xfs: prevent swapext from operating on write-only files
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob4c9e6bbf3772c771775057404a1e0f314b90045c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
26 #include <linux/hugetlb.h>
27 #include <linux/node.h>
28 #include "internal.h"
30 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32 unsigned long hugepages_treat_as_movable;
34 static int max_hstate;
35 unsigned int default_hstate_idx;
36 struct hstate hstates[HUGE_MAX_HSTATE];
38 __initdata LIST_HEAD(huge_boot_pages);
40 /* for command line parsing */
41 static struct hstate * __initdata parsed_hstate;
42 static unsigned long __initdata default_hstate_max_huge_pages;
43 static unsigned long __initdata default_hstate_size;
45 #define for_each_hstate(h) \
46 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
51 static DEFINE_SPINLOCK(hugetlb_lock);
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 * across the pages in a mapping.
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex. To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
62 * down_write(&mm->mmap_sem);
63 * or
64 * down_read(&mm->mmap_sem);
65 * mutex_lock(&hugetlb_instantiation_mutex);
67 struct file_region {
68 struct list_head link;
69 long from;
70 long to;
73 static long region_add(struct list_head *head, long f, long t)
75 struct file_region *rg, *nrg, *trg;
77 /* Locate the region we are either in or before. */
78 list_for_each_entry(rg, head, link)
79 if (f <= rg->to)
80 break;
82 /* Round our left edge to the current segment if it encloses us. */
83 if (f > rg->from)
84 f = rg->from;
86 /* Check for and consume any regions we now overlap with. */
87 nrg = rg;
88 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89 if (&rg->link == head)
90 break;
91 if (rg->from > t)
92 break;
94 /* If this area reaches higher then extend our area to
95 * include it completely. If this is not the first area
96 * which we intend to reuse, free it. */
97 if (rg->to > t)
98 t = rg->to;
99 if (rg != nrg) {
100 list_del(&rg->link);
101 kfree(rg);
104 nrg->from = f;
105 nrg->to = t;
106 return 0;
109 static long region_chg(struct list_head *head, long f, long t)
111 struct file_region *rg, *nrg;
112 long chg = 0;
114 /* Locate the region we are before or in. */
115 list_for_each_entry(rg, head, link)
116 if (f <= rg->to)
117 break;
119 /* If we are below the current region then a new region is required.
120 * Subtle, allocate a new region at the position but make it zero
121 * size such that we can guarantee to record the reservation. */
122 if (&rg->link == head || t < rg->from) {
123 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124 if (!nrg)
125 return -ENOMEM;
126 nrg->from = f;
127 nrg->to = f;
128 INIT_LIST_HEAD(&nrg->link);
129 list_add(&nrg->link, rg->link.prev);
131 return t - f;
134 /* Round our left edge to the current segment if it encloses us. */
135 if (f > rg->from)
136 f = rg->from;
137 chg = t - f;
139 /* Check for and consume any regions we now overlap with. */
140 list_for_each_entry(rg, rg->link.prev, link) {
141 if (&rg->link == head)
142 break;
143 if (rg->from > t)
144 return chg;
146 /* We overlap with this area, if it extends futher than
147 * us then we must extend ourselves. Account for its
148 * existing reservation. */
149 if (rg->to > t) {
150 chg += rg->to - t;
151 t = rg->to;
153 chg -= rg->to - rg->from;
155 return chg;
158 static long region_truncate(struct list_head *head, long end)
160 struct file_region *rg, *trg;
161 long chg = 0;
163 /* Locate the region we are either in or before. */
164 list_for_each_entry(rg, head, link)
165 if (end <= rg->to)
166 break;
167 if (&rg->link == head)
168 return 0;
170 /* If we are in the middle of a region then adjust it. */
171 if (end > rg->from) {
172 chg = rg->to - end;
173 rg->to = end;
174 rg = list_entry(rg->link.next, typeof(*rg), link);
177 /* Drop any remaining regions. */
178 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179 if (&rg->link == head)
180 break;
181 chg += rg->to - rg->from;
182 list_del(&rg->link);
183 kfree(rg);
185 return chg;
188 static long region_count(struct list_head *head, long f, long t)
190 struct file_region *rg;
191 long chg = 0;
193 /* Locate each segment we overlap with, and count that overlap. */
194 list_for_each_entry(rg, head, link) {
195 int seg_from;
196 int seg_to;
198 if (rg->to <= f)
199 continue;
200 if (rg->from >= t)
201 break;
203 seg_from = max(rg->from, f);
204 seg_to = min(rg->to, t);
206 chg += seg_to - seg_from;
209 return chg;
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
216 static pgoff_t vma_hugecache_offset(struct hstate *h,
217 struct vm_area_struct *vma, unsigned long address)
219 return ((address - vma->vm_start) >> huge_page_shift(h)) +
220 (vma->vm_pgoff >> huge_page_order(h));
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
227 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
229 struct hstate *hstate;
231 if (!is_vm_hugetlb_page(vma))
232 return PAGE_SIZE;
234 hstate = hstate_vma(vma);
236 return 1UL << (hstate->order + PAGE_SHIFT);
238 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
246 #ifndef vma_mmu_pagesize
247 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
249 return vma_kernel_pagesize(vma);
251 #endif
254 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
258 #define HPAGE_RESV_OWNER (1UL << 0)
259 #define HPAGE_RESV_UNMAPPED (1UL << 1)
260 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping. A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated. A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
281 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
283 return (unsigned long)vma->vm_private_data;
286 static void set_vma_private_data(struct vm_area_struct *vma,
287 unsigned long value)
289 vma->vm_private_data = (void *)value;
292 struct resv_map {
293 struct kref refs;
294 struct list_head regions;
297 static struct resv_map *resv_map_alloc(void)
299 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300 if (!resv_map)
301 return NULL;
303 kref_init(&resv_map->refs);
304 INIT_LIST_HEAD(&resv_map->regions);
306 return resv_map;
309 static void resv_map_release(struct kref *ref)
311 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
313 /* Clear out any active regions before we release the map. */
314 region_truncate(&resv_map->regions, 0);
315 kfree(resv_map);
318 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
320 VM_BUG_ON(!is_vm_hugetlb_page(vma));
321 if (!(vma->vm_flags & VM_MAYSHARE))
322 return (struct resv_map *)(get_vma_private_data(vma) &
323 ~HPAGE_RESV_MASK);
324 return NULL;
327 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
332 set_vma_private_data(vma, (get_vma_private_data(vma) &
333 HPAGE_RESV_MASK) | (unsigned long)map);
336 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
341 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
344 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
346 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 return (get_vma_private_data(vma) & flag) != 0;
351 /* Decrement the reserved pages in the hugepage pool by one */
352 static void decrement_hugepage_resv_vma(struct hstate *h,
353 struct vm_area_struct *vma)
355 if (vma->vm_flags & VM_NORESERVE)
356 return;
358 if (vma->vm_flags & VM_MAYSHARE) {
359 /* Shared mappings always use reserves */
360 h->resv_huge_pages--;
361 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
363 * Only the process that called mmap() has reserves for
364 * private mappings.
