2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
160 #ifndef ARCH_KMALLOC_MINALIGN
161 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
164 #ifndef ARCH_SLAB_MINALIGN
165 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
169 #define OO_MASK ((1 << OO_SHIFT) - 1)
170 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
172 /* Internal SLUB flags */
173 #define __OBJECT_POISON 0x80000000 /* Poison object */
174 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
176 static int kmem_size
= sizeof(struct kmem_cache
);
179 static struct notifier_block slab_notifier
;
183 DOWN
, /* No slab functionality available */
184 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
185 UP
, /* Everything works but does not show up in sysfs */
189 /* A list of all slab caches on the system */
190 static DECLARE_RWSEM(slub_lock
);
191 static LIST_HEAD(slab_caches
);
194 * Tracking user of a slab.
197 unsigned long addr
; /* Called from address */
198 int cpu
; /* Was running on cpu */
199 int pid
; /* Pid context */
200 unsigned long when
; /* When did the operation occur */
203 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
205 #ifdef CONFIG_SLUB_DEBUG
206 static int sysfs_slab_add(struct kmem_cache
*);
207 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
208 static void sysfs_slab_remove(struct kmem_cache
*);
211 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
212 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
214 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
221 static inline void stat(struct kmem_cache
*s
, enum stat_item si
)
223 #ifdef CONFIG_SLUB_STATS
224 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
228 /********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
232 int slab_is_available(void)
234 return slab_state
>= UP
;
237 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
240 return s
->node
[node
];
242 return &s
->local_node
;
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache
*s
,
248 struct page
*page
, const void *object
)
255 base
= page_address(page
);
256 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
257 (object
- base
) % s
->size
) {
264 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
266 return *(void **)(object
+ s
->offset
);
269 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
271 *(void **)(object
+ s
->offset
) = fp
;
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
280 #define for_each_free_object(__p, __s, __free) \
281 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
286 return (p
- addr
) / s
->size
;
289 static inline struct kmem_cache_order_objects
oo_make(int order
,
292 struct kmem_cache_order_objects x
= {
293 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
299 static inline int oo_order(struct kmem_cache_order_objects x
)
301 return x
.x
>> OO_SHIFT
;
304 static inline int oo_objects(struct kmem_cache_order_objects x
)
306 return x
.x
& OO_MASK
;
309 #ifdef CONFIG_SLUB_DEBUG
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
316 static int slub_debug
;
319 static char *slub_debug_slabs
;
320 static int disable_higher_order_debug
;
325 static void print_section(char *text
, u8
*addr
, unsigned int length
)
333 for (i
= 0; i
< length
; i
++) {
335 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
338 printk(KERN_CONT
" %02x", addr
[i
]);
340 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
342 printk(KERN_CONT
" %s\n", ascii
);
349 printk(KERN_CONT
" ");
353 printk(KERN_CONT
" %s\n", ascii
);
357 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
358 enum track_item alloc
)
363 p
= object
+ s
->offset
+ sizeof(void *);
365 p
= object
+ s
->inuse
;
370 static void set_track(struct kmem_cache
*s
, void *object
,
371 enum track_item alloc
, unsigned long addr
)
373 struct track
*p
= get_track(s
, object
, alloc
);
377 p
->cpu
= smp_processor_id();
378 p
->pid
= current
->pid
;
381 memset(p
, 0, sizeof(struct track
));
384 static void init_tracking(struct kmem_cache
*s
, void *object
)
386 if (!(s
->flags
& SLAB_STORE_USER
))
389 set_track(s
, object
, TRACK_FREE
, 0UL);
390 set_track(s
, object
, TRACK_ALLOC
, 0UL);
393 static void print_track(const char *s
, struct track
*t
)
398 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
399 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
402 static void print_tracking(struct kmem_cache
*s
, void *object
)
404 if (!(s
->flags
& SLAB_STORE_USER
))
407 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
408 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
411 static void print_page_info(struct page
*page
)
413 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
414 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
418 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
424 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
426 printk(KERN_ERR
"========================================"
427 "=====================================\n");
428 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
429 printk(KERN_ERR
"----------------------------------------"
430 "-------------------------------------\n\n");
433 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
439 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
441 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
444 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
446 unsigned int off
; /* Offset of last byte */
447 u8
*addr
= page_address(page
);
449 print_tracking(s
, p
);
451 print_page_info(page
);
453 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
454 p
, p
- addr
, get_freepointer(s
, p
));
457 print_section("Bytes b4", p
- 16, 16);
459 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
461 if (s
->flags
& SLAB_RED_ZONE
)
462 print_section("Redzone", p
+ s
->objsize
,
463 s
->inuse
- s
->objsize
);
466 off
= s
->offset
+ sizeof(void *);
470 if (s
->flags
& SLAB_STORE_USER
)
471 off
+= 2 * sizeof(struct track
);
474 /* Beginning of the filler is the free pointer */
475 print_section("Padding", p
+ off
, s
->size
- off
);
480 static void object_err(struct kmem_cache
*s
, struct page
*page
,
481 u8
*object
, char *reason
)
483 slab_bug(s
, "%s", reason
);
484 print_trailer(s
, page
, object
);
487 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
493 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
495 slab_bug(s
, "%s", buf
);
496 print_page_info(page
);
500 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
504 if (s
->flags
& __OBJECT_POISON
) {
505 memset(p
, POISON_FREE
, s
->objsize
- 1);
506 p
[s
->objsize
- 1] = POISON_END
;
509 if (s
->flags
& SLAB_RED_ZONE
)
510 memset(p
+ s
->objsize
,
511 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
512 s
->inuse
- s
->objsize
);
515 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
518 if (*start
!= (u8
)value
)
526 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
527 void *from
, void *to
)
529 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
530 memset(from
, data
, to
- from
);
533 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
534 u8
*object
, char *what
,
535 u8
*start
, unsigned int value
, unsigned int bytes
)
540 fault
= check_bytes(start
, value
, bytes
);
545 while (end
> fault
&& end
[-1] == value
)
548 slab_bug(s
, "%s overwritten", what
);
549 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
550 fault
, end
- 1, fault
[0], value
);
551 print_trailer(s
, page
, object
);
553 restore_bytes(s
, what
, value
, fault
, end
);
561 * Bytes of the object to be managed.
562 * If the freepointer may overlay the object then the free
563 * pointer is the first word of the object.
565 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
568 * object + s->objsize
569 * Padding to reach word boundary. This is also used for Redzoning.
570 * Padding is extended by another word if Redzoning is enabled and
573 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
574 * 0xcc (RED_ACTIVE) for objects in use.
577 * Meta data starts here.
579 * A. Free pointer (if we cannot overwrite object on free)
580 * B. Tracking data for SLAB_STORE_USER
581 * C. Padding to reach required alignment boundary or at mininum
582 * one word if debugging is on to be able to detect writes
583 * before the word boundary.
585 * Padding is done using 0x5a (POISON_INUSE)
588 * Nothing is used beyond s->size.
590 * If slabcaches are merged then the objsize and inuse boundaries are mostly
591 * ignored. And therefore no slab options that rely on these boundaries
592 * may be used with merged slabcaches.
595 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
597 unsigned long off
= s
->inuse
; /* The end of info */
600 /* Freepointer is placed after the object. */
601 off
+= sizeof(void *);
603 if (s
->flags
& SLAB_STORE_USER
)
604 /* We also have user information there */
605 off
+= 2 * sizeof(struct track
);
610 return check_bytes_and_report(s
, page
, p
, "Object padding",
611 p
+ off
, POISON_INUSE
, s
->size
- off
);
614 /* Check the pad bytes at the end of a slab page */
615 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
623 if (!(s
->flags
& SLAB_POISON
))
626 start
= page_address(page
);
627 length
= (PAGE_SIZE
<< compound_order(page
));
628 end
= start
+ length
;
629 remainder
= length
% s
->size
;
633 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
636 while (end
> fault
&& end
[-1] == POISON_INUSE
)
639 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
640 print_section("Padding", end
- remainder
, remainder
);
642 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
646 static int check_object(struct kmem_cache
*s
, struct page
*page
,
647 void *object
, int active
)
650 u8
*endobject
= object
+ s
->objsize
;
652 if (s
->flags
& SLAB_RED_ZONE
) {
654 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
656 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
657 endobject
, red
, s
->inuse
- s
->objsize
))
660 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
661 check_bytes_and_report(s
, page
, p
, "Alignment padding",
662 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
666 if (s
->flags
& SLAB_POISON
) {
667 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
668 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
669 POISON_FREE
, s
->objsize
- 1) ||
670 !check_bytes_and_report(s
, page
, p
, "Poison",
671 p
+ s
->objsize
- 1, POISON_END
, 1)))
674 * check_pad_bytes cleans up on its own.
676 check_pad_bytes(s
, page
, p
);
679 if (!s
->offset
&& active
)
681 * Object and freepointer overlap. Cannot check
682 * freepointer while object is allocated.
686 /* Check free pointer validity */
687 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
688 object_err(s
, page
, p
, "Freepointer corrupt");
690 * No choice but to zap it and thus lose the remainder
691 * of the free objects in this slab. May cause
692 * another error because the object count is now wrong.
694 set_freepointer(s
, p
, NULL
);
700 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
704 VM_BUG_ON(!irqs_disabled());
706 if (!PageSlab(page
)) {
707 slab_err(s
, page
, "Not a valid slab page");
711 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
712 if (page
->objects
> maxobj
) {
713 slab_err(s
, page
, "objects %u > max %u",
714 s
->name
, page
->objects
, maxobj
);
717 if (page
->inuse
> page
->objects
) {
718 slab_err(s
, page
, "inuse %u > max %u",
719 s
->name
, page
->inuse
, page
->objects
);
722 /* Slab_pad_check fixes things up after itself */
723 slab_pad_check(s
, page
);
728 * Determine if a certain object on a page is on the freelist. Must hold the
729 * slab lock to guarantee that the chains are in a consistent state.
731 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
734 void *fp
= page
->freelist
;
736 unsigned long max_objects
;
738 while (fp
&& nr
<= page
->objects
) {
741 if (!check_valid_pointer(s
, page
, fp
)) {
743 object_err(s
, page
, object
,
744 "Freechain corrupt");
745 set_freepointer(s
, object
, NULL
);
748 slab_err(s
, page
, "Freepointer corrupt");
749 page
->freelist
= NULL
;
750 page
->inuse
= page
->objects
;
751 slab_fix(s
, "Freelist cleared");
757 fp
= get_freepointer(s
, object
);
761 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
762 if (max_objects
> MAX_OBJS_PER_PAGE
)
763 max_objects
= MAX_OBJS_PER_PAGE
;
765 if (page
->objects
!= max_objects
) {
766 slab_err(s
, page
, "Wrong number of objects. Found %d but "
767 "should be %d", page
->objects
, max_objects
);
768 page
->objects
= max_objects
;
769 slab_fix(s
, "Number of objects adjusted.");
771 if (page
->inuse
!= page
->objects
- nr
) {
772 slab_err(s
, page
, "Wrong object count. Counter is %d but "
773 "counted were %d", page
->inuse
, page
->objects
- nr
);
774 page
->inuse
= page
->objects
- nr
;
775 slab_fix(s
, "Object count adjusted.");
777 return search
== NULL
;
780 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
783 if (s
->flags
& SLAB_TRACE
) {
784 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
786 alloc
? "alloc" : "free",
791 print_section("Object", (void *)object
, s
->objsize
);
798 * Tracking of fully allocated slabs for debugging purposes.
