2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29 * taken together; in truncation, i_mutex is taken outermost.
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
35 * mm->page_table_lock or pte_lock
36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37 * swap_lock (in swap_duplicate, swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
57 #include <asm/tlbflush.h>
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
61 kmem_cache_t
*anon_vma_cachep
;
63 static inline void validate_anon_vma(struct vm_area_struct
*find_vma
)
66 struct anon_vma
*anon_vma
= find_vma
->anon_vma
;
67 struct vm_area_struct
*vma
;
68 unsigned int mapcount
= 0;
71 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
73 BUG_ON(mapcount
> 100000);
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct
*vma
)
84 struct anon_vma
*anon_vma
= vma
->anon_vma
;
87 if (unlikely(!anon_vma
)) {
88 struct mm_struct
*mm
= vma
->vm_mm
;
89 struct anon_vma
*allocated
, *locked
;
91 anon_vma
= find_mergeable_anon_vma(vma
);
95 spin_lock(&locked
->lock
);
97 anon_vma
= anon_vma_alloc();
98 if (unlikely(!anon_vma
))
100 allocated
= anon_vma
;
104 /* page_table_lock to protect against threads */
105 spin_lock(&mm
->page_table_lock
);
106 if (likely(!vma
->anon_vma
)) {
107 vma
->anon_vma
= anon_vma
;
108 list_add(&vma
->anon_vma_node
, &anon_vma
->head
);
111 spin_unlock(&mm
->page_table_lock
);
114 spin_unlock(&locked
->lock
);
115 if (unlikely(allocated
))
116 anon_vma_free(allocated
);
121 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
123 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
124 list_del(&next
->anon_vma_node
);
127 void __anon_vma_link(struct vm_area_struct
*vma
)
129 struct anon_vma
*anon_vma
= vma
->anon_vma
;
132 list_add(&vma
->anon_vma_node
, &anon_vma
->head
);
133 validate_anon_vma(vma
);
137 void anon_vma_link(struct vm_area_struct
*vma
)
139 struct anon_vma
*anon_vma
= vma
->anon_vma
;
142 spin_lock(&anon_vma
->lock
);
143 list_add(&vma
->anon_vma_node
, &anon_vma
->head
);
144 validate_anon_vma(vma
);
145 spin_unlock(&anon_vma
->lock
);
149 void anon_vma_unlink(struct vm_area_struct
*vma
)
151 struct anon_vma
*anon_vma
= vma
->anon_vma
;
157 spin_lock(&anon_vma
->lock
);
158 validate_anon_vma(vma
);
159 list_del(&vma
->anon_vma_node
);
161 /* We must garbage collect the anon_vma if it's empty */
162 empty
= list_empty(&anon_vma
->head
);
163 spin_unlock(&anon_vma
->lock
);
166 anon_vma_free(anon_vma
);
169 static void anon_vma_ctor(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
171 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
172 SLAB_CTOR_CONSTRUCTOR
) {
173 struct anon_vma
*anon_vma
= data
;
175 spin_lock_init(&anon_vma
->lock
);
176 INIT_LIST_HEAD(&anon_vma
->head
);
180 void __init
anon_vma_init(void)
182 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
183 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
, NULL
);
187 * Getting a lock on a stable anon_vma from a page off the LRU is
188 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
190 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
192 struct anon_vma
*anon_vma
= NULL
;
193 unsigned long anon_mapping
;
196 anon_mapping
= (unsigned long) page
->mapping
;
197 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
199 if (!page_mapped(page
))
202 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
203 spin_lock(&anon_vma
->lock
);
209 #ifdef CONFIG_MIGRATION
211 * Remove an anonymous page from swap replacing the swap pte's
212 * through real pte's pointing to valid pages and then releasing
213 * the page from the swap cache.
215 * Must hold page lock on page.
217 void remove_from_swap(struct page
*page
)
219 struct anon_vma
*anon_vma
;
220 struct vm_area_struct
*vma
;
222 if (!PageAnon(page
) || !PageSwapCache(page
))
225 anon_vma
= page_lock_anon_vma(page
);
229 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
230 remove_vma_swap(vma
, page
);
232 spin_unlock(&anon_vma
->lock
);
234 delete_from_swap_cache(page
);
236 EXPORT_SYMBOL(remove_from_swap
);
240 * At what user virtual address is page expected in vma?