366 h->resv_huge_pages--;
370 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
373 VM_BUG_ON(!is_vm_hugetlb_page(vma));
374 if (!(vma->vm_flags & VM_MAYSHARE))
375 vma->vm_private_data = (void *)0;
378 /* Returns true if the VMA has associated reserve pages */
379 static int vma_has_reserves(struct vm_area_struct *vma)
381 if (vma->vm_flags & VM_MAYSHARE)
382 return 1;
383 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384 return 1;
385 return 0;
388 static void clear_gigantic_page(struct page *page,
389 unsigned long addr, unsigned long sz)
391 int i;
392 struct page *p = page;
394 might_sleep();
395 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396 cond_resched();
397 clear_user_highpage(p, addr + i * PAGE_SIZE);
400 static void clear_huge_page(struct page *page,
401 unsigned long addr, unsigned long sz)
403 int i;
405 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
406 clear_gigantic_page(page, addr, sz);
407 return;
410 might_sleep();
411 for (i = 0; i < sz/PAGE_SIZE; i++) {
412 cond_resched();
413 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
417 static void copy_gigantic_page(struct page *dst, struct page *src,
418 unsigned long addr, struct vm_area_struct *vma)
420 int i;
421 struct hstate *h = hstate_vma(vma);
422 struct page *dst_base = dst;
423 struct page *src_base = src;
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); ) {
426 cond_resched();
427 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
429 i++;
430 dst = mem_map_next(dst, dst_base, i);
431 src = mem_map_next(src, src_base, i);
434 static void copy_huge_page(struct page *dst, struct page *src,
435 unsigned long addr, struct vm_area_struct *vma)
437 int i;
438 struct hstate *h = hstate_vma(vma);
440 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441 copy_gigantic_page(dst, src, addr, vma);
442 return;
445 might_sleep();
446 for (i = 0; i < pages_per_huge_page(h); i++) {
447 cond_resched();
448 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
452 static void enqueue_huge_page(struct hstate *h, struct page *page)
454 int nid = page_to_nid(page);
455 list_add(&page->lru, &h->hugepage_freelists[nid]);
456 h->free_huge_pages++;
457 h->free_huge_pages_node[nid]++;
460 static struct page *dequeue_huge_page_vma(struct hstate *h,
461 struct vm_area_struct *vma,
462 unsigned long address, int avoid_reserve)
464 int nid;
465 struct page *page = NULL;
466 struct mempolicy *mpol;
467 nodemask_t *nodemask;
468 struct zonelist *zonelist = huge_zonelist(vma, address,
469 htlb_alloc_mask, &mpol, &nodemask);
470 struct zone *zone;
471 struct zoneref *z;
474 * A child process with MAP_PRIVATE mappings created by their parent
475 * have no page reserves. This check ensures that reservations are
476 * not "stolen". The child may still get SIGKILLed
478 if (!vma_has_reserves(vma) &&
479 h->free_huge_pages - h->resv_huge_pages == 0)
480 return NULL;
482 /* If reserves cannot be used, ensure enough pages are in the pool */
483 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
484 return NULL;
486 for_each_zone_zonelist_nodemask(zone, z, zonelist,
487 MAX_NR_ZONES - 1, nodemask) {
488 nid = zone_to_nid(zone);
489 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
490 !list_empty(&h->hugepage_freelists[nid])) {
491 page = list_entry(h->hugepage_freelists[nid].next,
492 struct page, lru);
493 list_del(&page->lru);
494 h->free_huge_pages--;
495 h->free_huge_pages_node[nid]--;
497 if (!avoid_reserve)
498 decrement_hugepage_resv_vma(h, vma);
500 break;
503 mpol_cond_put(mpol);
504 return page;
507 static void update_and_free_page(struct hstate *h, struct page *page)
509 int i;
511 VM_BUG_ON(h->order >= MAX_ORDER);
513 h->nr_huge_pages--;
514 h->nr_huge_pages_node[page_to_nid(page)]--;
515 for (i = 0; i < pages_per_huge_page(h); i++) {
516 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
517 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
518 1 << PG_private | 1<< PG_writeback);
520 set_compound_page_dtor(page, NULL);
521 set_page_refcounted(page);
522 arch_release_hugepage(page);
523 __free_pages(page, huge_page_order(h));
526 struct hstate *size_to_hstate(unsigned long size)
528 struct hstate *h;
530 for_each_hstate(h) {
531 if (huge_page_size(h) == size)
532 return h;
534 return NULL;
537 static void free_huge_page(struct page *page)
540 * Can't pass hstate in here because it is called from the
541 * compound page destructor.
543 struct hstate *h = page_hstate(page);
544 int nid = page_to_nid(page);
545 struct address_space *mapping;
547 mapping = (struct address_space *) page_private(page);
548 set_page_private(page, 0);
549 page->mapping = NULL;
550 BUG_ON(page_count(page));
551 INIT_LIST_HEAD(&page->lru);
553 spin_lock(&hugetlb_lock);
554 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
555 update_and_free_page(h, page);
556 h->surplus_huge_pages--;
557 h->surplus_huge_pages_node[nid]--;
558 } else {
559 enqueue_huge_page(h, page);
561 spin_unlock(&hugetlb_lock);
562 if (mapping)
563 hugetlb_put_quota(mapping, 1);
566 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
568 set_compound_page_dtor(page, free_huge_page);
569 spin_lock(&hugetlb_lock);
570 h->nr_huge_pages++;
571 h->nr_huge_pages_node[nid]++;
572 spin_unlock(&hugetlb_lock);
573 put_page(page); /* free it into the hugepage allocator */
576 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
578 int i;
579 int nr_pages = 1 << order;
580 struct page *p = page + 1;
582 /* we rely on prep_new_huge_page to set the destructor */
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
586 __SetPageTail(p);
587 p->first_page = page;
591 int PageHuge(struct page *page)
593 compound_page_dtor *dtor;
595 if (!PageCompound(page))
596 return 0;
598 page = compound_head(page);
599 dtor = get_compound_page_dtor(page);
601 return dtor == free_huge_page;
604 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
606 struct page *page;
608 if (h->order >= MAX_ORDER)
609 return NULL;
611 page = alloc_pages_exact_node(nid,
612 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
613 __GFP_REPEAT|__GFP_NOWARN,
614 huge_page_order(h));
615 if (page) {
616 if (arch_prepare_hugepage(page)) {
617 __free_pages(page, huge_page_order(h));
618 return NULL;
620 prep_new_huge_page(h, page, nid);
623 return page;
627 * common helper functions for hstate_next_node_to_{alloc|free}.
628 * We may have allocated or freed a huge page based on a different
629 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
630 * be outside of *nodes_allowed. Ensure that we use an allowed
631 * node for alloc or free.
633 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
635 nid = next_node(nid, *nodes_allowed);
636 if (nid == MAX_NUMNODES)
637 nid = first_node(*nodes_allowed);
638 VM_BUG_ON(nid >= MAX_NUMNODES);
640 return nid;
643 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
645 if (!node_isset(nid, *nodes_allowed))
646 nid = next_node_allowed(nid, nodes_allowed);
647 return nid;
651 * returns the previously saved node ["this node"] from which to
652 * allocate a persistent huge page for the pool and advance the
653 * next node from which to allocate, handling wrap at end of node
654 * mask.
656 static int hstate_next_node_to_alloc(struct hstate *h,
657 nodemask_t *nodes_allowed)
659 int nid;
661 VM_BUG_ON(!nodes_allowed);
663 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
664 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
666 return nid;
669 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
671 struct page *page;
672 int start_nid;
673 int next_nid;
674 int ret = 0;
676 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
677 next_nid = start_nid;
679 do {
680 page = alloc_fresh_huge_page_node(h, next_nid);
681 if (page) {
682 ret = 1;
683 break;
685 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
686 } while (next_nid != start_nid);
688 if (ret)
689 count_vm_event(HTLB_BUDDY_PGALLOC);
690 else
691 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
693 return ret;
697 * helper for free_pool_huge_page() - return the previously saved
698 * node ["this node"] from which to free a huge page. Advance the
699 * next node id whether or not we find a free huge page to free so
700 * that the next attempt to free addresses the next node.
702 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
704 int nid;
706 VM_BUG_ON(!nodes_allowed);
708 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
709 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
711 return nid;
715 * Free huge page from pool from next node to free.
716 * Attempt to keep persistent huge pages more or less
717 * balanced over allowed nodes.
718 * Called with hugetlb_lock locked.
720 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
721 bool acct_surplus)
723 int start_nid;
724 int next_nid;
725 int ret = 0;
727 start_nid = hstate_next_node_to_free(h, nodes_allowed);
728 next_nid = start_nid;
730 do {
732 * If we're returning unused surplus pages, only examine
733 * nodes with surplus pages.
735 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
736 !list_empty(&h->hugepage_freelists[next_nid])) {
737 struct page *page =
738 list_entry(h->hugepage_freelists[next_nid].next,
739 struct page, lru);
740 list_del(&page->lru);
741 h->free_huge_pages--;
742 h->free_huge_pages_node[next_nid]--;
743 if (acct_surplus) {
744 h->surplus_huge_pages--;
745 h->surplus_huge_pages_node[next_nid]--;
747 update_and_free_page(h, page);
748 ret = 1;
749 break;
751 next_nid = hstate_next_node_to_free(h, nodes_allowed);
752 } while (next_nid != start_nid);
754 return ret;
757 static struct page *alloc_buddy_huge_page(struct hstate *h,
758 struct vm_area_struct *vma, unsigned long address)
760 struct page *page;
761 unsigned int nid;
763 if (h->order >= MAX_ORDER)
764 return NULL;
767 * Assume we will successfully allocate the surplus page to
768 * prevent racing processes from causing the surplus to exceed
769 * overcommit
771 * This however introduces a different race, where a process B
772 * tries to grow the static hugepage pool while alloc_pages() is
773 * called by process A. B will only examine the per-node
774 * counters in determining if surplus huge pages can be
775 * converted to normal huge pages in adjust_pool_surplus(). A
776 * won't be able to increment the per-node counter, until the
777 * lock is dropped by B, but B doesn't drop hugetlb_lock until
778 * no more huge pages can be converted from surplus to normal
779 * state (and doesn't try to convert again). Thus, we have a
780 * case where a surplus huge page exists, the pool is grown, and
781 * the surplus huge page still exists after, even though it
782 * should just have been converted to a normal huge page. This
783 * does not leak memory, though, as the hugepage will be freed
784 * once it is out of use. It also does not allow the counters to
785 * go out of whack in adjust_pool_surplus() as we don't modify
786 * the node values until we've gotten the hugepage and only the
787 * per-node value is checked there.
789 spin_lock(&hugetlb_lock);
790 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
791 spin_unlock(&hugetlb_lock);
792 return NULL;
793 } else {
794 h->nr_huge_pages++;
795 h->surplus_huge_pages++;
797 spin_unlock(&hugetlb_lock);
799 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
800 __GFP_REPEAT|__GFP_NOWARN,
801 huge_page_order(h));
803 if (page && arch_prepare_hugepage(page)) {
804 __free_pages(page, huge_page_order(h));
805 return NULL;
808 spin_lock(&hugetlb_lock);
809 if (page) {
811 * This page is now managed by the hugetlb allocator and has
812 * no users -- drop the buddy allocator's reference.