800 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
802 spin_lock(&n
->list_lock
);
803 list_add(&page
->lru
, &n
->full
);
804 spin_unlock(&n
->list_lock
);
807 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
809 struct kmem_cache_node
*n
;
811 if (!(s
->flags
& SLAB_STORE_USER
))
814 n
= get_node(s
, page_to_nid(page
));
816 spin_lock(&n
->list_lock
);
817 list_del(&page
->lru
);
818 spin_unlock(&n
->list_lock
);
821 /* Tracking of the number of slabs for debugging purposes */
822 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
824 struct kmem_cache_node
*n
= get_node(s
, node
);
826 return atomic_long_read(&n
->nr_slabs
);
829 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
831 return atomic_long_read(&n
->nr_slabs
);
834 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
836 struct kmem_cache_node
*n
= get_node(s
, node
);
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
844 if (!NUMA_BUILD
|| n
) {
845 atomic_long_inc(&n
->nr_slabs
);
846 atomic_long_add(objects
, &n
->total_objects
);
849 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
851 struct kmem_cache_node
*n
= get_node(s
, node
);
853 atomic_long_dec(&n
->nr_slabs
);
854 atomic_long_sub(objects
, &n
->total_objects
);
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
861 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
864 init_object(s
, object
, 0);
865 init_tracking(s
, object
);
868 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
869 void *object
, unsigned long addr
)
871 if (!check_slab(s
, page
))
874 if (!on_freelist(s
, page
, object
)) {
875 object_err(s
, page
, object
, "Object already allocated");
879 if (!check_valid_pointer(s
, page
, object
)) {
880 object_err(s
, page
, object
, "Freelist Pointer check fails");
884 if (!check_object(s
, page
, object
, 0))
887 /* Success perform special debug activities for allocs */
888 if (s
->flags
& SLAB_STORE_USER
)
889 set_track(s
, object
, TRACK_ALLOC
, addr
);
890 trace(s
, page
, object
, 1);
891 init_object(s
, object
, 1);
895 if (PageSlab(page
)) {
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
899 * as used avoids touching the remaining objects.
901 slab_fix(s
, "Marking all objects used");
902 page
->inuse
= page
->objects
;
903 page
->freelist
= NULL
;
908 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
909 void *object
, unsigned long addr
)
911 if (!check_slab(s
, page
))
914 if (!check_valid_pointer(s
, page
, object
)) {
915 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
919 if (on_freelist(s
, page
, object
)) {
920 object_err(s
, page
, object
, "Object already free");
924 if (!check_object(s
, page
, object
, 1))
927 if (unlikely(s
!= page
->slab
)) {
928 if (!PageSlab(page
)) {
929 slab_err(s
, page
, "Attempt to free object(0x%p) "
930 "outside of slab", object
);
931 } else if (!page
->slab
) {
933 "SLUB <none>: no slab for object 0x%p.\n",
937 object_err(s
, page
, object
,
938 "page slab pointer corrupt.");
942 /* Special debug activities for freeing objects */
943 if (!PageSlubFrozen(page
) && !page
->freelist
)
944 remove_full(s
, page
);
945 if (s
->flags
& SLAB_STORE_USER
)
946 set_track(s
, object
, TRACK_FREE
, addr
);
947 trace(s
, page
, object
, 0);
948 init_object(s
, object
, 0);
952 slab_fix(s
, "Object at 0x%p not freed", object
);
956 static int __init
setup_slub_debug(char *str
)
958 slub_debug
= DEBUG_DEFAULT_FLAGS
;
959 if (*str
++ != '=' || !*str
)
961 * No options specified. Switch on full debugging.
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
972 if (tolower(*str
) == 'o') {
974 * Avoid enabling debugging on caches if its minimum order
975 * would increase as a result.
977 disable_higher_order_debug
= 1;
984 * Switch off all debugging measures.
989 * Determine which debug features should be switched on
991 for (; *str
&& *str
!= ','; str
++) {
992 switch (tolower(*str
)) {
994 slub_debug
|= SLAB_DEBUG_FREE
;
997 slub_debug
|= SLAB_RED_ZONE
;
1000 slub_debug
|= SLAB_POISON
;
1003 slub_debug
|= SLAB_STORE_USER
;
1006 slub_debug
|= SLAB_TRACE
;
1009 slub_debug
|= SLAB_FAILSLAB
;
1012 printk(KERN_ERR
"slub_debug option '%c' "
1013 "unknown. skipped\n", *str
);
1019 slub_debug_slabs
= str
+ 1;
1024 __setup("slub_debug", setup_slub_debug
);
1026 static unsigned long kmem_cache_flags(unsigned long objsize
,
1027 unsigned long flags
, const char *name
,
1028 void (*ctor
)(void *))
1031 * Enable debugging if selected on the kernel commandline.
1033 if (slub_debug
&& (!slub_debug_slabs
||
1034 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1035 flags
|= slub_debug
;
1040 static inline void setup_object_debug(struct kmem_cache
*s
,
1041 struct page
*page
, void *object
) {}
1043 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1044 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1046 static inline int free_debug_processing(struct kmem_cache
*s
,
1047 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1049 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1051 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1052 void *object
, int active
) { return 1; }
1053 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1054 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1055 unsigned long flags
, const char *name
,
1056 void (*ctor
)(void *))
1060 #define slub_debug 0
1062 #define disable_higher_order_debug 0
1064 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1066 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1068 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1070 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1075 * Slab allocation and freeing
1077 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1078 struct kmem_cache_order_objects oo
)
1080 int order
= oo_order(oo
);
1082 flags
|= __GFP_NOTRACK
;
1085 return alloc_pages(flags
, order
);
1087 return alloc_pages_node(node
, flags
, order
);
1090 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1093 struct kmem_cache_order_objects oo
= s
->oo
;
1096 flags
|= s
->allocflags
;
1099 * Let the initial higher-order allocation fail under memory pressure
1100 * so we fall-back to the minimum order allocation.
1102 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1104 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1105 if (unlikely(!page
)) {
1108 * Allocation may have failed due to fragmentation.
1109 * Try a lower order alloc if possible
1111 page
= alloc_slab_page(flags
, node
, oo
);
1115 stat(s
, ORDER_FALLBACK
);
1118 if (kmemcheck_enabled
1119 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1120 int pages
= 1 << oo_order(oo
);
1122 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1125 * Objects from caches that have a constructor don't get
1126 * cleared when they're allocated, so we need to do it here.
1129 kmemcheck_mark_uninitialized_pages(page
, pages
);
1131 kmemcheck_mark_unallocated_pages(page
, pages
);
1134 page
->objects
= oo_objects(oo
);
1135 mod_zone_page_state(page_zone(page
),
1136 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1137 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1143 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1146 setup_object_debug(s
, page
, object
);
1147 if (unlikely(s
->ctor
))
1151 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1158 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1160 page
= allocate_slab(s
,
1161 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1165 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1167 page
->flags
|= 1 << PG_slab
;
1168 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1169 SLAB_STORE_USER
| SLAB_TRACE
))
1170 __SetPageSlubDebug(page
);
1172 start
= page_address(page
);
1174 if (unlikely(s
->flags
& SLAB_POISON
))
1175 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1178 for_each_object(p
, s
, start
, page
->objects
) {
1179 setup_object(s
, page
, last
);
1180 set_freepointer(s
, last
, p
);
1183 setup_object(s
, page
, last
);
1184 set_freepointer(s
, last
, NULL
);
1186 page
->freelist
= start
;
1192 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1194 int order
= compound_order(page
);
1195 int pages
= 1 << order
;
1197 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1200 slab_pad_check(s
, page
);
1201 for_each_object(p
, s
, page_address(page
),
1203 check_object(s
, page
, p
, 0);
1204 __ClearPageSlubDebug(page
);
1207 kmemcheck_free_shadow(page
, compound_order(page
));
1209 mod_zone_page_state(page_zone(page
),
1210 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1211 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1214 __ClearPageSlab(page
);
1215 reset_page_mapcount(page
);
1216 if (current
->reclaim_state
)
1217 current
->reclaim_state
->reclaimed_slab
+= pages
;
1218 __free_pages(page
, order
);
1221 static void rcu_free_slab(struct rcu_head
*h
)
1225 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1226 __free_slab(page
->slab
, page
);
1229 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1231 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1233 * RCU free overloads the RCU head over the LRU
1235 struct rcu_head
*head
= (void *)&page
->lru
;
1237 call_rcu(head
, rcu_free_slab
);
1239 __free_slab(s
, page
);
1242 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1244 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1249 * Per slab locking using the pagelock
1251 static __always_inline
void slab_lock(struct page
*page
)
1253 bit_spin_lock(PG_locked
, &page
->flags
);
1256 static __always_inline
void slab_unlock(struct page
*page
)
1258 __bit_spin_unlock(PG_locked
, &page
->flags
);
1261 static __always_inline
int slab_trylock(struct page
*page
)
1265 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1270 * Management of partially allocated slabs
1272 static void add_partial(struct kmem_cache_node
*n
,
1273 struct page
*page
, int tail
)
1275 spin_lock(&n
->list_lock
);
1278 list_add_tail(&page
->lru
, &n
->partial
);
1280 list_add(&page
->lru
, &n
->partial
);
1281 spin_unlock(&n
->list_lock
);
1284 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1286 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1288 spin_lock(&n
->list_lock
);
1289 list_del(&page
->lru
);
1291 spin_unlock(&n
->list_lock
);
1295 * Lock slab and remove from the partial list.
1297 * Must hold list_lock.
1299 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1302 if (slab_trylock(page
)) {
1303 list_del(&page
->lru
);
1305 __SetPageSlubFrozen(page
);
1312 * Try to allocate a partial slab from a specific node.
1314 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1319 * Racy check. If we mistakenly see no partial slabs then we
1320 * just allocate an empty slab. If we mistakenly try to get a
1321 * partial slab and there is none available then get_partials()
1324 if (!n
|| !n
->nr_partial
)
1327 spin_lock(&n
->list_lock
);
1328 list_for_each_entry(page
, &n
->partial
, lru
)
1329 if (lock_and_freeze_slab(n
, page
))
1333 spin_unlock(&n
->list_lock
);
1338 * Get a page from somewhere. Search in increasing NUMA distances.
1340 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1343 struct zonelist
*zonelist
;
1346 enum zone_type high_zoneidx
= gfp_zone(flags
);
1350 * The defrag ratio allows a configuration of the tradeoffs between
1351 * inter node defragmentation and node local allocations. A lower
1352 * defrag_ratio increases the tendency to do local allocations
1353 * instead of attempting to obtain partial slabs from other nodes.
1355 * If the defrag_ratio is set to 0 then kmalloc() always
1356 * returns node local objects. If the ratio is higher then kmalloc()
1357 * may return off node objects because partial slabs are obtained
1358 * from other nodes and filled up.
