2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
58 #include <mach/hardware.h>
61 #include <asm/div64.h>
62 #include <mach/bitfield.h>
63 #include <mach/pxafb.h>
66 * Complain if VAR is out of range.
72 /* Bits which should not be set in machine configuration structures */
73 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
74 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
75 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
78 LCCR3_PCD | LCCR3_BPP(0xf))
80 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
82 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
83 static void setup_base_frame(struct pxafb_info
*fbi
,
84 struct fb_var_screeninfo
*var
, int branch
);
85 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
86 unsigned long offset
, size_t size
);
88 static unsigned long video_mem_size
= 0;
90 static inline unsigned long
91 lcd_readl(struct pxafb_info
*fbi
, unsigned int off
)
93 return __raw_readl(fbi
->mmio_base
+ off
);
97 lcd_writel(struct pxafb_info
*fbi
, unsigned int off
, unsigned long val
)
99 __raw_writel(val
, fbi
->mmio_base
+ off
);
102 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
106 local_irq_save(flags
);
108 * We need to handle two requests being made at the same time.
109 * There are two important cases:
110 * 1. When we are changing VT (C_REENABLE) while unblanking
111 * (C_ENABLE) We must perform the unblanking, which will
112 * do our REENABLE for us.
113 * 2. When we are blanking, but immediately unblank before
114 * we have blanked. We do the "REENABLE" thing here as
115 * well, just to be sure.
117 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
119 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
122 if (state
!= (u_int
)-1) {
123 fbi
->task_state
= state
;
124 schedule_work(&fbi
->task
);
126 local_irq_restore(flags
);
129 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
132 chan
>>= 16 - bf
->length
;
133 return chan
<< bf
->offset
;
137 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
138 u_int trans
, struct fb_info
*info
)
140 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
143 if (regno
>= fbi
->palette_size
)
146 if (fbi
->fb
.var
.grayscale
) {
147 fbi
->palette_cpu
[regno
] = ((blue
>> 8) & 0x00ff);
151 switch (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) {
152 case LCCR4_PAL_FOR_0
:
153 val
= ((red
>> 0) & 0xf800);
154 val
|= ((green
>> 5) & 0x07e0);
155 val
|= ((blue
>> 11) & 0x001f);
156 fbi
->palette_cpu
[regno
] = val
;
158 case LCCR4_PAL_FOR_1
:
159 val
= ((red
<< 8) & 0x00f80000);
160 val
|= ((green
>> 0) & 0x0000fc00);
161 val
|= ((blue
>> 8) & 0x000000f8);
162 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
164 case LCCR4_PAL_FOR_2
:
165 val
= ((red
<< 8) & 0x00fc0000);
166 val
|= ((green
>> 0) & 0x0000fc00);
167 val
|= ((blue
>> 8) & 0x000000fc);
168 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
170 case LCCR4_PAL_FOR_3
:
171 val
= ((red
<< 8) & 0x00ff0000);
172 val
|= ((green
>> 0) & 0x0000ff00);
173 val
|= ((blue
>> 8) & 0x000000ff);
174 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
182 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
183 u_int trans
, struct fb_info
*info
)
185 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
190 * If inverse mode was selected, invert all the colours
191 * rather than the register number. The register number
192 * is what you poke into the framebuffer to produce the
193 * colour you requested.
195 if (fbi
->cmap_inverse
) {
197 green
= 0xffff - green
;
198 blue
= 0xffff - blue
;
202 * If greyscale is true, then we convert the RGB value
203 * to greyscale no matter what visual we are using.
205 if (fbi
->fb
.var
.grayscale
)
206 red
= green
= blue
= (19595 * red
+ 38470 * green
+
209 switch (fbi
->fb
.fix
.visual
) {
210 case FB_VISUAL_TRUECOLOR
:
212 * 16-bit True Colour. We encode the RGB value
213 * according to the RGB bitfield information.
216 u32
*pal
= fbi
->fb
.pseudo_palette
;
218 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
219 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
220 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
227 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
228 case FB_VISUAL_PSEUDOCOLOR
:
229 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
236 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
237 static inline int var_to_depth(struct fb_var_screeninfo
*var
)
239 return var
->red
.length
+ var
->green
.length
+
240 var
->blue
.length
+ var
->transp
.length
;
243 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
244 static int pxafb_var_to_bpp(struct fb_var_screeninfo
*var
)
248 switch (var
->bits_per_pixel
) {
249 case 1: bpp
= 0; break;
250 case 2: bpp
= 1; break;
251 case 4: bpp
= 2; break;
252 case 8: bpp
= 3; break;
253 case 16: bpp
= 4; break;
255 switch (var_to_depth(var
)) {
256 case 18: bpp
= 6; break; /* 18-bits/pixel packed */
257 case 19: bpp
= 8; break; /* 19-bits/pixel packed */
258 case 24: bpp
= 9; break;
262 switch (var_to_depth(var
)) {
263 case 18: bpp
= 5; break; /* 18-bits/pixel unpacked */
264 case 19: bpp
= 7; break; /* 19-bits/pixel unpacked */
265 case 25: bpp
= 10; break;
273 * pxafb_var_to_lccr3():
274 * Convert a bits per pixel value to the correct bit pattern for LCCR3
276 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
277 * implication of the acutal use of transparency bit, which we handle it
278 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
279 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
281 * Transparency for palette pixel formats is not supported at the moment.