242 static inline unsigned long
243 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
245 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
246 unsigned long address
;
248 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
249 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
250 /* page should be within any vma from prio_tree_next */
251 BUG_ON(!PageAnon(page
));
258 * At what user virtual address is page expected in vma? checking that the
259 * page matches the vma: currently only used on anon pages, by unuse_vma;
261 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
263 if (PageAnon(page
)) {
264 if ((void *)vma
->anon_vma
!=
265 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
267 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
269 vma
->vm_file
->f_mapping
!= page
->mapping
)
273 return vma_address(page
, vma
);
277 * Check that @page is mapped at @address into @mm.
279 * On success returns with pte mapped and locked.
281 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
282 unsigned long address
, spinlock_t
**ptlp
)
290 pgd
= pgd_offset(mm
, address
);
291 if (!pgd_present(*pgd
))
294 pud
= pud_offset(pgd
, address
);
295 if (!pud_present(*pud
))
298 pmd
= pmd_offset(pud
, address
);
299 if (!pmd_present(*pmd
))
302 pte
= pte_offset_map(pmd
, address
);
303 /* Make a quick check before getting the lock */
304 if (!pte_present(*pte
)) {
309 ptl
= pte_lockptr(mm
, pmd
);
311 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
315 pte_unmap_unlock(pte
, ptl
);
320 * Subfunctions of page_referenced: page_referenced_one called
321 * repeatedly from either page_referenced_anon or page_referenced_file.
323 static int page_referenced_one(struct page
*page
,
324 struct vm_area_struct
*vma
, unsigned int *mapcount
)
326 struct mm_struct
*mm
= vma
->vm_mm
;
327 unsigned long address
;
332 address
= vma_address(page
, vma
);
333 if (address
== -EFAULT
)
336 pte
= page_check_address(page
, mm
, address
, &ptl
);
340 if (ptep_clear_flush_young(vma
, address
, pte
))
343 /* Pretend the page is referenced if the task has the
344 swap token and is in the middle of a page fault. */
345 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
346 rwsem_is_locked(&mm
->mmap_sem
))
350 pte_unmap_unlock(pte
, ptl
);
355 static int page_referenced_anon(struct page
*page
)
357 unsigned int mapcount
;
358 struct anon_vma
*anon_vma
;
359 struct vm_area_struct
*vma
;
362 anon_vma
= page_lock_anon_vma(page
);
366 mapcount
= page_mapcount(page
);
367 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
368 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
372 spin_unlock(&anon_vma
->lock
);
377 * page_referenced_file - referenced check for object-based rmap
378 * @page: the page we're checking references on.
380 * For an object-based mapped page, find all the places it is mapped and
381 * check/clear the referenced flag. This is done by following the page->mapping
382 * pointer, then walking the chain of vmas it holds. It returns the number
383 * of references it found.
385 * This function is only called from page_referenced for object-based pages.
387 static int page_referenced_file(struct page
*page
)
389 unsigned int mapcount
;
390 struct address_space
*mapping
= page
->mapping
;
391 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
392 struct vm_area_struct
*vma
;
393 struct prio_tree_iter iter
;
397 * The caller's checks on page->mapping and !PageAnon have made
398 * sure that this is a file page: the check for page->mapping
399 * excludes the case just before it gets set on an anon page.
401 BUG_ON(PageAnon(page
));
404 * The page lock not only makes sure that page->mapping cannot
405 * suddenly be NULLified by truncation, it makes sure that the
406 * structure at mapping cannot be freed and reused yet,
407 * so we can safely take mapping->i_mmap_lock.
409 BUG_ON(!PageLocked(page
));
411 spin_lock(&mapping
->i_mmap_lock
);
414 * i_mmap_lock does not stabilize mapcount at all, but mapcount
415 * is more likely to be accurate if we note it after spinning.
417 mapcount
= page_mapcount(page
);
419 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
420 if ((vma
->vm_flags
& (VM_LOCKED
|VM_MAYSHARE
))
421 == (VM_LOCKED
|VM_MAYSHARE
)) {
425 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
430 spin_unlock(&mapping
->i_mmap_lock
);
435 * page_referenced - test if the page was referenced
436 * @page: the page to test
437 * @is_locked: caller holds lock on the page
439 * Quick test_and_clear_referenced for all mappings to a page,
440 * returns the number of ptes which referenced the page.
