isci: merge smp request substates into primary state machine
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / isci / host.c
blob2bb9f1073e73c525bf73f29d4d30584e9bcc2b27
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * BSD LICENSE
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/device.h>
56 #include <scsi/sas.h>
57 #include "host.h"
58 #include "isci.h"
59 #include "port.h"
60 #include "host.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69 #include "scu_unsolicited_frame.h"
70 #include "timers.h"
72 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
74 /**
75 * smu_dcc_get_max_ports() -
77 * This macro returns the maximum number of logical ports supported by the
78 * hardware. The caller passes in the value read from the device context
79 * capacity register and this macro will mash and shift the value appropriately.
81 #define smu_dcc_get_max_ports(dcc_value) \
83 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
84 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
87 /**
88 * smu_dcc_get_max_task_context() -
90 * This macro returns the maximum number of task contexts supported by the
91 * hardware. The caller passes in the value read from the device context
92 * capacity register and this macro will mash and shift the value appropriately.
94 #define smu_dcc_get_max_task_context(dcc_value) \
96 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
97 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
101 * smu_dcc_get_max_remote_node_context() -
103 * This macro returns the maximum number of remote node contexts supported by
104 * the hardware. The caller passes in the value read from the device context
105 * capacity register and this macro will mash and shift the value appropriately.
107 #define smu_dcc_get_max_remote_node_context(dcc_value) \
109 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
110 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
114 #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3
115 #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3
120 * The number of milliseconds to wait for a phy to start.
122 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
127 * The number of milliseconds to wait while a given phy is consuming power
128 * before allowing another set of phys to consume power. Ultimately, this will
129 * be specified by OEM parameter.
131 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
134 * NORMALIZE_PUT_POINTER() -
136 * This macro will normalize the completion queue put pointer so its value can
137 * be used as an array inde
139 #define NORMALIZE_PUT_POINTER(x) \
140 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
144 * NORMALIZE_EVENT_POINTER() -
146 * This macro will normalize the completion queue event entry so its value can
147 * be used as an index.
149 #define NORMALIZE_EVENT_POINTER(x) \
151 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
152 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
156 * INCREMENT_COMPLETION_QUEUE_GET() -
158 * This macro will increment the controllers completion queue index value and
159 * possibly toggle the cycle bit if the completion queue index wraps back to 0.
161 #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
162 INCREMENT_QUEUE_GET(\
163 (index), \
164 (cycle), \
165 (controller)->completion_queue_entries, \
166 SMU_CQGR_CYCLE_BIT \
170 * INCREMENT_EVENT_QUEUE_GET() -
172 * This macro will increment the controllers event queue index value and
173 * possibly toggle the event cycle bit if the event queue index wraps back to 0.
175 #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
176 INCREMENT_QUEUE_GET(\
177 (index), \
178 (cycle), \
179 (controller)->completion_event_entries, \
180 SMU_CQGR_EVENT_CYCLE_BIT \
185 * NORMALIZE_GET_POINTER() -
187 * This macro will normalize the completion queue get pointer so its value can
188 * be used as an index into an array
190 #define NORMALIZE_GET_POINTER(x) \
191 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
194 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
196 * This macro will normalize the completion queue cycle pointer so it matches
197 * the completion queue cycle bit
199 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
200 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
203 * COMPLETION_QUEUE_CYCLE_BIT() -
205 * This macro will return the cycle bit of the completion queue entry
207 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
209 static bool scic_sds_controller_completion_queue_has_entries(
210 struct scic_sds_controller *scic)
212 u32 get_value = scic->completion_queue_get;
213 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
215 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
216 COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
217 return true;
219 return false;
222 static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
224 if (scic_sds_controller_completion_queue_has_entries(scic)) {
225 return true;
226 } else {
228 * we have a spurious interrupt it could be that we have already
229 * emptied the completion queue from a previous interrupt */
230 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
233 * There is a race in the hardware that could cause us not to be notified
234 * of an interrupt completion if we do not take this step. We will mask
235 * then unmask the interrupts so if there is another interrupt pending
236 * the clearing of the interrupt source we get the next interrupt message. */
237 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
238 writel(0, &scic->smu_registers->interrupt_mask);
241 return false;
244 irqreturn_t isci_msix_isr(int vec, void *data)
246 struct isci_host *ihost = data;
248 if (scic_sds_controller_isr(&ihost->sci))
249 tasklet_schedule(&ihost->completion_tasklet);
251 return IRQ_HANDLED;
254 static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
256 u32 interrupt_status;
258 interrupt_status =
259 readl(&scic->smu_registers->interrupt_status);
260 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
262 if (interrupt_status != 0) {
264 * There is an error interrupt pending so let it through and handle
265 * in the callback */
266 return true;
270 * There is a race in the hardware that could cause us not to be notified
271 * of an interrupt completion if we do not take this step. We will mask
272 * then unmask the error interrupts so if there was another interrupt
273 * pending we will be notified.
274 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
275 writel(0xff, &scic->smu_registers->interrupt_mask);
276 writel(0, &scic->smu_registers->interrupt_mask);
278 return false;
281 static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
282 u32 completion_entry)
284 u32 index;
285 struct scic_sds_request *io_request;
287 index = SCU_GET_COMPLETION_INDEX(completion_entry);
288 io_request = scic->io_request_table[index];
290 /* Make sure that we really want to process this IO request */
291 if (
292 (io_request != NULL)
293 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
294 && (
295 scic_sds_io_tag_get_sequence(io_request->io_tag)
296 == scic->io_request_sequence[index]
299 /* Yep this is a valid io request pass it along to the io request handler */
300 scic_sds_io_request_tc_completion(io_request, completion_entry);
304 static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
305 u32 completion_entry)
307 u32 index;
308 struct scic_sds_request *io_request;
309 struct scic_sds_remote_device *device;
311 index = SCU_GET_COMPLETION_INDEX(completion_entry);
313 switch (scu_get_command_request_type(completion_entry)) {
314 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
315 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
316 io_request = scic->io_request_table[index];
317 dev_warn(scic_to_dev(scic),
318 "%s: SCIC SDS Completion type SDMA %x for io request "
319 "%p\n",
320 __func__,
321 completion_entry,
322 io_request);
323 /* @todo For a post TC operation we need to fail the IO
324 * request
326 break;
328 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
329 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
330 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
331 device = scic->device_table[index];
332 dev_warn(scic_to_dev(scic),
333 "%s: SCIC SDS Completion type SDMA %x for remote "
334 "device %p\n",
335 __func__,
336 completion_entry,
337 device);
338 /* @todo For a port RNC operation we need to fail the
339 * device
341 break;
343 default:
344 dev_warn(scic_to_dev(scic),
345 "%s: SCIC SDS Completion unknown SDMA completion "
346 "type %x\n",
347 __func__,
348 completion_entry);
349 break;
354 static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
355 u32 completion_entry)
357 u32 index;
358 u32 frame_index;
360 struct isci_host *ihost = scic_to_ihost(scic);
361 struct scu_unsolicited_frame_header *frame_header;
362 struct scic_sds_phy *phy;
363 struct scic_sds_remote_device *device;
365 enum sci_status result = SCI_FAILURE;
367 frame_index = SCU_GET_FRAME_INDEX(completion_entry);
369 frame_header = scic->uf_control.buffers.array[frame_index].header;
370 scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
372 if (SCU_GET_FRAME_ERROR(completion_entry)) {
374 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
375 * / this cause a problem? We expect the phy initialization will
376 * / fail if there is an error in the frame. */
377 scic_sds_controller_release_frame(scic, frame_index);
378 return;
381 if (frame_header->is_address_frame) {
382 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
383 phy = &ihost->phys[index].sci;
384 result = scic_sds_phy_frame_handler(phy, frame_index);
385 } else {
387 index = SCU_GET_COMPLETION_INDEX(completion_entry);
389 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
391 * This is a signature fis or a frame from a direct attached SATA
392 * device that has not yet been created. In either case forwared
393 * the frame to the PE and let it take care of the frame data. */
394 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
395 phy = &ihost->phys[index].sci;
396 result = scic_sds_phy_frame_handler(phy, frame_index);
397 } else {
398 if (index < scic->remote_node_entries)
399 device = scic->device_table[index];
400 else
401 device = NULL;
403 if (device != NULL)
404 result = scic_sds_remote_device_frame_handler(device, frame_index);
405 else
406 scic_sds_controller_release_frame(scic, frame_index);
410 if (result != SCI_SUCCESS) {
412 * / @todo Is there any reason to report some additional error message
413 * / when we get this failure notifiction? */
417 static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
418 u32 completion_entry)
420 struct isci_host *ihost = scic_to_ihost(scic);
421 struct scic_sds_request *io_request;
422 struct scic_sds_remote_device *device;
423 struct scic_sds_phy *phy;
424 u32 index;
426 index = SCU_GET_COMPLETION_INDEX(completion_entry);
428 switch (scu_get_event_type(completion_entry)) {
429 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
430 /* / @todo The driver did something wrong and we need to fix the condtion. */
431 dev_err(scic_to_dev(scic),
432 "%s: SCIC Controller 0x%p received SMU command error "
433 "0x%x\n",
434 __func__,
435 scic,
436 completion_entry);
437 break;
439 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
440 case SCU_EVENT_TYPE_SMU_ERROR:
441 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
443 * / @todo This is a hardware failure and its likely that we want to
444 * / reset the controller. */
445 dev_err(scic_to_dev(scic),
446 "%s: SCIC Controller 0x%p received fatal controller "
447 "event 0x%x\n",
448 __func__,
449 scic,
450 completion_entry);
451 break;
453 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
454 io_request = scic->io_request_table[index];
455 scic_sds_io_request_event_handler(io_request, completion_entry);
456 break;
458 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
459 switch (scu_get_event_specifier(completion_entry)) {
460 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
461 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
462 io_request = scic->io_request_table[index];
463 if (io_request != NULL)
464 scic_sds_io_request_event_handler(io_request, completion_entry);
465 else
466 dev_warn(scic_to_dev(scic),
467 "%s: SCIC Controller 0x%p received "
468 "event 0x%x for io request object "
469 "that doesnt exist.\n",
470 __func__,
471 scic,
472 completion_entry);
474 break;
476 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
477 device = scic->device_table[index];
478 if (device != NULL)
479 scic_sds_remote_device_event_handler(device, completion_entry);
480 else
481 dev_warn(scic_to_dev(scic),
482 "%s: SCIC Controller 0x%p received "
483 "event 0x%x for remote device object "
484 "that doesnt exist.\n",
485 __func__,
486 scic,
487 completion_entry);
489 break;
491 break;
493 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
495 * direct the broadcast change event to the phy first and then let
496 * the phy redirect the broadcast change to the port object */
497 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
499 * direct error counter event to the phy object since that is where
500 * we get the event notification. This is a type 4 event. */
501 case SCU_EVENT_TYPE_OSSP_EVENT:
502 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
503 phy = &ihost->phys[index].sci;
504 scic_sds_phy_event_handler(phy, completion_entry);
505 break;
507 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
508 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
509 case SCU_EVENT_TYPE_RNC_OPS_MISC:
510 if (index < scic->remote_node_entries) {
511 device = scic->device_table[index];
513 if (device != NULL)
514 scic_sds_remote_device_event_handler(device, completion_entry);
515 } else
516 dev_err(scic_to_dev(scic),
517 "%s: SCIC Controller 0x%p received event 0x%x "
518 "for remote device object 0x%0x that doesnt "
519 "exist.\n",
520 __func__,
521 scic,
522 completion_entry,
523 index);
525 break;
527 default:
528 dev_warn(scic_to_dev(scic),
529 "%s: SCIC Controller received unknown event code %x\n",
530 __func__,
531 completion_entry);
532 break;
538 static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
540 u32 completion_count = 0;
541 u32 completion_entry;
542 u32 get_index;
543 u32 get_cycle;
544 u32 event_index;
545 u32 event_cycle;
547 dev_dbg(scic_to_dev(scic),
548 "%s: completion queue begining get:0x%08x\n",
549 __func__,
550 scic->completion_queue_get);
552 /* Get the component parts of the completion queue */
553 get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
554 get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
556 event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
557 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
559 while (
560 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
561 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
563 completion_count++;
565 completion_entry = scic->completion_queue[get_index];
566 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
568 dev_dbg(scic_to_dev(scic),
569 "%s: completion queue entry:0x%08x\n",
570 __func__,
571 completion_entry);
573 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
574 case SCU_COMPLETION_TYPE_TASK:
575 scic_sds_controller_task_completion(scic, completion_entry);
576 break;
578 case SCU_COMPLETION_TYPE_SDMA:
579 scic_sds_controller_sdma_completion(scic, completion_entry);
580 break;
582 case SCU_COMPLETION_TYPE_UFI:
583 scic_sds_controller_unsolicited_frame(scic, completion_entry);
584 break;
586 case SCU_COMPLETION_TYPE_EVENT:
587 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
588 scic_sds_controller_event_completion(scic, completion_entry);
589 break;
591 case SCU_COMPLETION_TYPE_NOTIFY:
593 * Presently we do the same thing with a notify event that we do with the
594 * other event codes. */
595 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
596 scic_sds_controller_event_completion(scic, completion_entry);
597 break;
599 default:
600 dev_warn(scic_to_dev(scic),
601 "%s: SCIC Controller received unknown "
602 "completion type %x\n",
603 __func__,
604 completion_entry);
605 break;
609 /* Update the get register if we completed one or more entries */
610 if (completion_count > 0) {
611 scic->completion_queue_get =
612 SMU_CQGR_GEN_BIT(ENABLE) |
613 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
614 event_cycle |
615 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
616 get_cycle |
617 SMU_CQGR_GEN_VAL(POINTER, get_index);
619 writel(scic->completion_queue_get,
620 &scic->smu_registers->completion_queue_get);
624 dev_dbg(scic_to_dev(scic),
625 "%s: completion queue ending get:0x%08x\n",
626 __func__,
627 scic->completion_queue_get);
631 static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
633 u32 interrupt_status;
635 interrupt_status =
636 readl(&scic->smu_registers->interrupt_status);
638 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
639 scic_sds_controller_completion_queue_has_entries(scic)) {
641 scic_sds_controller_process_completions(scic);
642 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
643 } else {
644 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
645 interrupt_status);
647 sci_base_state_machine_change_state(&scic->state_machine,
648 SCI_BASE_CONTROLLER_STATE_FAILED);
650 return;
653 /* If we dont process any completions I am not sure that we want to do this.