283 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo
*var
)
285 int bpp
= pxafb_var_to_bpp(var
);
291 lccr3
= LCCR3_BPP(bpp
);
293 switch (var_to_depth(var
)) {
294 case 16: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_3
: 0; break;
295 case 18: lccr3
|= LCCR3_PDFOR_3
; break;
296 case 24: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_2
: LCCR3_PDFOR_3
;
299 case 25: lccr3
|= LCCR3_PDFOR_0
; break;
304 #define SET_PIXFMT(v, r, g, b, t) \
306 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
307 (v)->transp.length = (t) ? (t) : 0; \
308 (v)->blue.length = (b); (v)->blue.offset = 0; \
309 (v)->green.length = (g); (v)->green.offset = (b); \
310 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
313 /* set the RGBT bitfields of fb_var_screeninf according to
314 * var->bits_per_pixel and given depth
316 static void pxafb_set_pixfmt(struct fb_var_screeninfo
*var
, int depth
)
319 depth
= var
->bits_per_pixel
;
321 if (var
->bits_per_pixel
< 16) {
322 /* indexed pixel formats */
323 var
->red
.offset
= 0; var
->red
.length
= 8;
324 var
->green
.offset
= 0; var
->green
.length
= 8;
325 var
->blue
.offset
= 0; var
->blue
.length
= 8;
326 var
->transp
.offset
= 0; var
->transp
.length
= 8;
330 case 16: var
->transp
.length
?
331 SET_PIXFMT(var
, 5, 5, 5, 1) : /* RGBT555 */
332 SET_PIXFMT(var
, 5, 6, 5, 0); break; /* RGB565 */
333 case 18: SET_PIXFMT(var
, 6, 6, 6, 0); break; /* RGB666 */
334 case 19: SET_PIXFMT(var
, 6, 6, 6, 1); break; /* RGBT666 */
335 case 24: var
->transp
.length
?
336 SET_PIXFMT(var
, 8, 8, 7, 1) : /* RGBT887 */
337 SET_PIXFMT(var
, 8, 8, 8, 0); break; /* RGB888 */
338 case 25: SET_PIXFMT(var
, 8, 8, 8, 1); break; /* RGBT888 */
342 #ifdef CONFIG_CPU_FREQ
344 * pxafb_display_dma_period()
345 * Calculate the minimum period (in picoseconds) between two DMA
346 * requests for the LCD controller. If we hit this, it means we're
347 * doing nothing but LCD DMA.
349 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
352 * Period = pixclock * bits_per_byte * bytes_per_transfer
353 * / memory_bits_per_pixel;
355 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
360 * Select the smallest mode that allows the desired resolution to be
361 * displayed. If desired parameters can be rounded up.
363 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
,
364 struct fb_var_screeninfo
*var
)
366 struct pxafb_mode_info
*mode
= NULL
;
367 struct pxafb_mode_info
*modelist
= mach
->modes
;
368 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
371 for (i
= 0; i
< mach
->num_modes
; i
++) {
372 if (modelist
[i
].xres
>= var
->xres
&&
373 modelist
[i
].yres
>= var
->yres
&&
374 modelist
[i
].xres
< best_x
&&
375 modelist
[i
].yres
< best_y
&&
376 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
377 best_x
= modelist
[i
].xres
;
378 best_y
= modelist
[i
].yres
;
386 static void pxafb_setmode(struct fb_var_screeninfo
*var
,
387 struct pxafb_mode_info
*mode
)
389 var
->xres
= mode
->xres
;
390 var
->yres
= mode
->yres
;
391 var
->bits_per_pixel
= mode
->bpp
;
392 var
->pixclock
= mode
->pixclock
;
393 var
->hsync_len
= mode
->hsync_len
;
394 var
->left_margin
= mode
->left_margin
;
395 var
->right_margin
= mode
->right_margin
;
396 var
->vsync_len
= mode
->vsync_len
;
397 var
->upper_margin
= mode
->upper_margin
;
398 var
->lower_margin
= mode
->lower_margin
;
399 var
->sync
= mode
->sync
;
400 var
->grayscale
= mode
->cmap_greyscale
;
401 var
->transp
.length
= mode
->transparency
;
403 /* set the initial RGBA bitfields */
404 pxafb_set_pixfmt(var
, mode
->depth
);
407 static int pxafb_adjust_timing(struct pxafb_info
*fbi
,
408 struct fb_var_screeninfo
*var
)
412 var
->xres
= max_t(int, var
->xres
, MIN_XRES
);
413 var
->yres
= max_t(int, var
->yres
, MIN_YRES
);
415 if (!(fbi
->lccr0
& LCCR0_LCDT
)) {
416 clamp_val(var
->hsync_len
, 1, 64);
417 clamp_val(var
->vsync_len
, 1, 64);
418 clamp_val(var
->left_margin
, 1, 255);
419 clamp_val(var
->right_margin
, 1, 255);
420 clamp_val(var
->upper_margin
, 1, 255);
421 clamp_val(var
->lower_margin
, 1, 255);
424 /* make sure each line is aligned on word boundary */
425 line_length
= var
->xres
* var
->bits_per_pixel
/ 8;
426 line_length
= ALIGN(line_length
, 4);
427 var
->xres
= line_length
* 8 / var
->bits_per_pixel
;
429 /* we don't support xpan, force xres_virtual to be equal to xres */
430 var
->xres_virtual
= var
->xres
;
432 if (var
->accel_flags
& FB_ACCELF_TEXT
)
433 var
->yres_virtual
= fbi
->fb
.fix
.smem_len
/ line_length
;
435 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
437 /* check for limits */
438 if (var
->xres
> MAX_XRES
|| var
->yres
> MAX_YRES
)
441 if (var
->yres
> var
->yres_virtual
)
449 * Get the video params out of 'var'. If a value doesn't fit, round it up,
450 * if it's too big, return -EINVAL.
452 * Round up in the following order: bits_per_pixel, xres,
453 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
454 * bitfields, horizontal timing, vertical timing.
456 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
458 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
459 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
462 if (inf
->fixed_modes
) {
463 struct pxafb_mode_info
*mode
;
465 mode
= pxafb_getmode(inf
, var
);
468 pxafb_setmode(var
, mode
);
471 /* do a test conversion to BPP fields to check the color formats */
472 err
= pxafb_var_to_bpp(var
);
476 pxafb_set_pixfmt(var
, var_to_depth(var
));
478 err
= pxafb_adjust_timing(fbi
, var
);
482 #ifdef CONFIG_CPU_FREQ
483 pr_debug("pxafb: dma period = %d ps\n",
484 pxafb_display_dma_period(var
));
492 * Set the user defined part of the display for the specified console
494 static int pxafb_set_par(struct fb_info
*info
)
496 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
497 struct fb_var_screeninfo
*var
= &info
->var
;
499 if (var
->bits_per_pixel
>= 16)
500 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
501 else if (!fbi
->cmap_static
)
502 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
505 * Some people have weird ideas about wanting static
506 * pseudocolor maps. I suspect their user space
507 * applications are broken.
