vfs: Remove syncing from generic_file_direct_write() and generic_file_buffered_write()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blobf863e1d7e227b0d262983080aa849c1337dbbeb0
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 void remove_from_page_cache(struct page *page)
140 struct address_space *mapping = page->mapping;
142 BUG_ON(!PageLocked(page));
144 spin_lock_irq(&mapping->tree_lock);
145 __remove_from_page_cache(page);
146 spin_unlock_irq(&mapping->tree_lock);
147 mem_cgroup_uncharge_cache_page(page);
150 static int sync_page(void *word)
152 struct address_space *mapping;
153 struct page *page;
155 page = container_of((unsigned long *)word, struct page, flags);
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
186 static int sync_page_killable(void *word)
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
221 ret = do_writepages(mapping, &wbc);
222 return ret;
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 int filemap_fdatawrite(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 EXPORT_SYMBOL(filemap_fdatawrite);
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
274 if (end < start)
275 return 0;
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
296 pagevec_release(&pvec);
297 cond_resched();
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
306 return ret;
310 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
311 * @mapping: address space structure to wait for
312 * @start: offset in bytes where the range starts
313 * @end: offset in bytes where the range ends (inclusive)
315 * Walk the list of under-writeback pages of the given address space
316 * in the given range and wait for all of them.
318 * This is just a simple wrapper so that callers don't have to convert offsets
319 * to page indexes themselves
321 int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
322 loff_t end)
324 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
325 end >> PAGE_CACHE_SHIFT);
327 EXPORT_SYMBOL(filemap_fdatawait_range);
330 * sync_page_range - write and wait on all pages in the passed range
331 * @inode: target inode
332 * @mapping: target address_space
333 * @pos: beginning offset in pages to write
334 * @count: number of bytes to write
336 * Write and wait upon all the pages in the passed range. This is a "data
337 * integrity" operation. It waits upon in-flight writeout before starting and
338 * waiting upon new writeout. If there was an IO error, return it.
340 * We need to re-take i_mutex during the generic_osync_inode list walk because
341 * it is otherwise livelockable.
343 int sync_page_range(struct inode *inode, struct address_space *mapping,
344 loff_t pos, loff_t count)
346 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
347 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
348 int ret;
350 if (!mapping_cap_writeback_dirty(mapping) || !count)
351 return 0;
352 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
353 if (ret == 0) {
354 mutex_lock(&inode->i_mutex);
355 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
356 mutex_unlock(&inode->i_mutex);
358 if (ret == 0)
359 ret = wait_on_page_writeback_range(mapping, start, end);
360 return ret;
362 EXPORT_SYMBOL(sync_page_range);
365 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
366 * @inode: target inode
367 * @mapping: target address_space
368 * @pos: beginning offset in pages to write
369 * @count: number of bytes to write
371 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
372 * as it forces O_SYNC writers to different parts of the same file
373 * to be serialised right until io completion.
375 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
376 loff_t pos, loff_t count)
378 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
379 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
380 int ret;
382 if (!mapping_cap_writeback_dirty(mapping) || !count)
383 return 0;
384 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
385 if (ret == 0)
386 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
387 if (ret == 0)
388 ret = wait_on_page_writeback_range(mapping, start, end);
389 return ret;
391 EXPORT_SYMBOL(sync_page_range_nolock);
394 * filemap_fdatawait - wait for all under-writeback pages to complete
395 * @mapping: address space structure to wait for
397 * Walk the list of under-writeback pages of the given address space
398 * and wait for all of them.
400 int filemap_fdatawait(struct address_space *mapping)
402 loff_t i_size = i_size_read(mapping->host);
404 if (i_size == 0)
405 return 0;
407 return wait_on_page_writeback_range(mapping, 0,
408 (i_size - 1) >> PAGE_CACHE_SHIFT);
410 EXPORT_SYMBOL(filemap_fdatawait);
412 int filemap_write_and_wait(struct address_space *mapping)
414 int err = 0;
416 if (mapping->nrpages) {
417 err = filemap_fdatawrite(mapping);
419 * Even if the above returned error, the pages may be
420 * written partially (e.g. -ENOSPC), so we wait for it.
421 * But the -EIO is special case, it may indicate the worst
422 * thing (e.g. bug) happened, so we avoid waiting for it.
424 if (err != -EIO) {
425 int err2 = filemap_fdatawait(mapping);
426 if (!err)
427 err = err2;
430 return err;
432 EXPORT_SYMBOL(filemap_write_and_wait);
435 * filemap_write_and_wait_range - write out & wait on a file range
436 * @mapping: the address_space for the pages
437 * @lstart: offset in bytes where the range starts
438 * @lend: offset in bytes where the range ends (inclusive)
440 * Write out and wait upon file offsets lstart->lend, inclusive.
442 * Note that `lend' is inclusive (describes the last byte to be written) so
443 * that this function can be used to write to the very end-of-file (end = -1).
445 int filemap_write_and_wait_range(struct address_space *mapping,
446 loff_t lstart, loff_t lend)
448 int err = 0;
450 if (mapping->nrpages) {
451 err = __filemap_fdatawrite_range(mapping, lstart, lend,
452 WB_SYNC_ALL);
453 /* See comment of filemap_write_and_wait() */
454 if (err != -EIO) {
455 int err2 = wait_on_page_writeback_range(mapping,
456 lstart >> PAGE_CACHE_SHIFT,
457 lend >> PAGE_CACHE_SHIFT);
458 if (!err)
459 err = err2;
462 return err;
464 EXPORT_SYMBOL(filemap_write_and_wait_range);
467 * add_to_page_cache_locked - add a locked page to the pagecache
468 * @page: page to add
469 * @mapping: the page's address_space
470 * @offset: page index
471 * @gfp_mask: page allocation mode
473 * This function is used to add a page to the pagecache. It must be locked.
474 * This function does not add the page to the LRU. The caller must do that.
476 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
477 pgoff_t offset, gfp_t gfp_mask)
479 int error;
481 VM_BUG_ON(!PageLocked(page));
483 error = mem_cgroup_cache_charge(page, current->mm,
484 gfp_mask & GFP_RECLAIM_MASK);
485 if (error)
486 goto out;
488 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
489 if (error == 0) {
490 page_cache_get(page);
491 page->mapping = mapping;
492 page->index = offset;
494 spin_lock_irq(&mapping->tree_lock);
495 error = radix_tree_insert(&mapping->page_tree, offset, page);
496 if (likely(!error)) {
497 mapping->nrpages++;
498 __inc_zone_page_state(page, NR_FILE_PAGES);
499 spin_unlock_irq(&mapping->tree_lock);
500 } else {
501 page->mapping = NULL;
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
504 page_cache_release(page);
506 radix_tree_preload_end();
507 } else
508 mem_cgroup_uncharge_cache_page(page);
509 out:
510 return error;
512 EXPORT_SYMBOL(add_to_page_cache_locked);
514 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
515 pgoff_t offset, gfp_t gfp_mask)
517 int ret;
520 * Splice_read and readahead add shmem/tmpfs pages into the page cache
521 * before shmem_readpage has a chance to mark them as SwapBacked: they
522 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
523 * (called in add_to_page_cache) needs to know where they're going too.
525 if (mapping_cap_swap_backed(mapping))
526 SetPageSwapBacked(page);
528 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
529 if (ret == 0) {
530 if (page_is_file_cache(page))
531 lru_cache_add_file(page);
532 else
533 lru_cache_add_active_anon(page);
535 return ret;
537 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
539 #ifdef CONFIG_NUMA
540 struct page *__page_cache_alloc(gfp_t gfp)
542 if (cpuset_do_page_mem_spread()) {
543 int n = cpuset_mem_spread_node();
544 return alloc_pages_exact_node(n, gfp, 0);
546 return alloc_pages(gfp, 0);
548 EXPORT_SYMBOL(__page_cache_alloc);
549 #endif
551 static int __sleep_on_page_lock(void *word)
553 io_schedule();
554 return 0;
558 * In order to wait for pages to become available there must be
559 * waitqueues associated with pages. By using a hash table of
560 * waitqueues where the bucket discipline is to maintain all
561 * waiters on the same queue and wake all when any of the pages
562 * become available, and for the woken contexts to check to be
563 * sure the appropriate page became available, this saves space
564 * at a cost of "thundering herd" phenomena during rare hash
565 * collisions.
