x86/uv: Fix uninitialized spinlocks
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mmc / host / sh_mmcif.c
blobd5505f3fe2a170d04fc9011c5b5d2ff886a31df7
1 /*
2 * MMCIF eMMC driver.
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/core.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/mmc.h>
28 #include <linux/mmc/sdio.h>
29 #include <linux/mmc/sh_mmcif.h>
30 #include <linux/pagemap.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/spinlock.h>
34 #include <linux/module.h>
36 #define DRIVER_NAME "sh_mmcif"
37 #define DRIVER_VERSION "2010-04-28"
39 /* CE_CMD_SET */
40 #define CMD_MASK 0x3f000000
41 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
42 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
43 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
44 #define CMD_SET_RBSY (1 << 21) /* R1b */
45 #define CMD_SET_CCSEN (1 << 20)
46 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
47 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
48 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
49 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
50 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
51 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
52 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
53 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
54 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
55 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
56 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
57 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
58 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
59 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
60 #define CMD_SET_CCSH (1 << 5)
61 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
62 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
63 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
65 /* CE_CMD_CTRL */
66 #define CMD_CTRL_BREAK (1 << 0)
68 /* CE_BLOCK_SET */
69 #define BLOCK_SIZE_MASK 0x0000ffff
71 /* CE_INT */
72 #define INT_CCSDE (1 << 29)
73 #define INT_CMD12DRE (1 << 26)
74 #define INT_CMD12RBE (1 << 25)
75 #define INT_CMD12CRE (1 << 24)
76 #define INT_DTRANE (1 << 23)
77 #define INT_BUFRE (1 << 22)
78 #define INT_BUFWEN (1 << 21)
79 #define INT_BUFREN (1 << 20)
80 #define INT_CCSRCV (1 << 19)
81 #define INT_RBSYE (1 << 17)
82 #define INT_CRSPE (1 << 16)
83 #define INT_CMDVIO (1 << 15)
84 #define INT_BUFVIO (1 << 14)
85 #define INT_WDATERR (1 << 11)
86 #define INT_RDATERR (1 << 10)
87 #define INT_RIDXERR (1 << 9)
88 #define INT_RSPERR (1 << 8)
89 #define INT_CCSTO (1 << 5)
90 #define INT_CRCSTO (1 << 4)
91 #define INT_WDATTO (1 << 3)
92 #define INT_RDATTO (1 << 2)
93 #define INT_RBSYTO (1 << 1)
94 #define INT_RSPTO (1 << 0)
95 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
96 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
97 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
98 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
100 /* CE_INT_MASK */
101 #define MASK_ALL 0x00000000
102 #define MASK_MCCSDE (1 << 29)
103 #define MASK_MCMD12DRE (1 << 26)
104 #define MASK_MCMD12RBE (1 << 25)
105 #define MASK_MCMD12CRE (1 << 24)
106 #define MASK_MDTRANE (1 << 23)
107 #define MASK_MBUFRE (1 << 22)
108 #define MASK_MBUFWEN (1 << 21)
109 #define MASK_MBUFREN (1 << 20)
110 #define MASK_MCCSRCV (1 << 19)
111 #define MASK_MRBSYE (1 << 17)
112 #define MASK_MCRSPE (1 << 16)
113 #define MASK_MCMDVIO (1 << 15)
114 #define MASK_MBUFVIO (1 << 14)
115 #define MASK_MWDATERR (1 << 11)
116 #define MASK_MRDATERR (1 << 10)
117 #define MASK_MRIDXERR (1 << 9)
118 #define MASK_MRSPERR (1 << 8)
119 #define MASK_MCCSTO (1 << 5)
120 #define MASK_MCRCSTO (1 << 4)
121 #define MASK_MWDATTO (1 << 3)
122 #define MASK_MRDATTO (1 << 2)
123 #define MASK_MRBSYTO (1 << 1)
124 #define MASK_MRSPTO (1 << 0)
126 /* CE_HOST_STS1 */
127 #define STS1_CMDSEQ (1 << 31)
129 /* CE_HOST_STS2 */
130 #define STS2_CRCSTE (1 << 31)
131 #define STS2_CRC16E (1 << 30)
132 #define STS2_AC12CRCE (1 << 29)
133 #define STS2_RSPCRC7E (1 << 28)
134 #define STS2_CRCSTEBE (1 << 27)
135 #define STS2_RDATEBE (1 << 26)
136 #define STS2_AC12REBE (1 << 25)
137 #define STS2_RSPEBE (1 << 24)