509 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
512 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
513 var
->bits_per_pixel
/ 8;
514 if (var
->bits_per_pixel
>= 16)
515 fbi
->palette_size
= 0;
517 fbi
->palette_size
= var
->bits_per_pixel
== 1 ?
518 4 : 1 << var
->bits_per_pixel
;
520 fbi
->palette_cpu
= (u16
*)&fbi
->dma_buff
->palette
[0];
522 if (fbi
->fb
.var
.bits_per_pixel
>= 16)
523 fb_dealloc_cmap(&fbi
->fb
.cmap
);
525 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
527 pxafb_activate_var(var
, fbi
);
532 static int pxafb_pan_display(struct fb_var_screeninfo
*var
,
533 struct fb_info
*info
)
535 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
536 struct fb_var_screeninfo newvar
;
537 int dma
= DMA_MAX
+ DMA_BASE
;
539 if (fbi
->state
!= C_ENABLE
)
542 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
543 * was passed in and copy the rest from the old screeninfo.
545 memcpy(&newvar
, &fbi
->fb
.var
, sizeof(newvar
));
546 newvar
.xoffset
= var
->xoffset
;
547 newvar
.yoffset
= var
->yoffset
;
548 newvar
.vmode
&= ~FB_VMODE_YWRAP
;
549 newvar
.vmode
|= var
->vmode
& FB_VMODE_YWRAP
;
551 setup_base_frame(fbi
, &newvar
, 1);
553 if (fbi
->lccr0
& LCCR0_SDS
)
554 lcd_writel(fbi
, FBR1
, fbi
->fdadr
[dma
+ 1] | 0x1);
556 lcd_writel(fbi
, FBR0
, fbi
->fdadr
[dma
] | 0x1);
562 * Blank the display by setting all palette values to zero. Note, the
563 * 16 bpp mode does not really use the palette, so this will not
564 * blank the display in all modes.
566 static int pxafb_blank(int blank
, struct fb_info
*info
)
568 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
572 case FB_BLANK_POWERDOWN
:
573 case FB_BLANK_VSYNC_SUSPEND
:
574 case FB_BLANK_HSYNC_SUSPEND
:
575 case FB_BLANK_NORMAL
:
576 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
577 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
578 for (i
= 0; i
< fbi
->palette_size
; i
++)
579 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
581 pxafb_schedule_work(fbi
, C_DISABLE
);
582 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
585 case FB_BLANK_UNBLANK
:
586 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
587 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
588 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
589 fb_set_cmap(&fbi
->fb
.cmap
, info
);
590 pxafb_schedule_work(fbi
, C_ENABLE
);
595 static struct fb_ops pxafb_ops
= {
596 .owner
= THIS_MODULE
,
597 .fb_check_var
= pxafb_check_var
,
598 .fb_set_par
= pxafb_set_par
,
599 .fb_pan_display
= pxafb_pan_display
,
600 .fb_setcolreg
= pxafb_setcolreg
,
601 .fb_fillrect
= cfb_fillrect
,
602 .fb_copyarea
= cfb_copyarea
,
603 .fb_imageblit
= cfb_imageblit
,
604 .fb_blank
= pxafb_blank
,
607 #ifdef CONFIG_FB_PXA_OVERLAY
608 static void overlay1fb_setup(struct pxafb_layer
*ofb
)
610 int size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
611 unsigned long start
= ofb
->video_mem_phys
;
612 setup_frame_dma(ofb
->fbi
, DMA_OV1
, PAL_NONE
, start
, size
);
615 /* Depending on the enable status of overlay1/2, the DMA should be
616 * updated from FDADRx (when disabled) or FBRx (when enabled).
618 static void overlay1fb_enable(struct pxafb_layer
*ofb
)
620 int enabled
= lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
;
621 uint32_t fdadr1
= ofb
->fbi
->fdadr
[DMA_OV1
] | (enabled
? 0x1 : 0);
623 lcd_writel(ofb
->fbi
, enabled
? FBR1
: FDADR1
, fdadr1
);
624 lcd_writel(ofb
->fbi
, OVL1C2
, ofb
->control
[1]);
625 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] | OVLxC1_OEN
);
628 static void overlay1fb_disable(struct pxafb_layer
*ofb
)
630 uint32_t lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
632 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
634 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(1));
635 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(1));
636 lcd_writel(ofb
->fbi
, FBR1
, ofb
->fbi
->fdadr
[DMA_OV1
] | 0x3);
638 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
639 pr_warning("%s: timeout disabling overlay1\n", __func__
);
641 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
);
644 static void overlay2fb_setup(struct pxafb_layer
*ofb
)
646 int size
, div
= 1, pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
647 unsigned long start
[3] = { ofb
->video_mem_phys
, 0, 0 };
649 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
) {
650 size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
651 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
653 size
= ofb
->fb
.var
.xres_virtual
* ofb
->fb
.var
.yres_virtual
;
655 case OVERLAY_FORMAT_YUV444_PLANAR
: div
= 1; break;
656 case OVERLAY_FORMAT_YUV422_PLANAR
: div
= 2; break;
657 case OVERLAY_FORMAT_YUV420_PLANAR
: div
= 4; break;
659 start
[1] = start
[0] + size
;
660 start
[2] = start
[1] + size
/ div
;
661 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
662 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cb
, -1, start
[1], size
/ div
);
663 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cr
, -1, start