654 * We are in the middle of a hardware fault and should probably be reset.
656 writel(0, &scic->smu_registers->interrupt_mask);
659 irqreturn_t isci_intx_isr(int vec, void *data)
661 irqreturn_t ret = IRQ_NONE;
662 struct isci_host *ihost = data;
663 struct scic_sds_controller *scic = &ihost->sci;
665 if (scic_sds_controller_isr(scic)) {
666 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
667 tasklet_schedule(&ihost->completion_tasklet);
668 ret = IRQ_HANDLED;
669 } else if (scic_sds_controller_error_isr(scic)) {
670 spin_lock(&ihost->scic_lock);
671 scic_sds_controller_error_handler(scic);
672 spin_unlock(&ihost->scic_lock);
673 ret = IRQ_HANDLED;
676 return ret;
679 irqreturn_t isci_error_isr(int vec, void *data)
681 struct isci_host *ihost = data;
683 if (scic_sds_controller_error_isr(&ihost->sci))
684 scic_sds_controller_error_handler(&ihost->sci);
686 return IRQ_HANDLED;
690 * isci_host_start_complete() - This function is called by the core library,
691 * through the ISCI Module, to indicate controller start status.
692 * @isci_host: This parameter specifies the ISCI host object
693 * @completion_status: This parameter specifies the completion status from the
694 * core library.
697 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
699 if (completion_status != SCI_SUCCESS)
700 dev_info(&ihost->pdev->dev,
701 "controller start timed out, continuing...\n");
702 isci_host_change_state(ihost, isci_ready);
703 clear_bit(IHOST_START_PENDING, &ihost->flags);
704 wake_up(&ihost->eventq);
707 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
709 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
711 if (test_bit(IHOST_START_PENDING, &ihost->flags))
712 return 0;
714 /* todo: use sas_flush_discovery once it is upstream */
715 scsi_flush_work(shost);
717 scsi_flush_work(shost);
719 dev_dbg(&ihost->pdev->dev,
720 "%s: ihost->status = %d, time = %ld\n",
721 __func__, isci_host_get_state(ihost), time);
723 return 1;
728 * scic_controller_get_suggested_start_timeout() - This method returns the
729 * suggested scic_controller_start() timeout amount. The user is free to
730 * use any timeout value, but this method provides the suggested minimum
731 * start timeout value. The returned value is based upon empirical
732 * information determined as a result of interoperability testing.
733 * @controller: the handle to the controller object for which to return the
734 * suggested start timeout.
736 * This method returns the number of milliseconds for the suggested start
737 * operation timeout.
739 static u32 scic_controller_get_suggested_start_timeout(
740 struct scic_sds_controller *sc)
742 /* Validate the user supplied parameters. */
743 if (sc == NULL)
744 return 0;
747 * The suggested minimum timeout value for a controller start operation:
749 * Signature FIS Timeout
750 * + Phy Start Timeout
751 * + Number of Phy Spin Up Intervals
752 * ---------------------------------
753 * Number of milliseconds for the controller start operation.
755 * NOTE: The number of phy spin up intervals will be equivalent
756 * to the number of phys divided by the number phys allowed
757 * per interval - 1 (once OEM parameters are supported).
758 * Currently we assume only 1 phy per interval. */
760 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
761 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
762 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
765 static void scic_controller_enable_interrupts(
766 struct scic_sds_controller *scic)
768 BUG_ON(scic->smu_registers == NULL);
769 writel(0, &scic->smu_registers->interrupt_mask);
772 void scic_controller_disable_interrupts(
773 struct scic_sds_controller *scic)
775 BUG_ON(scic->smu_registers == NULL);
776 writel(0xffffffff, &scic->smu_registers->interrupt_mask);
779 static void scic_sds_controller_enable_port_task_scheduler(
780 struct scic_sds_controller *scic)
782 u32 port_task_scheduler_value;
784 port_task_scheduler_value =
785 readl(&scic->scu_registers->peg0.ptsg.control);
786 port_task_scheduler_value |=
787 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
788 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
789 writel(port_task_scheduler_value,
790 &scic->scu_registers->peg0.ptsg.control);
793 static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
795 u32 task_assignment;
798 * Assign all the TCs to function 0
799 * TODO: Do we actually need to read this register to write it back?
802 task_assignment =
803 readl(&scic->smu_registers->task_context_assignment[0]);
805 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
806 (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
807 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
809 writel(task_assignment,
810 &scic->smu_registers->task_context_assignment[0]);
814 static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
816 u32 index;
817 u32 completion_queue_control_value;
818 u32 completion_queue_get_value;
819 u32 completion_queue_put_value;
821 scic->completion_queue_get = 0;
823 completion_queue_control_value = (
824 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
825 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
828 writel(completion_queue_control_value,
829 &scic->smu_registers->completion_queue_control);
832 /* Set the completion queue get pointer and enable the queue */
833 completion_queue_get_value = (
834 (SMU_CQGR_GEN_VAL(POINTER, 0))
835 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
836 | (SMU_CQGR_GEN_BIT(ENABLE))
837 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
840 writel(completion_queue_get_value,
841 &scic->smu_registers->completion_queue_get);
843 /* Set the completion queue put pointer */
844 completion_queue_put_value = (
845 (SMU_CQPR_GEN_VAL(POINTER, 0))
846 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
849 writel(completion_queue_put_value,
850 &scic->smu_registers->completion_queue_put);
852 /* Initialize the cycle bit of the completion queue entries */
853 for (index = 0; index < scic->completion_queue_entries; index++) {
855 * If get.cycle_bit != completion_queue.cycle_bit
856 * its not a valid completion queue entry
857 * so at system start all entries are invalid */
858 scic->completion_queue[index] = 0x80000000;
862 static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
864 u32 frame_queue_control_value;
865 u32 frame_queue_get_value;
866 u32 frame_queue_put_value;
868 /* Write the queue size */
869 frame_queue_control_value =
870 SCU_UFQC_GEN_VAL(QUEUE_SIZE,
871 scic->uf_control.address_table.count);
873 writel(frame_queue_control_value,
874 &scic->scu_registers->sdma.unsolicited_frame_queue_control);
876 /* Setup the get pointer for the unsolicited frame queue */
877 frame_queue_get_value = (
878 SCU_UFQGP_GEN_VAL(POINTER, 0)
879 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
882 writel(frame_queue_get_value,
883 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
884 /* Setup the put pointer for the unsolicited frame queue */
885 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
886 writel(frame_queue_put_value,
887 &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
891 * This method will attempt to transition into the ready state for the
892 * controller and indicate that the controller start operation has completed
893 * if all criteria are met.
894 * @scic: This parameter indicates the controller object for which
895 * to transition to ready.
896 * @status: This parameter indicates the status value to be pass into the call
897 * to scic_cb_controller_start_complete().
899 * none.
901 static void scic_sds_controller_transition_to_ready(
902 struct scic_sds_controller *scic,
903 enum sci_status status)
905 struct isci_host *ihost = scic_to_ihost(scic);
907 if (scic->state_machine.current_state_id ==
908 SCI_BASE_CONTROLLER_STATE_STARTING) {
910 * We move into the ready state, because some of the phys/ports
911 * may be up and operational.
913 sci_base_state_machine_change_state(&scic->state_machine,
914 SCI_BASE_CONTROLLER_STATE_READY);
916 isci_host_start_complete(ihost, status);
920 static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic)
922 isci_timer_stop(scic->phy_startup_timer);
924 scic->phy_startup_timer_pending = false;
927 static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic)
929 isci_timer_start(scic->phy_startup_timer,
930 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
932 scic->phy_startup_timer_pending = true;
936 * scic_sds_controller_start_next_phy - start phy
937 * @scic: controller
939 * If all the phys have been started, then attempt to transition the
940 * controller to the READY state and inform the user
941 * (scic_cb_controller_start_complete()).
943 static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
945 struct isci_host *ihost = scic_to_ihost(scic);
946 struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
947 struct scic_sds_phy *sci_phy;
948 enum sci_status status;
950 status = SCI_SUCCESS;
952 if (scic->phy_startup_timer_pending)
953 return status;
955 if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
956 bool is_controller_start_complete = true;
957 u32 state;
958 u8 index;
960 for (index = 0; index < SCI_MAX_PHYS; index++) {
961 sci_phy = &ihost->phys[index].sci;
962 state = sci_phy->state_machine.current_state_id;
964 if (!scic_sds_phy_get_port(sci_phy))
965 continue;
967 /* The controller start operation is complete iff:
968 * - all links have been given an opportunity to start
969 * - have no indication of a connected device
970 * - have an indication of a connected device and it has
971 * finished the link training process.