814 put_page_testzero(page);
815 VM_BUG_ON(page_count(page));
816 nid = page_to_nid(page);
817 set_compound_page_dtor(page, free_huge_page);
819 * We incremented the global counters already
821 h->nr_huge_pages_node[nid]++;
822 h->surplus_huge_pages_node[nid]++;
823 __count_vm_event(HTLB_BUDDY_PGALLOC);
824 } else {
825 h->nr_huge_pages--;
826 h->surplus_huge_pages--;
827 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
829 spin_unlock(&hugetlb_lock);
831 return page;
835 * Increase the hugetlb pool such that it can accomodate a reservation
836 * of size 'delta'.
838 static int gather_surplus_pages(struct hstate *h, int delta)
840 struct list_head surplus_list;
841 struct page *page, *tmp;
842 int ret, i;
843 int needed, allocated;
845 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
846 if (needed <= 0) {
847 h->resv_huge_pages += delta;
848 return 0;
851 allocated = 0;
852 INIT_LIST_HEAD(&surplus_list);
854 ret = -ENOMEM;
855 retry:
856 spin_unlock(&hugetlb_lock);
857 for (i = 0; i < needed; i++) {
858 page = alloc_buddy_huge_page(h, NULL, 0);
859 if (!page) {
861 * We were not able to allocate enough pages to
862 * satisfy the entire reservation so we free what
863 * we've allocated so far.
865 spin_lock(&hugetlb_lock);
866 needed = 0;
867 goto free;
870 list_add(&page->lru, &surplus_list);
872 allocated += needed;
875 * After retaking hugetlb_lock, we need to recalculate 'needed'
876 * because either resv_huge_pages or free_huge_pages may have changed.
878 spin_lock(&hugetlb_lock);
879 needed = (h->resv_huge_pages + delta) -
880 (h->free_huge_pages + allocated);
881 if (needed > 0)
882 goto retry;
885 * The surplus_list now contains _at_least_ the number of extra pages
886 * needed to accomodate the reservation. Add the appropriate number
887 * of pages to the hugetlb pool and free the extras back to the buddy
888 * allocator. Commit the entire reservation here to prevent another
889 * process from stealing the pages as they are added to the pool but
890 * before they are reserved.
892 needed += allocated;
893 h->resv_huge_pages += delta;
894 ret = 0;
895 free:
896 /* Free the needed pages to the hugetlb pool */
897 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
898 if ((--needed) < 0)
899 break;
900 list_del(&page->lru);
901 enqueue_huge_page(h, page);
904 /* Free unnecessary surplus pages to the buddy allocator */
905 if (!list_empty(&surplus_list)) {
906 spin_unlock(&hugetlb_lock);
907 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
908 list_del(&page->lru);
910 * The page has a reference count of zero already, so
911 * call free_huge_page directly instead of using
912 * put_page. This must be done with hugetlb_lock
913 * unlocked which is safe because free_huge_page takes
914 * hugetlb_lock before deciding how to free the page.
916 free_huge_page(page);
918 spin_lock(&hugetlb_lock);
921 return ret;
925 * When releasing a hugetlb pool reservation, any surplus pages that were
926 * allocated to satisfy the reservation must be explicitly freed if they were
927 * never used.
928 * Called with hugetlb_lock held.
930 static void return_unused_surplus_pages(struct hstate *h,
931 unsigned long unused_resv_pages)
933 unsigned long nr_pages;
935 /* Uncommit the reservation */
936 h->resv_huge_pages -= unused_resv_pages;
938 /* Cannot return gigantic pages currently */
939 if (h->order >= MAX_ORDER)
940 return;
942 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
945 * We want to release as many surplus pages as possible, spread
946 * evenly across all nodes with memory. Iterate across these nodes
947 * until we can no longer free unreserved surplus pages. This occurs
948 * when the nodes with surplus pages have no free pages.
949 * free_pool_huge_page() will balance the the freed pages across the
950 * on-line nodes with memory and will handle the hstate accounting.
952 while (nr_pages--) {
953 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
954 break;
959 * Determine if the huge page at addr within the vma has an associated
960 * reservation. Where it does not we will need to logically increase
961 * reservation and actually increase quota before an allocation can occur.
962 * Where any new reservation would be required the reservation change is
963 * prepared, but not committed. Once the page has been quota'd allocated
964 * an instantiated the change should be committed via vma_commit_reservation.
965 * No action is required on failure.
967 static long vma_needs_reservation(struct hstate *h,
968 struct vm_area_struct *vma, unsigned long addr)
970 struct address_space *mapping = vma->vm_file->f_mapping;
971 struct inode *inode = mapping->host;
973 if (vma->vm_flags & VM_MAYSHARE) {
974 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
975 return region_chg(&inode->i_mapping->private_list,
976 idx, idx + 1);
978 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
979 return 1;
981 } else {
982 long err;
983 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
984 struct resv_map *reservations = vma_resv_map(vma);
986 err = region_chg(&reservations->regions, idx, idx + 1);
987 if (err < 0)
988 return err;
989 return 0;
992 static void vma_commit_reservation(struct hstate *h,
993 struct vm_area_struct *vma, unsigned long addr)
995 struct address_space *mapping = vma->vm_file->f_mapping;
996 struct inode *inode = mapping->host;
998 if (vma->vm_flags & VM_MAYSHARE) {
999 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1000 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1002 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1003 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1004 struct resv_map *reservations = vma_resv_map(vma);
1006 /* Mark this page used in the map. */
1007 region_add(&reservations->regions, idx, idx + 1);
1011 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1012 unsigned long addr, int avoid_reserve)
1014 struct hstate *h = hstate_vma(vma);
1015 struct page *page;
1016 struct address_space *mapping = vma->vm_file->f_mapping;
1017 struct inode *inode = mapping->host;
1018 long chg;
1021 * Processes that did not create the mapping will have no reserves and
1022 * will not have accounted against quota. Check that the quota can be
1023 * made before satisfying the allocation
1024 * MAP_NORESERVE mappings may also need pages and quota allocated
1025 * if no reserve mapping overlaps.
1027 chg = vma_needs_reservation(h, vma, addr);
1028 if (chg < 0)
1029 return ERR_PTR(chg);
1030 if (chg)
1031 if (hugetlb_get_quota(inode->i_mapping, chg))
1032 return ERR_PTR(-ENOSPC);
1034 spin_lock(&hugetlb_lock);
1035 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1036 spin_unlock(&hugetlb_lock);
1038 if (!page) {
1039 page = alloc_buddy_huge_page(h, vma, addr);
1040 if (!page) {
1041 hugetlb_put_quota(inode->i_mapping, chg);
1042 return ERR_PTR(-VM_FAULT_SIGBUS);
1046 set_page_refcounted(page);
1047 set_page_private(page, (unsigned long) mapping);
1049 vma_commit_reservation(h, vma, addr);
1051 return page;
1054 int __weak alloc_bootmem_huge_page(struct hstate *h)
1056 struct huge_bootmem_page *m;
1057 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1059 while (nr_nodes) {
1060 void *addr;
1062 addr = __alloc_bootmem_node_nopanic(
1063 NODE_DATA(hstate_next_node_to_alloc(h,
1064 &node_states[N_HIGH_MEMORY])),
1065 huge_page_size(h), huge_page_size(h), 0);
1067 if (addr) {
1069 * Use the beginning of the huge page to store the
1070 * huge_bootmem_page struct (until gather_bootmem
1071 * puts them into the mem_map).