138 #define STS2_AC12IDXE (1 << 23)
139 #define STS2_RSPIDXE (1 << 22)
140 #define STS2_CCSTO (1 << 15)
141 #define STS2_RDATTO (1 << 14)
142 #define STS2_DATBSYTO (1 << 13)
143 #define STS2_CRCSTTO (1 << 12)
144 #define STS2_AC12BSYTO (1 << 11)
145 #define STS2_RSPBSYTO (1 << 10)
146 #define STS2_AC12RSPTO (1 << 9)
147 #define STS2_RSPTO (1 << 8)
148 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
149 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
150 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
151 STS2_DATBSYTO | STS2_CRCSTTO | \
152 STS2_AC12BSYTO | STS2_RSPBSYTO | \
153 STS2_AC12RSPTO | STS2_RSPTO)
155 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
156 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
157 #define CLKDEV_INIT 400000 /* 400 KHz */
159 enum mmcif_state {
160 STATE_IDLE,
161 STATE_REQUEST,
162 STATE_IOS,
165 struct sh_mmcif_host {
166 struct mmc_host *mmc;
167 struct mmc_data *data;
168 struct platform_device *pd;
169 struct sh_dmae_slave dma_slave_tx;
170 struct sh_dmae_slave dma_slave_rx;
171 struct clk *hclk;
172 unsigned int clk;
173 int bus_width;
174 bool sd_error;
175 long timeout;
176 void __iomem *addr;
177 struct completion intr_wait;
178 enum mmcif_state state;
179 spinlock_t lock;
180 bool power;
181 bool card_present;
183 /* DMA support */
184 struct dma_chan *chan_rx;
185 struct dma_chan *chan_tx;
186 struct completion dma_complete;
187 bool dma_active;
190 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
191 unsigned int reg, u32 val)
193 writel(val | readl(host->addr + reg), host->addr + reg);
196 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
197 unsigned int reg, u32 val)
199 writel(~val & readl(host->addr + reg), host->addr + reg);
202 static void mmcif_dma_complete(void *arg)
204 struct sh_mmcif_host *host = arg;
205 dev_dbg(&host->pd->dev, "Command completed\n");
207 if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
208 dev_name(&host->pd->dev)))
209 return;
211 if (host->data->flags & MMC_DATA_READ)
212 dma_unmap_sg(host->chan_rx->device->dev,
213 host->data->sg, host->data->sg_len,
214 DMA_FROM_DEVICE);
215 else
216 dma_unmap_sg(host->chan_tx->device->dev,
217 host->data->sg, host->data->sg_len,
218 DMA_TO_DEVICE);
220 complete(&host->dma_complete);
223 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
225 struct scatterlist *sg = host->data->sg;
226 struct dma_async_tx_descriptor *desc = NULL;
227 struct dma_chan *chan = host->chan_rx;
228 dma_cookie_t cookie = -EINVAL;
229 int ret;
231 ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
232 DMA_FROM_DEVICE);
233 if (ret > 0) {
234 host->dma_active = true;
235 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
236 DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
239 if (desc) {
240 desc->callback = mmcif_dma_complete;
241 desc->callback_param = host;
242 cookie = dmaengine_submit(desc);
243 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
244 dma_async_issue_pending(chan);
246 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
247 __func__, host->data->sg_len, ret, cookie);
249 if (!desc) {
250 /* DMA failed, fall back to PIO */
251 if (ret >= 0)
252 ret = -EIO;
253 host->chan_rx = NULL;
254 host->dma_active = false;
255 dma_release_channel(chan);
256 /* Free the Tx channel too */
257 chan = host->chan_tx;
258 if (chan) {
259 host->chan_tx = NULL;
260 dma_release_channel(chan);
262 dev_warn(&host->pd->dev,
263 "DMA failed: %d, falling back to PIO\n", ret);
264 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
267 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
268 desc, cookie, host->data->sg_len);
271 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
273 struct scatterlist *sg = host->data->sg;
274 struct dma_async_tx_descriptor *desc = NULL;
275 struct dma_chan *chan = host->chan_tx;
276 dma_cookie_t cookie = -EINVAL;
277 int ret;
279 ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
280 DMA_TO_DEVICE);
281 if (ret > 0) {
282 host->dma_active = true;
283 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
284 DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
287 if (desc) {
288 desc->callback = mmcif_dma_complete;
289 desc->callback_param = host;
