t PAGE_SHARED __read_mostly;
2105 EXPORT_SYMBOL(PAGE_SHARED);
2107 unsigned long pg_iobits __read_mostly;
2109 unsigned long _PAGE_IE __read_mostly;
2110 EXPORT_SYMBOL(_PAGE_IE);
2112 unsigned long _PAGE_E __read_mostly;
2113 EXPORT_SYMBOL(_PAGE_E);
2115 unsigned long _PAGE_CACHE __read_mostly;
2116 EXPORT_SYMBOL(_PAGE_CACHE);
2118 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2119 unsigned long vmemmap_table[VMEMMAP_SIZE];
2121 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2123 unsigned long vstart = (unsigned long) start;
2124 unsigned long vend = (unsigned long) (start + nr);
2125 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2126 unsigned long phys_end = (vend - VMEMMAP_BASE);
2127 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2128 unsigned long end = VMEMMAP_ALIGN(phys_end);
2129 unsigned long pte_base;
2131 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2132 _PAGE_CP_4U | _PAGE_CV_4U |
2133 _PAGE_P_4U | _PAGE_W_4U);
2134 if (tlb_type == hypervisor)
2135 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2136 _PAGE_CP_4V | _PAGE_CV_4V |
2137 _PAGE_P_4V | _PAGE_W_4V);
2139 for (; addr < end; addr += VMEMMAP_CHUNK) {
2140 unsigned long *vmem_pp =
2141 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2142 void *block;
2144 if (!(*vmem_pp & _PAGE_VALID)) {
2145 block = vmemmap_alloc_block(1UL << 22, node);
2146 if (!block)
2147 return -ENOMEM;
2149 *vmem_pp = pte_base | __pa(block);
2151 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2152 "node=%d entry=%lu/%lu\n", start, block, nr,
2153 node,
2154 addr >> VMEMMAP_CHUNK_SHIFT,
2155 VMEMMAP_SIZE);
2158 return 0;
2160 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2162 static void prot_init_common(unsigned long page_none,
2163 unsigned long page_shared,
2164 unsigned long page_copy,
2165 unsigned long page_readonly,
2166 unsigned long page_exec_bit)
2168 PAGE_COPY = __pgprot(page_copy);
2169 PAGE_SHARED = __pgprot(page_shared);
2171 protection_map[0x0] = __pgprot(page_none);
2172 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2173 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2174 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2175 protection_map[0x4] = __pgprot(page_readonly);
2176 protection_map[0x5] = __pgprot(page_readonly);
2177 protection_map[0x6] = __pgprot(page_copy);
2178 protection_map[0x7] = __pgprot(page_copy);
2179 protection_map[0x8] = __pgprot(page_none);
2180 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2181 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2182 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2183 protection_map[0xc] = __pgprot(page_readonly);
2184 protection_map[0xd] = __pgprot(page_readonly);
2185 protection_map[0xe] = __pgprot(page_shared);
2186 protection_map[0xf] = __pgprot(page_shared);
2189 static void __init sun4u_pgprot_init(void)
2191 unsigned long page_none, page_shared, page_copy, page_readonly;
2192 unsigned long page_exec_bit;
2194 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2195 _PAGE_CACHE_4U | _PAGE_P_4U |
2196 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2197 _PAGE_EXEC_4U);
2198 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2199 _PAGE_CACHE_4U | _PAGE_P_4U |
2200 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2201 _PAGE_EXEC_4U | _PAGE_L_4U);
2203 _PAGE_IE = _PAGE_IE_4U;
2204 _PAGE_E = _PAGE_E_4U;
2205 _PAGE_CACHE = _PAGE_CACHE_4U;
2207 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2208 __ACCESS_BITS_4U | _PAGE_E_4U);
2210 #ifdef CONFIG_DEBUG_PAGEALLOC
2211 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2212 0xfffff80000000000UL;
2213 #else
2214 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2215 0xfffff80000000000UL;
2216 #endif
2217 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2218 _PAGE_P_4U | _PAGE_W_4U);
2220 /* XXX Should use 256MB on Panther. XXX */
2221 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2223 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2224 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2225 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2226 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2229 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2230 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2231 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2232 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2233 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2234 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2235 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2237 page_exec_bit = _PAGE_EXEC_4U;
2239 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2240 page_exec_bit);
2243 static void __init sun4v_pgprot_init(void)
2245 unsigned long page_none, page_shared, page_copy, page_readonly;
2246 unsigned long page_exec_bit;