973 if ((sci_phy->is_in_link_training == false &&
974 state == SCI_BASE_PHY_STATE_INITIAL) ||
975 (sci_phy->is_in_link_training == false &&
976 state == SCI_BASE_PHY_STATE_STOPPED) ||
977 (sci_phy->is_in_link_training == true &&
978 state == SCI_BASE_PHY_STATE_STARTING)) {
979 is_controller_start_complete = false;
980 break;
985 * The controller has successfully finished the start process.
986 * Inform the SCI Core user and transition to the READY state. */
987 if (is_controller_start_complete == true) {
988 scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
989 scic_sds_controller_phy_timer_stop(scic);
991 } else {
992 sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
994 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
995 if (scic_sds_phy_get_port(sci_phy) == NULL) {
996 scic->next_phy_to_start++;
998 /* Caution recursion ahead be forwarned
1000 * The PHY was never added to a PORT in MPC mode
1001 * so start the next phy in sequence This phy
1002 * will never go link up and will not draw power
1003 * the OEM parameters either configured the phy
1004 * incorrectly for the PORT or it was never
1005 * assigned to a PORT
1007 return scic_sds_controller_start_next_phy(scic);
1011 status = scic_sds_phy_start(sci_phy);
1013 if (status == SCI_SUCCESS) {
1014 scic_sds_controller_phy_timer_start(scic);
1015 } else {
1016 dev_warn(scic_to_dev(scic),
1017 "%s: Controller stop operation failed "
1018 "to stop phy %d because of status "
1019 "%d.\n",
1020 __func__,
1021 ihost->phys[scic->next_phy_to_start].sci.phy_index,
1022 status);
1025 scic->next_phy_to_start++;
1028 return status;
1031 static void scic_sds_controller_phy_startup_timeout_handler(void *_scic)
1033 struct scic_sds_controller *scic = _scic;
1034 enum sci_status status;
1036 scic->phy_startup_timer_pending = false;
1037 status = SCI_FAILURE;
1038 while (status != SCI_SUCCESS)
1039 status = scic_sds_controller_start_next_phy(scic);
1042 static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
1043 u32 timeout)
1045 struct isci_host *ihost = scic_to_ihost(scic);
1046 enum sci_status result;
1047 u16 index;
1049 if (scic->state_machine.current_state_id !=
1050 SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1051 dev_warn(scic_to_dev(scic),
1052 "SCIC Controller start operation requested in "
1053 "invalid state\n");
1054 return SCI_FAILURE_INVALID_STATE;
1057 /* Build the TCi free pool */
1058 sci_pool_initialize(scic->tci_pool);
1059 for (index = 0; index < scic->task_context_entries; index++)
1060 sci_pool_put(scic->tci_pool, index);
1062 /* Build the RNi free pool */
1063 scic_sds_remote_node_table_initialize(
1064 &scic->available_remote_nodes,
1065 scic->remote_node_entries);
1068 * Before anything else lets make sure we will not be
1069 * interrupted by the hardware.
1071 scic_controller_disable_interrupts(scic);
1073 /* Enable the port task scheduler */
1074 scic_sds_controller_enable_port_task_scheduler(scic);
1076 /* Assign all the task entries to scic physical function */
1077 scic_sds_controller_assign_task_entries(scic);
1079 /* Now initialize the completion queue */
1080 scic_sds_controller_initialize_completion_queue(scic);
1082 /* Initialize the unsolicited frame queue for use */
1083 scic_sds_controller_initialize_unsolicited_frame_queue(scic);
1085 /* Start all of the ports on this controller */
1086 for (index = 0; index < scic->logical_port_entries; index++) {
1087 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1089 result = sci_port->state_handlers->start_handler(sci_port);
1090 if (result)
1091 return result;
1094 scic_sds_controller_start_next_phy(scic);
1096 isci_timer_start(scic->timeout_timer, timeout);
1098 sci_base_state_machine_change_state(&scic->state_machine,
1099 SCI_BASE_CONTROLLER_STATE_STARTING);
1101 return SCI_SUCCESS;
1104 void isci_host_scan_start(struct Scsi_Host *shost)
1106 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1107 unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
1109 set_bit(IHOST_START_PENDING, &ihost->flags);
1111 spin_lock_irq(&ihost->scic_lock);
1112 scic_controller_start(&ihost->sci, tmo);
1113 scic_controller_enable_interrupts(&ihost->sci);
1114 spin_unlock_irq(&ihost->scic_lock);
1117 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1119 isci_host_change_state(ihost, isci_stopped);
1120 scic_controller_disable_interrupts(&ihost->sci);
1121 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1122 wake_up(&ihost->eventq);
1125 static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
1127 /* Empty out the completion queue */
1128 if (scic_sds_controller_completion_queue_has_entries(scic))
1129 scic_sds_controller_process_completions(scic);
1131 /* Clear the interrupt and enable all interrupts again */
1132 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
1133 /* Could we write the value of SMU_ISR_COMPLETION? */
1134 writel(0xFF000000, &scic->smu_registers->interrupt_mask);
1135 writel(0, &scic->smu_registers->interrupt_mask);
1139 * isci_host_completion_routine() - This function is the delayed service
1140 * routine that calls the sci core library's completion handler. It's
1141 * scheduled as a tasklet from the interrupt service routine when interrupts
1142 * in use, or set as the timeout function in polled mode.
1143 * @data: This parameter specifies the ISCI host object
1146 static void isci_host_completion_routine(unsigned long data)
1148 struct isci_host *isci_host = (struct isci_host *)data;
1149 struct list_head completed_request_list;
1150 struct list_head errored_request_list;
1151 struct list_head *current_position;
1152 struct list_head *next_position;
1153 struct isci_request *request;
1154 struct isci_request *next_request;
1155 struct sas_task *task;
1157 INIT_LIST_HEAD(&completed_request_list);
1158 INIT_LIST_HEAD(&errored_request_list);
1160 spin_lock_irq(&isci_host->scic_lock);
1162 scic_sds_controller_completion_handler(&isci_host->sci);
1164 /* Take the lists of completed I/Os from the host. */
1166 list_splice_init(&isci_host->requests_to_complete,
1167 &completed_request_list);
1169 /* Take the list of errored I/Os from the host. */
1170 list_splice_init(&isci_host->requests_to_errorback,
1171 &errored_request_list);
1173 spin_unlock_irq(&isci_host->scic_lock);
1175 /* Process any completions in the lists. */
1176 list_for_each_safe(current_position, next_position,
1177 &completed_request_list) {
1179 request = list_entry(current_position, struct isci_request,
1180 completed_node);
1181 task = isci_request_access_task(request);
1183 /* Normal notification (task_done) */
1184 dev_dbg(&isci_host->pdev->dev,
1185 "%s: Normal - request/task = %p/%p\n",
1186 __func__,
1187 request,
1188 task);
1190 /* Return the task to libsas */
1191 if (task != NULL) {
1193 task->lldd_task = NULL;
1194 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1196 /* If the task is already in the abort path,
1197 * the task_done callback cannot be called.
1199 task->task_done(task);
1202 /* Free the request object. */
1203 isci_request_free(isci_host, request);
1205 list_for_each_entry_safe(request, next_request, &errored_request_list,
1206 completed_node) {
1208 task = isci_request_access_task(request);
1210 /* Use sas_task_abort */
1211 dev_warn(&isci_host->pdev->dev,
1212 "%s: Error - request/task = %p/%p\n",
1213 __func__,
1214 request,
1215 task);
1217 if (task != NULL) {
1219 /* Put the task into the abort path if it's not there
1220 * already.
1222 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1223 sas_task_abort(task);
1225 } else {
1226 /* This is a case where the request has completed with a
1227 * status such that it needed further target servicing,
1228 * but the sas_task reference has already been removed
1229 * from the request. Since it was errored, it was not
1230 * being aborted, so there is nothing to do except free
1231 * it.
1234 spin_lock_irq(&isci_host->scic_lock);
1235 /* Remove the request from the remote device's list
1236 * of pending requests.
1238 list_del_init(&request->dev_node);
1239 spin_unlock_irq(&isci_host->scic_lock);
1241 /* Free the request object. */
1242 isci_request_free(isci_host, request);
1249 * scic_controller_stop() - This method will stop an individual controller
1250 * object.This method will invoke the associated user callback upon
1251 * completion. The completion callback is called when the following
1252 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1253 * controller has been quiesced. This method will ensure that all IO
1254 * requests are quiesced, phys are stopped, and all additional operation by
1255 * the hardware is halted.
1256 * @controller: the handle to the controller object to stop.
1257 * @timeout: This parameter specifies the number of milliseconds in which the
1258 * stop operation should complete.
1260 * The controller must be in the STARTED or STOPPED state. Indicate if the
1261 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1262 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1263 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1264 * controller is not either in the STARTED or STOPPED states.
1266 static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
1267 u32 timeout)
1269 if (scic->state_machine.current_state_id !=
1270 SCI_BASE_CONTROLLER_STATE_READY) {
1271 dev_warn(scic_to_dev(scic),
1272 "SCIC Controller stop operation requested in "
1273 "invalid state\n");
1274 return SCI_FAILURE_INVALID_STATE;
1277 isci_timer_start(scic->timeout_timer, timeout);
1278 sci_base_state_machine_change_state(&scic->state_machine,
1279 SCI_BASE_CONTROLLER_STATE_STOPPING);
1280 return SCI_SUCCESS;
1284 * scic_controller_reset() - This method will reset the supplied core
1285 * controller regardless of the state of said controller. This operation is
1286 * considered destructive. In other words, all current operations are wiped
1287 * out. No IO completions for outstanding devices occur. Outstanding IO
1288 * requests are not aborted or completed at the actual remote device.
1289 * @controller: the handle to the controller object to reset.
1291 * Indicate if the controller reset method succeeded or failed in some way.
1292 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1293 * the controller reset operation is unable to complete.
1295 static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
1297 switch (scic->state_machine.current_state_id) {
1298 case SCI_BASE_CONTROLLER_STATE_RESET:
1299 case SCI_BASE_CONTROLLER_STATE_READY:
1300 case SCI_BASE_CONTROLLER_STATE_STOPPED:
1301 case SCI_BASE_CONTROLLER_STATE_FAILED:
1303 * The reset operation is not a graceful cleanup, just
1304 * perform the state transition.
