2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
10 static int check_clock(const clockid_t which_clock
)
13 struct task_struct
*p
;
14 const pid_t pid
= CPUCLOCK_PID(which_clock
);
16 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
22 read_lock(&tasklist_lock
);
23 p
= find_task_by_pid(pid
);
24 if (!p
|| (CPUCLOCK_PERTHREAD(which_clock
) ?
25 p
->tgid
!= current
->tgid
: p
->tgid
!= pid
)) {
28 read_unlock(&tasklist_lock
);
33 static inline union cpu_time_count
34 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
36 union cpu_time_count ret
;
37 ret
.sched
= 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
39 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
41 ret
.cpu
= timespec_to_cputime(tp
);
46 static void sample_to_timespec(const clockid_t which_clock
,
47 union cpu_time_count cpu
,
50 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
51 tp
->tv_sec
= div_long_long_rem(cpu
.sched
,
52 NSEC_PER_SEC
, &tp
->tv_nsec
);
54 cputime_to_timespec(cpu
.cpu
, tp
);
58 static inline int cpu_time_before(const clockid_t which_clock
,
59 union cpu_time_count now
,
60 union cpu_time_count then
)
62 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
63 return now
.sched
< then
.sched
;
65 return cputime_lt(now
.cpu
, then
.cpu
);
68 static inline void cpu_time_add(const clockid_t which_clock
,
69 union cpu_time_count
*acc
,
70 union cpu_time_count val
)
72 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
73 acc
->sched
+= val
.sched
;
75 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
78 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
79 union cpu_time_count a
,
80 union cpu_time_count b
)
82 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
85 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
91 * Update expiry time from increment, and increase overrun count,
92 * given the current clock sample.
94 static void bump_cpu_timer(struct k_itimer
*timer
,
95 union cpu_time_count now
)
99 if (timer
->it
.cpu
.incr
.sched
== 0)
102 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
103 unsigned long long delta
, incr
;
105 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
107 incr
= timer
->it
.cpu
.incr
.sched
;
108 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
109 /* Don't use (incr*2 < delta), incr*2 might overflow. */
110 for (i
= 0; incr
< delta
- incr
; i
++)
112 for (; i
>= 0; incr
>>= 1, i
--) {
115 timer
->it
.cpu
.expires
.sched
+= incr
;
116 timer
->it_overrun
+= 1 << i
;
120 cputime_t delta
, incr
;
122 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
124 incr
= timer
->it
.cpu
.incr
.cpu
;
125 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
126 timer
->it
.cpu
.expires
.cpu
);
127 /* Don't use (incr*2 < delta), incr*2 might overflow. */
128 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
129 incr
= cputime_add(incr
, incr
);
130 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
131 if (cputime_lt(delta
, incr
))
133 timer
->it
.cpu
.expires
.cpu
=
134 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
135 timer
->it_overrun
+= 1 << i
;
136 delta
= cputime_sub(delta
, incr
);
141 static inline cputime_t
prof_ticks(struct task_struct
*p
)
143 return cputime_add(p
->utime
, p
->stime
);
145 static inline cputime_t
virt_ticks(struct task_struct
*p
)
149 static inline unsigned long long sched_ns(struct task_struct
*p
)
151 return (p
== current
) ? current_sched_time(p
) : p
->sched_time
;
154 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
156 int error
= check_clock(which_clock
);
159 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
160 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
172 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
175 * You can never reset a CPU clock, but we check for other errors
176 * in the call before failing with EPERM.
178 int error
= check_clock(which_clock
);
187 * Sample a per-thread clock for the given task.
189 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
190 union cpu_time_count
*cpu
)
192 switch (CPUCLOCK_WHICH(which_clock
)) {
196 cpu
->cpu
= prof_ticks(p
);
199 cpu
->cpu
= virt_ticks(p
);
202 cpu
->sched
= sched_ns(p
);
209 * Sample a process (thread group) clock for the given group_leader task.
210 * Must be called with tasklist_lock held for reading.
211 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
213 static int cpu_clock_sample_group_locked(unsigned int clock_idx
,
214 struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 struct task_struct
*t
= p
;
222 cpu
->cpu
= cputime_add(p
->signal
->utime
, p
->signal
->stime
);
224 cpu
->cpu
= cputime_add(cpu
->cpu
, prof_ticks(t
));
229 cpu
->cpu
= p
->signal
->utime
;
231 cpu
->cpu
= cputime_add(cpu
->cpu
, virt_ticks(t
));
236 cpu
->sched
= p
->signal
->sched_time
;
237 /* Add in each other live thread. */
238 while ((t
= next_thread(t
)) != p
) {
239 cpu
->sched
+= t
->sched_time
;
241 cpu
->sched
+= sched_ns(p
);
248 * Sample a process (thread group) clock for the given group_leader task.