1073 m = addr;
1074 goto found;
1076 nr_nodes--;
1078 return 0;
1080 found:
1081 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1082 /* Put them into a private list first because mem_map is not up yet */
1083 list_add(&m->list, &huge_boot_pages);
1084 m->hstate = h;
1085 return 1;
1088 static void prep_compound_huge_page(struct page *page, int order)
1090 if (unlikely(order > (MAX_ORDER - 1)))
1091 prep_compound_gigantic_page(page, order);
1092 else
1093 prep_compound_page(page, order);
1096 /* Put bootmem huge pages into the standard lists after mem_map is up */
1097 static void __init gather_bootmem_prealloc(void)
1099 struct huge_bootmem_page *m;
1101 list_for_each_entry(m, &huge_boot_pages, list) {
1102 struct page *page = virt_to_page(m);
1103 struct hstate *h = m->hstate;
1104 __ClearPageReserved(page);
1105 WARN_ON(page_count(page) != 1);
1106 prep_compound_huge_page(page, h->order);
1107 prep_new_huge_page(h, page, page_to_nid(page));
1111 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1113 unsigned long i;
1115 for (i = 0; i < h->max_huge_pages; ++i) {
1116 if (h->order >= MAX_ORDER) {
1117 if (!alloc_bootmem_huge_page(h))
1118 break;
1119 } else if (!alloc_fresh_huge_page(h,
1120 &node_states[N_HIGH_MEMORY]))
1121 break;
1123 h->max_huge_pages = i;
1126 static void __init hugetlb_init_hstates(void)
1128 struct hstate *h;
1130 for_each_hstate(h) {
1131 /* oversize hugepages were init'ed in early boot */
1132 if (h->order < MAX_ORDER)
1133 hugetlb_hstate_alloc_pages(h);
1137 static char * __init memfmt(char *buf, unsigned long n)
1139 if (n >= (1UL << 30))
1140 sprintf(buf, "%lu GB", n >> 30);
1141 else if (n >= (1UL << 20))
1142 sprintf(buf, "%lu MB", n >> 20);
1143 else
1144 sprintf(buf, "%lu KB", n >> 10);
1145 return buf;
1148 static void __init report_hugepages(void)
1150 struct hstate *h;
1152 for_each_hstate(h) {
1153 char buf[32];
1154 printk(KERN_INFO "HugeTLB registered %s page size, "
1155 "pre-allocated %ld pages\n",
1156 memfmt(buf, huge_page_size(h)),
1157 h->free_huge_pages);
1161 #ifdef CONFIG_HIGHMEM
1162 static void try_to_free_low(struct hstate *h, unsigned long count,
1163 nodemask_t *nodes_allowed)
1165 int i;
1167 if (h->order >= MAX_ORDER)
1168 return;
1170 for_each_node_mask(i, *nodes_allowed) {
1171 struct page *page, *next;
1172 struct list_head *freel = &h->hugepage_freelists[i];
1173 list_for_each_entry_safe(page, next, freel, lru) {
1174 if (count >= h->nr_huge_pages)
1175 return;
1176 if (PageHighMem(page))
1177 continue;
1178 list_del(&page->lru);
1179 update_and_free_page(h, page);
1180 h->free_huge_pages--;
1181 h->free_huge_pages_node[page_to_nid(page)]--;
1185 #else
1186 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1187 nodemask_t *nodes_allowed)
1190 #endif
1193 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1194 * balanced by operating on them in a round-robin fashion.
1195 * Returns 1 if an adjustment was made.
1197 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1198 int delta)
1200 int start_nid, next_nid;
1201 int ret = 0;
1203 VM_BUG_ON(delta != -1 && delta != 1);
1205 if (delta < 0)
1206 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1207 else
1208 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1209 next_nid = start_nid;
1211 do {
1212 int nid = next_nid;
1213 if (delta < 0) {
1215 * To shrink on this node, there must be a surplus page
1217 if (!h->surplus_huge_pages_node[nid]) {
1218 next_nid = hstate_next_node_to_alloc(h,
1219 nodes_allowed);
1220 continue;
1223 if (delta > 0) {
1225 * Surplus cannot exceed the total number of pages
1227 if (h->surplus_huge_pages_node[nid] >=
1228 h->nr_huge_pages_node[nid]) {
1229 next_nid = hstate_next_node_to_free(h,
1230 nodes_allowed);
1231 continue;
1235 h->surplus_huge_pages += delta;
1236 h->surplus_huge_pages_node[nid] += delta;
1237 ret = 1;
1238 break;
1239 } while (next_nid != start_nid);
1241 return ret;
1244 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1245 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1246 nodemask_t *nodes_allowed)
1248 unsigned long min_count, ret;
1250 if (h->order >= MAX_ORDER)
1251 return h->max_huge_pages;
1254 * Increase the pool size
1255 * First take pages out of surplus state. Then make up the
1256 * remaining difference by allocating fresh huge pages.
1258 * We might race with alloc_buddy_huge_page() here and be unable
1259 * to convert a surplus huge page to a normal huge page. That is
1260 * not critical, though, it just means the overall size of the
1261 * pool might be one hugepage larger than it needs to be, but
1262 * within all the constraints specified by the sysctls.
1264 spin_lock(&hugetlb_lock);
1265 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1266 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1267 break;
1270 while (count > persistent_huge_pages(h)) {
1272 * If this allocation races such that we no longer need the
1273 * page, free_huge_page will handle it by freeing the page
1274 * and reducing the surplus.
1276 spin_unlock(&hugetlb_lock);
1277 ret = alloc_fresh_huge_page(h, nodes_allowed);
1278 spin_lock(&hugetlb_lock);
1279 if (!ret)
1280 goto out;
1282 /* Bail for signals. Probably ctrl-c from user */
1283 if (signal_pending(current))
1284 goto out;
1288 * Decrease the pool size
1289 * First return free pages to the buddy allocator (being careful
1290 * to keep enough around to satisfy reservations). Then place
1291 * pages into surplus state as needed so the pool will shrink
1292 * to the desired size as pages become free.
1294 * By placing pages into the surplus state independent of the
1295 * overcommit value, we are allowing the surplus pool size to
1296 * exceed overcommit. There are few sane options here. Since
1297 * alloc_buddy_huge_page() is checking the global counter,
1298 * though, we'll note that we're not allowed to exceed surplus
1299 * and won't grow the pool anywhere else. Not until one of the
1300 * sysctls are changed, or the surplus pages go out of use.
1302 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1303 min_count = max(count, min_count);
1304 try_to_free_low(h, min_count, nodes_allowed);
1305 while (min_count < persistent_huge_pages(h)) {
1306 if (!free_pool_huge_page(h, nodes_allowed, 0))
1307 break;
1309 while (count < persistent_huge_pages(h)) {
1310 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1311 break;
1313 out:
1314 ret = persistent_huge_pages(h);
1315 spin_unlock(&hugetlb_lock);
1316 return ret;
1319 #define HSTATE_ATTR_RO(_name) \
1320 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1322 #define HSTATE_ATTR(_name) \
1323 static struct kobj_attribute _name##_attr = \
1324 __ATTR(_name, 0644, _name##_show, _name##_store)
1326 static struct kobject *hugepages_kobj;
1327 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1329 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1331 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1333 int i;
1335 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1336 if (hstate_kobjs[i] == kobj) {
1337 if (nidp)
1338 *nidp = NUMA_NO_NODE;
1339 return &hstates[i];
1342 return kobj_to_node_hstate(kobj, nidp);
1345 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1346 struct kobj_attribute *attr, char *buf)
1348 struct hstate *h;
1349 unsigned long nr_huge_pages;
1350 int nid;
1352 h = kobj_to_hstate(kobj, &nid);
1353 if (nid == NUMA_NO_NODE)
1354 nr_huge_pages = h->nr_huge_pages;
1355 else
1356 nr_huge_pages = h->nr_huge_pages_node[nid];
1358 return sprintf(buf, "%lu\n", nr_huge_pages);
1360 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1361 struct kobject *kobj, struct kobj_attribute *attr,
1362 const char *buf, size_t len)
1364 int err;
1365 int nid;
1366 unsigned long count;
1367 struct hstate *h;
1368 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1370 err = strict_strtoul(buf, 10, &count);
1371 if (err)
1372 return 0;
1374 h = kobj_to_hstate(kobj, &nid);
1375 if (nid == NUMA_NO_NODE) {
1377 * global hstate attribute
1379 if (!(obey_mempolicy &&
1380 init_nodemask_of_mempolicy(nodes_allowed))) {
1381 NODEMASK_FREE(nodes_allowed);
1382 nodes_allowed = &node_states[N_HIGH_MEMORY];
1384 } else if (nodes_allowed) {
1386 * per node hstate attribute: adjust count to global,
1387 * but restrict alloc/free to the specified node.
1389 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1390 init_nodemask_of_node(nodes_allowed, nid);
1391 } else
1392 nodes_allowed = &node_states[N_HIGH_MEMORY];
1394 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1396 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1397 NODEMASK_FREE(nodes_allowed);
1399 return len;
1402 static ssize_t nr_hugepages_show(struct kobject *kobj,
1403 struct kobj_attribute *attr, char *buf)
1405 return nr_hugepages_show_common(kobj, attr, buf);
1408 static ssize_t nr_hugepages_store(struct kobject *kobj,
1409 struct kobj_attribute *attr, const char *buf, size_t len)
1411 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1413 HSTATE_ATTR(nr_hugepages);
1415 #ifdef CONFIG_NUMA
1418 * hstate attribute for optionally mempolicy-based constraint on persistent
1419 * huge page alloc/free.