1306 sci_base_state_machine_change_state(&scic->state_machine,
1307 SCI_BASE_CONTROLLER_STATE_RESETTING);
1308 return SCI_SUCCESS;
1309 default:
1310 dev_warn(scic_to_dev(scic),
1311 "SCIC Controller reset operation requested in "
1312 "invalid state\n");
1313 return SCI_FAILURE_INVALID_STATE;
1317 void isci_host_deinit(struct isci_host *ihost)
1319 int i;
1321 isci_host_change_state(ihost, isci_stopping);
1322 for (i = 0; i < SCI_MAX_PORTS; i++) {
1323 struct isci_port *iport = &ihost->ports[i];
1324 struct isci_remote_device *idev, *d;
1326 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1327 isci_remote_device_change_state(idev, isci_stopping);
1328 isci_remote_device_stop(ihost, idev);
1332 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1334 spin_lock_irq(&ihost->scic_lock);
1335 scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
1336 spin_unlock_irq(&ihost->scic_lock);
1338 wait_for_stop(ihost);
1339 scic_controller_reset(&ihost->sci);
1340 isci_timer_list_destroy(ihost);
1343 static void __iomem *scu_base(struct isci_host *isci_host)
1345 struct pci_dev *pdev = isci_host->pdev;
1346 int id = isci_host->id;
1348 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1351 static void __iomem *smu_base(struct isci_host *isci_host)
1353 struct pci_dev *pdev = isci_host->pdev;
1354 int id = isci_host->id;
1356 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1359 static void isci_user_parameters_get(
1360 struct isci_host *isci_host,
1361 union scic_user_parameters *scic_user_params)
1363 struct scic_sds_user_parameters *u = &scic_user_params->sds1;
1364 int i;
1366 for (i = 0; i < SCI_MAX_PHYS; i++) {
1367 struct sci_phy_user_params *u_phy = &u->phys[i];
1369 u_phy->max_speed_generation = phy_gen;
1371 /* we are not exporting these for now */
1372 u_phy->align_insertion_frequency = 0x7f;
1373 u_phy->in_connection_align_insertion_frequency = 0xff;
1374 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1377 u->stp_inactivity_timeout = stp_inactive_to;
1378 u->ssp_inactivity_timeout = ssp_inactive_to;
1379 u->stp_max_occupancy_timeout = stp_max_occ_to;
1380 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1381 u->no_outbound_task_timeout = no_outbound_task_to;
1382 u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1385 static void scic_sds_controller_initial_state_enter(void *object)
1387 struct scic_sds_controller *scic = object;
1389 sci_base_state_machine_change_state(&scic->state_machine,
1390 SCI_BASE_CONTROLLER_STATE_RESET);
1393 static inline void scic_sds_controller_starting_state_exit(void *object)
1395 struct scic_sds_controller *scic = object;
1397 isci_timer_stop(scic->timeout_timer);
1400 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1401 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1402 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1403 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1404 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1405 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1408 * scic_controller_set_interrupt_coalescence() - This method allows the user to
1409 * configure the interrupt coalescence.
1410 * @controller: This parameter represents the handle to the controller object
1411 * for which its interrupt coalesce register is overridden.
1412 * @coalesce_number: Used to control the number of entries in the Completion
1413 * Queue before an interrupt is generated. If the number of entries exceed
1414 * this number, an interrupt will be generated. The valid range of the input
1415 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1416 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1417 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1418 * interrupt coalescing timeout.
1420 * Indicate if the user successfully set the interrupt coalesce parameters.
1421 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1422 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1424 static enum sci_status scic_controller_set_interrupt_coalescence(
1425 struct scic_sds_controller *scic_controller,
1426 u32 coalesce_number,
1427 u32 coalesce_timeout)
1429 u8 timeout_encode = 0;
1430 u32 min = 0;
1431 u32 max = 0;
1433 /* Check if the input parameters fall in the range. */
1434 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1435 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1438 * Defined encoding for interrupt coalescing timeout:
1439 * Value Min Max Units
1440 * ----- --- --- -----
1441 * 0 - - Disabled
1442 * 1 13.3 20.0 ns
1443 * 2 26.7 40.0
1444 * 3 53.3 80.0
1445 * 4 106.7 160.0
1446 * 5 213.3 320.0
1447 * 6 426.7 640.0
1448 * 7 853.3 1280.0
1449 * 8 1.7 2.6 us
1450 * 9 3.4 5.1
1451 * 10 6.8 10.2
1452 * 11 13.7 20.5
1453 * 12 27.3 41.0
1454 * 13 54.6 81.9
1455 * 14 109.2 163.8
1456 * 15 218.5 327.7
1457 * 16 436.9 655.4
1458 * 17 873.8 1310.7
1459 * 18 1.7 2.6 ms
1460 * 19 3.5 5.2
1461 * 20 7.0 10.5
1462 * 21 14.0 21.0
1463 * 22 28.0 41.9
1464 * 23 55.9 83.9
1465 * 24 111.8 167.8
1466 * 25 223.7 335.5
1467 * 26 447.4 671.1
1468 * 27 894.8 1342.2
1469 * 28 1.8 2.7 s
1470 * Others Undefined */
1473 * Use the table above to decide the encode of interrupt coalescing timeout
1474 * value for register writing. */
1475 if (coalesce_timeout == 0)
1476 timeout_encode = 0;
1477 else{
1478 /* make the timeout value in unit of (10 ns). */
1479 coalesce_timeout = coalesce_timeout * 100;
1480 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1481 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1483 /* get the encode of timeout for register writing. */
1484 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1485 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1486 timeout_encode++) {
1487 if (min <= coalesce_timeout && max > coalesce_timeout)
1488 break;
1489 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1490 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1491 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1492 break;
1493 else{
1494 timeout_encode++;
1495 break;
1497 } else {
1498 max = max * 2;
1499 min = min * 2;
1503 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1504 /* the value is out of range. */
1505 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1508 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1509 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1510 &scic_controller->smu_registers->interrupt_coalesce_control);
1513 scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
1514 scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
1516 return SCI_SUCCESS;
1520 static void scic_sds_controller_ready_state_enter(void *object)
1522 struct scic_sds_controller *scic = object;
1524 /* set the default interrupt coalescence number and timeout value. */
1525 scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
1528 static void scic_sds_controller_ready_state_exit(void *object)
1530 struct scic_sds_controller *scic = object;
1532 /* disable interrupt coalescence. */
1533 scic_controller_set_interrupt_coalescence(scic, 0, 0);
1536 static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
1538 u32 index;
1539 enum sci_status status;
1540 enum sci_status phy_status;
1541 struct isci_host *ihost = scic_to_ihost(scic);
1543 status = SCI_SUCCESS;
1545 for (index = 0; index < SCI_MAX_PHYS; index++) {
1546 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
1548 if (phy_status != SCI_SUCCESS &&
1549 phy_status != SCI_FAILURE_INVALID_STATE) {
1550 status = SCI_FAILURE;
1552 dev_warn(scic_to_dev(scic),
1553 "%s: Controller stop operation failed to stop "
1554 "phy %d because of status %d.\n",
1555 __func__,
1556 ihost->phys[index].sci.phy_index, phy_status);
1560 return status;
1563 static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
1565 u32 index;
1566 enum sci_status port_status;
1567 enum sci_status status = SCI_SUCCESS;
1568 struct isci_host *ihost = scic_to_ihost(scic);
1570 for (index = 0; index < scic->logical_port_entries; index++) {
1571 struct scic_sds_port *sci_port = &ihost->ports[index].sci;
1572 scic_sds_port_handler_t stop;
1574 stop = sci_port->state_handlers->stop_handler;
1575 port_status = stop(sci_port);
1577 if ((port_status != SCI_SUCCESS) &&
1578 (port_status != SCI_FAILURE_INVALID_STATE)) {
1579 status = SCI_FAILURE;
1581 dev_warn(scic_to_dev(scic),
1582 "%s: Controller stop operation failed to "
1583 "stop port %d because of status %d.\n",
1584 __func__,
1585 sci_port->logical_port_index,
1586 port_status);
1590 return status;
1593 static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
1595 u32 index;
1596 enum sci_status status;
1597 enum sci_status device_status;
1599 status = SCI_SUCCESS;
1601 for (index = 0; index < scic->remote_node_entries; index++) {
1602 if (scic->device_table[index] != NULL) {
1603 /* / @todo What timeout value do we want to provide to this request? */
1604 device_status = scic_remote_device_stop(scic->device_table[index], 0);
1606 if ((device_status != SCI_SUCCESS) &&
1607 (device_status != SCI_FAILURE_INVALID_STATE)) {
1608 dev_warn(scic_to_dev(scic),
1609 "%s: Controller stop operation failed "
1610 "to stop device 0x%p because of "
1611 "status %d.\n",
1612 __func__,
1613 scic->device_table[index], device_status);
1618 return status;
1621 static void scic_sds_controller_stopping_state_enter(void *object)
1623 struct scic_sds_controller *scic = object;
1625 /* Stop all of the components for this controller */
1626 scic_sds_controller_stop_phys(scic);
1627 scic_sds_controller_stop_ports(scic);
1628 scic_sds_controller_stop_devices(scic);
1631 static void scic_sds_controller_stopping_state_exit(void *object)
1633 struct scic_sds_controller *scic = object;
1635 isci_timer_stop(scic->timeout_timer);
1640 * scic_sds_controller_reset_hardware() -
1642 * This method will reset the controller hardware.
1644 static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
1646 /* Disable interrupts so we dont take any spurious interrupts */
1647 scic_controller_disable_interrupts(scic);
1649 /* Reset the SCU */
1650 writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
1652 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1653 udelay(1000);
1655 /* The write to the CQGR clears the CQP */
1656 writel(0x00000000, &scic->smu_registers->completion_queue_get);
1658 /* The write to the UFQGP clears the UFQPR */
1659 writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
1662 static void scic_sds_controller_resetting_state_enter(void *object)
1664 struct scic_sds_controller *scic = object;
1666 scic_sds_controller_reset_hardware(scic);
1667 sci_base_state_machine_change_state(&scic->state_machine,
1668 SCI_BASE_CONTROLLER_STATE_RESET);
1671 static const struct sci_base_state scic_sds_controller_state_table[] = {
1672 [SCI_BASE_CONTROLLER_STATE_INITIAL] = {
1673 .enter_state = scic_sds_controller_initial_state_enter,
1675 [SCI_BASE_CONTROLLER_STATE_RESET] = {},
1676 [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
1677 [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
1678 [SCI_BASE_CONTROLLER_STATE_STARTING] = {
1679 .exit_state = scic_sds_controller_starting_state_exit,
1681 [SCI_BASE_CONTROLLER_STATE_READY] = {
1682 .enter_state = scic_sds_controller_ready_state_enter,
1683 .exit_state = scic_sds_controller_ready_state_exit,
1685 [SCI_BASE_CONTROLLER_STATE_RESETTING] = {
1686 .enter_state = scic_sds_controller_resetting_state_enter,
1688 [SCI_BASE_CONTROLLER_STATE_STOPPING] = {
1689 .enter_state = scic_sds_controller_stopping_state_enter,
1690 .exit_state = scic_sds_controller_stopping_state_exit,
1692 [SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
1693 [SCI_BASE_CONTROLLER_STATE_FAILED] = {}
1696 static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
1698 /* these defaults are overridden by the platform / firmware */
1699 struct isci_host *ihost = scic_to_ihost(scic);
1700 u16 index;
1702 /* Default to APC mode. */
1703 scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1705 /* Default to APC mode. */
1706 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
1708 /* Default to no SSC operation. */
1709 scic->oem_parameters.sds1.controller.do_enable_ssc = false;
1711 /* Initialize all of the port parameter information to narrow ports. */
1712 for (index = 0; index < SCI_MAX_PORTS; index++) {
1713 scic->oem_parameters.sds1.ports[index].phy_mask = 0;
1716 /* Initialize all of the phy parameter information. */
1717 for (index = 0; index < SCI_MAX_PHYS; index++) {
1718 /* Default to 6G (i.e. Gen 3) for now. */
1719 scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
1721 /* the frequencies cannot be 0 */
1722 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
1723 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
1724 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1727 * Previous Vitesse based expanders had a arbitration issue that
1728 * is worked around by having the upper 32-bits of SAS address
1729 * with a value greater then the Vitesse company identifier.
1730 * Hence, usage of 0x5FCFFFFF. */
1731 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
1732 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
1735 scic->user_parameters.sds1.stp_inactivity_timeout = 5;
1736 scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
1737 scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
1738 scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
1739 scic->user_parameters.sds1.no_outbound_task_timeout = 20;
1745 * scic_controller_construct() - This method will attempt to construct a
1746 * controller object utilizing the supplied parameter information.