249 * Must be called with tasklist_lock held for reading.
251 static int cpu_clock_sample_group(const clockid_t which_clock
,
252 struct task_struct
*p
,
253 union cpu_time_count
*cpu
)
257 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
258 ret
= cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock
), p
,
260 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
265 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
267 const pid_t pid
= CPUCLOCK_PID(which_clock
);
269 union cpu_time_count rtn
;
273 * Special case constant value for our own clocks.
274 * We don't have to do any lookup to find ourselves.
276 if (CPUCLOCK_PERTHREAD(which_clock
)) {
278 * Sampling just ourselves we can do with no locking.
280 error
= cpu_clock_sample(which_clock
,
283 read_lock(&tasklist_lock
);
284 error
= cpu_clock_sample_group(which_clock
,
286 read_unlock(&tasklist_lock
);
290 * Find the given PID, and validate that the caller
291 * should be able to see it.
293 struct task_struct
*p
;
294 read_lock(&tasklist_lock
);
295 p
= find_task_by_pid(pid
);
297 if (CPUCLOCK_PERTHREAD(which_clock
)) {
298 if (p
->tgid
== current
->tgid
) {
299 error
= cpu_clock_sample(which_clock
,
302 } else if (p
->tgid
== pid
&& p
->signal
) {
303 error
= cpu_clock_sample_group(which_clock
,
307 read_unlock(&tasklist_lock
);
312 sample_to_timespec(which_clock
, rtn
, tp
);
318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319 * This is called from sys_timer_create with the new timer already locked.
321 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
324 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
325 struct task_struct
*p
;
327 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
330 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
331 new_timer
->it
.cpu
.incr
.sched
= 0;
332 new_timer
->it
.cpu
.expires
.sched
= 0;
334 read_lock(&tasklist_lock
);
335 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
339 p
= find_task_by_pid(pid
);
340 if (p
&& p
->tgid
!= current
->tgid
)
345 p
= current
->group_leader
;
347 p
= find_task_by_pid(pid
);
348 if (p
&& p
->tgid
!= pid
)
352 new_timer
->it
.cpu
.task
= p
;
358 read_unlock(&tasklist_lock
);
364 * Clean up a CPU-clock timer that is about to be destroyed.
365 * This is called from timer deletion with the timer already locked.
366 * If we return TIMER_RETRY, it's necessary to release the timer's lock
367 * and try again. (This happens when the timer is in the middle of firing.)
369 int posix_cpu_timer_del(struct k_itimer
*timer
)
371 struct task_struct
*p
= timer
->it
.cpu
.task
;
374 if (likely(p
!= NULL
)) {
375 read_lock(&tasklist_lock
);
376 if (unlikely(p
->signal
== NULL
)) {
378 * We raced with the reaping of the task.
379 * The deletion should have cleared us off the list.
381 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
383 spin_lock(&p
->sighand
->siglock
);
384 if (timer
->it
.cpu
.firing
)
387 list_del(&timer
->it
.cpu
.entry
);
388 spin_unlock(&p
->sighand
->siglock
);
390 read_unlock(&tasklist_lock
);
400 * Clean out CPU timers still ticking when a thread exited. The task
401 * pointer is cleared, and the expiry time is replaced with the residual
402 * time for later timer_gettime calls to return.
403 * This must be called with the siglock held.
405 static void cleanup_timers(struct list_head
*head
,
406 cputime_t utime
, cputime_t stime
,
407 unsigned long long sched_time
)
409 struct cpu_timer_list
*timer
, *next
;
410 cputime_t ptime
= cputime_add(utime
, stime
);
412 list_for_each_entry_safe(timer
, next
, head
, entry
) {
413 list_del_init(&timer
->entry
);
414 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
415 timer
->expires
.cpu
= cputime_zero
;
417 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
423 list_for_each_entry_safe(timer
, next
, head
, entry
) {
424 list_del_init(&timer
->entry
);
425 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
426 timer
->expires
.cpu
= cputime_zero
;
428 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
434 list_for_each_entry_safe(timer
, next
, head
, entry
) {
435 list_del_init(&timer
->entry
);
436 if (timer
->expires
.sched
< sched_time
) {
437 timer
->expires
.sched
= 0;
439 timer
->expires
.sched
-= sched_time
;
445 * These are both called with the siglock held, when the current thread
446 * is being reaped. When the final (leader) thread in the group is reaped,
447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
449 void posix_cpu_timers_exit(struct task_struct
*tsk
)
451 cleanup_timers(tsk
->cpu_timers
,
452 tsk
->utime
, tsk
->stime
, tsk
->sched_time
);
455 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
457 cleanup_timers(tsk
->signal
->cpu_timers
,
458 cputime_add(tsk
->utime
, tsk
->signal
->utime
),
459 cputime_add(tsk
->stime
, tsk
->signal
->stime
),
460 tsk
->sched_time
+ tsk
->signal
->sched_time
);
465 * Set the expiry times of all the threads in the process so one of them
466 * will go off before the process cumulative expiry total is reached.