290 cookie = dmaengine_submit(desc);
291 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
292 dma_async_issue_pending(chan);
294 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
295 __func__, host->data->sg_len, ret, cookie);
297 if (!desc) {
298 /* DMA failed, fall back to PIO */
299 if (ret >= 0)
300 ret = -EIO;
301 host->chan_tx = NULL;
302 host->dma_active = false;
303 dma_release_channel(chan);
304 /* Free the Rx channel too */
305 chan = host->chan_rx;
306 if (chan) {
307 host->chan_rx = NULL;
308 dma_release_channel(chan);
310 dev_warn(&host->pd->dev,
311 "DMA failed: %d, falling back to PIO\n", ret);
312 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
315 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
316 desc, cookie);
319 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
321 dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
322 chan->private = arg;
323 return true;
326 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
327 struct sh_mmcif_plat_data *pdata)
329 struct sh_dmae_slave *tx, *rx;
330 host->dma_active = false;
332 /* We can only either use DMA for both Tx and Rx or not use it at all */
333 if (pdata->dma) {
334 dev_warn(&host->pd->dev,
335 "Update your platform to use embedded DMA slave IDs\n");
336 tx = &pdata->dma->chan_priv_tx;
337 rx = &pdata->dma->chan_priv_rx;
338 } else {
339 tx = &host->dma_slave_tx;
340 tx->slave_id = pdata->slave_id_tx;
341 rx = &host->dma_slave_rx;
342 rx->slave_id = pdata->slave_id_rx;
344 if (tx->slave_id > 0 && rx->slave_id > 0) {
345 dma_cap_mask_t mask;
347 dma_cap_zero(mask);
348 dma_cap_set(DMA_SLAVE, mask);
350 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
351 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
352 host->chan_tx);
354 if (!host->chan_tx)
355 return;
357 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
358 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
359 host->chan_rx);
361 if (!host->chan_rx) {
362 dma_release_channel(host->chan_tx);
363 host->chan_tx = NULL;
364 return;
367 init_completion(&host->dma_complete);
371 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
373 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
374 /* Descriptors are freed automatically */
375 if (host->chan_tx) {
376 struct dma_chan *chan = host->chan_tx;
377 host->chan_tx = NULL;
378 dma_release_channel(chan);
380 if (host->chan_rx) {
381 struct dma_chan *chan = host->chan_rx;
382 host->chan_rx = NULL;
383 dma_release_channel(chan);
386 host->dma_active = false;
389 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
391 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
393 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
394 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
396 if (!clk)
397 return;
398 if (p->sup_pclk && clk == host->clk)
399 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
400 else
401 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
402 (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
404 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
407 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
409 u32 tmp;
411 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
413 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
414 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
415 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
416 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
417 /* byte swap on */
418 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
421 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
423 u32 state1, state2;
424 int ret, timeout = 10000000;
426 host->sd_error = false;
428 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
429 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
430 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
431 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
433 if (state1 & STS1_CMDSEQ) {
434 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
435 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
436 while (1) {
437 timeout--;
438 if (timeout < 0) {
439 dev_err(&host->pd->dev,
440 "Forceed end of command sequence timeout err\n");
441 return -EIO;