[2], size
/ div
);
667 static void overlay2fb_enable(struct pxafb_layer
*ofb
)
669 int pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
670 int enabled
= lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
;
671 uint32_t fdadr2
= ofb
->fbi
->fdadr
[DMA_OV2_Y
] | (enabled
? 0x1 : 0);
672 uint32_t fdadr3
= ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | (enabled
? 0x1 : 0);
673 uint32_t fdadr4
= ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | (enabled
? 0x1 : 0);
675 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
)
676 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
678 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
679 lcd_writel(ofb
->fbi
, enabled
? FBR3
: FDADR3
, fdadr3
);
680 lcd_writel(ofb
->fbi
, enabled
? FBR4
: FDADR4
, fdadr4
);
682 lcd_writel(ofb
->fbi
, OVL2C2
, ofb
->control
[1]);
683 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] | OVLxC1_OEN
);
686 static void overlay2fb_disable(struct pxafb_layer
*ofb
)
688 uint32_t lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
690 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
692 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(2));
693 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(2));
694 lcd_writel(ofb
->fbi
, FBR2
, ofb
->fbi
->fdadr
[DMA_OV2_Y
] | 0x3);
695 lcd_writel(ofb
->fbi
, FBR3
, ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | 0x3);
696 lcd_writel(ofb
->fbi
, FBR4
, ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | 0x3);
698 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
699 pr_warning("%s: timeout disabling overlay2\n", __func__
);
702 static struct pxafb_layer_ops ofb_ops
[] = {
704 .enable
= overlay1fb_enable
,
705 .disable
= overlay1fb_disable
,
706 .setup
= overlay1fb_setup
,
709 .enable
= overlay2fb_enable
,
710 .disable
= overlay2fb_disable
,
711 .setup
= overlay2fb_setup
,
715 static int overlayfb_open(struct fb_info
*info
, int user
)
717 struct pxafb_layer
*ofb
= (struct pxafb_layer
*)info
;
719 /* no support for framebuffer console on overlay */
723 /* allow only one user at a time */
724 if (atomic_inc_and_test(&ofb
->usage
))
727 /* unblank the base framebuffer */
728 fb_blank(&ofb
->fbi
->fb
, FB_BLANK_UNBLANK
);
732 static int overlayfb_release(struct fb_info
*info
, int user
)
734 struct pxafb_layer
*ofb
= (struct pxafb_layer
*) info
;
736 atomic_dec(&ofb
->usage
);
737 ofb
->ops
->disable(ofb
);
739 free_pages_exact(ofb
->video_mem
, ofb
->video_mem_size
);
740 ofb
->video_mem
= NULL
;
741 ofb
->video_mem_size
= 0;
745 static int overlayfb_check_var(struct fb_var_screeninfo
*var
,
746 struct fb_info
*info
)
748 struct pxafb_layer
*ofb
= (struct pxafb_layer
*)info
;
749 struct fb_var_screeninfo
*base_var
= &ofb
->fbi
->fb
.var
;
750 int xpos
, ypos
, pfor
, bpp
;
752 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
753 ypos
= NONSTD_TO_XPOS(var
->nonstd
);
754 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
756 bpp
= pxafb_var_to_bpp(var
);
760 /* no support for YUV format on overlay1 */
761 if (ofb
->id
== OVERLAY1
&& pfor
!= 0)
764 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
766 case OVERLAY_FORMAT_RGB
:
767 bpp
= pxafb_var_to_bpp(var
);
771 pxafb_set_pixfmt(var
, var_to_depth(var
));
773 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
774 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 8; break;
775 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 4; break;
776 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 2; break;
781 /* each line must start at a 32-bit word boundary */
782 if ((xpos
* bpp
) % 32)
785 /* xres must align on 32-bit word boundary */
786 var
->xres
= roundup(var
->xres
* bpp
, 32) / bpp
;
788 if ((xpos
+ var
->xres
> base_var
->xres
) ||
789 (ypos
+ var
->yres
> base_var
->yres
))
792 var
->xres_virtual
= var
->xres
;
793 var
->yres_virtual
= max(var
->yres
, var
->yres_virtual
);
797 static int overlayfb_map_video_memory(struct pxafb_layer
*ofb
)
799 struct fb_var_screeninfo
*var
= &ofb
->fb
.var
;
800 int pfor
= NONSTD_TO_PFOR(var
->nonstd
);
804 case OVERLAY_FORMAT_RGB
: bpp
= var
->bits_per_pixel
; break;
805 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
806 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 24; break;
807 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 16; break;
808 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 12; break;
811 ofb
->fb
.fix
.line_length
= var
->xres_virtual
* bpp
/ 8;
813 size
= PAGE_ALIGN(ofb
->fb
.fix
.line_length
* var
->yres_virtual
);
815 /* don't re-allocate if the original video memory is enough */
816 if (ofb
->video_mem
) {
817 if (ofb
->video_mem_size
>= size
)
820 free_pages_exact(ofb
->video_mem
, ofb
->video_mem_size
);
823 ofb
->video_mem
= alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
824 if (ofb
->video_mem
== NULL
)
827 ofb
->video_mem_phys
= virt_to_phys(ofb
->video_mem
);
828 ofb
->video_mem_size
= size
;
830 mutex_lock(&ofb
->fb
.mm_lock
);
831 ofb
->fb
.fix
.smem_start
= ofb