468 static void process_timer_rebalance(struct task_struct
*p
,
469 unsigned int clock_idx
,
470 union cpu_time_count expires
,
471 union cpu_time_count val
)
473 cputime_t ticks
, left
;
474 unsigned long long ns
, nsleft
;
475 struct task_struct
*t
= p
;
476 unsigned int nthreads
= atomic_read(&p
->signal
->live
);
486 left
= cputime_div(cputime_sub(expires
.cpu
, val
.cpu
),
489 if (likely(!(t
->flags
& PF_EXITING
))) {
490 ticks
= cputime_add(prof_ticks(t
), left
);
491 if (cputime_eq(t
->it_prof_expires
,
493 cputime_gt(t
->it_prof_expires
, ticks
)) {
494 t
->it_prof_expires
= ticks
;
501 left
= cputime_div(cputime_sub(expires
.cpu
, val
.cpu
),
504 if (likely(!(t
->flags
& PF_EXITING
))) {
505 ticks
= cputime_add(virt_ticks(t
), left
);
506 if (cputime_eq(t
->it_virt_expires
,
508 cputime_gt(t
->it_virt_expires
, ticks
)) {
509 t
->it_virt_expires
= ticks
;
516 nsleft
= expires
.sched
- val
.sched
;
517 do_div(nsleft
, nthreads
);
519 if (likely(!(t
->flags
& PF_EXITING
))) {
520 ns
= t
->sched_time
+ nsleft
;
521 if (t
->it_sched_expires
== 0 ||
522 t
->it_sched_expires
> ns
) {
523 t
->it_sched_expires
= ns
;
532 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
535 * That's all for this thread or process.
536 * We leave our residual in expires to be reported.
538 put_task_struct(timer
->it
.cpu
.task
);
539 timer
->it
.cpu
.task
= NULL
;
540 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
541 timer
->it
.cpu
.expires
,
546 * Insert the timer on the appropriate list before any timers that
547 * expire later. This must be called with the tasklist_lock held
548 * for reading, and interrupts disabled.
550 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
552 struct task_struct
*p
= timer
->it
.cpu
.task
;
553 struct list_head
*head
, *listpos
;
554 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
555 struct cpu_timer_list
*next
;
558 if (CPUCLOCK_PERTHREAD(timer
->it_clock
) && (p
->flags
& PF_EXITING
))
561 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
562 p
->cpu_timers
: p
->signal
->cpu_timers
);
563 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
565 BUG_ON(!irqs_disabled());
566 spin_lock(&p
->sighand
->siglock
);
569 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
570 list_for_each_entry(next
, head
, entry
) {
571 if (next
->expires
.sched
> nt
->expires
.sched
)
573 listpos
= &next
->entry
;
576 list_for_each_entry(next
, head
, entry
) {
577 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
579 listpos
= &next
->entry
;
582 list_add(&nt
->entry
, listpos
);
584 if (listpos
== head
) {
586 * We are the new earliest-expiring timer.
587 * If we are a thread timer, there can always
588 * be a process timer telling us to stop earlier.
591 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
592 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
596 if (cputime_eq(p
->it_prof_expires
,
598 cputime_gt(p
->it_prof_expires
,
600 p
->it_prof_expires
= nt
->expires
.cpu
;
603 if (cputime_eq(p
->it_virt_expires
,
605 cputime_gt(p
->it_virt_expires
,
607 p
->it_virt_expires
= nt
->expires
.cpu
;
610 if (p
->it_sched_expires
== 0 ||
611 p
->it_sched_expires
> nt
->expires
.sched
)
612 p
->it_sched_expires
= nt
->expires
.sched
;
617 * For a process timer, we must balance
618 * all the live threads' expirations.
620 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
624 if (!cputime_eq(p
->signal
->it_virt_expires
,
626 cputime_lt(p
->signal
->it_virt_expires
,
627 timer
->it
.cpu
.expires
.cpu
))
631 if (!cputime_eq(p
->signal
->it_prof_expires
,
633 cputime_lt(p
->signal
->it_prof_expires
,
634 timer
->it
.cpu
.expires
.cpu
))
636 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
637 if (i
!= RLIM_INFINITY
&&
638 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
643 process_timer_rebalance(
645 CPUCLOCK_WHICH(timer
->it_clock
),
646 timer
->it
.cpu
.expires
, now
);
652 spin_unlock(&p
->sighand
->siglock
);
656 * The timer is locked, fire it and arrange for its reload.