443 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
444 & STS1_CMDSEQ))
445 break;
446 mdelay(1);
448 sh_mmcif_sync_reset(host);
449 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
450 return -EIO;
453 if (state2 & STS2_CRC_ERR) {
454 dev_dbg(&host->pd->dev, ": Happened CRC error\n");
455 ret = -EIO;
456 } else if (state2 & STS2_TIMEOUT_ERR) {
457 dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
458 ret = -ETIMEDOUT;
459 } else {
460 dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
461 ret = -EIO;
463 return ret;
466 static int sh_mmcif_single_read(struct sh_mmcif_host *host,
467 struct mmc_request *mrq)
469 struct mmc_data *data = mrq->data;
470 long time;
471 u32 blocksize, i, *p = sg_virt(data->sg);
473 /* buf read enable */
474 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
475 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
476 host->timeout);
477 if (time <= 0 || host->sd_error)
478 return sh_mmcif_error_manage(host);
480 blocksize = (BLOCK_SIZE_MASK &
481 sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
482 for (i = 0; i < blocksize / 4; i++)
483 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
485 /* buffer read end */
486 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
487 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
488 host->timeout);
489 if (time <= 0 || host->sd_error)
490 return sh_mmcif_error_manage(host);
492 return 0;
495 static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
496 struct mmc_request *mrq)
498 struct mmc_data *data = mrq->data;
499 long time;
500 u32 blocksize, i, j, sec, *p;
502 blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
503 MMCIF_CE_BLOCK_SET);
504 for (j = 0; j < data->sg_len; j++) {
505 p = sg_virt(data->sg);
506 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
507 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
508 /* buf read enable */
509 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
510 host->timeout);
512 if (time <= 0 || host->sd_error)
513 return sh_mmcif_error_manage(host);
515 for (i = 0; i < blocksize / 4; i++)
516 *p++ = sh_mmcif_readl(host->addr,
517 MMCIF_CE_DATA);
519 if (j < data->sg_len - 1)
520 data->sg++;
522 return 0;
525 static int sh_mmcif_single_write(struct sh_mmcif_host *host,
526 struct mmc_request *mrq)
528 struct mmc_data *data = mrq->data;
529 long time;
530 u32 blocksize, i, *p = sg_virt(data->sg);
532 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
534 /* buf write enable */
535 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
536 host->timeout);
537 if (time <= 0 || host->sd_error)
538 return sh_mmcif_error_manage(host);
540 blocksize = (BLOCK_SIZE_MASK &
541 sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
542 for (i = 0; i < blocksize / 4; i++)
543 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
545 /* buffer write end */
546 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
548 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
549 host->timeout);
550 if (time <= 0 || host->sd_error)
551 return sh_mmcif_error_manage(host);
553 return 0;
556 static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
557 struct mmc_request *mrq)
559 struct mmc_data *data = mrq->data;
560 long time;
561 u32 i, sec, j, blocksize, *p;
563 blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
564 MMCIF_CE_BLOCK_SET);
566 for (j = 0; j < data->sg_len; j++) {
567 p = sg_virt(data->sg);
568 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
569 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
570 /* buf write enable*/
571 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
572 host->timeout);
574 if (time <= 0 || host->sd_error)
575 return sh_mmcif_error_manage(host);
577 for (i = 0; i < blocksize / 4; i++)
578 sh_mmcif_writel(host->addr,
579 MMCIF_CE_DATA, *p++);
581 if (j < data->sg_len - 1)
582 data->sg++;
584 return 0;
587 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
588 struct mmc_command *cmd)
590 if (cmd->flags & MMC_RSP_136) {
591 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
592 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
593 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