1421 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1422 struct kobj_attribute *attr, char *buf)
1424 return nr_hugepages_show_common(kobj, attr, buf);
1427 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1428 struct kobj_attribute *attr, const char *buf, size_t len)
1430 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1432 HSTATE_ATTR(nr_hugepages_mempolicy);
1433 #endif
1436 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1437 struct kobj_attribute *attr, char *buf)
1439 struct hstate *h = kobj_to_hstate(kobj, NULL);
1440 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1442 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1443 struct kobj_attribute *attr, const char *buf, size_t count)
1445 int err;
1446 unsigned long input;
1447 struct hstate *h = kobj_to_hstate(kobj, NULL);
1449 err = strict_strtoul(buf, 10, &input);
1450 if (err)
1451 return 0;
1453 spin_lock(&hugetlb_lock);
1454 h->nr_overcommit_huge_pages = input;
1455 spin_unlock(&hugetlb_lock);
1457 return count;
1459 HSTATE_ATTR(nr_overcommit_hugepages);
1461 static ssize_t free_hugepages_show(struct kobject *kobj,
1462 struct kobj_attribute *attr, char *buf)
1464 struct hstate *h;
1465 unsigned long free_huge_pages;
1466 int nid;
1468 h = kobj_to_hstate(kobj, &nid);
1469 if (nid == NUMA_NO_NODE)
1470 free_huge_pages = h->free_huge_pages;
1471 else
1472 free_huge_pages = h->free_huge_pages_node[nid];
1474 return sprintf(buf, "%lu\n", free_huge_pages);
1476 HSTATE_ATTR_RO(free_hugepages);
1478 static ssize_t resv_hugepages_show(struct kobject *kobj,
1479 struct kobj_attribute *attr, char *buf)
1481 struct hstate *h = kobj_to_hstate(kobj, NULL);
1482 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1484 HSTATE_ATTR_RO(resv_hugepages);
1486 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1487 struct kobj_attribute *attr, char *buf)
1489 struct hstate *h;
1490 unsigned long surplus_huge_pages;
1491 int nid;
1493 h = kobj_to_hstate(kobj, &nid);
1494 if (nid == NUMA_NO_NODE)
1495 surplus_huge_pages = h->surplus_huge_pages;
1496 else
1497 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1499 return sprintf(buf, "%lu\n", surplus_huge_pages);
1501 HSTATE_ATTR_RO(surplus_hugepages);
1503 static struct attribute *hstate_attrs[] = {
1504 &nr_hugepages_attr.attr,
1505 &nr_overcommit_hugepages_attr.attr,
1506 &free_hugepages_attr.attr,
1507 &resv_hugepages_attr.attr,
1508 &surplus_hugepages_attr.attr,
1509 #ifdef CONFIG_NUMA
1510 &nr_hugepages_mempolicy_attr.attr,
1511 #endif
1512 NULL,
1515 static struct attribute_group hstate_attr_group = {
1516 .attrs = hstate_attrs,
1519 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1520 struct kobject **hstate_kobjs,
1521 struct attribute_group *hstate_attr_group)
1523 int retval;
1524 int hi = h - hstates;
1526 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1527 if (!hstate_kobjs[hi])
1528 return -ENOMEM;
1530 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1531 if (retval)
1532 kobject_put(hstate_kobjs[hi]);
1534 return retval;
1537 static void __init hugetlb_sysfs_init(void)
1539 struct hstate *h;
1540 int err;
1542 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1543 if (!hugepages_kobj)
1544 return;
1546 for_each_hstate(h) {
1547 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1548 hstate_kobjs, &hstate_attr_group);
1549 if (err)
1550 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1551 h->name);
1555 #ifdef CONFIG_NUMA
1558 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1559 * with node sysdevs in node_devices[] using a parallel array. The array
1560 * index of a node sysdev or _hstate == node id.
1561 * This is here to avoid any static dependency of the node sysdev driver, in
1562 * the base kernel, on the hugetlb module.
1564 struct node_hstate {
1565 struct kobject *hugepages_kobj;
1566 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1568 struct node_hstate node_hstates[MAX_NUMNODES];
1571 * A subset of global hstate attributes for node sysdevs
1573 static struct attribute *per_node_hstate_attrs[] = {
1574 &nr_hugepages_attr.attr,
1575 &free_hugepages_attr.attr,
1576 &surplus_hugepages_attr.attr,
1577 NULL,
1580 static struct attribute_group per_node_hstate_attr_group = {
1581 .attrs = per_node_hstate_attrs,
1585 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1586 * Returns node id via non-NULL nidp.
1588 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1590 int nid;
1592 for (nid = 0; nid < nr_node_ids; nid++) {
1593 struct node_hstate *nhs = &node_hstates[nid];
1594 int i;
1595 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1596 if (nhs->hstate_kobjs[i] == kobj) {
1597 if (nidp)
1598 *nidp = nid;
1599 return &hstates[i];
1603 BUG();
1604 return NULL;
1608 * Unregister hstate attributes from a single node sysdev.
1609 * No-op if no hstate attributes attached.
1611 void hugetlb_unregister_node(struct node *node)
1613 struct hstate *h;
1614 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1616 if (!nhs->hugepages_kobj)
1617 return; /* no hstate attributes */
1619 for_each_hstate(h)
1620 if (nhs->hstate_kobjs[h - hstates]) {
1621 kobject_put(nhs->hstate_kobjs[h - hstates]);
1622 nhs->hstate_kobjs[h - hstates] = NULL;
1625 kobject_put(nhs->hugepages_kobj);
1626 nhs->hugepages_kobj = NULL;
1630 * hugetlb module exit: unregister hstate attributes from node sysdevs
1631 * that have them.
1633 static void hugetlb_unregister_all_nodes(void)
1635 int nid;
1638 * disable node sysdev registrations.
1640 register_hugetlbfs_with_node(NULL, NULL);
1643 * remove hstate attributes from any nodes that have them.
1645 for (nid = 0; nid < nr_node_ids; nid++)
1646 hugetlb_unregister_node(&node_devices[nid]);
1650 * Register hstate attributes for a single node sysdev.
1651 * No-op if attributes already registered.
1653 void hugetlb_register_node(struct node *node)
1655 struct hstate *h;
1656 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1657 int err;
1659 if (nhs->hugepages_kobj)
1660 return; /* already allocated */
1662 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1663 &node->sysdev.kobj);
1664 if (!nhs->hugepages_kobj)
1665 return;
1667 for_each_hstate(h) {
1668 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1669 nhs->hstate_kobjs,
1670 &per_node_hstate_attr_group);
1671 if (err) {
1672 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1673 " for node %d\n",
1674 h->name, node->sysdev.id);
1675 hugetlb_unregister_node(node);
1676 break;
1682 * hugetlb init time: register hstate attributes for all registered node
1683 * sysdevs of nodes that have memory. All on-line nodes should have
1684 * registered their associated sysdev by this time.
1686 static void hugetlb_register_all_nodes(void)
1688 int nid;
1690 for_each_node_state(nid, N_HIGH_MEMORY) {
1691 struct node *node = &node_devices[nid];
1692 if (node->sysdev.id == nid)
1693 hugetlb_register_node(node);
1697 * Let the node sysdev driver know we're here so it can
1698 * [un]register hstate attributes on node hotplug.
1700 register_hugetlbfs_with_node(hugetlb_register_node,
1701 hugetlb_unregister_node);
1703 #else /* !CONFIG_NUMA */
1705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1707 BUG();
1708 if (nidp)
1709 *nidp = -1;
1710 return NULL;
1713 static void hugetlb_unregister_all_nodes(void) { }
1715 static void hugetlb_register_all_nodes(void) { }
1717 #endif
1719 static void __exit hugetlb_exit(void)
1721 struct hstate *h;
1723 hugetlb_unregister_all_nodes();
1725 for_each_hstate(h) {
1726 kobject_put(hstate_kobjs[h - hstates]);
1729 kobject_put(hugepages_kobj);
1731 module_exit(hugetlb_exit);
1733 static int __init hugetlb_init(void)
1735 /* Some platform decide whether they support huge pages at boot
1736 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1737 * there is no such support
1739 if (HPAGE_SHIFT == 0)
1740 return 0;
1742 if (!size_to_hstate(default_hstate_size)) {
1743 default_hstate_size = HPAGE_SIZE;
1744 if (!size_to_hstate(default_hstate_size))
1745 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1747 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1748 if (default_hstate_max_huge_pages)
1749 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1751 hugetlb_init_hstates();
1753 gather_bootmem_prealloc();
1755 report_hugepages();
1757 hugetlb_sysfs_init();
1759 hugetlb_register_all_nodes();
1761 return 0;
1763 module_init(hugetlb_init);
1765 /* Should be called on processing a hugepagesz=... option */
1766 void __init hugetlb_add_hstate(unsigned order)
1768 struct hstate *h;
1769 unsigned long i;
1771 if (size_to_hstate(PAGE_SIZE << order)) {
1772 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1773 return;
1775 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1776 BUG_ON(order == 0);
1777 h = &hstates[max_hstate++];
1778 h->order = order;
1779 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1780 h->nr_huge_pages = 0;
1781 h->free_huge_pages = 0;
1782 for (i = 0; i < MAX_NUMNODES; ++i)
1783 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1784 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1785 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1786 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1787 huge_page_size(h)/1024);
1789 parsed_hstate = h;
1792 static int __init hugetlb_nrpages_setup(char *s)
1794 unsigned long *mhp;
1795 static unsigned long *last_mhp;
1798 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1799 * so this hugepages= parameter goes to the "default hstate".
1801 if (!max_hstate)
1802 mhp = &default_hstate_max_huge_pages;
1803 else
1804 mhp = &parsed_hstate->max_huge_pages;
1806 if (mhp == last_mhp) {
1807 printk(KERN_WARNING "hugepages= specified twice without "
1808 "interleaving hugepagesz=, ignoring\n");
1809 return 1;
1812 if (sscanf(s, "%lu", mhp) <= 0)
1813 *mhp = 0;
1816 * Global state is always initialized later in hugetlb_init.
1817 * But we need to allocate >= MAX_ORDER hstates here early to still
1818 * use the bootmem allocator.