658 static void cpu_timer_fire(struct k_itimer
*timer
)
660 if (unlikely(timer
->sigq
== NULL
)) {
662 * This a special case for clock_nanosleep,
663 * not a normal timer from sys_timer_create.
665 wake_up_process(timer
->it_process
);
666 timer
->it
.cpu
.expires
.sched
= 0;
667 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
669 * One-shot timer. Clear it as soon as it's fired.
671 posix_timer_event(timer
, 0);
672 timer
->it
.cpu
.expires
.sched
= 0;
673 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
675 * The signal did not get queued because the signal
676 * was ignored, so we won't get any callback to
677 * reload the timer. But we need to keep it
678 * ticking in case the signal is deliverable next time.
680 posix_cpu_timer_schedule(timer
);
685 * Guts of sys_timer_settime for CPU timers.
686 * This is called with the timer locked and interrupts disabled.
687 * If we return TIMER_RETRY, it's necessary to release the timer's lock
688 * and try again. (This happens when the timer is in the middle of firing.)
690 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
691 struct itimerspec
*new, struct itimerspec
*old
)
693 struct task_struct
*p
= timer
->it
.cpu
.task
;
694 union cpu_time_count old_expires
, new_expires
, val
;
697 if (unlikely(p
== NULL
)) {
699 * Timer refers to a dead task's clock.
704 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
706 read_lock(&tasklist_lock
);
708 * We need the tasklist_lock to protect against reaping that
709 * clears p->signal. If p has just been reaped, we can no
710 * longer get any information about it at all.
712 if (unlikely(p
->signal
== NULL
)) {
713 read_unlock(&tasklist_lock
);
715 timer
->it
.cpu
.task
= NULL
;
720 * Disarm any old timer after extracting its expiry time.
722 BUG_ON(!irqs_disabled());
725 spin_lock(&p
->sighand
->siglock
);
726 old_expires
= timer
->it
.cpu
.expires
;
727 if (unlikely(timer
->it
.cpu
.firing
)) {
728 timer
->it
.cpu
.firing
= -1;
731 list_del_init(&timer
->it
.cpu
.entry
);
732 spin_unlock(&p
->sighand
->siglock
);
735 * We need to sample the current value to convert the new
736 * value from to relative and absolute, and to convert the
737 * old value from absolute to relative. To set a process
738 * timer, we need a sample to balance the thread expiry
739 * times (in arm_timer). With an absolute time, we must
740 * check if it's already passed. In short, we need a sample.
742 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
743 cpu_clock_sample(timer
->it_clock
, p
, &val
);
745 cpu_clock_sample_group(timer
->it_clock
, p
, &val
);
749 if (old_expires
.sched
== 0) {
750 old
->it_value
.tv_sec
= 0;
751 old
->it_value
.tv_nsec
= 0;
754 * Update the timer in case it has
755 * overrun already. If it has,
756 * we'll report it as having overrun
757 * and with the next reloaded timer
758 * already ticking, though we are
759 * swallowing that pending
760 * notification here to install the
763 bump_cpu_timer(timer
, val
);
764 if (cpu_time_before(timer
->it_clock
, val
,
765 timer
->it
.cpu
.expires
)) {
766 old_expires
= cpu_time_sub(
768 timer
->it
.cpu
.expires
, val
);
769 sample_to_timespec(timer
->it_clock
,
773 old
->it_value
.tv_nsec
= 1;
774 old
->it_value
.tv_sec
= 0;
781 * We are colliding with the timer actually firing.
782 * Punt after filling in the timer's old value, and
783 * disable this firing since we are already reporting
784 * it as an overrun (thanks to bump_cpu_timer above).
786 read_unlock(&tasklist_lock
);
790 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
791 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
795 * Install the new expiry time (or zero).
796 * For a timer with no notification action, we don't actually
797 * arm the timer (we'll just fake it for timer_gettime).
799 timer
->it
.cpu
.expires
= new_expires
;
800 if (new_expires
.sched
!= 0 &&
801 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
802 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
803 arm_timer(timer
, val
);
806 read_unlock(&tasklist_lock
);
809 * Install the new reload setting, and
810 * set up the signal and overrun bookkeeping.
812 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
816 * This acts as a modification timestamp for the timer,
817 * so any automatic reload attempt will punt on seeing
818 * that we have reset the timer manually.
820 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
822 timer
->it_overrun_last
= 0;
823 timer
->it_overrun
= -1;
825 if (new_expires
.sched
!= 0 &&
826 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
827 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
829 * The designated time already passed, so we notify
830 * immediately, even if the thread never runs to
831 * accumulate more time on this clock.