594 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
595 } else
596 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
599 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
600 struct mmc_command *cmd)
602 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
605 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
606 struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
608 u32 tmp = 0;
610 /* Response Type check */
611 switch (mmc_resp_type(cmd)) {
612 case MMC_RSP_NONE:
613 tmp |= CMD_SET_RTYP_NO;
614 break;
615 case MMC_RSP_R1:
616 case MMC_RSP_R1B:
617 case MMC_RSP_R3:
618 tmp |= CMD_SET_RTYP_6B;
619 break;
620 case MMC_RSP_R2:
621 tmp |= CMD_SET_RTYP_17B;
622 break;
623 default:
624 dev_err(&host->pd->dev, "Unsupported response type.\n");
625 break;
627 switch (opc) {
628 /* RBSY */
629 case MMC_SWITCH:
630 case MMC_STOP_TRANSMISSION:
631 case MMC_SET_WRITE_PROT:
632 case MMC_CLR_WRITE_PROT:
633 case MMC_ERASE:
634 case MMC_GEN_CMD:
635 tmp |= CMD_SET_RBSY;
636 break;
638 /* WDAT / DATW */
639 if (host->data) {
640 tmp |= CMD_SET_WDAT;
641 switch (host->bus_width) {
642 case MMC_BUS_WIDTH_1:
643 tmp |= CMD_SET_DATW_1;
644 break;
645 case MMC_BUS_WIDTH_4:
646 tmp |= CMD_SET_DATW_4;
647 break;
648 case MMC_BUS_WIDTH_8:
649 tmp |= CMD_SET_DATW_8;
650 break;
651 default:
652 dev_err(&host->pd->dev, "Unsupported bus width.\n");
653 break;
656 /* DWEN */
657 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
658 tmp |= CMD_SET_DWEN;
659 /* CMLTE/CMD12EN */
660 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
661 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
662 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
663 mrq->data->blocks << 16);
665 /* RIDXC[1:0] check bits */
666 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
667 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
668 tmp |= CMD_SET_RIDXC_BITS;
669 /* RCRC7C[1:0] check bits */
670 if (opc == MMC_SEND_OP_COND)
671 tmp |= CMD_SET_CRC7C_BITS;
672 /* RCRC7C[1:0] internal CRC7 */
673 if (opc == MMC_ALL_SEND_CID ||
674 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
675 tmp |= CMD_SET_CRC7C_INTERNAL;
677 return opc = ((opc << 24) | tmp);
680 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
681 struct mmc_request *mrq, u32 opc)
683 int ret;
685 switch (opc) {
686 case MMC_READ_MULTIPLE_BLOCK:
687 ret = sh_mmcif_multi_read(host, mrq);
688 break;
689 case MMC_WRITE_MULTIPLE_BLOCK:
690 ret = sh_mmcif_multi_write(host, mrq);
691 break;
692 case MMC_WRITE_BLOCK:
693 ret = sh_mmcif_single_write(host, mrq);
694 break;
695 case MMC_READ_SINGLE_BLOCK:
696 case MMC_SEND_EXT_CSD:
697 ret = sh_mmcif_single_read(host, mrq);
698 break;
699 default:
700 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
701 ret = -EINVAL;
702 break;
704 return ret;
707 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
708 struct mmc_request *mrq, struct mmc_command *cmd)
710 long time;
711 int ret = 0, mask = 0;
712 u32 opc = cmd->opcode;
714 switch (opc) {
715 /* respons busy check */
716 case MMC_SWITCH:
717 case MMC_STOP_TRANSMISSION:
718 case MMC_SET_WRITE_PROT:
719 case MMC_CLR_WRITE_PROT:
720 case MMC_ERASE:
721 case MMC_GEN_CMD:
722 mask = MASK_MRBSYE;
723 break;
724 default:
725 mask = MASK_MCRSPE;
726 break;
728 mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
729 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
730 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
731 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
733 if (host->data) {
734 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
735 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
736 mrq->data->blksz);
738 opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
740 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
741 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
742 /* set arg */
743 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
744 /* set cmd */
745 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
747 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
748 host->timeout);
749 if (time <= 0) {
750 cmd->error = sh_mmcif_error_manage(host);
751 return;
753 if (host->sd_error) {
754 switch (cmd->opcode) {