567 static wait_queue_head_t *page_waitqueue(struct page *page)
569 const struct zone *zone = page_zone(page);
571 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
574 static inline void wake_up_page(struct page *page, int bit)
576 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
579 void wait_on_page_bit(struct page *page, int bit_nr)
581 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
583 if (test_bit(bit_nr, &page->flags))
584 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
585 TASK_UNINTERRUPTIBLE);
587 EXPORT_SYMBOL(wait_on_page_bit);
590 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
591 * @page: Page defining the wait queue of interest
592 * @waiter: Waiter to add to the queue
594 * Add an arbitrary @waiter to the wait queue for the nominated @page.
596 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
598 wait_queue_head_t *q = page_waitqueue(page);
599 unsigned long flags;
601 spin_lock_irqsave(&q->lock, flags);
602 __add_wait_queue(q, waiter);
603 spin_unlock_irqrestore(&q->lock, flags);
605 EXPORT_SYMBOL_GPL(add_page_wait_queue);
608 * unlock_page - unlock a locked page
609 * @page: the page
611 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
612 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
613 * mechananism between PageLocked pages and PageWriteback pages is shared.
614 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
616 * The mb is necessary to enforce ordering between the clear_bit and the read
617 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
619 void unlock_page(struct page *page)
621 VM_BUG_ON(!PageLocked(page));
622 clear_bit_unlock(PG_locked, &page->flags);
623 smp_mb__after_clear_bit();
624 wake_up_page(page, PG_locked);
626 EXPORT_SYMBOL(unlock_page);
629 * end_page_writeback - end writeback against a page
630 * @page: the page
632 void end_page_writeback(struct page *page)
634 if (TestClearPageReclaim(page))
635 rotate_reclaimable_page(page);
637 if (!test_clear_page_writeback(page))
638 BUG();
640 smp_mb__after_clear_bit();
641 wake_up_page(page, PG_writeback);
643 EXPORT_SYMBOL(end_page_writeback);
646 * __lock_page - get a lock on the page, assuming we need to sleep to get it
647 * @page: the page to lock
649 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
650 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
651 * chances are that on the second loop, the block layer's plug list is empty,
652 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
654 void __lock_page(struct page *page)
656 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
658 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
659 TASK_UNINTERRUPTIBLE);
661 EXPORT_SYMBOL(__lock_page);
663 int __lock_page_killable(struct page *page)
665 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
667 return __wait_on_bit_lock(page_waitqueue(page), &wait,
668 sync_page_killable, TASK_KILLABLE);
670 EXPORT_SYMBOL_GPL(__lock_page_killable);
673 * __lock_page_nosync - get a lock on the page, without calling sync_page()
674 * @page: the page to lock
676 * Variant of lock_page that does not require the caller to hold a reference
677 * on the page's mapping.
679 void __lock_page_nosync(struct page *page)
681 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
682 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
683 TASK_UNINTERRUPTIBLE);
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
696 void **pagep;
697 struct page *page;
699 rcu_read_lock();
700 repeat:
701 page = NULL;
702 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 if (pagep) {
704 page = radix_tree_deref_slot(pagep);
705 if (unlikely(!page || page == RADIX_TREE_RETRY))
706 goto repeat;
708 if (!page_cache_get_speculative(page))
709 goto repeat;
712 * Has the page moved?
713 * This is part of the lockless pagecache protocol. See
714 * include/linux/pagemap.h for details.
716 if (unlikely(page != *pagep)) {
717 page_cache_release(page);
718 goto repeat;
721 rcu_read_unlock();
723 return page;
725 EXPORT_SYMBOL(find_get_page);
728 * find_lock_page - locate, pin and lock a pagecache page
729 * @mapping: the address_space to search
730 * @offset: the page index
732 * Locates the desired pagecache page, locks it, increments its reference
733 * count and returns its address.
735 * Returns zero if the page was not present. find_lock_page() may sleep.
737 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
739 struct page *page;
741 repeat:
742 page = find_get_page(mapping, offset);
743 if (page) {
744 lock_page(page);
745 /* Has the page been truncated? */
746 if (unlikely(page->mapping != mapping)) {
747 unlock_page(page);
748 page_cache_release(page);
749 goto repeat;
751 VM_BUG_ON(page->index != offset);
753 return page;
755 EXPORT_SYMBOL(find_lock_page);
758 * find_or_create_page - locate or add a pagecache page
759 * @mapping: the page's address_space
760 * @index: the page's index into the mapping
761 * @gfp_mask: page allocation mode
763 * Locates a page in the pagecache. If the page is not present, a new page
764 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
765 * LRU list. The returned page is locked and has its reference count
766 * incremented.
768 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
769 * allocation!
771 * find_or_create_page() returns the desired page's address, or zero on
772 * memory exhaustion.
774 struct page *find_or_create_page(struct address_space *mapping,
775 pgoff_t index, gfp_t gfp_mask)
777 struct page *page;
778 int err;
779 repeat:
780 page = find_lock_page(mapping, index);
781 if (!page) {
782 page = __page_cache_alloc(gfp_mask);
783 if (!page)
784 return NULL;
786 * We want a regular kernel memory (not highmem or DMA etc)
787 * allocation for the radix tree nodes, but we need to honour
788 * the context-specific requirements the caller has asked for.
789 * GFP_RECLAIM_MASK collects those requirements.
791 err = add_to_page_cache_lru(page, mapping, index,
792 (gfp_mask & GFP_RECLAIM_MASK));
793 if (unlikely(err)) {
794 page_cache_release(page);
795 page = NULL;
796 if (err == -EEXIST)
797 goto repeat;
800 return page;
802 EXPORT_SYMBOL(find_or_create_page);
805 * find_get_pages - gang pagecache lookup
806 * @mapping: The address_space to search
807 * @start: The starting page index
808 * @nr_pages: The maximum number of pages
809 * @pages: Where the resulting pages are placed
811 * find_get_pages() will search for and return a group of up to
812 * @nr_pages pages in the mapping. The pages are placed at @pages.
813 * find_get_pages() takes a reference against the returned pages.
815 * The search returns a group of mapping-contiguous pages with ascending
816 * indexes. There may be holes in the indices due to not-present pages.
818 * find_get_pages() returns the number of pages which were found.
820 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
821 unsigned int nr_pages, struct page **pages)
823 unsigned int i;
824 unsigned int ret;
825 unsigned int nr_found;
827 rcu_read_lock();
828 restart:
829 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
830 (void ***)pages, start, nr_pages);
831 ret = 0;
832 for (i = 0; i < nr_found; i++) {
833 struct page *page;
834 repeat:
835 page = radix_tree_deref_slot((void **)pages[i]);
836 if (unlikely(!page))
837 continue;
839 * this can only trigger if nr_found == 1, making livelock
840 * a non issue.
842 if (unlikely(page == RADIX_TREE_RETRY))
843 goto restart;
845 if (!page_cache_get_speculative(page))
846 goto repeat;
848 /* Has the page moved? */
849 if (unlikely(page != *((void **)pages[i]))) {
850 page_cache_release(page);
851 goto repeat;
854 pages[ret] = page;
855 ret++;
857 rcu_read_unlock();
858 return ret;
862 * find_get_pages_contig - gang contiguous pagecache lookup
863 * @mapping: The address_space to search
864 * @index: The starting page index
865 * @nr_pages: The maximum number of pages
866 * @pages: Where the resulting pages are placed
868 * find_get_pages_contig() works exactly like find_get_pages(), except
869 * that the returned number of pages are guaranteed to be contiguous.