1820 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1821 hugetlb_hstate_alloc_pages(parsed_hstate);
1823 last_mhp = mhp;
1825 return 1;
1827 __setup("hugepages=", hugetlb_nrpages_setup);
1829 static int __init hugetlb_default_setup(char *s)
1831 default_hstate_size = memparse(s, &s);
1832 return 1;
1834 __setup("default_hugepagesz=", hugetlb_default_setup);
1836 static unsigned int cpuset_mems_nr(unsigned int *array)
1838 int node;
1839 unsigned int nr = 0;
1841 for_each_node_mask(node, cpuset_current_mems_allowed)
1842 nr += array[node];
1844 return nr;
1847 #ifdef CONFIG_SYSCTL
1848 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1849 struct ctl_table *table, int write,
1850 void __user *buffer, size_t *length, loff_t *ppos)
1852 struct hstate *h = &default_hstate;
1853 unsigned long tmp;
1855 if (!write)
1856 tmp = h->max_huge_pages;
1858 table->data = &tmp;
1859 table->maxlen = sizeof(unsigned long);
1860 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1862 if (write) {
1863 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1864 GFP_KERNEL | __GFP_NORETRY);
1865 if (!(obey_mempolicy &&
1866 init_nodemask_of_mempolicy(nodes_allowed))) {
1867 NODEMASK_FREE(nodes_allowed);
1868 nodes_allowed = &node_states[N_HIGH_MEMORY];
1870 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1872 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1873 NODEMASK_FREE(nodes_allowed);
1876 return 0;
1879 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1880 void __user *buffer, size_t *length, loff_t *ppos)
1883 return hugetlb_sysctl_handler_common(false, table, write,
1884 buffer, length, ppos);
1887 #ifdef CONFIG_NUMA
1888 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1889 void __user *buffer, size_t *length, loff_t *ppos)
1891 return hugetlb_sysctl_handler_common(true, table, write,
1892 buffer, length, ppos);
1894 #endif /* CONFIG_NUMA */
1896 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1897 void __user *buffer,
1898 size_t *length, loff_t *ppos)
1900 proc_dointvec(table, write, buffer, length, ppos);
1901 if (hugepages_treat_as_movable)
1902 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1903 else
1904 htlb_alloc_mask = GFP_HIGHUSER;
1905 return 0;
1908 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1909 void __user *buffer,
1910 size_t *length, loff_t *ppos)
1912 struct hstate *h = &default_hstate;
1913 unsigned long tmp;
1915 if (!write)
1916 tmp = h->nr_overcommit_huge_pages;
1918 table->data = &tmp;
1919 table->maxlen = sizeof(unsigned long);
1920 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1922 if (write) {
1923 spin_lock(&hugetlb_lock);
1924 h->nr_overcommit_huge_pages = tmp;
1925 spin_unlock(&hugetlb_lock);
1928 return 0;
1931 #endif /* CONFIG_SYSCTL */
1933 void hugetlb_report_meminfo(struct seq_file *m)
1935 struct hstate *h = &default_hstate;
1936 seq_printf(m,
1937 "HugePages_Total: %5lu\n"
1938 "HugePages_Free: %5lu\n"
1939 "HugePages_Rsvd: %5lu\n"
1940 "HugePages_Surp: %5lu\n"
1941 "Hugepagesize: %8lu kB\n",
1942 h->nr_huge_pages,
1943 h->free_huge_pages,
1944 h->resv_huge_pages,
1945 h->surplus_huge_pages,
1946 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1949 int hugetlb_report_node_meminfo(int nid, char *buf)
1951 struct hstate *h = &default_hstate;
1952 return sprintf(buf,
1953 "Node %d HugePages_Total: %5u\n"
1954 "Node %d HugePages_Free: %5u\n"
1955 "Node %d HugePages_Surp: %5u\n",
1956 nid, h->nr_huge_pages_node[nid],
1957 nid, h->free_huge_pages_node[nid],
1958 nid, h->surplus_huge_pages_node[nid]);
1961 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1962 unsigned long hugetlb_total_pages(void)
1964 struct hstate *h = &default_hstate;
1965 return h->nr_huge_pages * pages_per_huge_page(h);
1968 static int hugetlb_acct_memory(struct hstate *h, long delta)
1970 int ret = -ENOMEM;
1972 spin_lock(&hugetlb_lock);
1974 * When cpuset is configured, it breaks the strict hugetlb page
1975 * reservation as the accounting is done on a global variable. Such
1976 * reservation is completely rubbish in the presence of cpuset because
1977 * the reservation is not checked against page availability for the
1978 * current cpuset. Application can still potentially OOM'ed by kernel
1979 * with lack of free htlb page in cpuset that the task is in.
1980 * Attempt to enforce strict accounting with cpuset is almost
1981 * impossible (or too ugly) because cpuset is too fluid that
1982 * task or memory node can be dynamically moved between cpusets.
1984 * The change of semantics for shared hugetlb mapping with cpuset is
1985 * undesirable. However, in order to preserve some of the semantics,
1986 * we fall back to check against current free page availability as
1987 * a best attempt and hopefully to minimize the impact of changing
1988 * semantics that cpuset has.
1990 if (delta > 0) {
1991 if (gather_surplus_pages(h, delta) < 0)
1992 goto out;
1994 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1995 return_unused_surplus_pages(h, delta);
1996 goto out;
2000 ret = 0;
2001 if (delta < 0)
2002 return_unused_surplus_pages(h, (unsigned long) -delta);
2004 out:
2005 spin_unlock(&hugetlb_lock);
2006 return ret;
2009 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2011 struct resv_map *reservations = vma_resv_map(vma);
2014 * This new VMA should share its siblings reservation map if present.
2015 * The VMA will only ever have a valid reservation map pointer where
2016 * it is being copied for another still existing VMA. As that VMA
2017 * has a reference to the reservation map it cannot dissappear until
2018 * after this open call completes. It is therefore safe to take a
2019 * new reference here without additional locking.
2021 if (reservations)
2022 kref_get(&reservations->refs);
2025 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2027 struct hstate *h = hstate_vma(vma);
2028 struct resv_map *reservations = vma_resv_map(vma);
2029 unsigned long reserve;
2030 unsigned long start;
2031 unsigned long end;
2033 if (reservations) {
2034 start = vma_hugecache_offset(h, vma, vma->vm_start);
2035 end = vma_hugecache_offset(h, vma, vma->vm_end);
2037 reserve = (end - start) -
2038 region_count(&reservations->regions, start, end);
2040 kref_put(&reservations->refs, resv_map_release);
2042 if (reserve) {
2043 hugetlb_acct_memory(h, -reserve);
2044 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2050 * We cannot handle pagefaults against hugetlb pages at all. They cause
2051 * handle_mm_fault() to try to instantiate regular-sized pages in the
2052 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2053 * this far.
2055 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2057 BUG();
2058 return 0;
2061 const struct vm_operations_struct hugetlb_vm_ops = {
2062 .fault = hugetlb_vm_op_fault,
2063 .open = hugetlb_vm_op_open,
2064 .close = hugetlb_vm_op_close,
2067 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2068 int writable)
2070 pte_t entry;
2072 if (writable) {
2073 entry =
2074 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2075 } else {
2076 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2078 entry = pte_mkyoung(entry);
2079 entry = pte_mkhuge(entry);
2081 return entry;
2084 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2085 unsigned long address, pte_t *ptep)
2087 pte_t entry;
2089 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2090 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2091 update_mmu_cache(vma, address, ptep);
2096 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2097 struct vm_area_struct *vma)
2099 pte_t *src_pte, *dst_pte, entry;
2100 struct page *ptepage;
2101 unsigned long addr;
2102 int cow;
2103 struct hstate *h = hstate_vma(vma);
2104 unsigned long sz = huge_page_size(h);
2106 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2108 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2109 src_pte = huge_pte_offset(src, addr);
2110 if (!src_pte)
2111 continue;
2112 dst_pte = huge_pte_alloc(dst, addr, sz);
2113 if (!dst_pte)
2114 goto nomem;
2116 /* If the pagetables are shared don't copy or take references */
2117 if (dst_pte == src_pte)
2118 continue;
2120 spin_lock(&dst->page_table_lock);
2121 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2122 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2123 if (cow)
2124 huge_ptep_set_wrprotect(src, addr, src_pte);
2125 entry = huge_ptep_get(src_pte);
2126 ptepage = pte_page(entry);
2127 get_page(ptepage);
2128 set_huge_pte_at(dst, addr, dst_pte, entry);
2130 spin_unlock(&src->page_table_lock);
2131 spin_unlock(&dst->page_table_lock);
2133 return 0;
2135 nomem:
2136 return -ENOMEM;
2139 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2140 unsigned long end, struct page *ref_page)
2142 struct mm_struct *mm = vma->vm_mm;
2143 unsigned long address;
2144 pte_t *ptep;
2145 pte_t pte;
2146 struct page *page;
2147 struct page *tmp;
2148 struct hstate *h = hstate_vma(vma);
2149 unsigned long sz = huge_page_size(h);
2152 * A page gathering list, protected by per file i_mmap_lock. The
2153 * lock is used to avoid list corruption from multiple unmapping
2154 * of the same page since we are using page->lru.