755 case MMC_ALL_SEND_CID:
756 case MMC_SELECT_CARD:
757 case MMC_APP_CMD:
758 cmd->error = -ETIMEDOUT;
759 break;
760 default:
761 dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
762 cmd->opcode);
763 cmd->error = sh_mmcif_error_manage(host);
764 break;
766 host->sd_error = false;
767 return;
769 if (!(cmd->flags & MMC_RSP_PRESENT)) {
770 cmd->error = 0;
771 return;
773 sh_mmcif_get_response(host, cmd);
774 if (host->data) {
775 if (!host->dma_active) {
776 ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
777 } else {
778 long time =
779 wait_for_completion_interruptible_timeout(&host->dma_complete,
780 host->timeout);
781 if (!time)
782 ret = -ETIMEDOUT;
783 else if (time < 0)
784 ret = time;
785 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
786 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
787 host->dma_active = false;
789 if (ret < 0)
790 mrq->data->bytes_xfered = 0;
791 else
792 mrq->data->bytes_xfered =
793 mrq->data->blocks * mrq->data->blksz;
795 cmd->error = ret;
798 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
799 struct mmc_request *mrq, struct mmc_command *cmd)
801 long time;
803 if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
804 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
805 else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
806 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
807 else {
808 dev_err(&host->pd->dev, "unsupported stop cmd\n");
809 cmd->error = sh_mmcif_error_manage(host);
810 return;
813 time = wait_for_completion_interruptible_timeout(&host->intr_wait,
814 host->timeout);
815 if (time <= 0 || host->sd_error) {
816 cmd->error = sh_mmcif_error_manage(host);
817 return;
819 sh_mmcif_get_cmd12response(host, cmd);
820 cmd->error = 0;
823 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
825 struct sh_mmcif_host *host = mmc_priv(mmc);
826 unsigned long flags;
828 spin_lock_irqsave(&host->lock, flags);
829 if (host->state != STATE_IDLE) {
830 spin_unlock_irqrestore(&host->lock, flags);
831 mrq->cmd->error = -EAGAIN;
832 mmc_request_done(mmc, mrq);
833 return;
836 host->state = STATE_REQUEST;
837 spin_unlock_irqrestore(&host->lock, flags);
839 switch (mrq->cmd->opcode) {
840 /* MMCIF does not support SD/SDIO command */
841 case SD_IO_SEND_OP_COND:
842 case MMC_APP_CMD:
843 host->state = STATE_IDLE;
844 mrq->cmd->error = -ETIMEDOUT;
845 mmc_request_done(mmc, mrq);
846 return;
847 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
848 if (!mrq->data) {
849 /* send_if_cond cmd (not support) */
850 host->state = STATE_IDLE;
851 mrq->cmd->error = -ETIMEDOUT;
852 mmc_request_done(mmc, mrq);
853 return;
855 break;
856 default:
857 break;
859 host->data = mrq->data;
860 if (mrq->data) {
861 if (mrq->data->flags & MMC_DATA_READ) {
862 if (host->chan_rx)
863 sh_mmcif_start_dma_rx(host);
864 } else {
865 if (host->chan_tx)
866 sh_mmcif_start_dma_tx(host);
869 sh_mmcif_start_cmd(host, mrq, mrq->cmd);
870 host->data = NULL;
872 if (!mrq->cmd->error && mrq->stop)
873 sh_mmcif_stop_cmd(host, mrq, mrq->stop);
874 host->state = STATE_IDLE;
875 mmc_request_done(mmc, mrq);
878 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
880 struct sh_mmcif_host *host = mmc_priv(mmc);
881 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
882 unsigned long flags;
884 spin_lock_irqsave(&host->lock, flags);
885 if (host->state != STATE_IDLE) {
886 spin_unlock_irqrestore(&host->lock, flags);
887 return;
890 host->state = STATE_IOS;
891 spin_unlock_irqrestore(&host->lock, flags);
893 if (ios->power_mode == MMC_POWER_UP) {
894 if (!host->card_present) {
895 /* See if we also get DMA */
896 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
897 host->card_present = true;
899 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
900 /* clock stop */
901 sh_mmcif_clock_control(host, 0);
902 if (ios->power_mode == MMC_POWER_OFF) {
903 if (host->card_present) {
904 sh_mmcif_release_dma(host);
905 host->card_present = false;
908 if (host->power) {
909 pm_runtime_put(&host->pd->dev);
910 host->power = false;
911 if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
912 p->down_pwr(host->pd);
914 host->state = STATE_IDLE;
915 return;
918 if (ios->clock) {