1360 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1361 * defrag_ratio = 1000) then every (well almost) allocation will
1362 * first attempt to defrag slab caches on other nodes. This means
1363 * scanning over all nodes to look for partial slabs which may be
1364 * expensive if we do it every time we are trying to find a slab
1365 * with available objects.
1367 if (!s
->remote_node_defrag_ratio
||
1368 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1371 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1372 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1373 struct kmem_cache_node
*n
;
1375 n
= get_node(s
, zone_to_nid(zone
));
1377 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1378 n
->nr_partial
> s
->min_partial
) {
1379 page
= get_partial_node(n
);
1389 * Get a partial page, lock it and return it.
1391 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1394 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1396 page
= get_partial_node(get_node(s
, searchnode
));
1397 if (page
|| (flags
& __GFP_THISNODE
))
1400 return get_any_partial(s
, flags
);
1404 * Move a page back to the lists.
1406 * Must be called with the slab lock held.
1408 * On exit the slab lock will have been dropped.
1410 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1412 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1414 __ClearPageSlubFrozen(page
);
1417 if (page
->freelist
) {
1418 add_partial(n
, page
, tail
);
1419 stat(s
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1421 stat(s
, DEACTIVATE_FULL
);
1422 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1423 (s
->flags
& SLAB_STORE_USER
))
1428 stat(s
, DEACTIVATE_EMPTY
);
1429 if (n
->nr_partial
< s
->min_partial
) {
1431 * Adding an empty slab to the partial slabs in order
1432 * to avoid page allocator overhead. This slab needs
1433 * to come after the other slabs with objects in
1434 * so that the others get filled first. That way the
1435 * size of the partial list stays small.
1437 * kmem_cache_shrink can reclaim any empty slabs from
1440 add_partial(n
, page
, 1);
1445 discard_slab(s
, page
);
1451 * Remove the cpu slab
1453 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1455 struct page
*page
= c
->page
;
1459 stat(s
, DEACTIVATE_REMOTE_FREES
);
1461 * Merge cpu freelist into slab freelist. Typically we get here
1462 * because both freelists are empty. So this is unlikely
1465 while (unlikely(c
->freelist
)) {
1468 tail
= 0; /* Hot objects. Put the slab first */
1470 /* Retrieve object from cpu_freelist */
1471 object
= c
->freelist
;
1472 c
->freelist
= get_freepointer(s
, c
->freelist
);
1474 /* And put onto the regular freelist */
1475 set_freepointer(s
, object
, page
->freelist
);
1476 page
->freelist
= object
;
1480 unfreeze_slab(s
, page
, tail
);
1483 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1485 stat(s
, CPUSLAB_FLUSH
);
1487 deactivate_slab(s
, c
);
1493 * Called from IPI handler with interrupts disabled.
1495 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1497 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
1499 if (likely(c
&& c
->page
))
1503 static void flush_cpu_slab(void *d
)
1505 struct kmem_cache
*s
= d
;
1507 __flush_cpu_slab(s
, smp_processor_id());
1510 static void flush_all(struct kmem_cache
*s
)
1512 on_each_cpu(flush_cpu_slab
, s
, 1);
1516 * Check if the objects in a per cpu structure fit numa
1517 * locality expectations.
1519 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1522 if (node
!= -1 && c
->node
!= node
)
1528 static int count_free(struct page
*page
)
1530 return page
->objects
- page
->inuse
;
1533 static unsigned long count_partial(struct kmem_cache_node
*n
,
1534 int (*get_count
)(struct page
*))
1536 unsigned long flags
;
1537 unsigned long x
= 0;
1540 spin_lock_irqsave(&n
->list_lock
, flags
);
1541 list_for_each_entry(page
, &n
->partial
, lru
)
1542 x
+= get_count(page
);
1543 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1547 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
1549 #ifdef CONFIG_SLUB_DEBUG
1550 return atomic_long_read(&n
->total_objects
);
1556 static noinline
void
1557 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
1562 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1564 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
1565 "default order: %d, min order: %d\n", s
->name
, s
->objsize
,
1566 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
1568 if (oo_order(s
->min
) > get_order(s
->objsize
))
1569 printk(KERN_WARNING
" %s debugging increased min order, use "
1570 "slub_debug=O to disable.\n", s
->name
);
1572 for_each_online_node(node
) {
1573 struct kmem_cache_node
*n
= get_node(s
, node
);
1574 unsigned long nr_slabs
;
1575 unsigned long nr_objs
;
1576 unsigned long nr_free
;
1581 nr_free
= count_partial(n
, count_free
);
1582 nr_slabs
= node_nr_slabs(n
);
1583 nr_objs
= node_nr_objs(n
);
1586 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587 node
, nr_slabs
, nr_objs
, nr_free
);
1592 * Slow path. The lockless freelist is empty or we need to perform
1595 * Interrupts are disabled.
1597 * Processing is still very fast if new objects have been freed to the
1598 * regular freelist. In that case we simply take over the regular freelist
1599 * as the lockless freelist and zap the regular freelist.
1601 * If that is not working then we fall back to the partial lists. We take the
1602 * first element of the freelist as the object to allocate now and move the
1603 * rest of the freelist to the lockless freelist.
1605 * And if we were unable to get a new slab from the partial slab lists then
1606 * we need to allocate a new slab. This is the slowest path since it involves
1607 * a call to the page allocator and the setup of a new slab.
1609 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1610 unsigned long addr
, struct kmem_cache_cpu
*c
)
1615 /* We handle __GFP_ZERO in the caller */
1616 gfpflags
&= ~__GFP_ZERO
;
1622 if (unlikely(!node_match(c
, node
)))
1625 stat(s
, ALLOC_REFILL
);
1628 object
= c
->page
->freelist
;
1629 if (unlikely(!object
))
1631 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1634 c
->freelist
= get_freepointer(s
, object
);
1635 c
->page
->inuse
= c
->page
->objects
;
1636 c
->page
->freelist
= NULL
;
1637 c
->node
= page_to_nid(c
->page
);
1639 slab_unlock(c
->page
);
1640 stat(s
, ALLOC_SLOWPATH
);
1644 deactivate_slab(s
, c
);
1647 new = get_partial(s
, gfpflags
, node
);
1650 stat(s
, ALLOC_FROM_PARTIAL
);
1654 if (gfpflags
& __GFP_WAIT
)
1657 new = new_slab(s
, gfpflags
, node
);
1659 if (gfpflags
& __GFP_WAIT
)
1660 local_irq_disable();
1663 c
= __this_cpu_ptr(s
->cpu_slab
);
1664 stat(s
, ALLOC_SLAB
);
1668 __SetPageSlubFrozen(new);
1672 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
1673 slab_out_of_memory(s
, gfpflags
, node
);
1676 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1680 c
->page
->freelist
= get_freepointer(s
, object
);
1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687 * have the fastpath folded into their functions. So no function call
1688 * overhead for requests that can be satisfied on the fastpath.
1690 * The fastpath works by first checking if the lockless freelist can be used.
1691 * If not then __slab_alloc is called for slow processing.
1693 * Otherwise we can simply pick the next object from the lockless free list.
1695 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1696 gfp_t gfpflags
, int node
, unsigned long addr
)
1699 struct kmem_cache_cpu
*c
;
1700 unsigned long flags
;
1702 gfpflags
&= gfp_allowed_mask
;
1704 lockdep_trace_alloc(gfpflags
);
1705 might_sleep_if(gfpflags
& __GFP_WAIT
);
1707 if (should_failslab(s
->objsize
, gfpflags
, s
->flags
))
1710 local_irq_save(flags
);
1711 c
= __this_cpu_ptr(s
->cpu_slab
);
1712 object
= c
->freelist
;
1713 if (unlikely(!object
|| !node_match(c
, node
)))
1715 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1718 c
->freelist
= get_freepointer(s
, object
);
1719 stat(s
, ALLOC_FASTPATH
);
1721 local_irq_restore(flags
);
1723 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
1724 memset(object
, 0, s
->objsize
);
1726 kmemcheck_slab_alloc(s
, gfpflags
, object
, s
->objsize
);
1727 kmemleak_alloc_recursive(object
, s
->objsize
, 1, s
->flags
, gfpflags
);
1732 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1734 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1736 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1740 EXPORT_SYMBOL(kmem_cache_alloc
);
1742 #ifdef CONFIG_TRACING
1743 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1745 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1747 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1751 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1753 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1755 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1756 s
->objsize
, s
->size
, gfpflags
, node
);
1760 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1763 #ifdef CONFIG_TRACING
1764 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1768 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1770 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1774 * Slow patch handling. This may still be called frequently since objects
1775 * have a longer lifetime than the cpu slabs in most processing loads.
1777 * So we still attempt to reduce cache line usage. Just take the slab
1778 * lock and free the item. If there is no additional partial page
1779 * handling required then we can return immediately.
1781 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1782 void *x
, unsigned long addr
)
1785 void **object
= (void *)x
;
1787 stat(s
, FREE_SLOWPATH
);
1790 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1794 prior
= page
->freelist
;
1795 set_freepointer(s
, object
, prior
);
1796 page
->freelist
= object
;
1799 if (unlikely(PageSlubFrozen(page
))) {
1800 stat(s
, FREE_FROZEN
);
1804 if (unlikely(!page
->inuse
))
1808 * Objects left in the slab. If it was not on the partial list before
1811 if (unlikely(!prior
)) {
1812 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1813 stat(s
, FREE_ADD_PARTIAL
);
1823 * Slab still on the partial list.
1825 remove_partial(s
, page
);
1826 stat(s
, FREE_REMOVE_PARTIAL
);
1830 discard_slab(s
, page
);
1834 if (!free_debug_processing(s
, page
, x
, addr
))
1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841 * can perform fastpath freeing without additional function calls.
1843 * The fastpath is only possible if we are freeing to the current cpu slab
1844 * of this processor. This typically the case if we have just allocated
1847 * If fastpath is not possible then fall back to __slab_free where we deal
1848 * with all sorts of special processing.
1850 static __always_inline
void slab_free(struct kmem_cache
*s
,
1851 struct page
*page
, void *x
, unsigned long addr
)
1853 void **object
= (void *)x
;
1854 struct kmem_cache_cpu
*c
;
1855 unsigned long flags
;
1857 kmemleak_free_recursive(x
, s
->flags
);
1858 local_irq_save(flags
);
1859 c
= __this_cpu_ptr(s
->cpu_slab
);
1860 kmemcheck_slab_free(s
, object
, s
->objsize
);
1861 debug_check_no_locks_freed(object
, s
->objsize
);
1862 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1863 debug_check_no_obj_freed(object
, s
->objsize
);
1864 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1865 set_freepointer(s
, object
, c
->freelist
);
1866 c
->freelist
= object
;
1867 stat(s
, FREE_FASTPATH
);
1869 __slab_free(s
, page
, x
, addr
);
1871 local_irq_restore(flags
);
1874 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1878 page
= virt_to_head_page(x
);
1880 slab_free(s
, page
, x
, _RET_IP_
);
1882 trace_kmem_cache_free(_RET_IP_
, x
);
1884 EXPORT_SYMBOL(kmem_cache_free
);
1886 /* Figure out on which slab page the object resides */
1887 static struct page
*get_object_page(const void *x
)
1889 struct page
*page
= virt_to_head_page(x
);
1891 if (!PageSlab(page
))
1898 * Object placement in a slab is made very easy because we always start at
1899 * offset 0. If we tune the size of the object to the alignment then we can
1900 * get the required alignment by putting one properly sized object after
1903 * Notice that the allocation order determines the sizes of the per cpu
1904 * caches. Each processor has always one slab available for allocations.