871 * find_get_pages_contig() returns the number of pages which were found.
873 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
874 unsigned int nr_pages, struct page **pages)
876 unsigned int i;
877 unsigned int ret;
878 unsigned int nr_found;
880 rcu_read_lock();
881 restart:
882 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
883 (void ***)pages, index, nr_pages);
884 ret = 0;
885 for (i = 0; i < nr_found; i++) {
886 struct page *page;
887 repeat:
888 page = radix_tree_deref_slot((void **)pages[i]);
889 if (unlikely(!page))
890 continue;
892 * this can only trigger if nr_found == 1, making livelock
893 * a non issue.
895 if (unlikely(page == RADIX_TREE_RETRY))
896 goto restart;
898 if (page->mapping == NULL || page->index != index)
899 break;
901 if (!page_cache_get_speculative(page))
902 goto repeat;
904 /* Has the page moved? */
905 if (unlikely(page != *((void **)pages[i]))) {
906 page_cache_release(page);
907 goto repeat;
910 pages[ret] = page;
911 ret++;
912 index++;
914 rcu_read_unlock();
915 return ret;
917 EXPORT_SYMBOL(find_get_pages_contig);
920 * find_get_pages_tag - find and return pages that match @tag
921 * @mapping: the address_space to search
922 * @index: the starting page index
923 * @tag: the tag index
924 * @nr_pages: the maximum number of pages
925 * @pages: where the resulting pages are placed
927 * Like find_get_pages, except we only return pages which are tagged with
928 * @tag. We update @index to index the next page for the traversal.
930 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
931 int tag, unsigned int nr_pages, struct page **pages)
933 unsigned int i;
934 unsigned int ret;
935 unsigned int nr_found;
937 rcu_read_lock();
938 restart:
939 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
940 (void ***)pages, *index, nr_pages, tag);
941 ret = 0;
942 for (i = 0; i < nr_found; i++) {
943 struct page *page;
944 repeat:
945 page = radix_tree_deref_slot((void **)pages[i]);
946 if (unlikely(!page))
947 continue;
949 * this can only trigger if nr_found == 1, making livelock
950 * a non issue.
952 if (unlikely(page == RADIX_TREE_RETRY))
953 goto restart;
955 if (!page_cache_get_speculative(page))
956 goto repeat;
958 /* Has the page moved? */
959 if (unlikely(page != *((void **)pages[i]))) {
960 page_cache_release(page);
961 goto repeat;
964 pages[ret] = page;
965 ret++;
967 rcu_read_unlock();
969 if (ret)
970 *index = pages[ret - 1]->index + 1;
972 return ret;
974 EXPORT_SYMBOL(find_get_pages_tag);
977 * grab_cache_page_nowait - returns locked page at given index in given cache
978 * @mapping: target address_space
979 * @index: the page index
981 * Same as grab_cache_page(), but do not wait if the page is unavailable.
982 * This is intended for speculative data generators, where the data can
983 * be regenerated if the page couldn't be grabbed. This routine should
984 * be safe to call while holding the lock for another page.
986 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
987 * and deadlock against the caller's locked page.
989 struct page *
990 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
992 struct page *page = find_get_page(mapping, index);
994 if (page) {
995 if (trylock_page(page))
996 return page;
997 page_cache_release(page);
998 return NULL;
1000 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1001 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1002 page_cache_release(page);
1003 page = NULL;
1005 return page;
1007 EXPORT_SYMBOL(grab_cache_page_nowait);
1010 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1011 * a _large_ part of the i/o request. Imagine the worst scenario:
1013 * ---R__________________________________________B__________
1014 * ^ reading here ^ bad block(assume 4k)
1016 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1017 * => failing the whole request => read(R) => read(R+1) =>
1018 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1019 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1020 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1022 * It is going insane. Fix it by quickly scaling down the readahead size.
1024 static void shrink_readahead_size_eio(struct file *filp,
1025 struct file_ra_state *ra)
1027 ra->ra_pages /= 4;
1031 * do_generic_file_read - generic file read routine
1032 * @filp: the file to read
1033 * @ppos: current file position
1034 * @desc: read_descriptor
1035 * @actor: read method
1037 * This is a generic file read routine, and uses the
1038 * mapping->a_ops->readpage() function for the actual low-level stuff.
1040 * This is really ugly. But the goto's actually try to clarify some
1041 * of the logic when it comes to error handling etc.
1043 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1044 read_descriptor_t *desc, read_actor_t actor)
1046 struct address_space *mapping = filp->f_mapping;
1047 struct inode *inode = mapping->host;
1048 struct file_ra_state *ra = &filp->f_ra;
1049 pgoff_t index;
1050 pgoff_t last_index;
1051 pgoff_t prev_index;
1052 unsigned long offset; /* offset into pagecache page */
1053 unsigned int prev_offset;
1054 int error;
1056 index = *ppos >> PAGE_CACHE_SHIFT;
1057 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1058 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1059 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1060 offset = *ppos & ~PAGE_CACHE_MASK;
1062 for (;;) {
1063 struct page *page;
1064 pgoff_t end_index;
1065 loff_t isize;
1066 unsigned long nr, ret;
1068 cond_resched();
1069 find_page:
1070 page = find_get_page(mapping, index);
1071 if (!page) {
1072 page_cache_sync_readahead(mapping,
1073 ra, filp,
1074 index, last_index - index);
1075 page = find_get_page(mapping, index);
1076 if (unlikely(page == NULL))
1077 goto no_cached_page;
1079 if (PageReadahead(page)) {
1080 page_cache_async_readahead(mapping,
1081 ra, filp, page,
1082 index, last_index - index);
1084 if (!PageUptodate(page)) {
1085 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1086 !mapping->a_ops->is_partially_uptodate)
1087 goto page_not_up_to_date;
1088 if (!trylock_page(page))
1089 goto page_not_up_to_date;
1090 if (!mapping->a_ops->is_partially_uptodate(page,
1091 desc, offset))
1092 goto page_not_up_to_date_locked;
1093 unlock_page(page);
1095 page_ok:
1097 * i_size must be checked after we know the page is Uptodate.
1099 * Checking i_size after the check allows us to calculate
1100 * the correct value for "nr", which means the zero-filled
1101 * part of the page is not copied back to userspace (unless
1102 * another truncate extends the file - this is desired though).
1105 isize = i_size_read(inode);
1106 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1107 if (unlikely(!isize || index > end_index)) {
1108 page_cache_release(page);
1109 goto out;
1112 /* nr is the maximum number of bytes to copy from this page */
1113 nr = PAGE_CACHE_SIZE;
1114 if (index == end_index) {
1115 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1116 if (nr <= offset) {
1117 page_cache_release(page);
1118 goto out;
1121 nr = nr - offset;
1123 /* If users can be writing to this page using arbitrary
1124 * virtual addresses, take care about potential aliasing
1125 * before reading the page on the kernel side.
1127 if (mapping_writably_mapped(mapping))
1128 flush_dcache_page(page);
1131 * When a sequential read accesses a page several times,
1132 * only mark it as accessed the first time.
1134 if (prev_index != index || offset != prev_offset)
1135 mark_page_accessed(page);
1136 prev_index = index;
1139 * Ok, we have the page, and it's up-to-date, so
1140 * now we can copy it to user space...
1142 * The actor routine returns how many bytes were actually used..
1143 * NOTE! This may not be the same as how much of a user buffer
1144 * we filled up (we may be padding etc), so we can only update
1145 * "pos" here (the actor routine has to update the user buffer
1146 * pointers and the remaining count).