442 int page_referenced(struct page
*page
, int is_locked
)
446 if (page_test_and_clear_young(page
))
449 if (TestClearPageReferenced(page
))
452 if (page_mapped(page
) && page
->mapping
) {
454 referenced
+= page_referenced_anon(page
);
456 referenced
+= page_referenced_file(page
);
457 else if (TestSetPageLocked(page
))
461 referenced
+= page_referenced_file(page
);
469 * page_set_anon_rmap - setup new anonymous rmap
470 * @page: the page to add the mapping to
471 * @vma: the vm area in which the mapping is added
472 * @address: the user virtual address mapped
474 static void __page_set_anon_rmap(struct page
*page
,
475 struct vm_area_struct
*vma
, unsigned long address
)
477 struct anon_vma
*anon_vma
= vma
->anon_vma
;
480 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
481 page
->mapping
= (struct address_space
*) anon_vma
;
483 page
->index
= linear_page_index(vma
, address
);
486 * nr_mapped state can be updated without turning off
487 * interrupts because it is not modified via interrupt.
489 __inc_page_state(nr_mapped
);
493 * page_add_anon_rmap - add pte mapping to an anonymous page
494 * @page: the page to add the mapping to
495 * @vma: the vm area in which the mapping is added
496 * @address: the user virtual address mapped
498 * The caller needs to hold the pte lock.
500 void page_add_anon_rmap(struct page
*page
,
501 struct vm_area_struct
*vma
, unsigned long address
)
503 if (atomic_inc_and_test(&page
->_mapcount
))
504 __page_set_anon_rmap(page
, vma
, address
);
505 /* else checking page index and mapping is racy */
509 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
510 * @page: the page to add the mapping to
511 * @vma: the vm area in which the mapping is added
512 * @address: the user virtual address mapped
514 * Same as page_add_anon_rmap but must only be called on *new* pages.
515 * This means the inc-and-test can be bypassed.
517 void page_add_new_anon_rmap(struct page
*page
,
518 struct vm_area_struct
*vma
, unsigned long address
)
520 atomic_set(&page
->_mapcount
, 0); /* elevate count by 1 (starts at -1) */
521 __page_set_anon_rmap(page
, vma
, address
);
525 * page_add_file_rmap - add pte mapping to a file page
526 * @page: the page to add the mapping to
528 * The caller needs to hold the pte lock.
530 void page_add_file_rmap(struct page
*page
)
532 BUG_ON(PageAnon(page
));
533 BUG_ON(!pfn_valid(page_to_pfn(page
)));
535 if (atomic_inc_and_test(&page
->_mapcount
))
536 __inc_page_state(nr_mapped
);
540 * page_remove_rmap - take down pte mapping from a page
541 * @page: page to remove mapping from
543 * The caller needs to hold the pte lock.
545 void page_remove_rmap(struct page
*page
)
547 if (atomic_add_negative(-1, &page
->_mapcount
)) {
548 if (page_mapcount(page
) < 0) {
549 printk (KERN_EMERG
"Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page
));
550 printk (KERN_EMERG
" page->flags = %lx\n", page
->flags
);
551 printk (KERN_EMERG
" page->count = %x\n", page_count(page
));
552 printk (KERN_EMERG
" page->mapping = %p\n", page
->mapping
);
555 BUG_ON(page_mapcount(page
) < 0);
557 * It would be tidy to reset the PageAnon mapping here,
558 * but that might overwrite a racing page_add_anon_rmap
559 * which increments mapcount after us but sets mapping
560 * before us: so leave the reset to free_hot_cold_page,
561 * and remember that it's only reliable while mapped.
562 * Leaving it set also helps swapoff to reinstate ptes
563 * faster for those pages still in swapcache.
565 if (page_test_and_clear_dirty(page
))
566 set_page_dirty(page
);
567 __dec_page_state(nr_mapped
);
572 * Subfunctions of try_to_unmap: try_to_unmap_one called
573 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
575 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
578 struct mm_struct
*mm
= vma
->vm_mm
;
579 unsigned long address
;
583 int ret
= SWAP_AGAIN
;
585 address
= vma_address(page
, vma
);
586 if (address
== -EFAULT
)
589 pte
= page_check_address(page
, mm
, address
, &ptl
);
594 * If the page is mlock()d, we cannot swap it out.