1905 * Increasing the allocation order reduces the number of times that slabs
1906 * must be moved on and off the partial lists and is therefore a factor in
1911 * Mininum / Maximum order of slab pages. This influences locking overhead
1912 * and slab fragmentation. A higher order reduces the number of partial slabs
1913 * and increases the number of allocations possible without having to
1914 * take the list_lock.
1916 static int slub_min_order
;
1917 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1918 static int slub_min_objects
;
1921 * Merge control. If this is set then no merging of slab caches will occur.
1922 * (Could be removed. This was introduced to pacify the merge skeptics.)
1924 static int slub_nomerge
;
1927 * Calculate the order of allocation given an slab object size.
1929 * The order of allocation has significant impact on performance and other
1930 * system components. Generally order 0 allocations should be preferred since
1931 * order 0 does not cause fragmentation in the page allocator. Larger objects
1932 * be problematic to put into order 0 slabs because there may be too much
1933 * unused space left. We go to a higher order if more than 1/16th of the slab
1936 * In order to reach satisfactory performance we must ensure that a minimum
1937 * number of objects is in one slab. Otherwise we may generate too much
1938 * activity on the partial lists which requires taking the list_lock. This is
1939 * less a concern for large slabs though which are rarely used.
1941 * slub_max_order specifies the order where we begin to stop considering the
1942 * number of objects in a slab as critical. If we reach slub_max_order then
1943 * we try to keep the page order as low as possible. So we accept more waste
1944 * of space in favor of a small page order.
1946 * Higher order allocations also allow the placement of more objects in a
1947 * slab and thereby reduce object handling overhead. If the user has
1948 * requested a higher mininum order then we start with that one instead of
1949 * the smallest order which will fit the object.
1951 static inline int slab_order(int size
, int min_objects
,
1952 int max_order
, int fract_leftover
)
1956 int min_order
= slub_min_order
;
1958 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1959 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1961 for (order
= max(min_order
,
1962 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1963 order
<= max_order
; order
++) {
1965 unsigned long slab_size
= PAGE_SIZE
<< order
;
1967 if (slab_size
< min_objects
* size
)
1970 rem
= slab_size
% size
;
1972 if (rem
<= slab_size
/ fract_leftover
)
1980 static inline int calculate_order(int size
)
1988 * Attempt to find best configuration for a slab. This
1989 * works by first attempting to generate a layout with
1990 * the best configuration and backing off gradually.
1992 * First we reduce the acceptable waste in a slab. Then
1993 * we reduce the minimum objects required in a slab.
1995 min_objects
= slub_min_objects
;
1997 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1998 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
1999 min_objects
= min(min_objects
, max_objects
);
2001 while (min_objects
> 1) {
2003 while (fraction
>= 4) {
2004 order
= slab_order(size
, min_objects
,
2005 slub_max_order
, fraction
);
2006 if (order
<= slub_max_order
)
2014 * We were unable to place multiple objects in a slab. Now
2015 * lets see if we can place a single object there.
2017 order
= slab_order(size
, 1, slub_max_order
, 1);
2018 if (order
<= slub_max_order
)
2022 * Doh this slab cannot be placed using slub_max_order.
2024 order
= slab_order(size
, 1, MAX_ORDER
, 1);
2025 if (order
< MAX_ORDER
)
2031 * Figure out what the alignment of the objects will be.
2033 static unsigned long calculate_alignment(unsigned long flags
,
2034 unsigned long align
, unsigned long size
)
2037 * If the user wants hardware cache aligned objects then follow that
2038 * suggestion if the object is sufficiently large.
2040 * The hardware cache alignment cannot override the specified
2041 * alignment though. If that is greater then use it.
2043 if (flags
& SLAB_HWCACHE_ALIGN
) {
2044 unsigned long ralign
= cache_line_size();
2045 while (size
<= ralign
/ 2)
2047 align
= max(align
, ralign
);
2050 if (align
< ARCH_SLAB_MINALIGN
)
2051 align
= ARCH_SLAB_MINALIGN
;
2053 return ALIGN(align
, sizeof(void *));
2057 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
2060 spin_lock_init(&n
->list_lock
);
2061 INIT_LIST_HEAD(&n
->partial
);
2062 #ifdef CONFIG_SLUB_DEBUG
2063 atomic_long_set(&n
->nr_slabs
, 0);
2064 atomic_long_set(&n
->total_objects
, 0);
2065 INIT_LIST_HEAD(&n
->full
);
2069 static DEFINE_PER_CPU(struct kmem_cache_cpu
, kmalloc_percpu
[KMALLOC_CACHES
]);
2071 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2073 if (s
< kmalloc_caches
+ KMALLOC_CACHES
&& s
>= kmalloc_caches
)
2075 * Boot time creation of the kmalloc array. Use static per cpu data
2076 * since the per cpu allocator is not available yet.
2078 s
->cpu_slab
= kmalloc_percpu
+ (s
- kmalloc_caches
);
2080 s
->cpu_slab
= alloc_percpu(struct kmem_cache_cpu
);
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2094 * Note that this function only works on the kmalloc_node_cache
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
2098 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2101 struct kmem_cache_node
*n
;
2102 unsigned long flags
;
2104 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2106 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2109 if (page_to_nid(page
) != node
) {
2110 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2112 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2113 "in order to be able to continue\n");
2118 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2120 kmalloc_caches
->node
[node
] = n
;
2121 #ifdef CONFIG_SLUB_DEBUG
2122 init_object(kmalloc_caches
, n
, 1);
2123 init_tracking(kmalloc_caches
, n
);
2125 init_kmem_cache_node(n
, kmalloc_caches
);
2126 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2129 * lockdep requires consistent irq usage for each lock
2130 * so even though there cannot be a race this early in
2131 * the boot sequence, we still disable irqs.
2133 local_irq_save(flags
);
2134 add_partial(n
, page
, 0);
2135 local_irq_restore(flags
);
2138 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2142 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2143 struct kmem_cache_node
*n
= s
->node
[node
];
2145 kmem_cache_free(kmalloc_caches
, n
);
2146 s
->node
[node
] = NULL
;
2150 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2154 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2155 struct kmem_cache_node
*n
;
2157 if (slab_state
== DOWN
) {
2158 early_kmem_cache_node_alloc(gfpflags
, node
);
2161 n
= kmem_cache_alloc_node(kmalloc_caches
,
2165 free_kmem_cache_nodes(s
);
2170 init_kmem_cache_node(n
, s
);
2175 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2179 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2181 init_kmem_cache_node(&s
->local_node
, s
);
2186 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2188 if (min
< MIN_PARTIAL
)
2190 else if (min
> MAX_PARTIAL
)
2192 s
->min_partial
= min
;
2196 * calculate_sizes() determines the order and the distribution of data within
2199 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2201 unsigned long flags
= s
->flags
;
2202 unsigned long size
= s
->objsize
;
2203 unsigned long align
= s
->align
;
2207 * Round up object size to the next word boundary. We can only
2208 * place the free pointer at word boundaries and this determines
2209 * the possible location of the free pointer.
2211 size
= ALIGN(size
, sizeof(void *));
2213 #ifdef CONFIG_SLUB_DEBUG
2215 * Determine if we can poison the object itself. If the user of
2216 * the slab may touch the object after free or before allocation
2217 * then we should never poison the object itself.
2219 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2221 s
->flags
|= __OBJECT_POISON
;
2223 s
->flags
&= ~__OBJECT_POISON
;
2227 * If we are Redzoning then check if there is some space between the
2228 * end of the object and the free pointer. If not then add an
2229 * additional word to have some bytes to store Redzone information.
2231 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2232 size
+= sizeof(void *);
2236 * With that we have determined the number of bytes in actual use
2237 * by the object. This is the potential offset to the free pointer.
2241 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2244 * Relocate free pointer after the object if it is not
2245 * permitted to overwrite the first word of the object on
2248 * This is the case if we do RCU, have a constructor or
2249 * destructor or are poisoning the objects.
2252 size
+= sizeof(void *);
2255 #ifdef CONFIG_SLUB_DEBUG
2256 if (flags
& SLAB_STORE_USER
)
2258 * Need to store information about allocs and frees after
2261 size
+= 2 * sizeof(struct track
);
2263 if (flags
& SLAB_RED_ZONE
)
2265 * Add some empty padding so that we can catch
2266 * overwrites from earlier objects rather than let
2267 * tracking information or the free pointer be
2268 * corrupted if a user writes before the start
2271 size
+= sizeof(void *);
2275 * Determine the alignment based on various parameters that the
2276 * user specified and the dynamic determination of cache line size
2279 align
= calculate_alignment(flags
, align
, s
->objsize
);
2283 * SLUB stores one object immediately after another beginning from
2284 * offset 0. In order to align the objects we have to simply size
2285 * each object to conform to the alignment.
2287 size
= ALIGN(size
, align
);
2289 if (forced_order
>= 0)
2290 order
= forced_order
;
2292 order
= calculate_order(size
);
2299 s
->allocflags
|= __GFP_COMP
;
2301 if (s
->flags
& SLAB_CACHE_DMA
)
2302 s
->allocflags
|= SLUB_DMA
;
2304 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2305 s
->allocflags
|= __GFP_RECLAIMABLE
;
2308 * Determine the number of objects per slab
2310 s
->oo
= oo_make(order
, size
);
2311 s
->min
= oo_make(get_order(size
), size
);
2312 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2315 return !!oo_objects(s
->oo
);
2319 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2320 const char *name
, size_t size
,
2321 size_t align
, unsigned long flags
,
2322 void (*ctor
)(void *))
2324 memset(s
, 0, kmem_size
);
2329 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2331 if (!calculate_sizes(s
, -1))
2333 if (disable_higher_order_debug
) {
2335 * Disable debugging flags that store metadata if the min slab
2338 if (get_order(s
->size
) > get_order(s
->objsize
)) {
2339 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
2341 if (!calculate_sizes(s
, -1))
2347 * The larger the object size is, the more pages we want on the partial
2348 * list to avoid pounding the page allocator excessively.
2350 set_min_partial(s
, ilog2(s
->size
));
2353 s
->remote_node_defrag_ratio
= 1000;
2355 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2358 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2361 free_kmem_cache_nodes(s
);
2363 if (flags
& SLAB_PANIC
)
2364 panic("Cannot create slab %s size=%lu realsize=%u "
2365 "order=%u offset=%u flags=%lx\n",
2366 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2372 * Check if a given pointer is valid
2374 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2378 if (!kern_ptr_validate(object
, s
->size
))
2381 page
= get_object_page(object
);
2383 if (!page
|| s
!= page
->slab
)
2384 /* No slab or wrong slab */
2387 if (!check_valid_pointer(s
, page
, object
))
2391 * We could also check if the object is on the slabs freelist.
2392 * But this would be too expensive and it seems that the main
2393 * purpose of kmem_ptr_valid() is to check if the object belongs
2394 * to a certain slab.