1148 ret = actor(desc, page, offset, nr);
1149 offset += ret;
1150 index += offset >> PAGE_CACHE_SHIFT;
1151 offset &= ~PAGE_CACHE_MASK;
1152 prev_offset = offset;
1154 page_cache_release(page);
1155 if (ret == nr && desc->count)
1156 continue;
1157 goto out;
1159 page_not_up_to_date:
1160 /* Get exclusive access to the page ... */
1161 error = lock_page_killable(page);
1162 if (unlikely(error))
1163 goto readpage_error;
1165 page_not_up_to_date_locked:
1166 /* Did it get truncated before we got the lock? */
1167 if (!page->mapping) {
1168 unlock_page(page);
1169 page_cache_release(page);
1170 continue;
1173 /* Did somebody else fill it already? */
1174 if (PageUptodate(page)) {
1175 unlock_page(page);
1176 goto page_ok;
1179 readpage:
1180 /* Start the actual read. The read will unlock the page. */
1181 error = mapping->a_ops->readpage(filp, page);
1183 if (unlikely(error)) {
1184 if (error == AOP_TRUNCATED_PAGE) {
1185 page_cache_release(page);
1186 goto find_page;
1188 goto readpage_error;
1191 if (!PageUptodate(page)) {
1192 error = lock_page_killable(page);
1193 if (unlikely(error))
1194 goto readpage_error;
1195 if (!PageUptodate(page)) {
1196 if (page->mapping == NULL) {
1198 * invalidate_inode_pages got it
1200 unlock_page(page);
1201 page_cache_release(page);
1202 goto find_page;
1204 unlock_page(page);
1205 shrink_readahead_size_eio(filp, ra);
1206 error = -EIO;
1207 goto readpage_error;
1209 unlock_page(page);
1212 goto page_ok;
1214 readpage_error:
1215 /* UHHUH! A synchronous read error occurred. Report it */
1216 desc->error = error;
1217 page_cache_release(page);
1218 goto out;
1220 no_cached_page:
1222 * Ok, it wasn't cached, so we need to create a new
1223 * page..
1225 page = page_cache_alloc_cold(mapping);
1226 if (!page) {
1227 desc->error = -ENOMEM;
1228 goto out;
1230 error = add_to_page_cache_lru(page, mapping,
1231 index, GFP_KERNEL);
1232 if (error) {
1233 page_cache_release(page);
1234 if (error == -EEXIST)
1235 goto find_page;
1236 desc->error = error;
1237 goto out;
1239 goto readpage;
1242 out:
1243 ra->prev_pos = prev_index;
1244 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1245 ra->prev_pos |= prev_offset;
1247 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1248 file_accessed(filp);
1251 int file_read_actor(read_descriptor_t *desc, struct page *page,
1252 unsigned long offset, unsigned long size)
1254 char *kaddr;
1255 unsigned long left, count = desc->count;
1257 if (size > count)
1258 size = count;
1261 * Faults on the destination of a read are common, so do it before
1262 * taking the kmap.
1264 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1265 kaddr = kmap_atomic(page, KM_USER0);
1266 left = __copy_to_user_inatomic(desc->arg.buf,
1267 kaddr + offset, size);
1268 kunmap_atomic(kaddr, KM_USER0);
1269 if (left == 0)
1270 goto success;
1273 /* Do it the slow way */
1274 kaddr = kmap(page);
1275 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1276 kunmap(page);
1278 if (left) {
1279 size -= left;
1280 desc->error = -EFAULT;
1282 success:
1283 desc->count = count - size;
1284 desc->written += size;
1285 desc->arg.buf += size;
1286 return size;
1290 * Performs necessary checks before doing a write
1291 * @iov: io vector request
1292 * @nr_segs: number of segments in the iovec
1293 * @count: number of bytes to write
1294 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1296 * Adjust number of segments and amount of bytes to write (nr_segs should be
1297 * properly initialized first). Returns appropriate error code that caller
1298 * should return or zero in case that write should be allowed.
1300 int generic_segment_checks(const struct iovec *iov,
1301 unsigned long *nr_segs, size_t *count, int access_flags)
1303 unsigned long seg;
1304 size_t cnt = 0;
1305 for (seg = 0; seg < *nr_segs; seg++) {
1306 const struct iovec *iv = &iov[seg];
1309 * If any segment has a negative length, or the cumulative
1310 * length ever wraps negative then return -EINVAL.
1312 cnt += iv->iov_len;
1313 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1314 return -EINVAL;
1315 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1316 continue;
1317 if (seg == 0)
1318 return -EFAULT;
1319 *nr_segs = seg;
1320 cnt -= iv->iov_len; /* This segment is no good */
1321 break;
1323 *count = cnt;
1324 return 0;
1326 EXPORT_SYMBOL(generic_segment_checks);
1329 * generic_file_aio_read - generic filesystem read routine
1330 * @iocb: kernel I/O control block
1331 * @iov: io vector request
1332 * @nr_segs: number of segments in the iovec
1333 * @pos: current file position
1335 * This is the "read()" routine for all filesystems
1336 * that can use the page cache directly.
1338 ssize_t
1339 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1340 unsigned long nr_segs, loff_t pos)
1342 struct file *filp = iocb->ki_filp;
1343 ssize_t retval;
1344 unsigned long seg;
1345 size_t count;
1346 loff_t *ppos = &iocb->ki_pos;
1348 count = 0;
1349 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1350 if (retval)
1351 return retval;
1353 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1354 if (filp->f_flags & O_DIRECT) {
1355 loff_t size;
1356 struct address_space *mapping;
1357 struct inode *inode;
1359 mapping = filp->f_mapping;
1360 inode = mapping->host;
1361 if (!count)
1362 goto out; /* skip atime */
1363 size = i_size_read(inode);
1364 if (pos < size) {
1365 retval = filemap_write_and_wait_range(mapping, pos,
1366 pos + iov_length(iov, nr_segs) - 1);
1367 if (!retval) {
1368 retval = mapping->a_ops->direct_IO(READ, iocb,
1369 iov, pos, nr_segs);
1371 if (retval > 0)
1372 *ppos = pos + retval;
1373 if (retval) {
1374 file_accessed(filp);
1375 goto out;
1380 for (seg = 0; seg < nr_segs; seg++) {
1381 read_descriptor_t desc;
1383 desc.written = 0;
1384 desc.arg.buf = iov[seg].iov_base;
1385 desc.count = iov[seg].iov_len;
1386 if (desc.count == 0)
1387 continue;
1388 desc.error = 0;
1389 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1390 retval += desc.written;
1391 if (desc.error) {
1392 retval = retval ?: desc.error;
1393 break;
1395 if (desc.count > 0)
1396 break;
1398 out:
1399 return retval;
1401 EXPORT_SYMBOL(generic_file_aio_read);
1403 static ssize_t
1404 do_readahead(struct address_space *mapping, struct file *filp,
1405 pgoff_t index, unsigned long nr)
1407 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1408 return -EINVAL;
1410 force_page_cache_readahead(mapping, filp, index, nr);
1411 return 0;
1414 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1416 ssize_t ret;
1417 struct file *file;
1419 ret = -EBADF;
1420 file = fget(fd);
1421 if (file) {
1422 if (file->f_mode & FMODE_READ) {
1423 struct address_space *mapping = file->f_mapping;
1424 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1425 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1426 unsigned long len = end - start + 1;
1427 ret = do_readahead(mapping, file, start, len);
1429 fput(file);
1431 return ret;
1433 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1434 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1436 return SYSC_readahead((int) fd, offset, (size_t) count);
1438 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1439 #endif
1441 #ifdef CONFIG_MMU
1443 * page_cache_read - adds requested page to the page cache if not already there
1444 * @file: file to read
1445 * @offset: page index
1447 * This adds the requested page to the page cache if it isn't already there,
1448 * and schedules an I/O to read in its contents from disk.