833 cpu_timer_fire(timer
);
839 sample_to_timespec(timer
->it_clock
,
840 timer
->it
.cpu
.incr
, &old
->it_interval
);
845 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
847 union cpu_time_count now
;
848 struct task_struct
*p
= timer
->it
.cpu
.task
;
852 * Easy part: convert the reload time.
854 sample_to_timespec(timer
->it_clock
,
855 timer
->it
.cpu
.incr
, &itp
->it_interval
);
857 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
858 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
862 if (unlikely(p
== NULL
)) {
864 * This task already died and the timer will never fire.
865 * In this case, expires is actually the dead value.
868 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
874 * Sample the clock to take the difference with the expiry time.
876 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
877 cpu_clock_sample(timer
->it_clock
, p
, &now
);
878 clear_dead
= p
->exit_state
;
880 read_lock(&tasklist_lock
);
881 if (unlikely(p
->signal
== NULL
)) {
883 * The process has been reaped.
884 * We can't even collect a sample any more.
885 * Call the timer disarmed, nothing else to do.
888 timer
->it
.cpu
.task
= NULL
;
889 timer
->it
.cpu
.expires
.sched
= 0;
890 read_unlock(&tasklist_lock
);
893 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
894 clear_dead
= (unlikely(p
->exit_state
) &&
895 thread_group_empty(p
));
897 read_unlock(&tasklist_lock
);
900 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
901 if (timer
->it
.cpu
.incr
.sched
== 0 &&
902 cpu_time_before(timer
->it_clock
,
903 timer
->it
.cpu
.expires
, now
)) {
905 * Do-nothing timer expired and has no reload,
906 * so it's as if it was never set.
908 timer
->it
.cpu
.expires
.sched
= 0;
909 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
913 * Account for any expirations and reloads that should
916 bump_cpu_timer(timer
, now
);
919 if (unlikely(clear_dead
)) {
921 * We've noticed that the thread is dead, but
922 * not yet reaped. Take this opportunity to
925 clear_dead_task(timer
, now
);
929 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
930 sample_to_timespec(timer
->it_clock
,
931 cpu_time_sub(timer
->it_clock
,
932 timer
->it
.cpu
.expires
, now
),
936 * The timer should have expired already, but the firing
937 * hasn't taken place yet. Say it's just about to expire.
939 itp
->it_value
.tv_nsec
= 1;
940 itp
->it_value
.tv_sec
= 0;
945 * Check for any per-thread CPU timers that have fired and move them off
946 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
947 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
949 static void check_thread_timers(struct task_struct
*tsk
,
950 struct list_head
*firing
)
953 struct list_head
*timers
= tsk
->cpu_timers
;
956 tsk
->it_prof_expires
= cputime_zero
;
957 while (!list_empty(timers
)) {
958 struct cpu_timer_list
*t
= list_entry(timers
->next
,
959 struct cpu_timer_list
,
961 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
962 tsk
->it_prof_expires
= t
->expires
.cpu
;
966 list_move_tail(&t
->entry
, firing
);
971 tsk
->it_virt_expires
= cputime_zero
;
972 while (!list_empty(timers
)) {
973 struct cpu_timer_list
*t
= list_entry(timers
->next
,
974 struct cpu_timer_list
,
976 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
977 tsk
->it_virt_expires
= t
->expires
.cpu
;
981 list_move_tail(&t
->entry
, firing
);
986 tsk
->it_sched_expires
= 0;
987 while (!list_empty(timers
)) {
988 struct cpu_timer_list
*t
= list_entry(timers
->next
,
989 struct cpu_timer_list
,
991 if (!--maxfire
|| tsk
->sched_time
< t
->expires
.sched
) {
992 tsk
->it_sched_expires
= t
->expires
.sched
;
996 list_move_tail(&t
->entry
, firing
);
1001 * Check for any per-thread CPU timers that have fired and move them
1002 * off the tsk->*_timers list onto the firing list. Per-thread timers
1003 * have already been taken off.
1005 static void check_process_timers(struct task_struct
*tsk
,
1006 struct list_head
*firing
)
1009 struct signal_struct
*const sig
= tsk
->signal
;
1010 cputime_t utime
, stime
, ptime
, virt_expires
, prof_expires
;
1011 unsigned long long sched_time
, sched_expires
;
1012 struct task_struct
*t
;
1013 struct list_head
*timers
= sig
->cpu_timers
;
1016 * Don't sample the current process CPU clocks if there are no timers.
1018 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1019 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1020 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1021 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1022 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1023 list_empty(&timers
[CPUCLOCK_SCHED
]))
1027 * Collect the current process totals.