2248 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2249 _PAGE_CACHE_4V | _PAGE_P_4V |
2250 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2251 _PAGE_EXEC_4V);
2252 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2254 _PAGE_IE = _PAGE_IE_4V;
2255 _PAGE_E = _PAGE_E_4V;
2256 _PAGE_CACHE = _PAGE_CACHE_4V;
2258 #ifdef CONFIG_DEBUG_PAGEALLOC
2259 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2260 0xfffff80000000000UL;
2261 #else
2262 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2263 0xfffff80000000000UL;
2264 #endif
2265 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2266 _PAGE_P_4V | _PAGE_W_4V);
2268 #ifdef CONFIG_DEBUG_PAGEALLOC
2269 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2270 0xfffff80000000000UL;
2271 #else
2272 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2273 0xfffff80000000000UL;
2274 #endif
2275 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2276 _PAGE_P_4V | _PAGE_W_4V);
2278 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2279 __ACCESS_BITS_4V | _PAGE_E_4V);
2281 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2282 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2283 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2284 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2285 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2287 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2288 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2289 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2290 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2291 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2292 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2293 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2295 page_exec_bit = _PAGE_EXEC_4V;
2297 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2298 page_exec_bit);
2301 unsigned long pte_sz_bits(unsigned long sz)
2303 if (tlb_type == hypervisor) {
2304 switch (sz) {
2305 case 8 * 1024:
2306 default:
2307 return _PAGE_SZ8K_4V;
2308 case 64 * 1024:
2309 return _PAGE_SZ64K_4V;
2310 case 512 * 1024:
2311 return _PAGE_SZ512K_4V;
2312 case 4 * 1024 * 1024:
2313 return _PAGE_SZ4MB_4V;
2315 } else {
2316 switch (sz) {
2317 case 8 * 1024:
2318 default:
2319 return _PAGE_SZ8K_4U;
2320 case 64 * 1024:
2321 return _PAGE_SZ64K_4U;
2322 case 512 * 1024:
2323 return _PAGE_SZ512K_4U;
2324 case 4 * 1024 * 1024:
2325 return _PAGE_SZ4MB_4U;
2330 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2332 pte_t pte;
2334 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2335 pte_val(pte) |= (((unsigned long)space) << 32);
2336 pte_val(pte) |= pte_sz_bits(page_size);
2338 return pte;
2341 static unsigned long kern_large_tte(unsigned long paddr)
2343 unsigned long val;
2345 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2346 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2347 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2348 if (tlb_type == hypervisor)
2349 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2350 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2351 _PAGE_EXEC_4V | _PAGE_W_4V);
2353 return val | paddr;
2356 /* If not locked, zap it. */
2357 void __flush_tlb_all(void)
2359 unsigned long pstate;
2360 int i;
2362 __asm__ __volatile__("flushw\n\t"
2363 "rdpr %%pstate, %0\n\t"
2364 "wrpr %0, %1, %%pstate"
2365 : "=r" (pstate)
2366 : "i" (PSTATE_IE));
2367 if (tlb_type == hypervisor) {
2368 sun4v_mmu_demap_all();
2369 } else if (tlb_type == spitfire) {
2370 for (i = 0; i < 64; i++) {
2371 /* Spitfire Errata #32 workaround */
2372 /* NOTE: Always runs on spitfire, so no
2373 * cheetah+ page size encodings.
2375 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2376 "flush %%g6"
2377 : /* No outputs */
2378 : "r" (0),
2379 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2381 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2382 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383 "membar #Sync"
2384 : /* no outputs */
2385 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2386 spitfire_put_dtlb_data(i, 0x0UL);
2389 /* Spitfire Errata #32 workaround */
2390 /* NOTE: Always runs on spitfire, so no
2391 * cheetah+ page size encodings.
2393 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2394 "flush %%g6"
2395 : /* No outputs */
2396 : "r" (0),
2397 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2399 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2400 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2401 "membar #Sync"
2402 : /* no outputs */
2403 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2404 spitfire_put_itlb_data(i, 0x0UL);
2407 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2408 cheetah_flush_dtlb_all();
2409 cheetah_flush_itlb_all();
2411 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2412 : : "r" (pstate));