1450 static int page_cache_read(struct file *file, pgoff_t offset)
1452 struct address_space *mapping = file->f_mapping;
1453 struct page *page;
1454 int ret;
1456 do {
1457 page = page_cache_alloc_cold(mapping);
1458 if (!page)
1459 return -ENOMEM;
1461 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1462 if (ret == 0)
1463 ret = mapping->a_ops->readpage(file, page);
1464 else if (ret == -EEXIST)
1465 ret = 0; /* losing race to add is OK */
1467 page_cache_release(page);
1469 } while (ret == AOP_TRUNCATED_PAGE);
1471 return ret;
1474 #define MMAP_LOTSAMISS (100)
1477 * Synchronous readahead happens when we don't even find
1478 * a page in the page cache at all.
1480 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1481 struct file_ra_state *ra,
1482 struct file *file,
1483 pgoff_t offset)
1485 unsigned long ra_pages;
1486 struct address_space *mapping = file->f_mapping;
1488 /* If we don't want any read-ahead, don't bother */
1489 if (VM_RandomReadHint(vma))
1490 return;
1492 if (VM_SequentialReadHint(vma) ||
1493 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1494 page_cache_sync_readahead(mapping, ra, file, offset,
1495 ra->ra_pages);
1496 return;
1499 if (ra->mmap_miss < INT_MAX)
1500 ra->mmap_miss++;
1503 * Do we miss much more than hit in this file? If so,
1504 * stop bothering with read-ahead. It will only hurt.
1506 if (ra->mmap_miss > MMAP_LOTSAMISS)
1507 return;
1510 * mmap read-around
1512 ra_pages = max_sane_readahead(ra->ra_pages);
1513 if (ra_pages) {
1514 ra->start = max_t(long, 0, offset - ra_pages/2);
1515 ra->size = ra_pages;
1516 ra->async_size = 0;
1517 ra_submit(ra, mapping, file);
1522 * Asynchronous readahead happens when we find the page and PG_readahead,
1523 * so we want to possibly extend the readahead further..
1525 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1526 struct file_ra_state *ra,
1527 struct file *file,
1528 struct page *page,
1529 pgoff_t offset)
1531 struct address_space *mapping = file->f_mapping;
1533 /* If we don't want any read-ahead, don't bother */
1534 if (VM_RandomReadHint(vma))
1535 return;
1536 if (ra->mmap_miss > 0)
1537 ra->mmap_miss--;
1538 if (PageReadahead(page))
1539 page_cache_async_readahead(mapping, ra, file,
1540 page, offset, ra->ra_pages);
1544 * filemap_fault - read in file data for page fault handling
1545 * @vma: vma in which the fault was taken
1546 * @vmf: struct vm_fault containing details of the fault
1548 * filemap_fault() is invoked via the vma operations vector for a
1549 * mapped memory region to read in file data during a page fault.
1551 * The goto's are kind of ugly, but this streamlines the normal case of having
1552 * it in the page cache, and handles the special cases reasonably without
1553 * having a lot of duplicated code.
1555 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1557 int error;
1558 struct file *file = vma->vm_file;
1559 struct address_space *mapping = file->f_mapping;
1560 struct file_ra_state *ra = &file->f_ra;
1561 struct inode *inode = mapping->host;
1562 pgoff_t offset = vmf->pgoff;
1563 struct page *page;
1564 pgoff_t size;
1565 int ret = 0;
1567 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1568 if (offset >= size)
1569 return VM_FAULT_SIGBUS;
1572 * Do we have something in the page cache already?
1574 page = find_get_page(mapping, offset);
1575 if (likely(page)) {
1577 * We found the page, so try async readahead before
1578 * waiting for the lock.
1580 do_async_mmap_readahead(vma, ra, file, page, offset);
1581 lock_page(page);
1583 /* Did it get truncated? */
1584 if (unlikely(page->mapping != mapping)) {
1585 unlock_page(page);
1586 put_page(page);
1587 goto no_cached_page;
1589 } else {
1590 /* No page in the page cache at all */
1591 do_sync_mmap_readahead(vma, ra, file, offset);
1592 count_vm_event(PGMAJFAULT);
1593 ret = VM_FAULT_MAJOR;
1594 retry_find:
1595 page = find_lock_page(mapping, offset);
1596 if (!page)
1597 goto no_cached_page;
1601 * We have a locked page in the page cache, now we need to check
1602 * that it's up-to-date. If not, it is going to be due to an error.
1604 if (unlikely(!PageUptodate(page)))
1605 goto page_not_uptodate;
1608 * Found the page and have a reference on it.
1609 * We must recheck i_size under page lock.
1611 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1612 if (unlikely(offset >= size)) {
1613 unlock_page(page);
1614 page_cache_release(page);
1615 return VM_FAULT_SIGBUS;
1618 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1619 vmf->page = page;
1620 return ret | VM_FAULT_LOCKED;
1622 no_cached_page:
1624 * We're only likely to ever get here if MADV_RANDOM is in
1625 * effect.
1627 error = page_cache_read(file, offset);
1630 * The page we want has now been added to the page cache.
1631 * In the unlikely event that someone removed it in the
1632 * meantime, we'll just come back here and read it again.
1634 if (error >= 0)
1635 goto retry_find;
1638 * An error return from page_cache_read can result if the
1639 * system is low on memory, or a problem occurs while trying
1640 * to schedule I/O.
1642 if (error == -ENOMEM)
1643 return VM_FAULT_OOM;
1644 return VM_FAULT_SIGBUS;
1646 page_not_uptodate:
1648 * Umm, take care of errors if the page isn't up-to-date.
1649 * Try to re-read it _once_. We do this synchronously,
1650 * because there really aren't any performance issues here
1651 * and we need to check for errors.
1653 ClearPageError(page);
1654 error = mapping->a_ops->readpage(file, page);
1655 if (!error) {
1656 wait_on_page_locked(page);
1657 if (!PageUptodate(page))
1658 error = -EIO;
1660 page_cache_release(page);
1662 if (!error || error == AOP_TRUNCATED_PAGE)
1663 goto retry_find;
1665 /* Things didn't work out. Return zero to tell the mm layer so. */
1666 shrink_readahead_size_eio(file, ra);
1667 return VM_FAULT_SIGBUS;
1669 EXPORT_SYMBOL(filemap_fault);
1671 struct vm_operations_struct generic_file_vm_ops = {
1672 .fault = filemap_fault,
1675 /* This is used for a general mmap of a disk file */
1677 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1679 struct address_space *mapping = file->f_mapping;
1681 if (!mapping->a_ops->readpage)
1682 return -ENOEXEC;
1683 file_accessed(file);
1684 vma->vm_ops = &generic_file_vm_ops;
1685 vma->vm_flags |= VM_CAN_NONLINEAR;
1686 return 0;
1690 * This is for filesystems which do not implement ->writepage.
1692 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1694 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1695 return -EINVAL;
1696 return generic_file_mmap(file, vma);
1698 #else
1699 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1701 return -ENOSYS;
1703 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1705 return -ENOSYS;
1707 #endif /* CONFIG_MMU */
1709 EXPORT_SYMBOL(generic_file_mmap);
1710 EXPORT_SYMBOL(generic_file_readonly_mmap);
1712 static struct page *__read_cache_page(struct address_space *mapping,
1713 pgoff_t index,
1714 int (*filler)(void *,struct page*),
1715 void *data)
1717 struct page *page;
1718 int err;
1719 repeat:
1720 page = find_get_page(mapping, index);
1721 if (!page) {
1722 page = page_cache_alloc_cold(mapping);
1723 if (!page)
1724 return ERR_PTR(-ENOMEM);
1725 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1726 if (unlikely(err)) {
1727 page_cache_release(page);
1728 if (err == -EEXIST)
1729 goto repeat;
1730 /* Presumably ENOMEM for radix tree node */
1731 return ERR_PTR(err);
1733 err = filler(data, page);
1734 if (err < 0) {
1735 page_cache_release(page);
1736 page = ERR_PTR(err);
1739 return page;
1743 * read_cache_page_async - read into page cache, fill it if needed
1744 * @mapping: the page's address_space
1745 * @index: the page index
1746 * @filler: function to perform the read
1747 * @data: destination for read data
1749 * Same as read_cache_page, but don't wait for page to become unlocked
1750 * after submitting it to the filler.