2156 LIST_HEAD(page_list);
2158 WARN_ON(!is_vm_hugetlb_page(vma));
2159 BUG_ON(start & ~huge_page_mask(h));
2160 BUG_ON(end & ~huge_page_mask(h));
2162 mmu_notifier_invalidate_range_start(mm, start, end);
2163 spin_lock(&mm->page_table_lock);
2164 for (address = start; address < end; address += sz) {
2165 ptep = huge_pte_offset(mm, address);
2166 if (!ptep)
2167 continue;
2169 if (huge_pmd_unshare(mm, &address, ptep))
2170 continue;
2173 * If a reference page is supplied, it is because a specific
2174 * page is being unmapped, not a range. Ensure the page we
2175 * are about to unmap is the actual page of interest.
2177 if (ref_page) {
2178 pte = huge_ptep_get(ptep);
2179 if (huge_pte_none(pte))
2180 continue;
2181 page = pte_page(pte);
2182 if (page != ref_page)
2183 continue;
2186 * Mark the VMA as having unmapped its page so that
2187 * future faults in this VMA will fail rather than
2188 * looking like data was lost
2190 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2193 pte = huge_ptep_get_and_clear(mm, address, ptep);
2194 if (huge_pte_none(pte))
2195 continue;
2197 page = pte_page(pte);
2198 if (pte_dirty(pte))
2199 set_page_dirty(page);
2200 list_add(&page->lru, &page_list);
2202 spin_unlock(&mm->page_table_lock);
2203 flush_tlb_range(vma, start, end);
2204 mmu_notifier_invalidate_range_end(mm, start, end);
2205 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2206 list_del(&page->lru);
2207 put_page(page);
2211 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2212 unsigned long end, struct page *ref_page)
2214 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2215 __unmap_hugepage_range(vma, start, end, ref_page);
2216 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2220 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2221 * mappping it owns the reserve page for. The intention is to unmap the page
2222 * from other VMAs and let the children be SIGKILLed if they are faulting the
2223 * same region.
2225 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2226 struct page *page, unsigned long address)
2228 struct hstate *h = hstate_vma(vma);
2229 struct vm_area_struct *iter_vma;
2230 struct address_space *mapping;
2231 struct prio_tree_iter iter;
2232 pgoff_t pgoff;
2235 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2236 * from page cache lookup which is in HPAGE_SIZE units.
2238 address = address & huge_page_mask(h);
2239 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2240 + (vma->vm_pgoff >> PAGE_SHIFT);
2241 mapping = (struct address_space *)page_private(page);
2244 * Take the mapping lock for the duration of the table walk. As
2245 * this mapping should be shared between all the VMAs,
2246 * __unmap_hugepage_range() is called as the lock is already held
2248 spin_lock(&mapping->i_mmap_lock);
2249 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2250 /* Do not unmap the current VMA */
2251 if (iter_vma == vma)
2252 continue;
2255 * Unmap the page from other VMAs without their own reserves.
2256 * They get marked to be SIGKILLed if they fault in these
2257 * areas. This is because a future no-page fault on this VMA
2258 * could insert a zeroed page instead of the data existing
2259 * from the time of fork. This would look like data corruption
2261 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2262 __unmap_hugepage_range(iter_vma,
2263 address, address + huge_page_size(h),
2264 page);
2266 spin_unlock(&mapping->i_mmap_lock);
2268 return 1;
2271 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2272 unsigned long address, pte_t *ptep, pte_t pte,
2273 struct page *pagecache_page)
2275 struct hstate *h = hstate_vma(vma);
2276 struct page *old_page, *new_page;
2277 int avoidcopy;
2278 int outside_reserve = 0;
2280 old_page = pte_page(pte);
2282 retry_avoidcopy:
2283 /* If no-one else is actually using this page, avoid the copy
2284 * and just make the page writable */
2285 avoidcopy = (page_count(old_page) == 1);
2286 if (avoidcopy) {
2287 set_huge_ptep_writable(vma, address, ptep);
2288 return 0;
2292 * If the process that created a MAP_PRIVATE mapping is about to
2293 * perform a COW due to a shared page count, attempt to satisfy
2294 * the allocation without using the existing reserves. The pagecache
2295 * page is used to determine if the reserve at this address was
2296 * consumed or not. If reserves were used, a partial faulted mapping
2297 * at the time of fork() could consume its reserves on COW instead
2298 * of the full address range.
2300 if (!(vma->vm_flags & VM_MAYSHARE) &&
2301 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2302 old_page != pagecache_page)
2303 outside_reserve = 1;
2305 page_cache_get(old_page);
2307 /* Drop page_table_lock as buddy allocator may be called */
2308 spin_unlock(&mm->page_table_lock);
2309 new_page = alloc_huge_page(vma, address, outside_reserve);
2311 if (IS_ERR(new_page)) {
2312 page_cache_release(old_page);
2315 * If a process owning a MAP_PRIVATE mapping fails to COW,
2316 * it is due to references held by a child and an insufficient
2317 * huge page pool. To guarantee the original mappers
2318 * reliability, unmap the page from child processes. The child
2319 * may get SIGKILLed if it later faults.
2321 if (outside_reserve) {
2322 BUG_ON(huge_pte_none(pte));
2323 if (unmap_ref_private(mm, vma, old_page, address)) {
2324 BUG_ON(page_count(old_page) != 1);
2325 BUG_ON(huge_pte_none(pte));
2326 spin_lock(&mm->page_table_lock);
2327 goto retry_avoidcopy;
2329 WARN_ON_ONCE(1);
2332 /* Caller expects lock to be held */
2333 spin_lock(&mm->page_table_lock);
2334 return -PTR_ERR(new_page);
2337 copy_huge_page(new_page, old_page, address, vma);
2338 __SetPageUptodate(new_page);
2341 * Retake the page_table_lock to check for racing updates
2342 * before the page tables are altered
2344 spin_lock(&mm->page_table_lock);
2345 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2346 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2347 /* Break COW */
2348 huge_ptep_clear_flush(vma, address, ptep);
2349 set_huge_pte_at(mm, address, ptep,
2350 make_huge_pte(vma, new_page, 1));
2351 /* Make the old page be freed below */
2352 new_page = old_page;
2354 page_cache_release(new_page);
2355 page_cache_release(old_page);
2356 return 0;
2359 /* Return the pagecache page at a given address within a VMA */
2360 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2361 struct vm_area_struct *vma, unsigned long address)
2363 struct address_space *mapping;
2364 pgoff_t idx;
2366 mapping = vma->vm_file->f_mapping;
2367 idx = vma_hugecache_offset(h, vma, address);
2369 return find_lock_page(mapping, idx);
2373 * Return whether there is a pagecache page to back given address within VMA.
2374 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2376 static bool hugetlbfs_pagecache_present(struct hstate *h,
2377 struct vm_area_struct *vma, unsigned long address)
2379 struct address_space *mapping;
2380 pgoff_t idx;
2381 struct page *page;
2383 mapping = vma->vm_file->f_mapping;
2384 idx = vma_hugecache_offset(h, vma, address);
2386 page = find_get_page(mapping, idx);
2387 if (page)
2388 put_page(page);
2389 return page != NULL;
2392 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2393 unsigned long address, pte_t *ptep, unsigned int flags)
2395 struct hstate *h = hstate_vma(vma);
2396 int ret = VM_FAULT_SIGBUS;
2397 pgoff_t idx;
2398 unsigned long size;
2399 struct page *page;
2400 struct address_space *mapping;
2401 pte_t new_pte;
2404 * Currently, we are forced to kill the process in the event the
2405 * original mapper has unmapped pages from the child due to a failed
2406 * COW. Warn that such a situation has occured as it may not be obvious
2408 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2409 printk(KERN_WARNING
2410 "PID %d killed due to inadequate hugepage pool\n",
2411 current->pid);
2412 return ret;
2415 mapping = vma->vm_file->f_mapping;
2416 idx = vma_hugecache_offset(h, vma, address);
2419 * Use page lock to guard against racing truncation
2420 * before we get page_table_lock.
2422 retry:
2423 page = find_lock_page(mapping, idx);
2424 if (!page) {
2425 size = i_size_read(mapping->host) >> huge_page_shift(h);
2426 if (idx >= size)
2427 goto out;
2428 page = alloc_huge_page(vma, address, 0);
2429 if (IS_ERR(page)) {
2430 ret = -PTR_ERR(page);
2431 goto out;
2433 clear_huge_page(page, address, huge_page_size(h));
2434 __SetPageUptodate(page);
2436 if (vma->vm_flags & VM_MAYSHARE) {
2437 int err;
2438 struct inode *inode = mapping->host;
2440 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2441 if (err) {
2442 put_page(page);
2443 if (err == -EEXIST)
2444 goto retry;
2445 goto out;
2448 spin_lock(&inode->i_lock);
2449 inode->i_blocks += blocks_per_huge_page(h);
2450 spin_unlock(&inode->i_lock);
2451 } else {
2452 lock_page(page);
2453 page->mapping = HUGETLB_POISON;
2458 * If we are going to COW a private mapping later, we examine the
2459 * pending reservations for this page now. This will ensure that
2460 * any allocations necessary to record that reservation occur outside
2461 * the spinlock.