595 * If it's recently referenced (perhaps page_referenced
596 * skipped over this mm) then we should reactivate it.
598 if ((vma
->vm_flags
& VM_LOCKED
) ||
599 (ptep_clear_flush_young(vma
, address
, pte
)
605 /* Nuke the page table entry. */
606 flush_cache_page(vma
, address
, page_to_pfn(page
));
607 pteval
= ptep_clear_flush(vma
, address
, pte
);
609 /* Move the dirty bit to the physical page now the pte is gone. */
610 if (pte_dirty(pteval
))
611 set_page_dirty(page
);
613 /* Update high watermark before we lower rss */
614 update_hiwater_rss(mm
);
616 if (PageAnon(page
)) {
617 swp_entry_t entry
= { .val
= page_private(page
) };
619 * Store the swap location in the pte.
620 * See handle_pte_fault() ...
622 BUG_ON(!PageSwapCache(page
));
623 swap_duplicate(entry
);
624 if (list_empty(&mm
->mmlist
)) {
625 spin_lock(&mmlist_lock
);
626 if (list_empty(&mm
->mmlist
))
627 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
628 spin_unlock(&mmlist_lock
);
630 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
631 BUG_ON(pte_file(*pte
));
632 dec_mm_counter(mm
, anon_rss
);
634 dec_mm_counter(mm
, file_rss
);
636 page_remove_rmap(page
);
637 page_cache_release(page
);
640 pte_unmap_unlock(pte
, ptl
);
646 * objrmap doesn't work for nonlinear VMAs because the assumption that
647 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
648 * Consequently, given a particular page and its ->index, we cannot locate the
649 * ptes which are mapping that page without an exhaustive linear search.
651 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
652 * maps the file to which the target page belongs. The ->vm_private_data field
653 * holds the current cursor into that scan. Successive searches will circulate
654 * around the vma's virtual address space.
656 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
657 * more scanning pressure is placed against them as well. Eventually pages
658 * will become fully unmapped and are eligible for eviction.
660 * For very sparsely populated VMAs this is a little inefficient - chances are
661 * there there won't be many ptes located within the scan cluster. In this case
662 * maybe we could scan further - to the end of the pte page, perhaps.
664 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
665 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
667 static void try_to_unmap_cluster(unsigned long cursor
,
668 unsigned int *mapcount
, struct vm_area_struct
*vma
)
670 struct mm_struct
*mm
= vma
->vm_mm
;
678 unsigned long address
;
681 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
682 end
= address
+ CLUSTER_SIZE
;
683 if (address
< vma
->vm_start
)
684 address
= vma
->vm_start
;
685 if (end
> vma
->vm_end
)
688 pgd
= pgd_offset(mm
, address
);
689 if (!pgd_present(*pgd
))
692 pud
= pud_offset(pgd
, address
);
693 if (!pud_present(*pud
))
696 pmd
= pmd_offset(pud
, address
);
697 if (!pmd_present(*pmd
))
700 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
702 /* Update high watermark before we lower rss */
703 update_hiwater_rss(mm
);
705 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
706 if (!pte_present(*pte
))
708 page
= vm_normal_page(vma
, address
, *pte
);
709 BUG_ON(!page
|| PageAnon(page
));
711 if (ptep_clear_flush_young(vma
, address
, pte
))
714 /* Nuke the page table entry. */
715 flush_cache_page(vma
, address
, pte_pfn(*pte
));
716 pteval
= ptep_clear_flush(vma
, address
, pte
);
718 /* If nonlinear, store the file page offset in the pte. */
719 if (page
->index
!= linear_page_index(vma
, address
))
720 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
722 /* Move the dirty bit to the physical page now the pte is gone. */
723 if (pte_dirty(pteval
))
724 set_page_dirty(page
);
726 page_remove_rmap(page
);
727 page_cache_release(page
);
728 dec_mm_counter(mm
, file_rss
);
731 pte_unmap_unlock(pte
- 1, ptl
);
734 static int try_to_unmap_anon(struct page
*page
, int ignore_refs
)
736 struct anon_vma
*anon_vma
;
737 struct vm_area_struct
*vma
;
738 int ret
= SWAP_AGAIN
;
740 anon_vma
= page_lock_anon_vma(page
);
744 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
745 ret
= try_to_unmap_one(page
, vma
, ignore_refs
);
746 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
749 spin_unlock(&anon_vma
->lock
);
754 * try_to_unmap_file - unmap file page using the object-based rmap method
755 * @page: the page to unmap
757 * Find all the mappings of a page using the mapping pointer and the vma chains
758 * contained in the address_space struct it points to.