2398 EXPORT_SYMBOL(kmem_ptr_validate
);
2401 * Determine the size of a slab object
2403 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2407 EXPORT_SYMBOL(kmem_cache_size
);
2409 const char *kmem_cache_name(struct kmem_cache
*s
)
2413 EXPORT_SYMBOL(kmem_cache_name
);
2415 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2418 #ifdef CONFIG_SLUB_DEBUG
2419 void *addr
= page_address(page
);
2421 DECLARE_BITMAP(map
, page
->objects
);
2423 bitmap_zero(map
, page
->objects
);
2424 slab_err(s
, page
, "%s", text
);
2426 for_each_free_object(p
, s
, page
->freelist
)
2427 set_bit(slab_index(p
, s
, addr
), map
);
2429 for_each_object(p
, s
, addr
, page
->objects
) {
2431 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2432 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2434 print_tracking(s
, p
);
2442 * Attempt to free all partial slabs on a node.
2444 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2446 unsigned long flags
;
2447 struct page
*page
, *h
;
2449 spin_lock_irqsave(&n
->list_lock
, flags
);
2450 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2452 list_del(&page
->lru
);
2453 discard_slab(s
, page
);
2456 list_slab_objects(s
, page
,
2457 "Objects remaining on kmem_cache_close()");
2460 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2464 * Release all resources used by a slab cache.
2466 static inline int kmem_cache_close(struct kmem_cache
*s
)
2471 free_percpu(s
->cpu_slab
);
2472 /* Attempt to free all objects */
2473 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2474 struct kmem_cache_node
*n
= get_node(s
, node
);
2477 if (n
->nr_partial
|| slabs_node(s
, node
))
2480 free_kmem_cache_nodes(s
);
2485 * Close a cache and release the kmem_cache structure
2486 * (must be used for caches created using kmem_cache_create)
2488 void kmem_cache_destroy(struct kmem_cache
*s
)
2490 down_write(&slub_lock
);
2494 up_write(&slub_lock
);
2495 if (kmem_cache_close(s
)) {
2496 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2497 "still has objects.\n", s
->name
, __func__
);
2500 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
2502 sysfs_slab_remove(s
);
2504 up_write(&slub_lock
);
2506 EXPORT_SYMBOL(kmem_cache_destroy
);
2508 /********************************************************************
2510 *******************************************************************/
2512 struct kmem_cache kmalloc_caches
[KMALLOC_CACHES
] __cacheline_aligned
;
2513 EXPORT_SYMBOL(kmalloc_caches
);
2515 static int __init
setup_slub_min_order(char *str
)
2517 get_option(&str
, &slub_min_order
);
2522 __setup("slub_min_order=", setup_slub_min_order
);
2524 static int __init
setup_slub_max_order(char *str
)
2526 get_option(&str
, &slub_max_order
);
2527 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2532 __setup("slub_max_order=", setup_slub_max_order
);
2534 static int __init
setup_slub_min_objects(char *str
)
2536 get_option(&str
, &slub_min_objects
);
2541 __setup("slub_min_objects=", setup_slub_min_objects
);
2543 static int __init
setup_slub_nomerge(char *str
)
2549 __setup("slub_nomerge", setup_slub_nomerge
);
2551 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2552 const char *name
, int size
, gfp_t gfp_flags
)
2554 unsigned int flags
= 0;
2556 if (gfp_flags
& SLUB_DMA
)
2557 flags
= SLAB_CACHE_DMA
;
2560 * This function is called with IRQs disabled during early-boot on
2561 * single CPU so there's no need to take slub_lock here.
2563 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2567 list_add(&s
->list
, &slab_caches
);
2569 if (sysfs_slab_add(s
))
2574 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2577 #ifdef CONFIG_ZONE_DMA
2578 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2580 static void sysfs_add_func(struct work_struct
*w
)
2582 struct kmem_cache
*s
;
2584 down_write(&slub_lock
);
2585 list_for_each_entry(s
, &slab_caches
, list
) {
2586 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2587 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2591 up_write(&slub_lock
);
2594 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2596 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2598 struct kmem_cache
*s
;
2601 unsigned long slabflags
;
2604 s
= kmalloc_caches_dma
[index
];
2608 /* Dynamically create dma cache */
2609 if (flags
& __GFP_WAIT
)
2610 down_write(&slub_lock
);
2612 if (!down_write_trylock(&slub_lock
))
2616 if (kmalloc_caches_dma
[index
])
2619 realsize
= kmalloc_caches
[index
].objsize
;
2620 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2621 (unsigned int)realsize
);
2624 for (i
= 0; i
< KMALLOC_CACHES
; i
++)
2625 if (!kmalloc_caches
[i
].size
)
2628 BUG_ON(i
>= KMALLOC_CACHES
);
2629 s
= kmalloc_caches
+ i
;
2632 * Must defer sysfs creation to a workqueue because we don't know
2633 * what context we are called from. Before sysfs comes up, we don't
2634 * need to do anything because our sysfs initcall will start by
2635 * adding all existing slabs to sysfs.
2637 slabflags
= SLAB_CACHE_DMA
|SLAB_NOTRACK
;
2638 if (slab_state
>= SYSFS
)
2639 slabflags
|= __SYSFS_ADD_DEFERRED
;
2641 if (!text
|| !kmem_cache_open(s
, flags
, text
,
2642 realsize
, ARCH_KMALLOC_MINALIGN
, slabflags
, NULL
)) {
2648 list_add(&s
->list
, &slab_caches
);
2649 kmalloc_caches_dma
[index
] = s
;
2651 if (slab_state
>= SYSFS
)
2652 schedule_work(&sysfs_add_work
);
2655 up_write(&slub_lock
);
2657 return kmalloc_caches_dma
[index
];
2662 * Conversion table for small slabs sizes / 8 to the index in the
2663 * kmalloc array. This is necessary for slabs < 192 since we have non power
2664 * of two cache sizes there. The size of larger slabs can be determined using
2667 static s8 size_index
[24] = {
2694 static inline int size_index_elem(size_t bytes
)
2696 return (bytes
- 1) / 8;
2699 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2705 return ZERO_SIZE_PTR
;
2707 index
= size_index
[size_index_elem(size
)];
2709 index
= fls(size
- 1);
2711 #ifdef CONFIG_ZONE_DMA
2712 if (unlikely((flags
& SLUB_DMA
)))
2713 return dma_kmalloc_cache(index
, flags
);
2716 return &kmalloc_caches
[index
];
2719 void *__kmalloc(size_t size
, gfp_t flags
)
2721 struct kmem_cache
*s
;
2724 if (unlikely(size
> SLUB_MAX_SIZE
))
2725 return kmalloc_large(size
, flags
);
2727 s
= get_slab(size
, flags
);
2729 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2732 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2734 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2738 EXPORT_SYMBOL(__kmalloc
);
2740 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2745 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
2746 page
= alloc_pages_node(node
, flags
, get_order(size
));
2748 ptr
= page_address(page
);
2750 kmemleak_alloc(ptr
, size
, 1, flags
);
2755 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2757 struct kmem_cache
*s
;
2760 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2761 ret
= kmalloc_large_node(size
, flags
, node
);
2763 trace_kmalloc_node(_RET_IP_
, ret
,
2764 size
, PAGE_SIZE
<< get_order(size
),
2770 s
= get_slab(size
, flags
);
2772 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2775 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2777 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2781 EXPORT_SYMBOL(__kmalloc_node
);
2784 size_t ksize(const void *object
)
2787 struct kmem_cache
*s
;
2789 if (unlikely(object
== ZERO_SIZE_PTR
))
2792 page
= virt_to_head_page(object
);
2794 if (unlikely(!PageSlab(page
))) {
2795 WARN_ON(!PageCompound(page
));
2796 return PAGE_SIZE
<< compound_order(page
);
2800 #ifdef CONFIG_SLUB_DEBUG
2802 * Debugging requires use of the padding between object
2803 * and whatever may come after it.
2805 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2810 * If we have the need to store the freelist pointer
2811 * back there or track user information then we can
2812 * only use the space before that information.
2814 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2817 * Else we can use all the padding etc for the allocation
2821 EXPORT_SYMBOL(ksize
);
2823 void kfree(const void *x
)
2826 void *object
= (void *)x
;
2828 trace_kfree(_RET_IP_
, x
);
2830 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2833 page
= virt_to_head_page(x
);
2834 if (unlikely(!PageSlab(page
))) {
2835 BUG_ON(!PageCompound(page
));
2840 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2842 EXPORT_SYMBOL(kfree
);
2845 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2846 * the remaining slabs by the number of items in use. The slabs with the
2847 * most items in use come first. New allocations will then fill those up
2848 * and thus they can be removed from the partial lists.
2850 * The slabs with the least items are placed last. This results in them
2851 * being allocated from last increasing the chance that the last objects
2852 * are freed in them.
2854 int kmem_cache_shrink(struct kmem_cache
*s
)
2858 struct kmem_cache_node
*n
;
2861 int objects
= oo_objects(s
->max
);
2862 struct list_head
*slabs_by_inuse
=
2863 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2864 unsigned long flags
;
2866 if (!slabs_by_inuse
)
2870 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2871 n
= get_node(s
, node
);
2876 for (i
= 0; i
< objects
; i
++)
2877 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2879 spin_lock_irqsave(&n
->list_lock
, flags
);
2882 * Build lists indexed by the items in use in each slab.
2884 * Note that concurrent frees may occur while we hold the
2885 * list_lock. page->inuse here is the upper limit.
2887 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2888 if (!page
->inuse
&& slab_trylock(page
)) {
2890 * Must hold slab lock here because slab_free
2891 * may have freed the last object and be
2892 * waiting to release the slab.
2894 list_del(&page
->lru
);
2897 discard_slab(s
, page
);
2899 list_move(&page
->lru
,
2900 slabs_by_inuse
+ page
->inuse
);
2905 * Rebuild the partial list with the slabs filled up most
2906 * first and the least used slabs at the end.
2908 for (i
= objects
- 1; i
>= 0; i
--)
2909 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2911 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2914 kfree(slabs_by_inuse
);
2917 EXPORT_SYMBOL(kmem_cache_shrink
);
2919 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2920 static int slab_mem_going_offline_callback(void *arg
)
2922 struct kmem_cache
*s
;
2924 down_read(&slub_lock
);
2925 list_for_each_entry(s
, &slab_caches
, list
)
2926 kmem_cache_shrink(s
);
2927 up_read(&slub_lock
);
2932 static void slab_mem_offline_callback(void *arg
)
2934 struct kmem_cache_node
*n
;
2935 struct kmem_cache
*s
;
2936 struct memory_notify
*marg
= arg
;
2939 offline_node
= marg
->status_change_nid
;
2942 * If the node still has available memory. we need kmem_cache_node
2945 if (offline_node
< 0)
2948 down_read(&slub_lock
);
2949 list_for_each_entry(s
, &slab_caches
, list
) {
2950 n
= get_node(s
, offline_node
);
2953 * if n->nr_slabs > 0, slabs still exist on the node
2954 * that is going down. We were unable to free them,
2955 * and offline_pages() function shouldn't call this
2956 * callback. So, we must fail.