919 if (!host->power) {
920 if (p->set_pwr)
921 p->set_pwr(host->pd, ios->power_mode);
922 pm_runtime_get_sync(&host->pd->dev);
923 host->power = true;
924 sh_mmcif_sync_reset(host);
926 sh_mmcif_clock_control(host, ios->clock);
929 host->bus_width = ios->bus_width;
930 host->state = STATE_IDLE;
933 static int sh_mmcif_get_cd(struct mmc_host *mmc)
935 struct sh_mmcif_host *host = mmc_priv(mmc);
936 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
938 if (!p->get_cd)
939 return -ENOSYS;
940 else
941 return p->get_cd(host->pd);
944 static struct mmc_host_ops sh_mmcif_ops = {
945 .request = sh_mmcif_request,
946 .set_ios = sh_mmcif_set_ios,
947 .get_cd = sh_mmcif_get_cd,
950 static void sh_mmcif_detect(struct mmc_host *mmc)
952 mmc_detect_change(mmc, 0);
955 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
957 struct sh_mmcif_host *host = dev_id;
958 u32 state;
959 int err = 0;
961 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
963 if (state & INT_RBSYE) {
964 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
965 ~(INT_RBSYE | INT_CRSPE));
966 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
967 } else if (state & INT_CRSPE) {
968 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
969 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
970 } else if (state & INT_BUFREN) {
971 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
972 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
973 } else if (state & INT_BUFWEN) {
974 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
975 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
976 } else if (state & INT_CMD12DRE) {
977 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
978 ~(INT_CMD12DRE | INT_CMD12RBE |
979 INT_CMD12CRE | INT_BUFRE));
980 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
981 } else if (state & INT_BUFRE) {
982 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
983 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
984 } else if (state & INT_DTRANE) {
985 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
986 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
987 } else if (state & INT_CMD12RBE) {
988 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
989 ~(INT_CMD12RBE | INT_CMD12CRE));
990 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
991 } else if (state & INT_ERR_STS) {
992 /* err interrupts */
993 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
994 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
995 err = 1;
996 } else {
997 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
998 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
999 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1000 err = 1;
1002 if (err) {
1003 host->sd_error = true;
1004 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1006 if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
1007 complete(&host->intr_wait);
1008 else
1009 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1011 return IRQ_HANDLED;
1014 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1016 int ret = 0, irq[2];
1017 struct mmc_host *mmc;
1018 struct sh_mmcif_host *host;
1019 struct sh_mmcif_plat_data *pd;
1020 struct resource *res;
1021 void __iomem *reg;
1022 char clk_name[8];
1024 irq[0] = platform_get_irq(pdev, 0);
1025 irq[1] = platform_get_irq(pdev, 1);
1026 if (irq[0] < 0 || irq[1] < 0) {
1027 dev_err(&pdev->dev, "Get irq error\n");
1028 return -ENXIO;
1030 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1031 if (!res) {
1032 dev_err(&pdev->dev, "platform_get_resource error.\n");
1033 return -ENXIO;
1035 reg = ioremap(res->start, resource_size(res));
1036 if (!reg) {
1037 dev_err(&pdev->dev, "ioremap error.\n");
1038 return -ENOMEM;
1040 pd = pdev->dev.platform_data;
1041 if (!pd) {
1042 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1043 ret = -ENXIO;
1044 goto clean_up;
1046 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1047 if (!mmc) {
1048 ret = -ENOMEM;
1049 goto clean_up;
1051 host = mmc_priv(mmc);
1052 host->mmc = mmc;
1053 host->addr = reg;
1054 host->timeout = 1000;
1056 snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1057 host->hclk = clk_get(&pdev->dev, clk_name);