->video_mem_phys
;
832 ofb
->fb
.fix
.smem_len
= ofb
->fb
.fix
.line_length
* var
->yres_virtual
;
833 mutex_unlock(&ofb
->fb
.mm_lock
);
834 ofb
->fb
.screen_base
= ofb
->video_mem
;
838 static int overlayfb_set_par(struct fb_info
*info
)
840 struct pxafb_layer
*ofb
= (struct pxafb_layer
*)info
;
841 struct fb_var_screeninfo
*var
= &info
->var
;
842 int xpos
, ypos
, pfor
, bpp
, ret
;
844 ret
= overlayfb_map_video_memory(ofb
);
848 bpp
= pxafb_var_to_bpp(var
);
849 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
850 ypos
= NONSTD_TO_XPOS(var
->nonstd
);
851 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
853 ofb
->control
[0] = OVLxC1_PPL(var
->xres
) | OVLxC1_LPO(var
->yres
) |
855 ofb
->control
[1] = OVLxC2_XPOS(xpos
) | OVLxC2_YPOS(ypos
);
857 if (ofb
->id
== OVERLAY2
)
858 ofb
->control
[1] |= OVL2C2_PFOR(pfor
);
860 ofb
->ops
->setup(ofb
);
861 ofb
->ops
->enable(ofb
);
865 static struct fb_ops overlay_fb_ops
= {
866 .owner
= THIS_MODULE
,
867 .fb_open
= overlayfb_open
,
868 .fb_release
= overlayfb_release
,
869 .fb_check_var
= overlayfb_check_var
,
870 .fb_set_par
= overlayfb_set_par
,
873 static void __devinit
init_pxafb_overlay(struct pxafb_info
*fbi
,
874 struct pxafb_layer
*ofb
, int id
)
876 sprintf(ofb
->fb
.fix
.id
, "overlay%d", id
+ 1);
878 ofb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
879 ofb
->fb
.fix
.xpanstep
= 0;
880 ofb
->fb
.fix
.ypanstep
= 1;
882 ofb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
883 ofb
->fb
.var
.height
= -1;
884 ofb
->fb
.var
.width
= -1;
885 ofb
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
887 ofb
->fb
.fbops
= &overlay_fb_ops
;
888 ofb
->fb
.flags
= FBINFO_FLAG_DEFAULT
;
890 ofb
->fb
.pseudo_palette
= NULL
;
893 ofb
->ops
= &ofb_ops
[id
];
894 atomic_set(&ofb
->usage
, 0);
896 init_completion(&ofb
->branch_done
);
899 static inline int pxafb_overlay_supported(void)
901 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
907 static int __devinit
pxafb_overlay_init(struct pxafb_info
*fbi
)
911 if (!pxafb_overlay_supported())
914 for (i
= 0; i
< 2; i
++) {
915 init_pxafb_overlay(fbi
, &fbi
->overlay
[i
], i
);
916 ret
= register_framebuffer(&fbi
->overlay
[i
].fb
);
918 dev_err(fbi
->dev
, "failed to register overlay %d\n", i
);
923 /* mask all IU/BS/EOF/SOF interrupts */
924 lcd_writel(fbi
, LCCR5
, ~0);
926 /* place overlay(s) on top of base */
927 fbi
->lccr0
|= LCCR0_OUC
;
928 pr_info("PXA Overlay driver loaded successfully!\n");
932 static void __devexit
pxafb_overlay_exit(struct pxafb_info
*fbi
)
936 if (!pxafb_overlay_supported())
939 for (i
= 0; i
< 2; i
++)
940 unregister_framebuffer(&fbi
->overlay
[i
].fb
);
943 static inline void pxafb_overlay_init(struct pxafb_info
*fbi
) {}
944 static inline void pxafb_overlay_exit(struct pxafb_info
*fbi
) {}
945 #endif /* CONFIG_FB_PXA_OVERLAY */
948 * Calculate the PCD value from the clock rate (in picoseconds).
949 * We take account of the PPCR clock setting.
950 * From PXA Developer's Manual:
961 * LCLK = LCD/Memory Clock
964 * PixelClock here is in Hz while the pixclock argument given is the
965 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
967 * The function get_lclk_frequency_10khz returns LCLK in units of
968 * 10khz. Calling the result of this function lclk gives us the
971 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
972 * -------------------------------------- - 1
975 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
977 static inline unsigned int get_pcd(struct pxafb_info
*fbi
,
978 unsigned int pixclock
)
980 unsigned long long pcd
;
982 /* FIXME: Need to take into account Double Pixel Clock mode
983 * (DPC) bit? or perhaps set it based on the various clock
985 pcd
= (unsigned long long)(clk_get_rate(fbi
->clk
) / 10000);
987 do_div(pcd
, 100000000 * 2);
988 /* no need for this, since we should subtract 1 anyway. they cancel */
989 /* pcd += 1; */ /* make up for integer math truncations */
990 return (unsigned int)pcd
;
994 * Some touchscreens need hsync information from the video driver to
995 * function correctly. We export it here. Note that 'hsync_time' and
996 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
997 * of the hsync period in seconds.
999 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
1001 unsigned long htime
;
1003 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
1004 fbi
->hsync_time
= 0;
1008 htime
= clk_get_rate(fbi
->clk
) / (pcd
* fbi
->fb
.var
.hsync_len
);
1010 fbi
->hsync_time
= htime
;
1013 unsigned long pxafb_get_hsync_time(struct device
*dev
)
1015 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1017 /* If display is blanked/suspended, hsync isn't active */
1018 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
1021 return fbi
->hsync_time
;
1023 EXPORT_SYMBOL(pxafb_get_hsync_time
);
1025 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
1026 unsigned long start
, size_t size
)
1028 struct pxafb_dma_descriptor
*dma_desc
, *pal_desc
;
1029 unsigned int dma_desc_off
, pal_desc_off
;
1031 if (dma