1752 * Read into the page cache. If a page already exists, and PageUptodate() is
1753 * not set, try to fill the page but don't wait for it to become unlocked.
1755 * If the page does not get brought uptodate, return -EIO.
1757 struct page *read_cache_page_async(struct address_space *mapping,
1758 pgoff_t index,
1759 int (*filler)(void *,struct page*),
1760 void *data)
1762 struct page *page;
1763 int err;
1765 retry:
1766 page = __read_cache_page(mapping, index, filler, data);
1767 if (IS_ERR(page))
1768 return page;
1769 if (PageUptodate(page))
1770 goto out;
1772 lock_page(page);
1773 if (!page->mapping) {
1774 unlock_page(page);
1775 page_cache_release(page);
1776 goto retry;
1778 if (PageUptodate(page)) {
1779 unlock_page(page);
1780 goto out;
1782 err = filler(data, page);
1783 if (err < 0) {
1784 page_cache_release(page);
1785 return ERR_PTR(err);
1787 out:
1788 mark_page_accessed(page);
1789 return page;
1791 EXPORT_SYMBOL(read_cache_page_async);
1794 * read_cache_page - read into page cache, fill it if needed
1795 * @mapping: the page's address_space
1796 * @index: the page index
1797 * @filler: function to perform the read
1798 * @data: destination for read data
1800 * Read into the page cache. If a page already exists, and PageUptodate() is
1801 * not set, try to fill the page then wait for it to become unlocked.
1803 * If the page does not get brought uptodate, return -EIO.
1805 struct page *read_cache_page(struct address_space *mapping,
1806 pgoff_t index,
1807 int (*filler)(void *,struct page*),
1808 void *data)
1810 struct page *page;
1812 page = read_cache_page_async(mapping, index, filler, data);
1813 if (IS_ERR(page))
1814 goto out;
1815 wait_on_page_locked(page);
1816 if (!PageUptodate(page)) {
1817 page_cache_release(page);
1818 page = ERR_PTR(-EIO);
1820 out:
1821 return page;
1823 EXPORT_SYMBOL(read_cache_page);
1826 * The logic we want is
1828 * if suid or (sgid and xgrp)
1829 * remove privs
1831 int should_remove_suid(struct dentry *dentry)
1833 mode_t mode = dentry->d_inode->i_mode;
1834 int kill = 0;
1836 /* suid always must be killed */
1837 if (unlikely(mode & S_ISUID))
1838 kill = ATTR_KILL_SUID;
1841 * sgid without any exec bits is just a mandatory locking mark; leave
1842 * it alone. If some exec bits are set, it's a real sgid; kill it.
1844 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1845 kill |= ATTR_KILL_SGID;
1847 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1848 return kill;
1850 return 0;
1852 EXPORT_SYMBOL(should_remove_suid);
1854 static int __remove_suid(struct dentry *dentry, int kill)
1856 struct iattr newattrs;
1858 newattrs.ia_valid = ATTR_FORCE | kill;
1859 return notify_change(dentry, &newattrs);
1862 int file_remove_suid(struct file *file)
1864 struct dentry *dentry = file->f_path.dentry;
1865 int killsuid = should_remove_suid(dentry);
1866 int killpriv = security_inode_need_killpriv(dentry);
1867 int error = 0;
1869 if (killpriv < 0)
1870 return killpriv;
1871 if (killpriv)
1872 error = security_inode_killpriv(dentry);
1873 if (!error && killsuid)
1874 error = __remove_suid(dentry, killsuid);
1876 return error;
1878 EXPORT_SYMBOL(file_remove_suid);
1880 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1881 const struct iovec *iov, size_t base, size_t bytes)
1883 size_t copied = 0, left = 0;
1885 while (bytes) {
1886 char __user *buf = iov->iov_base + base;
1887 int copy = min(bytes, iov->iov_len - base);
1889 base = 0;
1890 left = __copy_from_user_inatomic(vaddr, buf, copy);
1891 copied += copy;
1892 bytes -= copy;
1893 vaddr += copy;
1894 iov++;
1896 if (unlikely(left))
1897 break;
1899 return copied - left;
1903 * Copy as much as we can into the page and return the number of bytes which
1904 * were sucessfully copied. If a fault is encountered then return the number of
1905 * bytes which were copied.
1907 size_t iov_iter_copy_from_user_atomic(struct page *page,
1908 struct iov_iter *i, unsigned long offset, size_t bytes)
1910 char *kaddr;
1911 size_t copied;
1913 BUG_ON(!in_atomic());
1914 kaddr = kmap_atomic(page, KM_USER0);
1915 if (likely(i->nr_segs == 1)) {
1916 int left;
1917 char __user *buf = i->iov->iov_base + i->iov_offset;
1918 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1919 copied = bytes - left;
1920 } else {
1921 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1922 i->iov, i->iov_offset, bytes);
1924 kunmap_atomic(kaddr, KM_USER0);
1926 return copied;
1928 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1931 * This has the same sideeffects and return value as
1932 * iov_iter_copy_from_user_atomic().
1933 * The difference is that it attempts to resolve faults.
1934 * Page must not be locked.
1936 size_t iov_iter_copy_from_user(struct page *page,
1937 struct iov_iter *i, unsigned long offset, size_t bytes)
1939 char *kaddr;
1940 size_t copied;
1942 kaddr = kmap(page);
1943 if (likely(i->nr_segs == 1)) {
1944 int left;
1945 char __user *buf = i->iov->iov_base + i->iov_offset;
1946 left = __copy_from_user(kaddr + offset, buf, bytes);
1947 copied = bytes - left;
1948 } else {
1949 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1950 i->iov, i->iov_offset, bytes);
1952 kunmap(page);
1953 return copied;
1955 EXPORT_SYMBOL(iov_iter_copy_from_user);
1957 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1959 BUG_ON(i->count < bytes);
1961 if (likely(i->nr_segs == 1)) {
1962 i->iov_offset += bytes;
1963 i->count -= bytes;
1964 } else {
1965 const struct iovec *iov = i->iov;
1966 size_t base = i->iov_offset;
1969 * The !iov->iov_len check ensures we skip over unlikely
1970 * zero-length segments (without overruning the iovec).
1972 while (bytes || unlikely(i->count && !iov->iov_len)) {
1973 int copy;
1975 copy = min(bytes, iov->iov_len - base);
1976 BUG_ON(!i->count || i->count < copy);
1977 i->count -= copy;
1978 bytes -= copy;
1979 base += copy;
1980 if (iov->iov_len == base) {
1981 iov++;
1982 base = 0;
1985 i->iov = iov;
1986 i->iov_offset = base;
1989 EXPORT_SYMBOL(iov_iter_advance);
1992 * Fault in the first iovec of the given iov_iter, to a maximum length
1993 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1994 * accessed (ie. because it is an invalid address).
1996 * writev-intensive code may want this to prefault several iovecs -- that
1997 * would be possible (callers must not rely on the fact that _only_ the
1998 * first iovec will be faulted with the current implementation).
2000 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2002 char __user *buf = i->iov->iov_base + i->iov_offset;
2003 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2004 return fault_in_pages_readable(buf, bytes);
2006 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2009 * Return the count of just the current iov_iter segment.
2011 size_t iov_iter_single_seg_count(struct iov_iter *i)
2013 const struct iovec *iov = i->iov;
2014 if (i->nr_segs == 1)
2015 return i->count;
2016 else
2017 return min(i->count, iov->iov_len - i->iov_offset);
2019 EXPORT_SYMBOL(iov_iter_single_seg_count);
2022 * Performs necessary checks before doing a write
2024 * Can adjust writing position or amount of bytes to write.