760 * This function is only called from try_to_unmap for object-based pages.
762 static int try_to_unmap_file(struct page
*page
, int ignore_refs
)
764 struct address_space
*mapping
= page
->mapping
;
765 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
766 struct vm_area_struct
*vma
;
767 struct prio_tree_iter iter
;
768 int ret
= SWAP_AGAIN
;
769 unsigned long cursor
;
770 unsigned long max_nl_cursor
= 0;
771 unsigned long max_nl_size
= 0;
772 unsigned int mapcount
;
774 spin_lock(&mapping
->i_mmap_lock
);
775 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
776 ret
= try_to_unmap_one(page
, vma
, ignore_refs
);
777 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
781 if (list_empty(&mapping
->i_mmap_nonlinear
))
784 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
785 shared
.vm_set
.list
) {
786 if (vma
->vm_flags
& VM_LOCKED
)
788 cursor
= (unsigned long) vma
->vm_private_data
;
789 if (cursor
> max_nl_cursor
)
790 max_nl_cursor
= cursor
;
791 cursor
= vma
->vm_end
- vma
->vm_start
;
792 if (cursor
> max_nl_size
)
793 max_nl_size
= cursor
;
796 if (max_nl_size
== 0) { /* any nonlinears locked or reserved */
802 * We don't try to search for this page in the nonlinear vmas,
803 * and page_referenced wouldn't have found it anyway. Instead
804 * just walk the nonlinear vmas trying to age and unmap some.
805 * The mapcount of the page we came in with is irrelevant,
806 * but even so use it as a guide to how hard we should try?
808 mapcount
= page_mapcount(page
);
811 cond_resched_lock(&mapping
->i_mmap_lock
);
813 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
814 if (max_nl_cursor
== 0)
815 max_nl_cursor
= CLUSTER_SIZE
;
818 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
819 shared
.vm_set
.list
) {
820 if (vma
->vm_flags
& VM_LOCKED
)
822 cursor
= (unsigned long) vma
->vm_private_data
;
823 while ( cursor
< max_nl_cursor
&&
824 cursor
< vma
->vm_end
- vma
->vm_start
) {
825 try_to_unmap_cluster(cursor
, &mapcount
, vma
);
826 cursor
+= CLUSTER_SIZE
;
827 vma
->vm_private_data
= (void *) cursor
;
828 if ((int)mapcount
<= 0)
831 vma
->vm_private_data
= (void *) max_nl_cursor
;
833 cond_resched_lock(&mapping
->i_mmap_lock
);
834 max_nl_cursor
+= CLUSTER_SIZE
;
835 } while (max_nl_cursor
<= max_nl_size
);
838 * Don't loop forever (perhaps all the remaining pages are
839 * in locked vmas). Reset cursor on all unreserved nonlinear
840 * vmas, now forgetting on which ones it had fallen behind.
842 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
843 vma
->vm_private_data
= NULL
;
845 spin_unlock(&mapping
->i_mmap_lock
);
850 * try_to_unmap - try to remove all page table mappings to a page
851 * @page: the page to get unmapped
853 * Tries to remove all the page table entries which are mapping this
854 * page, used in the pageout path. Caller must hold the page lock.
857 * SWAP_SUCCESS - we succeeded in removing all mappings
858 * SWAP_AGAIN - we missed a mapping, try again later
859 * SWAP_FAIL - the page is unswappable
861 int try_to_unmap(struct page
*page
, int ignore_refs
)
865 BUG_ON(!PageLocked(page
));
868 ret
= try_to_unmap_anon(page
, ignore_refs
);
870 ret
= try_to_unmap_file(page
, ignore_refs
);
872 if (!page_mapped(page
))