2958 BUG_ON(slabs_node(s
, offline_node
));
2960 s
->node
[offline_node
] = NULL
;
2961 kmem_cache_free(kmalloc_caches
, n
);
2964 up_read(&slub_lock
);
2967 static int slab_mem_going_online_callback(void *arg
)
2969 struct kmem_cache_node
*n
;
2970 struct kmem_cache
*s
;
2971 struct memory_notify
*marg
= arg
;
2972 int nid
= marg
->status_change_nid
;
2976 * If the node's memory is already available, then kmem_cache_node is
2977 * already created. Nothing to do.
2983 * We are bringing a node online. No memory is available yet. We must
2984 * allocate a kmem_cache_node structure in order to bring the node
2987 down_read(&slub_lock
);
2988 list_for_each_entry(s
, &slab_caches
, list
) {
2990 * XXX: kmem_cache_alloc_node will fallback to other nodes
2991 * since memory is not yet available from the node that
2994 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2999 init_kmem_cache_node(n
, s
);
3003 up_read(&slub_lock
);
3007 static int slab_memory_callback(struct notifier_block
*self
,
3008 unsigned long action
, void *arg
)
3013 case MEM_GOING_ONLINE
:
3014 ret
= slab_mem_going_online_callback(arg
);
3016 case MEM_GOING_OFFLINE
:
3017 ret
= slab_mem_going_offline_callback(arg
);
3020 case MEM_CANCEL_ONLINE
:
3021 slab_mem_offline_callback(arg
);
3024 case MEM_CANCEL_OFFLINE
:
3028 ret
= notifier_from_errno(ret
);
3034 #endif /* CONFIG_MEMORY_HOTPLUG */
3036 /********************************************************************
3037 * Basic setup of slabs
3038 *******************************************************************/
3040 void __init
kmem_cache_init(void)
3047 * Must first have the slab cache available for the allocations of the
3048 * struct kmem_cache_node's. There is special bootstrap code in
3049 * kmem_cache_open for slab_state == DOWN.
3051 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3052 sizeof(struct kmem_cache_node
), GFP_NOWAIT
);
3053 kmalloc_caches
[0].refcount
= -1;
3056 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3059 /* Able to allocate the per node structures */
3060 slab_state
= PARTIAL
;
3062 /* Caches that are not of the two-to-the-power-of size */
3063 if (KMALLOC_MIN_SIZE
<= 32) {
3064 create_kmalloc_cache(&kmalloc_caches
[1],
3065 "kmalloc-96", 96, GFP_NOWAIT
);
3068 if (KMALLOC_MIN_SIZE
<= 64) {
3069 create_kmalloc_cache(&kmalloc_caches
[2],
3070 "kmalloc-192", 192, GFP_NOWAIT
);
3074 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3075 create_kmalloc_cache(&kmalloc_caches
[i
],
3076 "kmalloc", 1 << i
, GFP_NOWAIT
);
3082 * Patch up the size_index table if we have strange large alignment
3083 * requirements for the kmalloc array. This is only the case for
3084 * MIPS it seems. The standard arches will not generate any code here.
3086 * Largest permitted alignment is 256 bytes due to the way we
3087 * handle the index determination for the smaller caches.
3089 * Make sure that nothing crazy happens if someone starts tinkering
3090 * around with ARCH_KMALLOC_MINALIGN
3092 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3093 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3095 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3096 int elem
= size_index_elem(i
);
3097 if (elem
>= ARRAY_SIZE(size_index
))
3099 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3102 if (KMALLOC_MIN_SIZE
== 64) {
3104 * The 96 byte size cache is not used if the alignment
3107 for (i
= 64 + 8; i
<= 96; i
+= 8)
3108 size_index
[size_index_elem(i
)] = 7;
3109 } else if (KMALLOC_MIN_SIZE
== 128) {
3111 * The 192 byte sized cache is not used if the alignment
3112 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3115 for (i
= 128 + 8; i
<= 192; i
+= 8)
3116 size_index
[size_index_elem(i
)] = 8;
3121 /* Provide the correct kmalloc names now that the caches are up */
3122 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3123 kmalloc_caches
[i
]. name
=
3124 kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3127 register_cpu_notifier(&slab_notifier
);
3130 kmem_size
= offsetof(struct kmem_cache
, node
) +
3131 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3133 kmem_size
= sizeof(struct kmem_cache
);
3137 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3138 " CPUs=%d, Nodes=%d\n",
3139 caches
, cache_line_size(),
3140 slub_min_order
, slub_max_order
, slub_min_objects
,
3141 nr_cpu_ids
, nr_node_ids
);
3144 void __init
kmem_cache_init_late(void)
3149 * Find a mergeable slab cache
3151 static int slab_unmergeable(struct kmem_cache
*s
)
3153 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3160 * We may have set a slab to be unmergeable during bootstrap.
3162 if (s
->refcount
< 0)
3168 static struct kmem_cache
*find_mergeable(size_t size
,
3169 size_t align
, unsigned long flags
, const char *name
,
3170 void (*ctor
)(void *))
3172 struct kmem_cache
*s
;
3174 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3180 size
= ALIGN(size
, sizeof(void *));
3181 align
= calculate_alignment(flags
, align
, size
);
3182 size
= ALIGN(size
, align
);
3183 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3185 list_for_each_entry(s
, &slab_caches
, list
) {
3186 if (slab_unmergeable(s
))
3192 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3195 * Check if alignment is compatible.
3196 * Courtesy of Adrian Drzewiecki
3198 if ((s
->size
& ~(align
- 1)) != s
->size
)
3201 if (s
->size
- size
>= sizeof(void *))
3209 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3210 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3212 struct kmem_cache
*s
;
3217 down_write(&slub_lock
);
3218 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3222 * Adjust the object sizes so that we clear
3223 * the complete object on kzalloc.
3225 s
->objsize
= max(s
->objsize
, (int)size
);
3226 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3227 up_write(&slub_lock
);
3229 if (sysfs_slab_alias(s
, name
)) {
3230 down_write(&slub_lock
);
3232 up_write(&slub_lock
);
3238 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3240 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3241 size
, align
, flags
, ctor
)) {
3242 list_add(&s
->list
, &slab_caches
);
3243 up_write(&slub_lock
);
3244 if (sysfs_slab_add(s
)) {
3245 down_write(&slub_lock
);
3247 up_write(&slub_lock
);
3255 up_write(&slub_lock
);
3258 if (flags
& SLAB_PANIC
)
3259 panic("Cannot create slabcache %s\n", name
);
3264 EXPORT_SYMBOL(kmem_cache_create
);
3268 * Use the cpu notifier to insure that the cpu slabs are flushed when
3271 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3272 unsigned long action
, void *hcpu
)
3274 long cpu
= (long)hcpu
;
3275 struct kmem_cache
*s
;
3276 unsigned long flags
;
3279 case CPU_UP_CANCELED
:
3280 case CPU_UP_CANCELED_FROZEN
:
3282 case CPU_DEAD_FROZEN
:
3283 down_read(&slub_lock
);
3284 list_for_each_entry(s
, &slab_caches
, list
) {
3285 local_irq_save(flags
);
3286 __flush_cpu_slab(s
, cpu
);
3287 local_irq_restore(flags
);
3289 up_read(&slub_lock
);
3297 static struct notifier_block __cpuinitdata slab_notifier
= {
3298 .notifier_call
= slab_cpuup_callback
3303 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3305 struct kmem_cache
*s
;
3308 if (unlikely(size
> SLUB_MAX_SIZE
))
3309 return kmalloc_large(size
, gfpflags
);
3311 s
= get_slab(size
, gfpflags
);
3313 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3316 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3318 /* Honor the call site pointer we recieved. */
3319 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3324 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3325 int node
, unsigned long caller
)
3327 struct kmem_cache
*s
;
3330 if (unlikely(size
> SLUB_MAX_SIZE
))
3331 return kmalloc_large_node(size
, gfpflags
, node
);
3333 s
= get_slab(size
, gfpflags
);
3335 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3338 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3340 /* Honor the call site pointer we recieved. */
3341 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3346 #ifdef CONFIG_SLUB_DEBUG
3347 static int count_inuse(struct page
*page
)
3352 static int count_total(struct page
*page
)
3354 return page
->objects
;
3357 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3361 void *addr
= page_address(page
);
3363 if (!check_slab(s
, page
) ||
3364 !on_freelist(s
, page
, NULL
))
3367 /* Now we know that a valid freelist exists */
3368 bitmap_zero(map
, page
->objects
);
3370 for_each_free_object(p
, s
, page
->freelist
) {
3371 set_bit(slab_index(p
, s
, addr
), map
);
3372 if (!check_object(s
, page
, p
, 0))
3376 for_each_object(p
, s
, addr
, page
->objects
)
3377 if (!test_bit(slab_index(p
, s
, addr
), map
))
3378 if (!check_object(s
, page
, p
, 1))
3383 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3386 if (slab_trylock(page
)) {
3387 validate_slab(s
, page
, map
);
3390 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3393 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3394 if (!PageSlubDebug(page
))
3395 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3396 "on slab 0x%p\n", s
->name
, page
);
3398 if (PageSlubDebug(page
))
3399 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3400 "slab 0x%p\n", s
->name
, page
);
3404 static int validate_slab_node(struct kmem_cache
*s
,
3405 struct kmem_cache_node
*n
, unsigned long *map
)
3407 unsigned long count
= 0;
3409 unsigned long flags
;
3411 spin_lock_irqsave(&n
->list_lock
, flags
);
3413 list_for_each_entry(page
, &n
->partial
, lru
) {
3414 validate_slab_slab(s
, page
, map
);
3417 if (count
!= n
->nr_partial
)
3418 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3419 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3421 if (!(s
->flags
& SLAB_STORE_USER
))
3424 list_for_each_entry(page
, &n
->full
, lru
) {
3425 validate_slab_slab(s
, page
, map
);
3428 if (count
!= atomic_long_read(&n
->nr_slabs
))
3429 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3430 "counter=%ld\n", s
->name
, count
,
3431 atomic_long_read(&n
->nr_slabs
));
3434 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3438 static long validate_slab_cache(struct kmem_cache
*s
)
3441 unsigned long count
= 0;
3442 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3443 sizeof(unsigned long), GFP_KERNEL
);
3449 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3450 struct kmem_cache_node
*n
= get_node(s
, node
);
3452 count
+= validate_slab_node(s
, n
, map
);
3458 #ifdef SLUB_RESILIENCY_TEST
3459 static void resiliency_test(void)
3463 printk(KERN_ERR
"SLUB resiliency testing\n");
3464 printk(KERN_ERR
"-----------------------\n");
3465 printk(KERN_ERR
"A. Corruption after allocation\n");
3467 p
= kzalloc(16, GFP_KERNEL
);
3469 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3470 " 0x12->0x%p\n\n", p
+ 16);
3472 validate_slab_cache(kmalloc_caches
+ 4);
3474 /* Hmmm... The next two are dangerous */
3475 p
= kzalloc(32, GFP_KERNEL
);
3476 p
[32 + sizeof(void *)] = 0x34;
3477 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3478 " 0x34 -> -0x%p\n", p
);
3480 "If allocated object is overwritten then not detectable\n\n");
3482 validate_slab_cache(kmalloc_caches
+ 5);
3483 p
= kzalloc(64, GFP_KERNEL
);
3484 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3486 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3489 "If allocated object is overwritten then not detectable\n\n");
3490 validate_slab_cache(kmalloc_caches
+ 6);
3492 printk(KERN_ERR
"\nB. Corruption after free\n");
3493 p
= kzalloc(128, GFP_KERNEL
);
3496 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3497 validate_slab_cache(kmalloc_caches
+ 7);
3499 p
= kzalloc(256, GFP_KERNEL
);
3502 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3504 validate_slab_cache(kmalloc_caches
+ 8);
3506 p
= kzalloc(512, GFP_KERNEL
);
3509 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3510 validate_slab_cache(kmalloc_caches
+ 9);
3513 static void resiliency_test(void) {};
3517 * Generate lists of code addresses where slabcache objects are allocated
3522 unsigned long count
;
3529 DECLARE_BITMAP(cpus
, NR_CPUS
);
3535 unsigned long count
;
3536 struct location
*loc
;
3539 static void free_loc_track(struct loc_track
*t
)
3542 free_pages((unsigned long)t
->loc
,
3543 get_order(sizeof(struct location
) * t
->max
));
3546 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3551 order
= get_order(sizeof(struct location
) * max
);
3553 l
= (void *)__get_free_pages(flags
, order
);
3558 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3566 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3567 const struct track
*track
)
3569 long start
, end
, pos
;
3571 unsigned long caddr
;
3572 unsigned long age
= jiffies
- track
->when
;
3578 pos
= start
+ (end
- start
+ 1) / 2;
3581 * There is nothing at "end". If we end up there
3582 * we need to add something to before end.