1031 sched_time
= sig
->sched_time
;
1034 utime
= cputime_add(utime
, t
->utime
);
1035 stime
= cputime_add(stime
, t
->stime
);
1036 sched_time
+= t
->sched_time
;
1039 ptime
= cputime_add(utime
, stime
);
1042 prof_expires
= cputime_zero
;
1043 while (!list_empty(timers
)) {
1044 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1045 struct cpu_timer_list
,
1047 if (!--maxfire
|| cputime_lt(ptime
, t
->expires
.cpu
)) {
1048 prof_expires
= t
->expires
.cpu
;
1052 list_move_tail(&t
->entry
, firing
);
1057 virt_expires
= cputime_zero
;
1058 while (!list_empty(timers
)) {
1059 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1060 struct cpu_timer_list
,
1062 if (!--maxfire
|| cputime_lt(utime
, t
->expires
.cpu
)) {
1063 virt_expires
= t
->expires
.cpu
;
1067 list_move_tail(&t
->entry
, firing
);
1073 while (!list_empty(timers
)) {
1074 struct cpu_timer_list
*t
= list_entry(timers
->next
,
1075 struct cpu_timer_list
,
1077 if (!--maxfire
|| sched_time
< t
->expires
.sched
) {
1078 sched_expires
= t
->expires
.sched
;
1082 list_move_tail(&t
->entry
, firing
);
1086 * Check for the special case process timers.
1088 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1089 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1090 /* ITIMER_PROF fires and reloads. */
1091 sig
->it_prof_expires
= sig
->it_prof_incr
;
1092 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1093 sig
->it_prof_expires
= cputime_add(
1094 sig
->it_prof_expires
, ptime
);
1096 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1098 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1099 (cputime_eq(prof_expires
, cputime_zero
) ||
1100 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1101 prof_expires
= sig
->it_prof_expires
;
1104 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1105 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1106 /* ITIMER_VIRTUAL fires and reloads. */
1107 sig
->it_virt_expires
= sig
->it_virt_incr
;
1108 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1109 sig
->it_virt_expires
= cputime_add(
1110 sig
->it_virt_expires
, utime
);
1112 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1114 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1115 (cputime_eq(virt_expires
, cputime_zero
) ||
1116 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1117 virt_expires
= sig
->it_virt_expires
;
1120 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1121 unsigned long psecs
= cputime_to_secs(ptime
);
1123 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1125 * At the hard limit, we just die.
1126 * No need to calculate anything else now.
1128 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1131 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1133 * At the soft limit, send a SIGXCPU every second.
1135 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1136 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1137 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1138 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1141 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1142 if (cputime_eq(prof_expires
, cputime_zero
) ||
1143 cputime_lt(x
, prof_expires
)) {
1148 if (!cputime_eq(prof_expires
, cputime_zero
) ||
1149 !cputime_eq(virt_expires
, cputime_zero
) ||
1150 sched_expires
!= 0) {
1152 * Rebalance the threads' expiry times for the remaining
1153 * process CPU timers.
1156 cputime_t prof_left
, virt_left
, ticks
;
1157 unsigned long long sched_left
, sched
;
1158 const unsigned int nthreads
= atomic_read(&sig
->live
);
1163 prof_left
= cputime_sub(prof_expires
, utime
);
1164 prof_left
= cputime_sub(prof_left
, stime
);
1165 prof_left
= cputime_div(prof_left
, nthreads
);
1166 virt_left
= cputime_sub(virt_expires
, utime
);
1167 virt_left
= cputime_div(virt_left
, nthreads
);
1168 if (sched_expires
) {
1169 sched_left
= sched_expires
- sched_time
;
1170 do_div(sched_left
, nthreads
);
1176 ticks
= cputime_add(cputime_add(t
->utime
, t
->stime
),
1178 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1179 (cputime_eq(t
->it_prof_expires
, cputime_zero
) ||
1180 cputime_gt(t
->it_prof_expires
, ticks
))) {
1181 t
->it_prof_expires
= ticks
;
1184 ticks
= cputime_add(t
->utime
, virt_left
);
1185 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1186 (cputime_eq(t
->it_virt_expires
, cputime_zero
) ||
1187 cputime_gt(t
->it_virt_expires
, ticks
))) {
1188 t
->it_virt_expires
= ticks
;
1191 sched
= t
->sched_time
+ sched_left
;
1192 if (sched_expires
&& (t
->it_sched_expires
== 0 ||
1193 t
->it_sched_expires
> sched
)) {
1194 t
->it_sched_expires
= sched
;
1199 } while (unlikely(t
->flags
& PF_EXITING
));
1205 * This is called from the signal code (via do_schedule_next_timer)
1206 * when the last timer signal was delivered and we have to reload the timer.
1208 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1210 struct task_struct
*p
= timer
->it
.cpu
.task
;
1211 union cpu_time_count now
;
1213 if (unlikely(p
== NULL
))
1215 * The task was cleaned up already, no future firings.
1220 * Fetch the current sample and update the timer's expiry time.