1747 * @c: This parameter specifies the controller to be constructed.
1748 * @scu_base: mapped base address of the scu registers
1749 * @smu_base: mapped base address of the smu registers
1751 * Indicate if the controller was successfully constructed or if it failed in
1752 * some way. SCI_SUCCESS This value is returned if the controller was
1753 * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
1754 * if the interrupt coalescence timer may cause SAS compliance issues for SMP
1755 * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
1756 * This value is returned if the controller does not support the supplied type.
1757 * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
1758 * controller does not support the supplied initialization data version.
1760 static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
1761 void __iomem *scu_base,
1762 void __iomem *smu_base)
1764 struct isci_host *ihost = scic_to_ihost(scic);
1765 u8 i;
1767 sci_base_state_machine_construct(&scic->state_machine,
1768 scic, scic_sds_controller_state_table,
1769 SCI_BASE_CONTROLLER_STATE_INITIAL);
1771 sci_base_state_machine_start(&scic->state_machine);
1773 scic->scu_registers = scu_base;
1774 scic->smu_registers = smu_base;
1776 scic_sds_port_configuration_agent_construct(&scic->port_agent);
1778 /* Construct the ports for this controller */
1779 for (i = 0; i < SCI_MAX_PORTS; i++)
1780 scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
1781 scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
1783 /* Construct the phys for this controller */
1784 for (i = 0; i < SCI_MAX_PHYS; i++) {
1785 /* Add all the PHYs to the dummy port */
1786 scic_sds_phy_construct(&ihost->phys[i].sci,
1787 &ihost->ports[SCI_MAX_PORTS].sci, i);
1790 scic->invalid_phy_mask = 0;
1792 /* Set the default maximum values */
1793 scic->completion_event_entries = SCU_EVENT_COUNT;
1794 scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
1795 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
1796 scic->logical_port_entries = SCI_MAX_PORTS;
1797 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
1798 scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
1799 scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
1801 /* Initialize the User and OEM parameters to default values. */
1802 scic_sds_controller_set_default_config_parameters(scic);
1804 return scic_controller_reset(scic);
1807 int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
1809 int i;
1811 for (i = 0; i < SCI_MAX_PORTS; i++)
1812 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1813 return -EINVAL;
1815 for (i = 0; i < SCI_MAX_PHYS; i++)
1816 if (oem->phys[i].sas_address.high == 0 &&
1817 oem->phys[i].sas_address.low == 0)
1818 return -EINVAL;
1820 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1821 for (i = 0; i < SCI_MAX_PHYS; i++)
1822 if (oem->ports[i].phy_mask != 0)
1823 return -EINVAL;
1824 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1825 u8 phy_mask = 0;
1827 for (i = 0; i < SCI_MAX_PHYS; i++)
1828 phy_mask |= oem->ports[i].phy_mask;
1830 if (phy_mask == 0)
1831 return -EINVAL;
1832 } else
1833 return -EINVAL;
1835 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1836 return -EINVAL;
1838 return 0;
1841 static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
1842 union scic_oem_parameters *scic_parms)
1844 u32 state = scic->state_machine.current_state_id;
1846 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
1847 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
1848 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
1850 if (scic_oem_parameters_validate(&scic_parms->sds1))
1851 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1852 scic->oem_parameters.sds1 = scic_parms->sds1;
1854 return SCI_SUCCESS;
1857 return SCI_FAILURE_INVALID_STATE;
1860 void scic_oem_parameters_get(
1861 struct scic_sds_controller *scic,
1862 union scic_oem_parameters *scic_parms)
1864 memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
1867 static void scic_sds_controller_timeout_handler(void *_scic)
1869 struct scic_sds_controller *scic = _scic;
1870 struct isci_host *ihost = scic_to_ihost(scic);
1871 struct sci_base_state_machine *sm = &scic->state_machine;
1873 if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING)
1874 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
1875 else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) {
1876 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED);
1877 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1878 } else /* / @todo Now what do we want to do in this case? */
1879 dev_err(scic_to_dev(scic),
1880 "%s: Controller timer fired when controller was not "
1881 "in a state being timed.\n",
1882 __func__);
1885 static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic)
1887 struct isci_host *ihost = scic_to_ihost(scic);
1889 scic->phy_startup_timer = isci_timer_create(ihost,
1890 scic,
1891 scic_sds_controller_phy_startup_timeout_handler);
1893 if (scic->phy_startup_timer == NULL)
1894 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
1895 else {
1896 scic->next_phy_to_start = 0;
1897 scic->phy_startup_timer_pending = false;
1900 return SCI_SUCCESS;
1903 static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic)
1905 isci_timer_start(scic->power_control.timer,
1906 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1908 scic->power_control.timer_started = true;
1911 static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic)
1913 if (scic->power_control.timer_started) {
1914 isci_timer_stop(scic->power_control.timer);
1915 scic->power_control.timer_started = false;
1919 static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic)
1921 scic_sds_controller_power_control_timer_stop(scic);
1922 scic_sds_controller_power_control_timer_start(scic);
1925 static void scic_sds_controller_power_control_timer_handler(
1926 void *controller)
1928 struct scic_sds_controller *scic;
1930 scic = (struct scic_sds_controller *)controller;
1932 scic->power_control.phys_granted_power = 0;
1934 if (scic->power_control.phys_waiting == 0) {
1935 scic->power_control.timer_started = false;
1936 } else {
1937 struct scic_sds_phy *sci_phy = NULL;
1938 u8 i;
1940 for (i = 0;
1941 (i < SCI_MAX_PHYS)
1942 && (scic->power_control.phys_waiting != 0);
1943 i++) {
1944 if (scic->power_control.requesters[i] != NULL) {
1945 if (scic->power_control.phys_granted_power <
1946 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
1947 sci_phy = scic->power_control.requesters[i];
1948 scic->power_control.requesters[i] = NULL;
1949 scic->power_control.phys_waiting--;
1950 scic->power_control.phys_granted_power++;
1951 scic_sds_phy_consume_power_handler(sci_phy);
1952 } else {
1953 break;
1959 * It doesn't matter if the power list is empty, we need to start the
1960 * timer in case another phy becomes ready.
1962 scic_sds_controller_power_control_timer_start(scic);
1967 * This method inserts the phy in the stagger spinup control queue.
1968 * @scic:
1972 void scic_sds_controller_power_control_queue_insert(
1973 struct scic_sds_controller *scic,
1974 struct scic_sds_phy *sci_phy)
1976 BUG_ON(sci_phy == NULL);
1978 if (scic->power_control.phys_granted_power <
1979 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
1980 scic->power_control.phys_granted_power++;
1981 scic_sds_phy_consume_power_handler(sci_phy);
1984 * stop and start the power_control timer. When the timer fires, the
1985 * no_of_phys_granted_power will be set to 0
1987 scic_sds_controller_power_control_timer_restart(scic);
1988 } else {
1989 /* Add the phy in the waiting list */
1990 scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
1991 scic->power_control.phys_waiting++;
1996 * This method removes the phy from the stagger spinup control queue.
1997 * @scic:
2001 void scic_sds_controller_power_control_queue_remove(
2002 struct scic_sds_controller *scic,
2003 struct scic_sds_phy *sci_phy)
2005 BUG_ON(sci_phy == NULL);
2007 if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
2008 scic->power_control.phys_waiting--;
2011 scic->power_control.requesters[sci_phy->phy_index] = NULL;
2014 #define AFE_REGISTER_WRITE_DELAY 10
2016 /* Initialize the AFE for this phy index. We need to read the AFE setup from
2017 * the OEM parameters
2019 static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
2021 const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
2022 u32 afe_status;
2023 u32 phy_id;
2025 /* Clear DFX Status registers */
2026 writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
2027 udelay(AFE_REGISTER_WRITE_DELAY);
2029 if (is_b0()) {
2030 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2031 * Timer, PM Stagger Timer */
2032 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
2033 udelay(AFE_REGISTER_WRITE_DELAY);
2036 /* Configure bias currents to normal */
2037 if (is_a0())
2038 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
2039 else if (is_a2())
2040 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
2041 else if (is_b0())
2042 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
2044 udelay(AFE_REGISTER_WRITE_DELAY);
2046 /* Enable PLL */
2047 if (is_b0())
2048 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
2049 else
2050 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
2052 udelay(AFE_REGISTER_WRITE_DELAY);
2054 /* Wait for the PLL to lock */
2055 do {
2056 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
2057 udelay(AFE_REGISTER_WRITE_DELAY);
2058 } while ((afe_status & 0x00001000) == 0);
2060 if (is_a0() || is_a2()) {
2061 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
2062 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
2063 udelay(AFE_REGISTER_WRITE_DELAY);
2066 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2067 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2069 if (is_b0()) {
2070 /* Configure transmitter SSC parameters */
2071 writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
2072 udelay(AFE_REGISTER_WRITE_DELAY);
2073 } else {
2075 * All defaults, except the Receive Word Alignament/Comma Detect
2076 * Enable....(0xe800) */
2077 writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2078 udelay(AFE_REGISTER_WRITE_DELAY);
2080 writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
2081 udelay(AFE_REGISTER_WRITE_DELAY);
2085 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2086 * & increase TX int & ext bias 20%....(0xe85c) */
2087 if (is_a0())
2088 writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2089 else if (is_a2())
2090 writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2091 else {
2092 /* Power down TX and RX (PWRDNTX and PWRDNRX) */
2093 writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2094 udelay(AFE_REGISTER_WRITE_DELAY);
2097 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2098 * & increase TX int & ext bias 20%....(0xe85c) */
2099 writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2101 udelay(AFE_REGISTER_WRITE_DELAY);
2103 if (is_a0() || is_a2()) {
2104 /* Enable TX equalization (0xe824) */
2105 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2106 udelay(AFE_REGISTER_WRITE_DELAY);
2110 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2111 * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2112 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2113 udelay(AFE_REGISTER_WRITE_DELAY);
2115 /* Leave DFE/FFE on */
2116 if (is_a0())
2117 writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2118 else if (is_a2())
2119 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2120 else {
2121 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2122 udelay(AFE_REGISTER_WRITE_DELAY);
2123 /* Enable TX equalization (0xe824) */
2124 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2126 udelay(AFE_REGISTER_WRITE_DELAY);
2128 writel(oem_phy->afe_tx_amp_control0,
2129 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2130 udelay(AFE_REGISTER_WRITE_DELAY);
2132 writel(oem_phy->afe_tx_amp_control1,
2133 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2134 udelay(AFE_REGISTER_WRITE_DELAY);
2136 writel(oem_phy->afe_tx_amp_control2,
2137 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2138 udelay(AFE_REGISTER_WRITE_DELAY);
2140 writel(oem_phy->afe_tx_amp_control3,
2141 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2142 udelay(AFE_REGISTER_WRITE_DELAY);
2145 /* Transfer control to the PEs */
2146 writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
2147 udelay(AFE_REGISTER_WRITE_DELAY);
2150 static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
2151 enum sci_controller_mode operating_mode)
2153 enum sci_status status = SCI_SUCCESS;
2155 if ((scic->state_machine.current_state_id ==
2156 SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
2157 (scic->state_machine.current_state_id ==
2158 SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
2159 switch (operating_mode) {
2160 case SCI_MODE_SPEED:
2161 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
2162 scic->task_context_entries = SCU_IO_REQUEST_COUNT;
2163 scic->uf_control.buffers.count =
2164 SCU_UNSOLICITED_FRAME_COUNT;
2165 scic->completion_event_entries = SCU_EVENT_COUNT;
2166 scic->completion_queue_entries =
2167 SCU_COMPLETION_QUEUE_COUNT;
2168 break;
2170 case SCI_MODE_SIZE:
2171 scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
2172 scic->task_context_entries = SCI_MIN_IO_REQUESTS;
2173 scic->uf_control.buffers.count =
2174 SCU_MIN_UNSOLICITED_FRAMES;
2175 scic->completion_event_entries = SCU_MIN_EVENTS;
2176 scic->completion_queue_entries =
2177 SCU_MIN_COMPLETION_QUEUE_ENTRIES;
2178 break;
2180 default:
2181 status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
2182 break;
2184 } else
2185 status = SCI_FAILURE_INVALID_STATE;
2187 return status;
2190 static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
2192 struct isci_host *ihost = scic_to_ihost(scic);
2193 scic->power_control.timer = isci_timer_create(ihost,
2194 scic,
2195 scic_sds_controller_power_control_timer_handler);
2197 memset(scic->power_control.requesters, 0,
2198 sizeof(scic->power_control.requesters));
2200 scic->power_control.phys_waiting = 0;
2201 scic->power_control.phys_granted_power = 0;
2204 static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
2206 struct sci_base_state_machine *sm = &scic->state_machine;
2207 enum sci_status result = SCI_SUCCESS;
2208 struct isci_host *ihost = scic_to_ihost(scic);
2209 u32 index, state;
2211 if (scic->state_machine.current_state_id !=
2212 SCI_BASE_CONTROLLER_STATE_RESET) {
2213 dev_warn(scic_to_dev(scic),
2214 "SCIC Controller initialize operation requested "
2215 "in invalid state\n");
2216 return SCI_FAILURE_INVALID_STATE;
2219 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING);
2221 scic->timeout_timer = isci_timer_create(ihost, scic,
2222 scic_sds_controller_timeout_handler);
2224 scic_sds_controller_initialize_phy_startup(scic);
2226 scic_sds_controller_initialize_power_control(scic);
2229 * There is nothing to do here for B0 since we do not have to
2230 * program the AFE registers.