3587 caddr
= t
->loc
[pos
].addr
;
3588 if (track
->addr
== caddr
) {
3594 if (age
< l
->min_time
)
3596 if (age
> l
->max_time
)
3599 if (track
->pid
< l
->min_pid
)
3600 l
->min_pid
= track
->pid
;
3601 if (track
->pid
> l
->max_pid
)
3602 l
->max_pid
= track
->pid
;
3604 cpumask_set_cpu(track
->cpu
,
3605 to_cpumask(l
->cpus
));
3607 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3611 if (track
->addr
< caddr
)
3618 * Not found. Insert new tracking element.
3620 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3626 (t
->count
- pos
) * sizeof(struct location
));
3629 l
->addr
= track
->addr
;
3633 l
->min_pid
= track
->pid
;
3634 l
->max_pid
= track
->pid
;
3635 cpumask_clear(to_cpumask(l
->cpus
));
3636 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3637 nodes_clear(l
->nodes
);
3638 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3642 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3643 struct page
*page
, enum track_item alloc
)
3645 void *addr
= page_address(page
);
3646 DECLARE_BITMAP(map
, page
->objects
);
3649 bitmap_zero(map
, page
->objects
);
3650 for_each_free_object(p
, s
, page
->freelist
)
3651 set_bit(slab_index(p
, s
, addr
), map
);
3653 for_each_object(p
, s
, addr
, page
->objects
)
3654 if (!test_bit(slab_index(p
, s
, addr
), map
))
3655 add_location(t
, s
, get_track(s
, p
, alloc
));
3658 static int list_locations(struct kmem_cache
*s
, char *buf
,
3659 enum track_item alloc
)
3663 struct loc_track t
= { 0, 0, NULL
};
3666 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3668 return sprintf(buf
, "Out of memory\n");
3670 /* Push back cpu slabs */
3673 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3674 struct kmem_cache_node
*n
= get_node(s
, node
);
3675 unsigned long flags
;
3678 if (!atomic_long_read(&n
->nr_slabs
))
3681 spin_lock_irqsave(&n
->list_lock
, flags
);
3682 list_for_each_entry(page
, &n
->partial
, lru
)
3683 process_slab(&t
, s
, page
, alloc
);
3684 list_for_each_entry(page
, &n
->full
, lru
)
3685 process_slab(&t
, s
, page
, alloc
);
3686 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3689 for (i
= 0; i
< t
.count
; i
++) {
3690 struct location
*l
= &t
.loc
[i
];
3692 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3694 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3697 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3699 len
+= sprintf(buf
+ len
, "<not-available>");
3701 if (l
->sum_time
!= l
->min_time
) {
3702 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3704 (long)div_u64(l
->sum_time
, l
->count
),
3707 len
+= sprintf(buf
+ len
, " age=%ld",
3710 if (l
->min_pid
!= l
->max_pid
)
3711 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3712 l
->min_pid
, l
->max_pid
);
3714 len
+= sprintf(buf
+ len
, " pid=%ld",
3717 if (num_online_cpus() > 1 &&
3718 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3719 len
< PAGE_SIZE
- 60) {
3720 len
+= sprintf(buf
+ len
, " cpus=");
3721 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3722 to_cpumask(l
->cpus
));
3725 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
3726 len
< PAGE_SIZE
- 60) {
3727 len
+= sprintf(buf
+ len
, " nodes=");
3728 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3732 len
+= sprintf(buf
+ len
, "\n");
3737 len
+= sprintf(buf
, "No data\n");
3741 enum slab_stat_type
{
3742 SL_ALL
, /* All slabs */
3743 SL_PARTIAL
, /* Only partially allocated slabs */
3744 SL_CPU
, /* Only slabs used for cpu caches */
3745 SL_OBJECTS
, /* Determine allocated objects not slabs */
3746 SL_TOTAL
/* Determine object capacity not slabs */
3749 #define SO_ALL (1 << SL_ALL)
3750 #define SO_PARTIAL (1 << SL_PARTIAL)
3751 #define SO_CPU (1 << SL_CPU)
3752 #define SO_OBJECTS (1 << SL_OBJECTS)
3753 #define SO_TOTAL (1 << SL_TOTAL)
3755 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3756 char *buf
, unsigned long flags
)
3758 unsigned long total
= 0;
3761 unsigned long *nodes
;
3762 unsigned long *per_cpu
;
3764 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3767 per_cpu
= nodes
+ nr_node_ids
;
3769 if (flags
& SO_CPU
) {
3772 for_each_possible_cpu(cpu
) {
3773 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
3775 if (!c
|| c
->node
< 0)
3779 if (flags
& SO_TOTAL
)
3780 x
= c
->page
->objects
;
3781 else if (flags
& SO_OBJECTS
)
3787 nodes
[c
->node
] += x
;
3793 if (flags
& SO_ALL
) {
3794 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3795 struct kmem_cache_node
*n
= get_node(s
, node
);
3797 if (flags
& SO_TOTAL
)
3798 x
= atomic_long_read(&n
->total_objects
);
3799 else if (flags
& SO_OBJECTS
)
3800 x
= atomic_long_read(&n
->total_objects
) -
3801 count_partial(n
, count_free
);
3804 x
= atomic_long_read(&n
->nr_slabs
);
3809 } else if (flags
& SO_PARTIAL
) {
3810 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3811 struct kmem_cache_node
*n
= get_node(s
, node
);
3813 if (flags
& SO_TOTAL
)
3814 x
= count_partial(n
, count_total
);
3815 else if (flags
& SO_OBJECTS
)
3816 x
= count_partial(n
, count_inuse
);
3823 x
= sprintf(buf
, "%lu", total
);
3825 for_each_node_state(node
, N_NORMAL_MEMORY
)
3827 x
+= sprintf(buf
+ x
, " N%d=%lu",
3831 return x
+ sprintf(buf
+ x
, "\n");
3834 static int any_slab_objects(struct kmem_cache
*s
)
3838 for_each_online_node(node
) {
3839 struct kmem_cache_node
*n
= get_node(s
, node
);
3844 if (atomic_long_read(&n
->total_objects
))
3850 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3851 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3853 struct slab_attribute
{
3854 struct attribute attr
;
3855 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3856 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3859 #define SLAB_ATTR_RO(_name) \
3860 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3862 #define SLAB_ATTR(_name) \
3863 static struct slab_attribute _name##_attr = \
3864 __ATTR(_name, 0644, _name##_show, _name##_store)
3866 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3868 return sprintf(buf
, "%d\n", s
->size
);
3870 SLAB_ATTR_RO(slab_size
);
3872 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3874 return sprintf(buf
, "%d\n", s
->align
);
3876 SLAB_ATTR_RO(align
);
3878 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3880 return sprintf(buf
, "%d\n", s
->objsize
);
3882 SLAB_ATTR_RO(object_size
);
3884 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3886 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3888 SLAB_ATTR_RO(objs_per_slab
);
3890 static ssize_t
order_store(struct kmem_cache
*s
,
3891 const char *buf
, size_t length
)
3893 unsigned long order
;
3896 err
= strict_strtoul(buf
, 10, &order
);
3900 if (order
> slub_max_order
|| order
< slub_min_order
)
3903 calculate_sizes(s
, order
);
3907 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3909 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3913 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
3915 return sprintf(buf
, "%lu\n", s
->min_partial
);
3918 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
3924 err
= strict_strtoul(buf
, 10, &min
);
3928 set_min_partial(s
, min
);
3931 SLAB_ATTR(min_partial
);
3933 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3936 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3938 return n
+ sprintf(buf
+ n
, "\n");
3944 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3946 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3948 SLAB_ATTR_RO(aliases
);
3950 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3952 return show_slab_objects(s
, buf
, SO_ALL
);
3954 SLAB_ATTR_RO(slabs
);
3956 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3958 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3960 SLAB_ATTR_RO(partial
);
3962 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3964 return show_slab_objects(s
, buf
, SO_CPU
);
3966 SLAB_ATTR_RO(cpu_slabs
);
3968 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3970 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3972 SLAB_ATTR_RO(objects
);
3974 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3976 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3978 SLAB_ATTR_RO(objects_partial
);
3980 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3982 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3984 SLAB_ATTR_RO(total_objects
);
3986 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3988 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3991 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3992 const char *buf
, size_t length
)
3994 s
->flags
&= ~SLAB_DEBUG_FREE
;
3996 s
->flags
|= SLAB_DEBUG_FREE
;
3999 SLAB_ATTR(sanity_checks
);
4001 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4003 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4006 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4009 s
->flags
&= ~SLAB_TRACE
;
4011 s
->flags
|= SLAB_TRACE
;
4016 #ifdef CONFIG_FAILSLAB
4017 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4019 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4022 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4025 s
->flags
&= ~SLAB_FAILSLAB
;
4027 s
->flags
|= SLAB_FAILSLAB
;
4030 SLAB_ATTR(failslab
);
4033 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4035 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4038 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4039 const char *buf
, size_t length
)
4041 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4043 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4046 SLAB_ATTR(reclaim_account
);
4048 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4050 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4052 SLAB_ATTR_RO(hwcache_align
);
4054 #ifdef CONFIG_ZONE_DMA
4055 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4057 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4059 SLAB_ATTR_RO(cache_dma
);
4062 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4064 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4066 SLAB_ATTR_RO(destroy_by_rcu
);
4068 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4070 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4073 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4074 const char *buf
, size_t length
)
4076 if (any_slab_objects(s
))
4079 s
->flags
&= ~SLAB_RED_ZONE
;
4081 s
->flags
|= SLAB_RED_ZONE
;
4082 calculate_sizes(s
, -1);
4085 SLAB_ATTR(red_zone
);
4087 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4089 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4092 static ssize_t
poison_store(struct kmem_cache
*s
,
4093 const char *buf
, size_t length
)
4095 if (any_slab_objects(s
))
4098 s
->flags
&= ~SLAB_POISON
;
4100 s
->flags
|= SLAB_POISON
;
4101 calculate_sizes(s
, -1);
4106 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4108 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4111 static ssize_t
store_user_store(struct kmem_cache
*s
,
4112 const char *buf
, size_t length
)
4114 if (any_slab_objects(s
))
4117 s
->flags
&= ~SLAB_STORE_USER
;
4119 s
->flags
|= SLAB_STORE_USER