< 0 || dma
>= DMA_MAX
* 2)
1034 dma_desc
= &fbi
->dma_buff
->dma_desc
[dma
];
1035 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[dma
]);
1037 dma_desc
->fsadr
= start
;
1039 dma_desc
->ldcmd
= size
;
1041 if (pal
< 0 || pal
>= PAL_MAX
* 2) {
1042 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1043 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1045 pal_desc
= &fbi
->dma_buff
->pal_desc
[pal
];
1046 pal_desc_off
= offsetof(struct pxafb_dma_buff
, pal_desc
[pal
]);
1048 pal_desc
->fsadr
= fbi
->dma_buff_phys
+ pal
* PALETTE_SIZE
;
1051 if ((fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) == LCCR4_PAL_FOR_0
)
1052 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u16
);
1054 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u32
);
1056 pal_desc
->ldcmd
|= LDCMD_PAL
;
1058 /* flip back and forth between palette and frame buffer */
1059 pal_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1060 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ pal_desc_off
;
1061 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1067 static void setup_base_frame(struct pxafb_info
*fbi
,
1068 struct fb_var_screeninfo
*var
,
1071 struct fb_fix_screeninfo
*fix
= &fbi
->fb
.fix
;
1072 int nbytes
, dma
, pal
, bpp
= var
->bits_per_pixel
;
1073 unsigned long offset
;
1075 dma
= DMA_BASE
+ (branch
? DMA_MAX
: 0);
1076 pal
= (bpp
>= 16) ? PAL_NONE
: PAL_BASE
+ (branch
? PAL_MAX
: 0);
1078 nbytes
= fix
->line_length
* var
->yres
;
1079 offset
= fix
->line_length
* var
->yoffset
+ fbi
->video_mem_phys
;
1081 if (fbi
->lccr0
& LCCR0_SDS
) {
1082 nbytes
= nbytes
/ 2;
1083 setup_frame_dma(fbi
, dma
+ 1, PAL_NONE
, offset
+ nbytes
, nbytes
);
1086 setup_frame_dma(fbi
, dma
, pal
, offset
, nbytes
);
1089 #ifdef CONFIG_FB_PXA_SMARTPANEL
1090 static int setup_smart_dma(struct pxafb_info
*fbi
)
1092 struct pxafb_dma_descriptor
*dma_desc
;
1093 unsigned long dma_desc_off
, cmd_buff_off
;
1095 dma_desc
= &fbi
->dma_buff
->dma_desc
[DMA_CMD
];
1096 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[DMA_CMD
]);
1097 cmd_buff_off
= offsetof(struct pxafb_dma_buff
, cmd_buff
);
1099 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1100 dma_desc
->fsadr
= fbi
->dma_buff_phys
+ cmd_buff_off
;
1102 dma_desc
->ldcmd
= fbi
->n_smart_cmds
* sizeof(uint16_t);
1104 fbi
->fdadr
[DMA_CMD
] = dma_desc
->fdadr
;
1108 int pxafb_smart_flush(struct fb_info
*info
)
1110 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1114 /* disable controller until all registers are set up */
1115 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1117 /* 1. make it an even number of commands to align on 32-bit boundary
1118 * 2. add the interrupt command to the end of the chain so we can
1119 * keep track of the end of the transfer
1122 while (fbi
->n_smart_cmds
& 1)
1123 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_NOOP
;
1125 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_INTERRUPT
;
1126 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_WAIT_FOR_VSYNC
;
1127 setup_smart_dma(fbi
);
1129 /* continue to execute next command */
1130 prsr
= lcd_readl(fbi
, PRSR
) | PRSR_ST_OK
| PRSR_CON_NT
;
1131 lcd_writel(fbi
, PRSR
, prsr
);
1133 /* stop the processor in case it executed "wait for sync" cmd */
1134 lcd_writel(fbi
, CMDCR
, 0x0001);
1136 /* don't send interrupts for fifo underruns on channel 6 */
1137 lcd_writel(fbi
, LCCR5
, LCCR5_IUM(6));
1139 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1140 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1141 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1142 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1143 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1144 lcd_writel(fbi
, FDADR6
, fbi
->fdadr
[6]);
1147 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1149 if (wait_for_completion_timeout(&fbi
->command_done
, HZ
/2) == 0) {
1150 pr_warning("%s: timeout waiting for command done\n",
1156 prsr
= lcd_readl(fbi
, PRSR
) & ~(PRSR_ST_OK
| PRSR_CON_NT
);
1157 lcd_writel(fbi
, PRSR
, prsr
);
1158 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1159 lcd_writel(fbi
, FDADR6
, 0);
1160 fbi
->n_smart_cmds
= 0;
1164 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
1167 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1169 for (i
= 0; i
< n_cmds
; i
++, cmds
++) {
1170 /* if it is a software delay, flush and delay */
1171 if ((*cmds
& 0xff00) == SMART_CMD_DELAY
) {
1172 pxafb_smart_flush(info
);
1173 mdelay(*cmds
& 0xff);
1177 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1178 if (fbi
->n_smart_cmds
== CMD_BUFF_SIZE
- 8)
1179 pxafb_smart_flush(info
);
1181 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = *cmds
;
1187 static unsigned int __smart_timing(unsigned time_ns
, unsigned long lcd_clk
)
1189 unsigned int t
= (time_ns
* (lcd_clk
/ 1000000) / 1000);
1190 return (t
== 0) ? 1 : t
;
1193 static void setup_smart_timing(struct pxafb_info
*fbi
,
1194 struct fb_var_screeninfo
*var
)
1196 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