2231 * / @todo The AFE settings are supposed to be correct for the B0 but
2232 * / presently they seem to be wrong. */
2233 scic_sds_controller_afe_initialization(scic);
2235 if (result == SCI_SUCCESS) {
2236 u32 status;
2237 u32 terminate_loop;
2239 /* Take the hardware out of reset */
2240 writel(0, &scic->smu_registers->soft_reset_control);
2243 * / @todo Provide meaningfull error code for hardware failure
2244 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2245 result = SCI_FAILURE;
2246 terminate_loop = 100;
2248 while (terminate_loop-- && (result != SCI_SUCCESS)) {
2249 /* Loop until the hardware reports success */
2250 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2251 status = readl(&scic->smu_registers->control_status);
2253 if ((status & SCU_RAM_INIT_COMPLETED) ==
2254 SCU_RAM_INIT_COMPLETED)
2255 result = SCI_SUCCESS;
2259 if (result == SCI_SUCCESS) {
2260 u32 max_supported_ports;
2261 u32 max_supported_devices;
2262 u32 max_supported_io_requests;
2263 u32 device_context_capacity;
2266 * Determine what are the actaul device capacities that the
2267 * hardware will support */
2268 device_context_capacity =
2269 readl(&scic->smu_registers->device_context_capacity);
2272 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
2273 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
2274 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
2277 * Make all PEs that are unassigned match up with the
2278 * logical ports
2280 for (index = 0; index < max_supported_ports; index++) {
2281 struct scu_port_task_scheduler_group_registers __iomem
2282 *ptsg = &scic->scu_registers->peg0.ptsg;
2284 writel(index, &ptsg->protocol_engine[index]);
2287 /* Record the smaller of the two capacity values */
2288 scic->logical_port_entries =
2289 min(max_supported_ports, scic->logical_port_entries);
2291 scic->task_context_entries =
2292 min(max_supported_io_requests,
2293 scic->task_context_entries);
2295 scic->remote_node_entries =
2296 min(max_supported_devices, scic->remote_node_entries);
2299 * Now that we have the correct hardware reported minimum values
2300 * build the MDL for the controller. Default to a performance
2301 * configuration.
2303 scic_controller_set_mode(scic, SCI_MODE_SPEED);
2306 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2307 if (result == SCI_SUCCESS) {
2308 u32 dma_configuration;
2310 /* Configure the payload DMA */
2311 dma_configuration =
2312 readl(&scic->scu_registers->sdma.pdma_configuration);
2313 dma_configuration |=
2314 SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2315 writel(dma_configuration,
2316 &scic->scu_registers->sdma.pdma_configuration);
2318 /* Configure the control DMA */
2319 dma_configuration =
2320 readl(&scic->scu_registers->sdma.cdma_configuration);
2321 dma_configuration |=
2322 SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2323 writel(dma_configuration,
2324 &scic->scu_registers->sdma.cdma_configuration);
2328 * Initialize the PHYs before the PORTs because the PHY registers
2329 * are accessed during the port initialization.
2331 if (result == SCI_SUCCESS) {
2332 /* Initialize the phys */
2333 for (index = 0;
2334 (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
2335 index++) {
2336 result = scic_sds_phy_initialize(
2337 &ihost->phys[index].sci,
2338 &scic->scu_registers->peg0.pe[index].tl,
2339 &scic->scu_registers->peg0.pe[index].ll);
2343 if (result == SCI_SUCCESS) {
2344 /* Initialize the logical ports */
2345 for (index = 0;
2346 (index < scic->logical_port_entries) &&
2347 (result == SCI_SUCCESS);
2348 index++) {
2349 result = scic_sds_port_initialize(
2350 &ihost->ports[index].sci,
2351 &scic->scu_registers->peg0.ptsg.port[index],
2352 &scic->scu_registers->peg0.ptsg.protocol_engine,
2353 &scic->scu_registers->peg0.viit[index]);
2357 if (result == SCI_SUCCESS)
2358 result = scic_sds_port_configuration_agent_initialize(
2359 scic,
2360 &scic->port_agent);
2362 /* Advance the controller state machine */
2363 if (result == SCI_SUCCESS)
2364 state = SCI_BASE_CONTROLLER_STATE_INITIALIZED;
2365 else
2366 state = SCI_BASE_CONTROLLER_STATE_FAILED;
2367 sci_base_state_machine_change_state(sm, state);
2369 return result;
2372 static enum sci_status scic_user_parameters_set(
2373 struct scic_sds_controller *scic,
2374 union scic_user_parameters *scic_parms)
2376 u32 state = scic->state_machine.current_state_id;
2378 if (state == SCI_BASE_CONTROLLER_STATE_RESET ||
2379 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING ||
2380 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) {
2381 u16 index;
2384 * Validate the user parameters. If they are not legal, then
2385 * return a failure.
2387 for (index = 0; index < SCI_MAX_PHYS; index++) {
2388 struct sci_phy_user_params *user_phy;
2390 user_phy = &scic_parms->sds1.phys[index];
2392 if (!((user_phy->max_speed_generation <=
2393 SCIC_SDS_PARM_MAX_SPEED) &&
2394 (user_phy->max_speed_generation >
2395 SCIC_SDS_PARM_NO_SPEED)))
2396 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2398 if (user_phy->in_connection_align_insertion_frequency <
2400 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2402 if ((user_phy->in_connection_align_insertion_frequency <
2403 3) ||
2404 (user_phy->align_insertion_frequency == 0) ||
2405 (user_phy->
2406 notify_enable_spin_up_insertion_frequency ==
2408 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2411 if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
2412 (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
2413 (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
2414 (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
2415 (scic_parms->sds1.no_outbound_task_timeout == 0))
2416 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2418 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
2420 return SCI_SUCCESS;
2423 return SCI_FAILURE_INVALID_STATE;
2426 static int scic_controller_mem_init(struct scic_sds_controller *scic)
2428 struct device *dev = scic_to_dev(scic);
2429 dma_addr_t dma_handle;
2430 enum sci_status result;
2432 scic->completion_queue = dmam_alloc_coherent(dev,
2433 scic->completion_queue_entries * sizeof(u32),
2434 &dma_handle, GFP_KERNEL);
2435 if (!scic->completion_queue)
2436 return -ENOMEM;
2438 writel(lower_32_bits(dma_handle),
2439 &scic->smu_registers->completion_queue_lower);
2440 writel(upper_32_bits(dma_handle),
2441 &scic->smu_registers->completion_queue_upper);
2443 scic->remote_node_context_table = dmam_alloc_coherent(dev,
2444 scic->remote_node_entries *
2445 sizeof(union scu_remote_node_context),
2446 &dma_handle, GFP_KERNEL);
2447 if (!scic->remote_node_context_table)
2448 return -ENOMEM;
2450 writel(lower_32_bits(dma_handle),
2451 &scic->smu_registers->remote_node_context_lower);
2452 writel(upper_32_bits(dma_handle),
2453 &scic->smu_registers->remote_node_context_upper);
2455 scic->task_context_table = dmam_alloc_coherent(dev,
2456 scic->task_context_entries *
2457 sizeof(struct scu_task_context),
2458 &dma_handle, GFP_KERNEL);
2459 if (!scic->task_context_table)
2460 return -ENOMEM;
2462 writel(lower_32_bits(dma_handle),
2463 &scic->smu_registers->host_task_table_lower);
2464 writel(upper_32_bits(dma_handle),
2465 &scic->smu_registers->host_task_table_upper);
2467 result = scic_sds_unsolicited_frame_control_construct(scic);
2468 if (result)
2469 return result;
2472 * Inform the silicon as to the location of the UF headers and
2473 * address table.