2025 * Returns appropriate error code that caller should return or
2026 * zero in case that write should be allowed.
2028 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2030 struct inode *inode = file->f_mapping->host;
2031 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2033 if (unlikely(*pos < 0))
2034 return -EINVAL;
2036 if (!isblk) {
2037 /* FIXME: this is for backwards compatibility with 2.4 */
2038 if (file->f_flags & O_APPEND)
2039 *pos = i_size_read(inode);
2041 if (limit != RLIM_INFINITY) {
2042 if (*pos >= limit) {
2043 send_sig(SIGXFSZ, current, 0);
2044 return -EFBIG;
2046 if (*count > limit - (typeof(limit))*pos) {
2047 *count = limit - (typeof(limit))*pos;
2053 * LFS rule
2055 if (unlikely(*pos + *count > MAX_NON_LFS &&
2056 !(file->f_flags & O_LARGEFILE))) {
2057 if (*pos >= MAX_NON_LFS) {
2058 return -EFBIG;
2060 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2061 *count = MAX_NON_LFS - (unsigned long)*pos;
2066 * Are we about to exceed the fs block limit ?
2068 * If we have written data it becomes a short write. If we have
2069 * exceeded without writing data we send a signal and return EFBIG.
2070 * Linus frestrict idea will clean these up nicely..
2072 if (likely(!isblk)) {
2073 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2074 if (*count || *pos > inode->i_sb->s_maxbytes) {
2075 return -EFBIG;
2077 /* zero-length writes at ->s_maxbytes are OK */
2080 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2081 *count = inode->i_sb->s_maxbytes - *pos;
2082 } else {
2083 #ifdef CONFIG_BLOCK
2084 loff_t isize;
2085 if (bdev_read_only(I_BDEV(inode)))
2086 return -EPERM;
2087 isize = i_size_read(inode);
2088 if (*pos >= isize) {
2089 if (*count || *pos > isize)
2090 return -ENOSPC;
2093 if (*pos + *count > isize)
2094 *count = isize - *pos;
2095 #else
2096 return -EPERM;
2097 #endif
2099 return 0;
2101 EXPORT_SYMBOL(generic_write_checks);
2103 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2104 loff_t pos, unsigned len, unsigned flags,
2105 struct page **pagep, void **fsdata)
2107 const struct address_space_operations *aops = mapping->a_ops;
2109 return aops->write_begin(file, mapping, pos, len, flags,
2110 pagep, fsdata);
2112 EXPORT_SYMBOL(pagecache_write_begin);
2114 int pagecache_write_end(struct file *file, struct address_space *mapping,
2115 loff_t pos, unsigned len, unsigned copied,
2116 struct page *page, void *fsdata)
2118 const struct address_space_operations *aops = mapping->a_ops;
2120 mark_page_accessed(page);
2121 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2123 EXPORT_SYMBOL(pagecache_write_end);
2125 ssize_t
2126 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2127 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2128 size_t count, size_t ocount)
2130 struct file *file = iocb->ki_filp;
2131 struct address_space *mapping = file->f_mapping;
2132 struct inode *inode = mapping->host;
2133 ssize_t written;
2134 size_t write_len;
2135 pgoff_t end;
2137 if (count != ocount)
2138 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2140 write_len = iov_length(iov, *nr_segs);
2141 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2143 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2144 if (written)
2145 goto out;
2148 * After a write we want buffered reads to be sure to go to disk to get
2149 * the new data. We invalidate clean cached page from the region we're
2150 * about to write. We do this *before* the write so that we can return
2151 * without clobbering -EIOCBQUEUED from ->direct_IO().
2153 if (mapping->nrpages) {
2154 written = invalidate_inode_pages2_range(mapping,
2155 pos >> PAGE_CACHE_SHIFT, end);
2157 * If a page can not be invalidated, return 0 to fall back
2158 * to buffered write.
2160 if (written) {
2161 if (written == -EBUSY)
2162 return 0;
2163 goto out;
2167 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2170 * Finally, try again to invalidate clean pages which might have been
2171 * cached by non-direct readahead, or faulted in by get_user_pages()
2172 * if the source of the write was an mmap'ed region of the file
2173 * we're writing. Either one is a pretty crazy thing to do,
2174 * so we don't support it 100%. If this invalidation
2175 * fails, tough, the write still worked...
2177 if (mapping->nrpages) {
2178 invalidate_inode_pages2_range(mapping,
2179 pos >> PAGE_CACHE_SHIFT, end);
2182 if (written > 0) {
2183 loff_t end = pos + written;
2184 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2185 i_size_write(inode, end);
2186 mark_inode_dirty(inode);
2188 *ppos = end;
2190 out:
2191 return written;
2193 EXPORT_SYMBOL(generic_file_direct_write);
2196 * Find or create a page at the given pagecache position. Return the locked
2197 * page. This function is specifically for buffered writes.
2199 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2200 pgoff_t index, unsigned flags)
2202 int status;
2203 struct page *page;
2204 gfp_t gfp_notmask = 0;
2205 if (flags & AOP_FLAG_NOFS)
2206 gfp_notmask = __GFP_FS;
2207 repeat:
2208 page = find_lock_page(mapping, index);
2209 if (likely(page))
2210 return page;
2212 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2213 if (!page)
2214 return NULL;
2215 status = add_to_page_cache_lru(page, mapping, index,
2216 GFP_KERNEL & ~gfp_notmask);
2217 if (unlikely(status)) {
2218 page_cache_release(page);
2219 if (status == -EEXIST)
2220 goto repeat;
2221 return NULL;
2223 return page;
2225 EXPORT_SYMBOL(grab_cache_page_write_begin);
2227 static ssize_t generic_perform_write(struct file *file,
2228 struct iov_iter *i, loff_t pos)
2230 struct address_space *mapping = file->f_mapping;
2231 const struct address_space_operations *a_ops = mapping->a_ops;
2232 long status = 0;
2233 ssize_t written = 0;
2234 unsigned int flags = 0;
2237 * Copies from kernel address space cannot fail (NFSD is a big user).
2239 if (segment_eq(get_fs(), KERNEL_DS))
2240 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2242 do {
2243 struct page *page;
2244 pgoff_t index; /* Pagecache index for current page */
2245 unsigned long offset; /* Offset into pagecache page */
2246 unsigned long bytes; /* Bytes to write to page */
2247 size_t copied; /* Bytes copied from user */
2248 void *fsdata;
2250 offset = (pos & (PAGE_CACHE_SIZE - 1));
2251 index = pos >> PAGE_CACHE_SHIFT;
2252 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2253 iov_iter_count(i));
2255 again:
2258 * Bring in the user page that we will copy from _first_.
2259 * Otherwise there's a nasty deadlock on copying from the
2260 * same page as we're writing to, without it being marked
2261 * up-to-date.
2263 * Not only is this an optimisation, but it is also required
2264 * to check that the address is actually valid, when atomic
2265 * usercopies are used, below.
2267 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2268 status = -EFAULT;
2269 break;
2272 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2273 &page, &fsdata);
2274 if (unlikely(status))
2275 break;
2277 pagefault_disable();
2278 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2279 pagefault_enable();
2280 flush_dcache_page(page);
2282 mark_page_accessed(page);
2283 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2284 page, fsdata);
2285 if (unlikely(status < 0))
2286 break;
2287 copied = status;
2289 cond_resched();
2291 iov_iter_advance(i, copied);
2292 if (unlikely(copied == 0)) {
2294 * If we were unable to copy any data at all, we must
2295 * fall back to a single segment length write.
2297 * If we didn't fallback here, we could livelock
2298 * because not all segments in the iov can be copied at
2299 * once without a pagefault.