1222 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1223 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1224 bump_cpu_timer(timer
, now
);
1225 if (unlikely(p
->exit_state
)) {
1226 clear_dead_task(timer
, now
);
1229 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1231 read_lock(&tasklist_lock
);
1232 if (unlikely(p
->signal
== NULL
)) {
1234 * The process has been reaped.
1235 * We can't even collect a sample any more.
1238 timer
->it
.cpu
.task
= p
= NULL
;
1239 timer
->it
.cpu
.expires
.sched
= 0;
1241 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1243 * We've noticed that the thread is dead, but
1244 * not yet reaped. Take this opportunity to
1245 * drop our task ref.
1247 clear_dead_task(timer
, now
);
1250 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
1251 bump_cpu_timer(timer
, now
);
1252 /* Leave the tasklist_lock locked for the call below. */
1256 * Now re-arm for the new expiry time.
1258 arm_timer(timer
, now
);
1261 read_unlock(&tasklist_lock
);
1264 timer
->it_overrun_last
= timer
->it_overrun
;
1265 timer
->it_overrun
= -1;
1266 ++timer
->it_requeue_pending
;
1270 * This is called from the timer interrupt handler. The irq handler has
1271 * already updated our counts. We need to check if any timers fire now.
1272 * Interrupts are disabled.
1274 void run_posix_cpu_timers(struct task_struct
*tsk
)
1277 struct k_itimer
*timer
, *next
;
1279 BUG_ON(!irqs_disabled());
1281 #define UNEXPIRED(clock) \
1282 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1283 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1285 if (UNEXPIRED(prof
) && UNEXPIRED(virt
) &&
1286 (tsk
->it_sched_expires
== 0 ||
1287 tsk
->sched_time
< tsk
->it_sched_expires
))
1292 BUG_ON(tsk
->exit_state
);
1295 * Double-check with locks held.
1297 read_lock(&tasklist_lock
);
1298 spin_lock(&tsk
->sighand
->siglock
);
1301 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1302 * all the timers that are firing, and put them on the firing list.
1304 check_thread_timers(tsk
, &firing
);
1305 check_process_timers(tsk
, &firing
);
1308 * We must release these locks before taking any timer's lock.
1309 * There is a potential race with timer deletion here, as the
1310 * siglock now protects our private firing list. We have set
1311 * the firing flag in each timer, so that a deletion attempt
1312 * that gets the timer lock before we do will give it up and
1313 * spin until we've taken care of that timer below.
1315 spin_unlock(&tsk
->sighand
->siglock
);
1316 read_unlock(&tasklist_lock
);
1319 * Now that all the timers on our list have the firing flag,
1320 * noone will touch their list entries but us. We'll take
1321 * each timer's lock before clearing its firing flag, so no
1322 * timer call will interfere.
1324 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1326 spin_lock(&timer
->it_lock
);
1327 list_del_init(&timer
->it
.cpu
.entry
);
1328 firing
= timer
->it
.cpu
.firing
;
1329 timer
->it
.cpu
.firing
= 0;
1331 * The firing flag is -1 if we collided with a reset
1332 * of the timer, which already reported this
1333 * almost-firing as an overrun. So don't generate an event.
1335 if (likely(firing
>= 0)) {
1336 cpu_timer_fire(timer
);
1338 spin_unlock(&timer
->it_lock
);
1343 * Set one of the process-wide special case CPU timers.
1344 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1345 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1346 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1347 * it to be absolute, *oldval is absolute and we update it to be relative.
1349 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1350 cputime_t
*newval
, cputime_t
*oldval
)
1352 union cpu_time_count now
;
1353 struct list_head
*head
;
1355 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1356 cpu_clock_sample_group_locked(clock_idx
, tsk
, &now
);
1359 if (!cputime_eq(*oldval
, cputime_zero
)) {
1360 if (cputime_le(*oldval
, now
.cpu
)) {
1361 /* Just about to fire. */
1362 *oldval
= jiffies_to_cputime(1);
1364 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1368 if (cputime_eq(*newval
, cputime_zero
))
1370 *newval
= cputime_add(*newval
, now
.cpu
);
1373 * If the RLIMIT_CPU timer will expire before the
1374 * ITIMER_PROF timer, we have nothing else to do.
1376 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1377 < cputime_to_secs(*newval
))
1382 * Check whether there are any process timers already set to fire
1383 * before this one. If so, we don't have anything more to do.
1385 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1386 if (list_empty(head
) ||
1387 cputime_ge(list_entry(head
->next
,
1388 struct cpu_timer_list
, entry
)->expires
.cpu
,
1391 * Rejigger each thread's expiry time so that one will
1392 * notice before we hit the process-cumulative expiry time.