2475 writel(lower_32_bits(scic->uf_control.headers.physical_address),
2476 &scic->scu_registers->sdma.uf_header_base_address_lower);
2477 writel(upper_32_bits(scic->uf_control.headers.physical_address),
2478 &scic->scu_registers->sdma.uf_header_base_address_upper);
2480 writel(lower_32_bits(scic->uf_control.address_table.physical_address),
2481 &scic->scu_registers->sdma.uf_address_table_lower);
2482 writel(upper_32_bits(scic->uf_control.address_table.physical_address),
2483 &scic->scu_registers->sdma.uf_address_table_upper);
2485 return 0;
2488 int isci_host_init(struct isci_host *isci_host)
2490 int err = 0, i;
2491 enum sci_status status;
2492 union scic_oem_parameters oem;
2493 union scic_user_parameters scic_user_params;
2494 struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
2496 isci_timer_list_construct(isci_host);
2498 spin_lock_init(&isci_host->state_lock);
2499 spin_lock_init(&isci_host->scic_lock);
2500 spin_lock_init(&isci_host->queue_lock);
2501 init_waitqueue_head(&isci_host->eventq);
2503 isci_host_change_state(isci_host, isci_starting);
2504 isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
2506 status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
2507 smu_base(isci_host));
2509 if (status != SCI_SUCCESS) {
2510 dev_err(&isci_host->pdev->dev,
2511 "%s: scic_controller_construct failed - status = %x\n",
2512 __func__,
2513 status);
2514 return -ENODEV;
2517 isci_host->sas_ha.dev = &isci_host->pdev->dev;
2518 isci_host->sas_ha.lldd_ha = isci_host;
2521 * grab initial values stored in the controller object for OEM and USER
2522 * parameters
2524 isci_user_parameters_get(isci_host, &scic_user_params);
2525 status = scic_user_parameters_set(&isci_host->sci,
2526 &scic_user_params);
2527 if (status != SCI_SUCCESS) {
2528 dev_warn(&isci_host->pdev->dev,
2529 "%s: scic_user_parameters_set failed\n",
2530 __func__);
2531 return -ENODEV;
2534 scic_oem_parameters_get(&isci_host->sci, &oem);
2536 /* grab any OEM parameters specified in orom */
2537 if (pci_info->orom) {
2538 status = isci_parse_oem_parameters(&oem,
2539 pci_info->orom,
2540 isci_host->id);
2541 if (status != SCI_SUCCESS) {
2542 dev_warn(&isci_host->pdev->dev,
2543 "parsing firmware oem parameters failed\n");
2544 return -EINVAL;
2548 status = scic_oem_parameters_set(&isci_host->sci, &oem);
2549 if (status != SCI_SUCCESS) {
2550 dev_warn(&isci_host->pdev->dev,
2551 "%s: scic_oem_parameters_set failed\n",
2552 __func__);
2553 return -ENODEV;
2556 tasklet_init(&isci_host->completion_tasklet,
2557 isci_host_completion_routine, (unsigned long)isci_host);
2559 INIT_LIST_HEAD(&isci_host->requests_to_complete);
2560 INIT_LIST_HEAD(&isci_host->requests_to_errorback);
2562 spin_lock_irq(&isci_host->scic_lock);
2563 status = scic_controller_initialize(&isci_host->sci);
2564 spin_unlock_irq(&isci_host->scic_lock);
2565 if (status != SCI_SUCCESS) {
2566 dev_warn(&isci_host->pdev->dev,
2567 "%s: scic_controller_initialize failed -"
2568 " status = 0x%x\n",
2569 __func__, status);
2570 return -ENODEV;
2573 err = scic_controller_mem_init(&isci_host->sci);
2574 if (err)
2575 return err;
2577 isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
2578 sizeof(struct isci_request),
2579 SLAB_HWCACHE_ALIGN, 0);
2581 if (!isci_host->dma_pool)
2582 return -ENOMEM;
2584 for (i = 0; i < SCI_MAX_PORTS; i++)
2585 isci_port_init(&isci_host->ports[i], isci_host, i);
2587 for (i = 0; i < SCI_MAX_PHYS; i++)
2588 isci_phy_init(&isci_host->phys[i], isci_host, i);
2590 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2591 struct isci_remote_device *idev = &isci_host->devices[i];
2593 INIT_LIST_HEAD(&idev->reqs_in_process);
2594 INIT_LIST_HEAD(&idev->node);
2595 spin_lock_init(&idev->state_lock);
2598 return 0;
2601 void scic_sds_controller_link_up(struct scic_sds_controller *scic,
2602 struct scic_sds_port *port, struct scic_sds_phy *phy)
2604 switch (scic->state_machine.current_state_id) {
2605 case SCI_BASE_CONTROLLER_STATE_STARTING:
2606 scic_sds_controller_phy_timer_stop(scic);
2607 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2608 port, phy);
2609 scic_sds_controller_start_next_phy(scic);
2610 break;
2611 case SCI_BASE_CONTROLLER_STATE_READY:
2612 scic->port_agent.link_up_handler(scic, &scic->port_agent,
2613 port, phy);
2614 break;
2615 default:
2616 dev_dbg(scic_to_dev(scic),
2617 "%s: SCIC Controller linkup event from phy %d in "
2618 "unexpected state %d\n", __func__, phy->phy_index,
2619 scic->state_machine.current_state_id);
2623 void scic_sds_controller_link_down(struct scic_sds_controller *scic,
2624 struct scic_sds_port *port, struct scic_sds_phy *phy)
2626 switch (scic->state_machine.current_state_id) {
2627 case SCI_BASE_CONTROLLER_STATE_STARTING:
2628 case SCI_BASE_CONTROLLER_STATE_READY:
2629 scic->port_agent.link_down_handler(scic, &scic->port_agent,
2630 port, phy);
2631 break;
2632 default:
2633 dev_dbg(scic_to_dev(scic),
2634 "%s: SCIC Controller linkdown event from phy %d in "
2635 "unexpected state %d\n",
2636 __func__,
2637 phy->phy_index,
2638 scic->state_machine.current_state_id);
2643 * This is a helper method to determine if any remote devices on this
2644 * controller are still in the stopping state.
2647 static bool scic_sds_controller_has_remote_devices_stopping(
2648 struct scic_sds_controller *controller)
2650 u32 index;
2652 for (index = 0; index < controller->remote_node_entries; index++) {
2653 if ((controller->device_table[index] != NULL) &&
2654 (controller->device_table[index]->state_machine.current_state_id
2655 == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING))
2656 return true;
2659 return false;
2663 * This method is called by the remote device to inform the controller
2664 * object that the remote device has stopped.
2666 void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
2667 struct scic_sds_remote_device *sci_dev)
2669 if (scic->state_machine.current_state_id !=
2670 SCI_BASE_CONTROLLER_STATE_STOPPING) {
2671 dev_dbg(scic_to_dev(scic),
2672 "SCIC Controller 0x%p remote device stopped event "
2673 "from device 0x%p in unexpected state %d\n",
2674 scic, sci_dev,
2675 scic->state_machine.current_state_id);
2676 return;
2679 if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
2680 sci_base_state_machine_change_state(&scic->state_machine,
2681 SCI_BASE_CONTROLLER_STATE_STOPPED);
2686 * This method will write to the SCU PCP register the request value. The method
2687 * is used to suspend/resume ports, devices, and phys.
2688 * @scic:
2692 void scic_sds_controller_post_request(
2693 struct scic_sds_controller *scic,
2694 u32 request)
2696 dev_dbg(scic_to_dev(scic),
2697 "%s: SCIC Controller 0x%p post request 0x%08x\n",
2698 __func__,
2699 scic,
2700 request);
2702 writel(request, &scic->smu_registers->post_context_port);
2706 * This method will copy the soft copy of the task context into the physical
2707 * memory accessible by the controller.
2708 * @scic: This parameter specifies the controller for which to copy
2709 * the task context.
2710 * @sci_req: This parameter specifies the request for which the task
2711 * context is being copied.
2713 * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
2714 * the physical memory version of the task context. Thus, all subsequent
2715 * updates to the task context are performed in the TC table (i.e. DMAable
2716 * memory). none
2718 void scic_sds_controller_copy_task_context(
2719 struct scic_sds_controller *scic,
2720 struct scic_sds_request *sci_req)
2722 struct scu_task_context *task_context_buffer;
2724 task_context_buffer = scic_sds_controller_get_task_context_buffer(
2725 scic, sci_req->io_tag);
2727 memcpy(task_context_buffer,
2728 sci_req->task_context_buffer,
2729 offsetof(struct scu_task_context, sgl_snapshot_ac));
2732 * Now that the soft copy of the TC has been copied into the TC
2733 * table accessible by the silicon. Thus, any further changes to
2734 * the TC (e.g. TC termination) occur in the appropriate location. */
2735 sci_req->task_context_buffer = task_context_buffer;
2739 * This method returns the task context buffer for the given io tag.
2740 * @scic:
2741 * @io_tag:
2743 * struct scu_task_context*
2745 struct scu_task_context *scic_sds_controller_get_task_context_buffer(
2746 struct scic_sds_controller *scic,
2747 u16 io_tag
2749 u16 task_index = scic_sds_io_tag_get_index(io_tag);
2751 if (task_index < scic->task_context_entries) {
2752 return &scic->task_context_table[task_index];
2755 return NULL;
2758 struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
2759 u16 io_tag)
2761 u16 task_index;
2762 u16 task_sequence;
2764 task_index = scic_sds_io_tag_get_index(io_tag);
2766 if (task_index < scic->task_context_entries) {
2767 if (scic->io_request_table[task_index] != NULL) {
2768 task_sequence = scic_sds_io_tag_get_sequence(io_tag);
2770 if (task_sequence == scic->io_request_sequence[task_index]) {
2771 return scic->io_request_table[task_index];
2776 return NULL;
2780 * This method allocates remote node index and the reserves the remote node
2781 * context space for use. This method can fail if there are no more remote
2782 * node index available.
2783 * @scic: This is the controller object which contains the set of
2784 * free remote node ids
2785 * @sci_dev: This is the device object which is requesting the a remote node
2786 * id
2787 * @node_id: This is the remote node id that is assinged to the device if one
2788 * is available
2790 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2791 * node index available.
2793 enum sci_status scic_sds_controller_allocate_remote_node_context(
2794 struct scic_sds_controller *scic,
2795 struct scic_sds_remote_device *sci_dev,
2796 u16 *node_id)
2798 u16 node_index;
2799 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2801 node_index = scic_sds_remote_node_table_allocate_remote_node(
2802 &scic->available_remote_nodes, remote_node_count
2805 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2806 scic->device_table[node_index] = sci_dev;
2808 *node_id = node_index;
2810 return SCI_SUCCESS;
2813 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2817 * This method frees the remote node index back to the available pool. Once
2818 * this is done the remote node context buffer is no longer valid and can
2819 * not be used.
2820 * @scic:
2821 * @sci_dev:
2822 * @node_id:
2825 void scic_sds_controller_free_remote_node_context(
2826 struct scic_sds_controller *scic,
2827 struct scic_sds_remote_device *sci_dev,
2828 u16 node_id)
2830 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
2832 if (scic->device_table[node_id] == sci_dev) {
2833 scic->device_table[node_id] = NULL;
2835 scic_sds_remote_node_table_release_remote_node_index(
2836 &scic->available_remote_nodes, remote_node_count, node_id
2842 * This method returns the union scu_remote_node_context for the specified remote
2843 * node id.
2844 * @scic:
2845 * @node_id:
2847 * union scu_remote_node_context*
2849 union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
2850 struct scic_sds_controller *scic,
2851 u16 node_id
2853 if (
2854 (node_id < scic->remote_node_entries)
2855 && (scic->device_table[node_id] != NULL)
2857 return &scic->remote_node_context_table[node_id];
2860 return NULL;
2865 * @resposne_buffer: This is the buffer into which the D2H register FIS will be
2866 * constructed.
2867 * @frame_header: This is the frame header returned by the hardware.
2868 * @frame_buffer: This is the frame buffer returned by the hardware.
2870 * This method will combind the frame header and frame buffer to create a SATA
2871 * D2H register FIS none
2873 void scic_sds_controller_copy_sata_response(
2874 void *response_buffer,
2875 void *frame_header,
2876 void *frame_buffer)
2878 memcpy(response_buffer, frame_header, sizeof(u32));
2880 memcpy(response_buffer + sizeof(u32),
2881 frame_buffer,
2882 sizeof(struct dev_to_host_fis) - sizeof(u32));
2886 * This method releases the frame once this is done the frame is available for
2887 * re-use by the hardware. The data contained in the frame header and frame
2888 * buffer is no longer valid. The UF queue get pointer is only updated if UF
2889 * control indicates this is appropriate.
2890 * @scic:
2891 * @frame_index:
2894 void scic_sds_controller_release_frame(
2895 struct scic_sds_controller *scic,
2896 u32 frame_index)
2898 if (scic_sds_unsolicited_frame_control_release_frame(
2899 &scic->uf_control, frame_index) == true)
2900 writel(scic->uf_control.get,
2901 &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
2905 * scic_controller_start_io() - This method is called by the SCI user to
2906 * send/start an IO request. If the method invocation is successful, then
2907 * the IO request has been queued to the hardware for processing.