;
4120 calculate_sizes(s
, -1);
4123 SLAB_ATTR(store_user
);
4125 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4130 static ssize_t
validate_store(struct kmem_cache
*s
,
4131 const char *buf
, size_t length
)
4135 if (buf
[0] == '1') {
4136 ret
= validate_slab_cache(s
);
4142 SLAB_ATTR(validate
);
4144 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4149 static ssize_t
shrink_store(struct kmem_cache
*s
,
4150 const char *buf
, size_t length
)
4152 if (buf
[0] == '1') {
4153 int rc
= kmem_cache_shrink(s
);
4163 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4165 if (!(s
->flags
& SLAB_STORE_USER
))
4167 return list_locations(s
, buf
, TRACK_ALLOC
);
4169 SLAB_ATTR_RO(alloc_calls
);
4171 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4173 if (!(s
->flags
& SLAB_STORE_USER
))
4175 return list_locations(s
, buf
, TRACK_FREE
);
4177 SLAB_ATTR_RO(free_calls
);
4180 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4182 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4185 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4186 const char *buf
, size_t length
)
4188 unsigned long ratio
;
4191 err
= strict_strtoul(buf
, 10, &ratio
);
4196 s
->remote_node_defrag_ratio
= ratio
* 10;
4200 SLAB_ATTR(remote_node_defrag_ratio
);
4203 #ifdef CONFIG_SLUB_STATS
4204 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4206 unsigned long sum
= 0;
4209 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4214 for_each_online_cpu(cpu
) {
4215 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4221 len
= sprintf(buf
, "%lu", sum
);
4224 for_each_online_cpu(cpu
) {
4225 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4226 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4230 return len
+ sprintf(buf
+ len
, "\n");
4233 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4237 for_each_online_cpu(cpu
)
4238 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4241 #define STAT_ATTR(si, text) \
4242 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4244 return show_stat(s, buf, si); \
4246 static ssize_t text##_store(struct kmem_cache *s, \
4247 const char *buf, size_t length) \
4249 if (buf[0] != '0') \
4251 clear_stat(s, si); \
4256 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4257 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4258 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4259 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4260 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4261 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4262 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4263 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4264 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4265 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4266 STAT_ATTR(FREE_SLAB
, free_slab
);
4267 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4268 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4269 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4270 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4271 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4272 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4273 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4276 static struct attribute
*slab_attrs
[] = {
4277 &slab_size_attr
.attr
,
4278 &object_size_attr
.attr
,
4279 &objs_per_slab_attr
.attr
,
4281 &min_partial_attr
.attr
,
4283 &objects_partial_attr
.attr
,
4284 &total_objects_attr
.attr
,
4287 &cpu_slabs_attr
.attr
,
4291 &sanity_checks_attr
.attr
,
4293 &hwcache_align_attr
.attr
,
4294 &reclaim_account_attr
.attr
,
4295 &destroy_by_rcu_attr
.attr
,
4296 &red_zone_attr
.attr
,
4298 &store_user_attr
.attr
,
4299 &validate_attr
.attr
,
4301 &alloc_calls_attr
.attr
,
4302 &free_calls_attr
.attr
,
4303 #ifdef CONFIG_ZONE_DMA
4304 &cache_dma_attr
.attr
,
4307 &remote_node_defrag_ratio_attr
.attr
,
4309 #ifdef CONFIG_SLUB_STATS
4310 &alloc_fastpath_attr
.attr
,
4311 &alloc_slowpath_attr
.attr
,
4312 &free_fastpath_attr
.attr
,
4313 &free_slowpath_attr
.attr
,
4314 &free_frozen_attr
.attr
,
4315 &free_add_partial_attr
.attr
,
4316 &free_remove_partial_attr
.attr
,
4317 &alloc_from_partial_attr
.attr
,
4318 &alloc_slab_attr
.attr
,
4319 &alloc_refill_attr
.attr
,
4320 &free_slab_attr
.attr
,
4321 &cpuslab_flush_attr
.attr
,
4322 &deactivate_full_attr
.attr
,
4323 &deactivate_empty_attr
.attr
,
4324 &deactivate_to_head_attr
.attr
,
4325 &deactivate_to_tail_attr
.attr
,
4326 &deactivate_remote_frees_attr
.attr
,
4327 &order_fallback_attr
.attr
,
4329 #ifdef CONFIG_FAILSLAB
4330 &failslab_attr
.attr
,
4336 static struct attribute_group slab_attr_group
= {
4337 .attrs
= slab_attrs
,
4340 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4341 struct attribute
*attr
,
4344 struct slab_attribute
*attribute
;
4345 struct kmem_cache
*s
;
4348 attribute
= to_slab_attr(attr
);
4351 if (!attribute
->show
)
4354 err
= attribute
->show(s
, buf
);
4359 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4360 struct attribute
*attr
,
4361 const char *buf
, size_t len
)
4363 struct slab_attribute
*attribute
;
4364 struct kmem_cache
*s
;
4367 attribute
= to_slab_attr(attr
);
4370 if (!attribute
->store
)
4373 err
= attribute
->store(s
, buf
, len
);
4378 static void kmem_cache_release(struct kobject
*kobj
)
4380 struct kmem_cache
*s
= to_slab(kobj
);
4385 static const struct sysfs_ops slab_sysfs_ops
= {
4386 .show
= slab_attr_show
,
4387 .store
= slab_attr_store
,
4390 static struct kobj_type slab_ktype
= {
4391 .sysfs_ops
= &slab_sysfs_ops
,
4392 .release
= kmem_cache_release
4395 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4397 struct kobj_type
*ktype
= get_ktype(kobj
);
4399 if (ktype
== &slab_ktype
)
4404 static const struct kset_uevent_ops slab_uevent_ops
= {
4405 .filter
= uevent_filter
,
4408 static struct kset
*slab_kset
;
4410 #define ID_STR_LENGTH 64
4412 /* Create a unique string id for a slab cache:
4414 * Format :[flags-]size
4416 static char *create_unique_id(struct kmem_cache
*s
)
4418 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4425 * First flags affecting slabcache operations. We will only
4426 * get here for aliasable slabs so we do not need to support
4427 * too many flags. The flags here must cover all flags that
4428 * are matched during merging to guarantee that the id is
4431 if (s
->flags
& SLAB_CACHE_DMA
)
4433 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4435 if (s
->flags
& SLAB_DEBUG_FREE
)
4437 if (!(s
->flags
& SLAB_NOTRACK
))
4441 p
+= sprintf(p
, "%07d", s
->size
);
4442 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4446 static int sysfs_slab_add(struct kmem_cache
*s
)
4452 if (slab_state
< SYSFS
)
4453 /* Defer until later */
4456 unmergeable
= slab_unmergeable(s
);
4459 * Slabcache can never be merged so we can use the name proper.
4460 * This is typically the case for debug situations. In that
4461 * case we can catch duplicate names easily.
4463 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4467 * Create a unique name for the slab as a target
4470 name
= create_unique_id(s
);
4473 s
->kobj
.kset
= slab_kset
;
4474 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4476 kobject_put(&s
->kobj
);
4480 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4482 kobject_del(&s
->kobj
);
4483 kobject_put(&s
->kobj
);
4486 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4488 /* Setup first alias */
4489 sysfs_slab_alias(s
, s
->name
);
4495 static void sysfs_slab_remove(struct kmem_cache
*s
)
4497 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4498 kobject_del(&s
->kobj
);
4499 kobject_put(&s
->kobj
);
4503 * Need to buffer aliases during bootup until sysfs becomes
4504 * available lest we lose that information.
4506 struct saved_alias
{
4507 struct kmem_cache
*s
;
4509 struct saved_alias
*next
;
4512 static struct saved_alias
*alias_list
;
4514 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4516 struct saved_alias
*al
;
4518 if (slab_state
== SYSFS
) {
4520 * If we have a leftover link then remove it.
4522 sysfs_remove_link(&slab_kset
->kobj
, name
);
4523 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4526 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4532 al
->next
= alias_list
;
4537 static int __init
slab_sysfs_init(void)
4539 struct kmem_cache
*s
;
4542 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4544 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4550 list_for_each_entry(s
, &slab_caches
, list
) {
4551 err
= sysfs_slab_add(s
);
4553 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4554 " to sysfs\n", s
->name
);
4557 while (alias_list
) {
4558 struct saved_alias
*al
= alias_list
;
4560 alias_list
= alias_list
->next
;
4561 err
= sysfs_slab_alias(al
->s
, al
->name
);
4563 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4564 " %s to sysfs\n", s
->name
);
4572 __initcall(slab_sysfs_init
);
4576 * The /proc/slabinfo ABI
4578 #ifdef CONFIG_SLABINFO
4579 static void print_slabinfo_header(struct seq_file
*m
)
4581 seq_puts(m
, "slabinfo - version: 2.1\n");
4582 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4583 "<objperslab> <pagesperslab>");
4584 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4585 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4589 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4593 down_read(&slub_lock
);
4595 print_slabinfo_header(m
);
4597 return seq_list_start(&slab_caches
, *pos
);
4600 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4602 return seq_list_next(p
, &slab_caches
, pos
);
4605 static void s_stop(struct seq_file
*m
, void *p
)
4607 up_read(&slub_lock
);
4610 static int s_show(struct seq_file
*m
, void *p
)
4612 unsigned long nr_partials
= 0;
4613 unsigned long nr_slabs
= 0;
4614 unsigned long nr_inuse
= 0;
4615 unsigned long nr_objs
= 0;
4616 unsigned long nr_free
= 0;
4617 struct kmem_cache
*s
;
4620 s
= list_entry(p
, struct kmem_cache
, list
);
4622 for_each_online_node(node
) {
4623 struct kmem_cache_node
*n
= get_node(s
, node
);
4628 nr_partials
+= n
->nr_partial
;
4629 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4630 nr_objs
+= atomic_long_read(&n
->total_objects
);
4631 nr_free
+= count_partial(n
, count_free
);
4634 nr_inuse
= nr_objs
- nr_free
;
4636 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4637 nr_objs
, s
->size
, oo_objects(s
->oo
),
4638 (1 << oo_order(s
->oo
)));
4639 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4640 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4646 static const struct seq_operations slabinfo_op
= {
4653 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4655 return seq_open(file
, &slabinfo_op
);
4658 static const struct file_operations proc_slabinfo_operations
= {
4659 .open
= slabinfo_open
,
4661 .llseek
= seq_lseek
,
4662 .release
= seq_release
,
4665 static int __init
slab_proc_init(void)
4667 proc_create("slabinfo", S_IRUGO
, NULL
, &proc_slabinfo_operations
);
4670 module_init(slab_proc_init
);
4671 #endif /* CONFIG_SLABINFO */