1197 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1198 unsigned long lclk
= clk_get_rate(fbi
->clk
);
1199 unsigned t1
, t2
, t3
, t4
;
1201 t1
= max(mode
->a0csrd_set_hld
, mode
->a0cswr_set_hld
);
1202 t2
= max(mode
->rd_pulse_width
, mode
->wr_pulse_width
);
1203 t3
= mode
->op_hold_time
;
1204 t4
= mode
->cmd_inh_time
;
1207 LCCR1_DisWdth(var
->xres
) |
1208 LCCR1_BegLnDel(__smart_timing(t1
, lclk
)) |
1209 LCCR1_EndLnDel(__smart_timing(t2
, lclk
)) |
1210 LCCR1_HorSnchWdth(__smart_timing(t3
, lclk
));
1212 fbi
->reg_lccr2
= LCCR2_DisHght(var
->yres
);
1213 fbi
->reg_lccr3
= fbi
->lccr3
| LCCR3_PixClkDiv(__smart_timing(t4
, lclk
));
1214 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ? LCCR3_HSP
: 0;
1215 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ? LCCR3_VSP
: 0;
1217 /* FIXME: make this configurable */
1221 static int pxafb_smart_thread(void *arg
)
1223 struct pxafb_info
*fbi
= arg
;
1224 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
1226 if (!inf
->smart_update
) {
1227 pr_err("%s: not properly initialized, thread terminated\n",
1231 inf
= fbi
->dev
->platform_data
;
1233 pr_debug("%s(): task starting\n", __func__
);
1236 while (!kthread_should_stop()) {
1238 if (try_to_freeze())
1241 mutex_lock(&fbi
->ctrlr_lock
);
1243 if (fbi
->state
== C_ENABLE
) {
1244 inf
->smart_update(&fbi
->fb
);
1245 complete(&fbi
->refresh_done
);
1248 mutex_unlock(&fbi
->ctrlr_lock
);
1250 set_current_state(TASK_INTERRUPTIBLE
);
1251 schedule_timeout(30 * HZ
/ 1000);
1254 pr_debug("%s(): task ending\n", __func__
);
1258 static int pxafb_smart_init(struct pxafb_info
*fbi
)
1260 if (!(fbi
->lccr0
& LCCR0_LCDT
))
1263 fbi
->smart_cmds
= (uint16_t *) fbi
->dma_buff
->cmd_buff
;
1264 fbi
->n_smart_cmds
= 0;
1266 init_completion(&fbi
->command_done
);
1267 init_completion(&fbi
->refresh_done
);
1269 fbi
->smart_thread
= kthread_run(pxafb_smart_thread
, fbi
,
1271 if (IS_ERR(fbi
->smart_thread
)) {
1272 pr_err("%s: unable to create kernel thread\n", __func__
);
1273 return PTR_ERR(fbi
->smart_thread
);
1279 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
1284 int pxafb_smart_flush(struct fb_info
*info
)
1289 static inline int pxafb_smart_init(struct pxafb_info
*fbi
) { return 0; }
1290 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1292 static void setup_parallel_timing(struct pxafb_info
*fbi
,
1293 struct fb_var_screeninfo
*var
)
1295 unsigned int lines_per_panel
, pcd
= get_pcd(fbi
, var
->pixclock
);
1298 LCCR1_DisWdth(var
->xres
) +
1299 LCCR1_HorSnchWdth(var
->hsync_len
) +
1300 LCCR1_BegLnDel(var
->left_margin
) +
1301 LCCR1_EndLnDel(var
->right_margin
);
1304 * If we have a dual scan LCD, we need to halve
1305 * the YRES parameter.
1307 lines_per_panel
= var
->yres
;
1308 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1309 lines_per_panel
/= 2;
1312 LCCR2_DisHght(lines_per_panel
) +
1313 LCCR2_VrtSnchWdth(var
->vsync_len
) +
1314 LCCR2_BegFrmDel(var
->upper_margin
) +
1315 LCCR2_EndFrmDel(var
->lower_margin
);
1317 fbi
->reg_lccr3
= fbi
->lccr3
|
1318 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
?
1319 LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
1320 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
?
1321 LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
1324 fbi
->reg_lccr3
|= LCCR3_PixClkDiv(pcd
);
1325 set_hsync_time(fbi
, pcd
);
1330 * pxafb_activate_var():
1331 * Configures LCD Controller based on entries in var parameter.
1332 * Settings are only written to the controller if changes were made.
1334 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
1335 struct pxafb_info
*fbi
)
1339 /* Update shadow copy atomically */
1340 local_irq_save(flags
);
1342 #ifdef CONFIG_FB_PXA_SMARTPANEL
1343 if (fbi
->lccr0
& LCCR0_LCDT
)
1344 setup_smart_timing(fbi
, var
);
1347 setup_parallel_timing(fbi
, var
);
1349 setup_base_frame(fbi
, var
, 0);
1351 fbi
->reg_lccr0
= fbi
->lccr0
|
1352 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
1353 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
1355 fbi
->reg_lccr3
|= pxafb_var_to_lccr3(var
);
1357 fbi
->reg_lccr4
= lcd_readl(fbi
, LCCR4
) & ~LCCR4_PAL_FOR_MASK
;
1358 fbi
->reg_lccr4
|= (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
);
1359 local_irq_restore(flags
);
1362 * Only update the registers if the controller is enabled
1363 * and something has changed.
1365 if ((lcd_readl(fbi
, LCCR0
) != fbi
->reg_lccr0
) ||
1366 (lcd_readl(fbi
, LCCR1
) != fbi
->reg_lccr1
) ||
1367 (lcd_readl(fbi
, LCCR2
) != fbi
->reg_lccr2
) ||
1368 (lcd_readl(fbi
, LCCR3
) != fbi
->reg_lccr3
) ||
1369 (lcd_readl(fbi
, LCCR4
) != fbi
->reg_lccr4
) ||
1370 (lcd_readl(fbi
, FDADR0
) != fbi
->fdadr
[0]) ||
1371 (lcd_readl(fbi
, FDADR1
) != fbi
->fdadr
[1]))
1372 pxafb_schedule_work(fbi
, C_REENABLE
);
1378 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1379 * Do not call them directly; set_ctrlr_state does the correct serialisation
1380 * to ensure that things happen in the right way 100% of time time.