2908 * @controller: the handle to the controller object for which to start an IO
2909 * request.
2910 * @remote_device: the handle to the remote device object for which to start an
2911 * IO request.
2912 * @io_request: the handle to the io request object to start.
2913 * @io_tag: This parameter specifies a previously allocated IO tag that the
2914 * user desires to be utilized for this request. This parameter is optional.
2915 * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
2916 * for this parameter.
2918 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
2919 * to ensure that each of the methods that may allocate or free available IO
2920 * tags are handled in a mutually exclusive manner. This method is one of said
2921 * methods requiring proper critical code section protection (e.g. semaphore,
2922 * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
2923 * result, it is expected the user will have set the NCQ tag field in the host
2924 * to device register FIS prior to calling this method. There is also a
2925 * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
2926 * the scic_controller_start_io() method. scic_controller_allocate_tag() for
2927 * more information on allocating a tag. Indicate if the controller
2928 * successfully started the IO request. SCI_SUCCESS if the IO request was
2929 * successfully started. Determine the failure situations and return values.
2931 enum sci_status scic_controller_start_io(
2932 struct scic_sds_controller *scic,
2933 struct scic_sds_remote_device *rdev,
2934 struct scic_sds_request *req,
2935 u16 io_tag)
2937 enum sci_status status;
2939 if (scic->state_machine.current_state_id !=
2940 SCI_BASE_CONTROLLER_STATE_READY) {
2941 dev_warn(scic_to_dev(scic), "invalid state to start I/O");
2942 return SCI_FAILURE_INVALID_STATE;
2945 status = scic_sds_remote_device_start_io(scic, rdev, req);
2946 if (status != SCI_SUCCESS)
2947 return status;
2949 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
2950 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
2951 return SCI_SUCCESS;
2955 * scic_controller_terminate_request() - This method is called by the SCI Core
2956 * user to terminate an ongoing (i.e. started) core IO request. This does
2957 * not abort the IO request at the target, but rather removes the IO request
2958 * from the host controller.
2959 * @controller: the handle to the controller object for which to terminate a
2960 * request.
2961 * @remote_device: the handle to the remote device object for which to
2962 * terminate a request.
2963 * @request: the handle to the io or task management request object to
2964 * terminate.
2966 * Indicate if the controller successfully began the terminate process for the
2967 * IO request. SCI_SUCCESS if the terminate process was successfully started
2968 * for the request. Determine the failure situations and return values.
2970 enum sci_status scic_controller_terminate_request(
2971 struct scic_sds_controller *scic,
2972 struct scic_sds_remote_device *rdev,
2973 struct scic_sds_request *req)
2975 enum sci_status status;
2977 if (scic->state_machine.current_state_id !=
2978 SCI_BASE_CONTROLLER_STATE_READY) {
2979 dev_warn(scic_to_dev(scic),
2980 "invalid state to terminate request\n");
2981 return SCI_FAILURE_INVALID_STATE;
2984 status = scic_sds_io_request_terminate(req);
2985 if (status != SCI_SUCCESS)
2986 return status;
2989 * Utilize the original post context command and or in the POST_TC_ABORT
2990 * request sub-type.
2992 scic_sds_controller_post_request(scic,
2993 scic_sds_request_get_post_context(req) |
2994 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2995 return SCI_SUCCESS;
2999 * scic_controller_complete_io() - This method will perform core specific
3000 * completion operations for an IO request. After this method is invoked,
3001 * the user should consider the IO request as invalid until it is properly
3002 * reused (i.e. re-constructed).
3003 * @controller: The handle to the controller object for which to complete the
3004 * IO request.
3005 * @remote_device: The handle to the remote device object for which to complete
3006 * the IO request.
3007 * @io_request: the handle to the io request object to complete.
3009 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3010 * to ensure that each of the methods that may allocate or free available IO
3011 * tags are handled in a mutually exclusive manner. This method is one of said
3012 * methods requiring proper critical code section protection (e.g. semaphore,
3013 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3014 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3015 * the responsibility of the caller to invoke the scic_controller_free_io_tag()
3016 * method to free the tag (i.e. this method will not free the IO tag). Indicate
3017 * if the controller successfully completed the IO request. SCI_SUCCESS if the
3018 * completion process was successful.
3020 enum sci_status scic_controller_complete_io(
3021 struct scic_sds_controller *scic,
3022 struct scic_sds_remote_device *rdev,
3023 struct scic_sds_request *request)
3025 enum sci_status status;
3026 u16 index;
3028 switch (scic->state_machine.current_state_id) {
3029 case SCI_BASE_CONTROLLER_STATE_STOPPING:
3030 /* XXX: Implement this function */
3031 return SCI_FAILURE;
3032 case SCI_BASE_CONTROLLER_STATE_READY:
3033 status = scic_sds_remote_device_complete_io(scic, rdev, request);
3034 if (status != SCI_SUCCESS)
3035 return status;
3037 index = scic_sds_io_tag_get_index(request->io_tag);
3038 scic->io_request_table[index] = NULL;
3039 return SCI_SUCCESS;
3040 default:
3041 dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
3042 return SCI_FAILURE_INVALID_STATE;
3047 enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
3049 struct scic_sds_controller *scic = sci_req->owning_controller;
3051 if (scic->state_machine.current_state_id !=
3052 SCI_BASE_CONTROLLER_STATE_READY) {
3053 dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
3054 return SCI_FAILURE_INVALID_STATE;
3057 scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
3058 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
3059 return SCI_SUCCESS;
3063 * scic_controller_start_task() - This method is called by the SCIC user to
3064 * send/start a framework task management request.
3065 * @controller: the handle to the controller object for which to start the task
3066 * management request.
3067 * @remote_device: the handle to the remote device object for which to start
3068 * the task management request.
3069 * @task_request: the handle to the task request object to start.
3070 * @io_tag: This parameter specifies a previously allocated IO tag that the
3071 * user desires to be utilized for this request. Note this not the io_tag
3072 * of the request being managed. It is to be utilized for the task request
3073 * itself. This parameter is optional. The user is allowed to supply
3074 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
3076 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3077 * to ensure that each of the methods that may allocate or free available IO
3078 * tags are handled in a mutually exclusive manner. This method is one of said
3079 * methods requiring proper critical code section protection (e.g. semaphore,
3080 * spin-lock, etc.). - The user must synchronize this task with completion
3081 * queue processing. If they are not synchronized then it is possible for the
3082 * io requests that are being managed by the task request can complete before
3083 * starting the task request. scic_controller_allocate_tag() for more
3084 * information on allocating a tag. Indicate if the controller successfully
3085 * started the IO request. SCI_TASK_SUCCESS if the task request was
3086 * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
3087 * returned if there is/are task(s) outstanding that require termination or
3088 * completion before this request can succeed.
3090 enum sci_task_status scic_controller_start_task(
3091 struct scic_sds_controller *scic,
3092 struct scic_sds_remote_device *rdev,
3093 struct scic_sds_request *req,
3094 u16 task_tag)
3096 enum sci_status status;
3098 if (scic->state_machine.current_state_id !=
3099 SCI_BASE_CONTROLLER_STATE_READY) {
3100 dev_warn(scic_to_dev(scic),
3101 "%s: SCIC Controller starting task from invalid "
3102 "state\n",
3103 __func__);
3104 return SCI_TASK_FAILURE_INVALID_STATE;
3107 status = scic_sds_remote_device_start_task(scic, rdev, req);
3108 switch (status) {
3109 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
3110 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3113 * We will let framework know this task request started successfully,
3114 * although core is still woring on starting the request (to post tc when
3115 * RNC is resumed.)
3117 return SCI_SUCCESS;
3118 case SCI_SUCCESS:
3119 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
3121 scic_sds_controller_post_request(scic,
3122 scic_sds_request_get_post_context(req));
3123 break;
3124 default:
3125 break;
3128 return status;
3132 * scic_controller_allocate_io_tag() - This method will allocate a tag from the
3133 * pool of free IO tags. Direct allocation of IO tags by the SCI Core user
3134 * is optional. The scic_controller_start_io() method will allocate an IO
3135 * tag if this method is not utilized and the tag is not supplied to the IO
3136 * construct routine. Direct allocation of IO tags may provide additional
3137 * performance improvements in environments capable of supporting this usage
3138 * model. Additionally, direct allocation of IO tags also provides
3139 * additional flexibility to the SCI Core user. Specifically, the user may
3140 * retain IO tags across the lives of multiple IO requests.
3141 * @controller: the handle to the controller object for which to allocate the
3142 * tag.
3144 * IO tags are a protected resource. It is incumbent upon the SCI Core user to
3145 * ensure that each of the methods that may allocate or free available IO tags
3146 * are handled in a mutually exclusive manner. This method is one of said
3147 * methods requiring proper critical code section protection (e.g. semaphore,
3148 * spin-lock, etc.). An unsigned integer representing an available IO tag.
3149 * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
3150 * currently available tags to be allocated. All return other values indicate a
3151 * legitimate tag.
3153 u16 scic_controller_allocate_io_tag(
3154 struct scic_sds_controller *scic)
3156 u16 task_context;
3157 u16 sequence_count;
3159 if (!sci_pool_empty(scic->tci_pool)) {
3160 sci_pool_get(scic->tci_pool, task_context);
3162 sequence_count = scic->io_request_sequence[task_context];
3164 return scic_sds_io_tag_construct(sequence_count, task_context);
3167 return SCI_CONTROLLER_INVALID_IO_TAG;
3171 * scic_controller_free_io_tag() - This method will free an IO tag to the pool
3172 * of free IO tags. This method provides the SCI Core user more flexibility
3173 * with regards to IO tags. The user may desire to keep an IO tag after an
3174 * IO request has completed, because they plan on re-using the tag for a
3175 * subsequent IO request. This method is only legal if the tag was
3176 * allocated via scic_controller_allocate_io_tag().
3177 * @controller: This parameter specifies the handle to the controller object
3178 * for which to free/return the tag.
3179 * @io_tag: This parameter represents the tag to be freed to the pool of
3180 * available tags.
3182 * - IO tags are a protected resource. It is incumbent upon the SCI Core user
3183 * to ensure that each of the methods that may allocate or free available IO
3184 * tags are handled in a mutually exclusive manner. This method is one of said
3185 * methods requiring proper critical code section protection (e.g. semaphore,
3186 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
3187 * Core user, using the scic_controller_allocate_io_tag() method, then it is
3188 * the responsibility of the caller to invoke this method to free the tag. This
3189 * method returns an indication of whether the tag was successfully put back
3190 * (freed) to the pool of available tags. SCI_SUCCESS This return value
3191 * indicates the tag was successfully placed into the pool of available IO
3192 * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
3193 * is not a valid IO tag value.
3195 enum sci_status scic_controller_free_io_tag(
3196 struct scic_sds_controller *scic,
3197 u16 io_tag)
3199 u16 sequence;
3200 u16 index;
3202 BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
3204 sequence = scic_sds_io_tag_get_sequence(io_tag);
3205 index = scic_sds_io_tag_get_index(io_tag);
3207 if (!sci_pool_full(scic->tci_pool)) {
3208 if (sequence == scic->io_request_sequence[index]) {
3209 scic_sds_io_sequence_increment(
3210 scic->io_request_sequence[index]);
3212 sci_pool_put(scic->tci_pool, index);
3214 return SCI_SUCCESS;
3218 return SCI_FAILURE_INVALID_IO_TAG;