2463 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2464 if (vma_needs_reservation(h, vma, address) < 0) {
2465 ret = VM_FAULT_OOM;
2466 goto backout_unlocked;
2469 spin_lock(&mm->page_table_lock);
2470 size = i_size_read(mapping->host) >> huge_page_shift(h);
2471 if (idx >= size)
2472 goto backout;
2474 ret = 0;
2475 if (!huge_pte_none(huge_ptep_get(ptep)))
2476 goto backout;
2478 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2479 && (vma->vm_flags & VM_SHARED)));
2480 set_huge_pte_at(mm, address, ptep, new_pte);
2482 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2483 /* Optimization, do the COW without a second fault */
2484 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2487 spin_unlock(&mm->page_table_lock);
2488 unlock_page(page);
2489 out:
2490 return ret;
2492 backout:
2493 spin_unlock(&mm->page_table_lock);
2494 backout_unlocked:
2495 unlock_page(page);
2496 put_page(page);
2497 goto out;
2500 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2501 unsigned long address, unsigned int flags)
2503 pte_t *ptep;
2504 pte_t entry;
2505 int ret;
2506 struct page *pagecache_page = NULL;
2507 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2508 struct hstate *h = hstate_vma(vma);
2510 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2511 if (!ptep)
2512 return VM_FAULT_OOM;
2515 * Serialize hugepage allocation and instantiation, so that we don't
2516 * get spurious allocation failures if two CPUs race to instantiate
2517 * the same page in the page cache.
2519 mutex_lock(&hugetlb_instantiation_mutex);
2520 entry = huge_ptep_get(ptep);
2521 if (huge_pte_none(entry)) {
2522 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2523 goto out_mutex;
2526 ret = 0;
2529 * If we are going to COW the mapping later, we examine the pending
2530 * reservations for this page now. This will ensure that any
2531 * allocations necessary to record that reservation occur outside the
2532 * spinlock. For private mappings, we also lookup the pagecache
2533 * page now as it is used to determine if a reservation has been
2534 * consumed.
2536 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2537 if (vma_needs_reservation(h, vma, address) < 0) {
2538 ret = VM_FAULT_OOM;
2539 goto out_mutex;
2542 if (!(vma->vm_flags & VM_MAYSHARE))
2543 pagecache_page = hugetlbfs_pagecache_page(h,
2544 vma, address);
2547 spin_lock(&mm->page_table_lock);
2548 /* Check for a racing update before calling hugetlb_cow */
2549 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2550 goto out_page_table_lock;
2553 if (flags & FAULT_FLAG_WRITE) {
2554 if (!pte_write(entry)) {
2555 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2556 pagecache_page);
2557 goto out_page_table_lock;
2559 entry = pte_mkdirty(entry);
2561 entry = pte_mkyoung(entry);
2562 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2563 flags & FAULT_FLAG_WRITE))
2564 update_mmu_cache(vma, address, ptep);
2566 out_page_table_lock:
2567 spin_unlock(&mm->page_table_lock);
2569 if (pagecache_page) {
2570 unlock_page(pagecache_page);
2571 put_page(pagecache_page);
2574 out_mutex:
2575 mutex_unlock(&hugetlb_instantiation_mutex);
2577 return ret;
2580 /* Can be overriden by architectures */
2581 __attribute__((weak)) struct page *
2582 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2583 pud_t *pud, int write)
2585 BUG();
2586 return NULL;
2589 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2590 struct page **pages, struct vm_area_struct **vmas,
2591 unsigned long *position, int *length, int i,
2592 unsigned int flags)
2594 unsigned long pfn_offset;
2595 unsigned long vaddr = *position;
2596 int remainder = *length;
2597 struct hstate *h = hstate_vma(vma);
2599 spin_lock(&mm->page_table_lock);
2600 while (vaddr < vma->vm_end && remainder) {
2601 pte_t *pte;
2602 int absent;
2603 struct page *page;
2606 * Some archs (sparc64, sh*) have multiple pte_ts to
2607 * each hugepage. We have to make sure we get the
2608 * first, for the page indexing below to work.
2610 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2611 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2614 * When coredumping, it suits get_dump_page if we just return
2615 * an error where there's an empty slot with no huge pagecache
2616 * to back it. This way, we avoid allocating a hugepage, and
2617 * the sparse dumpfile avoids allocating disk blocks, but its
2618 * huge holes still show up with zeroes where they need to be.
2620 if (absent && (flags & FOLL_DUMP) &&
2621 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2622 remainder = 0;
2623 break;
2626 if (absent ||
2627 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2628 int ret;
2630 spin_unlock(&mm->page_table_lock);
2631 ret = hugetlb_fault(mm, vma, vaddr,
2632 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2633 spin_lock(&mm->page_table_lock);
2634 if (!(ret & VM_FAULT_ERROR))
2635 continue;
2637 remainder = 0;
2638 break;
2641 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2642 page = pte_page(huge_ptep_get(pte));
2643 same_page:
2644 if (pages) {
2645 pages[i] = mem_map_offset(page, pfn_offset);
2646 get_page(pages[i]);
2649 if (vmas)
2650 vmas[i] = vma;
2652 vaddr += PAGE_SIZE;
2653 ++pfn_offset;
2654 --remainder;
2655 ++i;
2656 if (vaddr < vma->vm_end && remainder &&
2657 pfn_offset < pages_per_huge_page(h)) {
2659 * We use pfn_offset to avoid touching the pageframes
2660 * of this compound page.
2662 goto same_page;
2665 spin_unlock(&mm->page_table_lock);
2666 *length = remainder;
2667 *position = vaddr;
2669 return i ? i : -EFAULT;
2672 void hugetlb_change_protection(struct vm_area_struct *vma,
2673 unsigned long address, unsigned long end, pgprot_t newprot)
2675 struct mm_struct *mm = vma->vm_mm;
2676 unsigned long start = address;
2677 pte_t *ptep;
2678 pte_t pte;
2679 struct hstate *h = hstate_vma(vma);
2681 BUG_ON(address >= end);
2682 flush_cache_range(vma, address, end);
2684 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2685 spin_lock(&mm->page_table_lock);
2686 for (; address < end; address += huge_page_size(h)) {
2687 ptep = huge_pte_offset(mm, address);
2688 if (!ptep)
2689 continue;
2690 if (huge_pmd_unshare(mm, &address, ptep))
2691 continue;
2692 if (!huge_pte_none(huge_ptep_get(ptep))) {
2693 pte = huge_ptep_get_and_clear(mm, address, ptep);
2694 pte = pte_mkhuge(pte_modify(pte, newprot));
2695 set_huge_pte_at(mm, address, ptep, pte);
2698 spin_unlock(&mm->page_table_lock);
2699 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2701 flush_tlb_range(vma, start, end);
2704 int hugetlb_reserve_pages(struct inode *inode,
2705 long from, long to,
2706 struct vm_area_struct *vma,
2707 int acctflag)
2709 long ret, chg;
2710 struct hstate *h = hstate_inode(inode);
2713 * Only apply hugepage reservation if asked. At fault time, an
2714 * attempt will be made for VM_NORESERVE to allocate a page
2715 * and filesystem quota without using reserves
2717 if (acctflag & VM_NORESERVE)
2718 return 0;
2721 * Shared mappings base their reservation on the number of pages that
2722 * are already allocated on behalf of the file. Private mappings need
2723 * to reserve the full area even if read-only as mprotect() may be
2724 * called to make the mapping read-write. Assume !vma is a shm mapping
2726 if (!vma || vma->vm_flags & VM_MAYSHARE)
2727 chg = region_chg(&inode->i_mapping->private_list, from, to);
2728 else {
2729 struct resv_map *resv_map = resv_map_alloc();
2730 if (!resv_map)
2731 return -ENOMEM;
2733 chg = to - from;
2735 set_vma_resv_map(vma, resv_map);
2736 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2739 if (chg < 0)
2740 return chg;
2742 /* There must be enough filesystem quota for the mapping */
2743 if (hugetlb_get_quota(inode->i_mapping, chg))
2744 return -ENOSPC;
2747 * Check enough hugepages are available for the reservation.
2748 * Hand back the quota if there are not
2750 ret = hugetlb_acct_memory(h, chg);
2751 if (ret < 0) {
2752 hugetlb_put_quota(inode->i_mapping, chg);
2753 return ret;
2757 * Account for the reservations made. Shared mappings record regions
2758 * that have reservations as they are shared by multiple VMAs.
2759 * When the last VMA disappears, the region map says how much
2760 * the reservation was and the page cache tells how much of
2761 * the reservation was consumed. Private mappings are per-VMA and
2762 * only the consumed reservations are tracked. When the VMA
2763 * disappears, the original reservation is the VMA size and the
2764 * consumed reservations are stored in the map. Hence, nothing
2765 * else has to be done for private mappings here
2767 if (!vma || vma->vm_flags & VM_MAYSHARE)
2768 region_add(&inode->i_mapping->private_list, from, to);
2769 return 0;
2772 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2774 struct hstate *h = hstate_inode(inode);
2775 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2777 spin_lock(&inode->i_lock);
2778 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2779 spin_unlock(&inode->i_lock);
2781 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2782 hugetlb_acct_memory(h, -(chg - freed));