2301 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2302 iov_iter_single_seg_count(i));
2303 goto again;
2305 pos += copied;
2306 written += copied;
2308 balance_dirty_pages_ratelimited(mapping);
2310 } while (iov_iter_count(i));
2312 return written ? written : status;
2315 ssize_t
2316 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2317 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2318 size_t count, ssize_t written)
2320 struct file *file = iocb->ki_filp;
2321 struct address_space *mapping = file->f_mapping;
2322 ssize_t status;
2323 struct iov_iter i;
2325 iov_iter_init(&i, iov, nr_segs, count, written);
2326 status = generic_perform_write(file, &i, pos);
2328 if (likely(status >= 0)) {
2329 written += status;
2330 *ppos = pos + status;
2334 * If we get here for O_DIRECT writes then we must have fallen through
2335 * to buffered writes (block instantiation inside i_size). So we sync
2336 * the file data here, to try to honour O_DIRECT expectations.
2338 if (unlikely(file->f_flags & O_DIRECT) && written)
2339 status = filemap_write_and_wait_range(mapping,
2340 pos, pos + written - 1);
2342 return written ? written : status;
2344 EXPORT_SYMBOL(generic_file_buffered_write);
2347 * __generic_file_aio_write - write data to a file
2348 * @iocb: IO state structure (file, offset, etc.)
2349 * @iov: vector with data to write
2350 * @nr_segs: number of segments in the vector
2351 * @ppos: position where to write
2353 * This function does all the work needed for actually writing data to a
2354 * file. It does all basic checks, removes SUID from the file, updates
2355 * modification times and calls proper subroutines depending on whether we
2356 * do direct IO or a standard buffered write.
2358 * It expects i_mutex to be grabbed unless we work on a block device or similar
2359 * object which does not need locking at all.
2361 * This function does *not* take care of syncing data in case of O_SYNC write.
2362 * A caller has to handle it. This is mainly due to the fact that we want to
2363 * avoid syncing under i_mutex.
2365 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2366 unsigned long nr_segs, loff_t *ppos)
2368 struct file *file = iocb->ki_filp;
2369 struct address_space * mapping = file->f_mapping;
2370 size_t ocount; /* original count */
2371 size_t count; /* after file limit checks */
2372 struct inode *inode = mapping->host;
2373 loff_t pos;
2374 ssize_t written;
2375 ssize_t err;
2377 ocount = 0;
2378 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2379 if (err)
2380 return err;
2382 count = ocount;
2383 pos = *ppos;
2385 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2387 /* We can write back this queue in page reclaim */
2388 current->backing_dev_info = mapping->backing_dev_info;
2389 written = 0;
2391 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2392 if (err)
2393 goto out;
2395 if (count == 0)
2396 goto out;
2398 err = file_remove_suid(file);
2399 if (err)
2400 goto out;
2402 file_update_time(file);
2404 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2405 if (unlikely(file->f_flags & O_DIRECT)) {
2406 loff_t endbyte;
2407 ssize_t written_buffered;
2409 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2410 ppos, count, ocount);
2411 if (written < 0 || written == count)
2412 goto out;
2414 * direct-io write to a hole: fall through to buffered I/O
2415 * for completing the rest of the request.
2417 pos += written;
2418 count -= written;
2419 written_buffered = generic_file_buffered_write(iocb, iov,
2420 nr_segs, pos, ppos, count,
2421 written);
2423 * If generic_file_buffered_write() retuned a synchronous error
2424 * then we want to return the number of bytes which were
2425 * direct-written, or the error code if that was zero. Note
2426 * that this differs from normal direct-io semantics, which
2427 * will return -EFOO even if some bytes were written.
2429 if (written_buffered < 0) {
2430 err = written_buffered;
2431 goto out;
2435 * We need to ensure that the page cache pages are written to
2436 * disk and invalidated to preserve the expected O_DIRECT
2437 * semantics.
2439 endbyte = pos + written_buffered - written - 1;
2440 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2441 SYNC_FILE_RANGE_WAIT_BEFORE|
2442 SYNC_FILE_RANGE_WRITE|
2443 SYNC_FILE_RANGE_WAIT_AFTER);
2444 if (err == 0) {
2445 written = written_buffered;
2446 invalidate_mapping_pages(mapping,
2447 pos >> PAGE_CACHE_SHIFT,
2448 endbyte >> PAGE_CACHE_SHIFT);
2449 } else {
2451 * We don't know how much we wrote, so just return
2452 * the number of bytes which were direct-written
2455 } else {
2456 written = generic_file_buffered_write(iocb, iov, nr_segs,
2457 pos, ppos, count, written);
2459 out:
2460 current->backing_dev_info = NULL;
2461 return written ? written : err;
2463 EXPORT_SYMBOL(__generic_file_aio_write);
2467 * generic_file_aio_write_nolock - write data, usually to a device
2468 * @iocb: IO state structure
2469 * @iov: vector with data to write
2470 * @nr_segs: number of segments in the vector
2471 * @pos: position in file where to write
2473 * This is a wrapper around __generic_file_aio_write() which takes care of
2474 * syncing the file in case of O_SYNC file. It does not take i_mutex for the
2475 * write itself but may do so during syncing. It is meant for users like block
2476 * devices which do not need i_mutex during write. If your filesystem needs to
2477 * do a write but already holds i_mutex, use __generic_file_aio_write()
2478 * directly and then sync the file like generic_file_aio_write().
2480 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2481 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2483 struct file *file = iocb->ki_filp;
2484 struct address_space *mapping = file->f_mapping;
2485 struct inode *inode = mapping->host;
2486 ssize_t ret;
2488 BUG_ON(iocb->ki_pos != pos);
2490 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2492 if ((ret > 0 || ret == -EIOCBQUEUED) &&
2493 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2494 ssize_t err;
2496 err = sync_page_range_nolock(inode, mapping, pos, ret);
2497 if (err < 0 && ret > 0)
2498 ret = err;
2500 return ret;
2502 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2505 * generic_file_aio_write - write data to a file
2506 * @iocb: IO state structure
2507 * @iov: vector with data to write
2508 * @nr_segs: number of segments in the vector
2509 * @pos: position in file where to write
2511 * This is a wrapper around __generic_file_aio_write() to be used by most
2512 * filesystems. It takes care of syncing the file in case of O_SYNC file
2513 * and acquires i_mutex as needed.
2515 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2516 unsigned long nr_segs, loff_t pos)
2518 struct file *file = iocb->ki_filp;
2519 struct address_space *mapping = file->f_mapping;
2520 struct inode *inode = mapping->host;
2521 ssize_t ret;
2523 BUG_ON(iocb->ki_pos != pos);
2525 mutex_lock(&inode->i_mutex);
2526 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2527 mutex_unlock(&inode->i_mutex);
2529 if ((ret > 0 || ret == -EIOCBQUEUED) &&
2530 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2531 ssize_t err;
2533 err = sync_page_range(inode, mapping, pos, ret);
2534 if (err < 0 && ret > 0)
2535 ret = err;
2537 return ret;
2539 EXPORT_SYMBOL(generic_file_aio_write);
2542 * try_to_release_page() - release old fs-specific metadata on a page
2544 * @page: the page which the kernel is trying to free
2545 * @gfp_mask: memory allocation flags (and I/O mode)
2547 * The address_space is to try to release any data against the page
2548 * (presumably at page->private). If the release was successful, return `1'.
2549 * Otherwise return zero.
2551 * This may also be called if PG_fscache is set on a page, indicating that the
2552 * page is known to the local caching routines.
2554 * The @gfp_mask argument specifies whether I/O may be performed to release
2555 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2558 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2560 struct address_space * const mapping = page->mapping;
2562 BUG_ON(!PageLocked(page));
2563 if (PageWriteback(page))
2564 return 0;
2566 if (mapping && mapping->a_ops->releasepage)
2567 return mapping->a_ops->releasepage(page, gfp_mask);
2568 return try_to_free_buffers(page);
2571 EXPORT_SYMBOL(try_to_release_page);