1394 union cpu_time_count expires
= { .sched
= 0 };
1395 expires
.cpu
= *newval
;
1396 process_timer_rebalance(tsk
, clock_idx
, expires
, now
);
1400 static long posix_cpu_clock_nanosleep_restart(struct restart_block
*);
1402 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1403 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1405 struct restart_block
*restart_block
=
1406 ¤t_thread_info()->restart_block
;
1407 struct k_itimer timer
;
1411 * Diagnose required errors first.
1413 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1414 (CPUCLOCK_PID(which_clock
) == 0 ||
1415 CPUCLOCK_PID(which_clock
) == current
->pid
))
1419 * Set up a temporary timer and then wait for it to go off.
1421 memset(&timer
, 0, sizeof timer
);
1422 spin_lock_init(&timer
.it_lock
);
1423 timer
.it_clock
= which_clock
;
1424 timer
.it_overrun
= -1;
1425 error
= posix_cpu_timer_create(&timer
);
1426 timer
.it_process
= current
;
1428 static struct itimerspec zero_it
;
1429 struct itimerspec it
= { .it_value
= *rqtp
,
1430 .it_interval
= {} };
1432 spin_lock_irq(&timer
.it_lock
);
1433 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1435 spin_unlock_irq(&timer
.it_lock
);
1439 while (!signal_pending(current
)) {
1440 if (timer
.it
.cpu
.expires
.sched
== 0) {
1442 * Our timer fired and was reset.
1444 spin_unlock_irq(&timer
.it_lock
);
1449 * Block until cpu_timer_fire (or a signal) wakes us.
1451 __set_current_state(TASK_INTERRUPTIBLE
);
1452 spin_unlock_irq(&timer
.it_lock
);
1454 spin_lock_irq(&timer
.it_lock
);
1458 * We were interrupted by a signal.
1460 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1461 posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1462 spin_unlock_irq(&timer
.it_lock
);
1464 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1466 * It actually did fire already.
1472 * Report back to the user the time still remaining.
1474 if (rmtp
!= NULL
&& !(flags
& TIMER_ABSTIME
) &&
1475 copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1478 restart_block
->fn
= posix_cpu_clock_nanosleep_restart
;
1479 /* Caller already set restart_block->arg1 */
1480 restart_block
->arg0
= which_clock
;
1481 restart_block
->arg1
= (unsigned long) rmtp
;
1482 restart_block
->arg2
= rqtp
->tv_sec
;
1483 restart_block
->arg3
= rqtp
->tv_nsec
;
1485 error
= -ERESTART_RESTARTBLOCK
;
1492 posix_cpu_clock_nanosleep_restart(struct restart_block
*restart_block
)
1494 clockid_t which_clock
= restart_block
->arg0
;
1495 struct timespec __user
*rmtp
;
1498 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1499 t
.tv_sec
= restart_block
->arg2
;
1500 t
.tv_nsec
= restart_block
->arg3
;
1502 restart_block
->fn
= do_no_restart_syscall
;
1503 return posix_cpu_nsleep(which_clock
, TIMER_ABSTIME
, &t
, rmtp
);
1507 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1508 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1510 static int process_cpu_clock_getres(const clockid_t which_clock
,
1511 struct timespec
*tp
)
1513 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1515 static int process_cpu_clock_get(const clockid_t which_clock
,
1516 struct timespec
*tp
)
1518 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1520 static int process_cpu_timer_create(struct k_itimer
*timer
)
1522 timer
->it_clock
= PROCESS_CLOCK
;
1523 return posix_cpu_timer_create(timer
);
1525 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1526 struct timespec
*rqtp
,
1527 struct timespec __user
*rmtp
)
1529 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1531 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1532 struct timespec
*tp
)
1534 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1536 static int thread_cpu_clock_get(const clockid_t which_clock
,
1537 struct timespec
*tp
)
1539 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1541 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1543 timer
->it_clock
= THREAD_CLOCK
;
1544 return posix_cpu_timer_create(timer
);
1546 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1547 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1552 static __init
int init_posix_cpu_timers(void)
1554 struct k_clock process
= {
1555 .clock_getres
= process_cpu_clock_getres
,
1556 .clock_get
= process_cpu_clock_get
,
1557 .clock_set
= do_posix_clock_nosettime
,
1558 .timer_create
= process_cpu_timer_create
,
1559 .nsleep
= process_cpu_nsleep
,
1561 struct k_clock thread
= {
1562 .clock_getres
= thread_cpu_clock_getres
,
1563 .clock_get
= thread_cpu_clock_get
,
1564 .clock_set
= do_posix_clock_nosettime
,
1565 .timer_create
= thread_cpu_timer_create
,
1566 .nsleep
= thread_cpu_nsleep
,
1569 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1570 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1574 __initcall(init_posix_cpu_timers
);