1058 if (IS_ERR(host->hclk)) {
1059 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1060 ret = PTR_ERR(host->hclk);
1061 goto clean_up1;
1063 clk_enable(host->hclk);
1064 host->clk = clk_get_rate(host->hclk);
1065 host->pd = pdev;
1067 init_completion(&host->intr_wait);
1068 spin_lock_init(&host->lock);
1070 mmc->ops = &sh_mmcif_ops;
1071 mmc->f_max = host->clk;
1072 /* close to 400KHz */
1073 if (mmc->f_max < 51200000)
1074 mmc->f_min = mmc->f_max / 128;
1075 else if (mmc->f_max < 102400000)
1076 mmc->f_min = mmc->f_max / 256;
1077 else
1078 mmc->f_min = mmc->f_max / 512;
1079 if (pd->ocr)
1080 mmc->ocr_avail = pd->ocr;
1081 mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1082 if (pd->caps)
1083 mmc->caps |= pd->caps;
1084 mmc->max_segs = 32;
1085 mmc->max_blk_size = 512;
1086 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1087 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1088 mmc->max_seg_size = mmc->max_req_size;
1090 sh_mmcif_sync_reset(host);
1091 platform_set_drvdata(pdev, host);
1093 pm_runtime_enable(&pdev->dev);
1094 host->power = false;
1096 ret = pm_runtime_resume(&pdev->dev);
1097 if (ret < 0)
1098 goto clean_up2;
1100 mmc_add_host(mmc);
1102 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1104 ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1105 if (ret) {
1106 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1107 goto clean_up3;
1109 ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1110 if (ret) {
1111 free_irq(irq[0], host);
1112 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1113 goto clean_up3;
1116 sh_mmcif_detect(host->mmc);
1118 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1119 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1120 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1121 return ret;
1123 clean_up3:
1124 mmc_remove_host(mmc);
1125 pm_runtime_suspend(&pdev->dev);
1126 clean_up2:
1127 pm_runtime_disable(&pdev->dev);
1128 clk_disable(host->hclk);
1129 clean_up1:
1130 mmc_free_host(mmc);
1131 clean_up:
1132 if (reg)
1133 iounmap(reg);
1134 return ret;
1137 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1139 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1140 int irq[2];
1142 pm_runtime_get_sync(&pdev->dev);
1144 mmc_remove_host(host->mmc);
1145 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1147 if (host->addr)
1148 iounmap(host->addr);
1150 irq[0] = platform_get_irq(pdev, 0);
1151 irq[1] = platform_get_irq(pdev, 1);
1153 free_irq(irq[0], host);
1154 free_irq(irq[1], host);
1156 platform_set_drvdata(pdev, NULL);
1158 clk_disable(host->hclk);
1159 mmc_free_host(host->mmc);
1160 pm_runtime_put_sync(&pdev->dev);
1161 pm_runtime_disable(&pdev->dev);
1163 return 0;
1166 #ifdef CONFIG_PM
1167 static int sh_mmcif_suspend(struct device *dev)
1169 struct platform_device *pdev = to_platform_device(dev);
1170 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1171 int ret = mmc_suspend_host(host->mmc);
1173 if (!ret) {
1174 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1175 clk_disable(host->hclk);
1178 return ret;
1181 static int sh_mmcif_resume(struct device *dev)
1183 struct platform_device *pdev = to_platform_device(dev);
1184 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1186 clk_enable(host->hclk);
1188 return mmc_resume_host(host->mmc);
1190 #else
1191 #define sh_mmcif_suspend NULL
1192 #define sh_mmcif_resume NULL
1193 #endif /* CONFIG_PM */
1195 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1196 .suspend = sh_mmcif_suspend,
1197 .resume = sh_mmcif_resume,
1200 static struct platform_driver sh_mmcif_driver = {
1201 .probe = sh_mmcif_probe,
1202 .remove = sh_mmcif_remove,
1203 .driver = {
1204 .name = DRIVER_NAME,
1205 .pm = &sh_mmcif_dev_pm_ops,
1209 static int __init sh_mmcif_init(void)
1211 return platform_driver_register(&sh_mmcif_driver);
1214 static void __exit sh_mmcif_exit(void)
1216 platform_driver_unregister(&sh_mmcif_driver);
1219 module_init(sh_mmcif_init);
1220 module_exit(sh_mmcif_exit);
1223 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1224 MODULE_LICENSE("GPL");
1225 MODULE_ALIAS("platform:" DRIVER_NAME);
1226 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");