1383 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
1385 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
1387 if (fbi
->backlight_power
)
1388 fbi
->backlight_power(on
);
1391 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
1393 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
1396 fbi
->lcd_power(on
, &fbi
->fb
.var
);
1399 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
1401 pr_debug("pxafb: Enabling LCD controller\n");
1402 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr
[0]);
1403 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr
[1]);
1404 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
1405 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
1406 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
1407 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
1409 /* enable LCD controller clock */
1410 clk_enable(fbi
->clk
);
1412 if (fbi
->lccr0
& LCCR0_LCDT
)
1415 /* Sequence from 11.7.10 */
1416 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1417 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1418 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1419 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1420 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1422 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1423 lcd_writel(fbi
, FDADR1
, fbi
->fdadr
[1]);
1424 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1427 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
1431 #ifdef CONFIG_FB_PXA_SMARTPANEL
1432 if (fbi
->lccr0
& LCCR0_LCDT
) {
1433 wait_for_completion_timeout(&fbi
->refresh_done
,
1439 /* Clear LCD Status Register */
1440 lcd_writel(fbi
, LCSR
, 0xffffffff);
1442 lccr0
= lcd_readl(fbi
, LCCR0
) & ~LCCR0_LDM
;
1443 lcd_writel(fbi
, LCCR0
, lccr0
);
1444 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_DIS
);
1446 wait_for_completion_timeout(&fbi
->disable_done
, 200 * HZ
/ 1000);
1448 /* disable LCD controller clock */
1449 clk_disable(fbi
->clk
);
1453 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1455 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
1457 struct pxafb_info
*fbi
= dev_id
;
1458 unsigned int lccr0
, lcsr
;
1460 lcsr
= lcd_readl(fbi
, LCSR
);
1461 if (lcsr
& LCSR_LDD
) {
1462 lccr0
= lcd_readl(fbi
, LCCR0
);
1463 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_LDM
);
1464 complete(&fbi
->disable_done
);
1467 #ifdef CONFIG_FB_PXA_SMARTPANEL
1468 if (lcsr
& LCSR_CMD_INT
)
1469 complete(&fbi
->command_done
);
1471 lcd_writel(fbi
, LCSR
, lcsr
);
1473 #ifdef CONFIG_FB_PXA_OVERLAY
1475 unsigned int lcsr1
= lcd_readl(fbi
, LCSR1
);
1476 if (lcsr1
& LCSR1_BS(1))
1477 complete(&fbi
->overlay
[0].branch_done
);
1479 if (lcsr1
& LCSR1_BS(2))
1480 complete(&fbi
->overlay
[1].branch_done
);
1482 lcd_writel(fbi
, LCSR1
, lcsr1
);
1489 * This function must be called from task context only, since it will
1490 * sleep when disabling the LCD controller, or if we get two contending
1491 * processes trying to alter state.
1493 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
1497 mutex_lock(&fbi
->ctrlr_lock
);
1499 old_state
= fbi
->state
;
1502 * Hack around fbcon initialisation.
1504 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1508 case C_DISABLE_CLKCHANGE
:
1510 * Disable controller for clock change. If the
1511 * controller is already disabled, then do nothing.
1513 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1515 /* TODO __pxafb_lcd_power(fbi, 0); */
1516 pxafb_disable_controller(fbi
);
1523 * Disable controller
1525 if (old_state
!= C_DISABLE
) {
1527 __pxafb_backlight_power(fbi
, 0);
1528 __pxafb_lcd_power(fbi
, 0);
1529 if (old_state
!= C_DISABLE_CLKCHANGE
)
1530 pxafb_disable_controller(fbi
);
1534 case C_ENABLE_CLKCHANGE
:
1536 * Enable the controller after clock change. Only
1537 * do this if we were disabled for the clock change.
1539 if (old_state
== C_DISABLE_CLKCHANGE
) {
1540 fbi
->state
= C_ENABLE
;
1541 pxafb_enable_controller(fbi
);
1542 /* TODO __pxafb_lcd_power(fbi, 1); */
1548 * Re-enable the controller only if it was already
1549 * enabled. This is so we reprogram the control
1552 if (old_state
== C_ENABLE
) {
1553 __pxafb_lcd_power(fbi
, 0);
1554 pxafb_disable_controller(fbi
);
1555 pxafb_enable_controller(fbi
);
1556 __pxafb_lcd_power(fbi
, 1);
1562 * Re-enable the controller after PM. This is not
1563 * perfect - think about the case where we were doing
1564 * a clock change, and we suspended half-way through.
1566 if (old_state
!= C_DISABLE_PM
)
1572 * Power up the LCD screen, enable controller, and
1573 * turn on the backlight.
1575 if (old_state
!= C_ENABLE
) {
1576 fbi
->state
= C_ENABLE
;
1577 pxafb_enable_controller(fbi
);
1578 __pxafb_lcd_power(fbi
, 1);
1579 __pxafb_backlight_power(fbi
, 1);
1583 mutex_unlock(&fbi
->ctrlr_lock
);
1587 * Our LCD controller task (which is called when we blank or unblank)
1590 static void pxafb_task(struct work_struct
*work
)
1592 struct pxafb_info
*fbi
=
1593 container_of(work
, struct pxafb_info
, task
);
1594 u_int state
= xchg(&fbi
->task_state
, -1);
1596 set_ctrlr_state(fbi
, state
);
1599 #ifdef CONFIG_CPU_FREQ
1601 * CPU clock speed change handler. We need to adjust the LCD timing
1602 * parameters when the CPU clock is adjusted by the power management
1605 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1608 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
1610 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
1611 /* TODO struct cpufreq_freqs *f = data; */
1615 case CPUFREQ_PRECHANGE
:
1616 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1619 case CPUFREQ_POSTCHANGE
:
1620 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1621 set_hsync_time(fbi
, pcd
);
1622 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) |
1623 LCCR3_PixClkDiv(pcd
);
1624 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1631 pxafb_freq_policy(struct notifier_block
*nb
, unsigned long val
, void *data
)
1633 struct pxafb_info
*fbi
= TO_INF(nb
, freq_policy
);
1634 struct fb_var_screeninfo
*var
= &fbi
->fb
.var
;
1635 struct cpufreq_policy
*policy
= data
;
1638 case CPUFREQ_ADJUST
:
1639 case CPUFREQ_INCOMPATIBLE
:
1640 pr_debug("min dma period: %d ps, "
1641 "new clock %d kHz\n", pxafb_display_dma_period(var
),
1643 /* TODO: fill in min/max values */
1652 * Power management hooks. Note that we won't be called from IRQ context,
1653 * unlike the blank functions above, so we may sleep.
1655 static int pxafb_suspend(struct device
*dev
)
1657 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1659 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1663 static int pxafb_resume(struct device
*dev
)
1665 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1667 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1671 static const struct dev_pm_ops pxafb_pm_ops
= {
1672 .suspend
= pxafb_suspend
,
1673 .resume
= pxafb_resume
,
1677 static int __devinit
pxafb_init_video_memory(struct pxafb_info
*fbi
)
1679 int size
= PAGE_ALIGN(fbi
->video_mem_size
);
1681 fbi
->video_mem
= alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
1682 if (fbi
->video_mem
== NULL
)
1685 fbi
->video_mem_phys
= virt_to_phys(fbi
->video_mem
);
1686 fbi
->video_mem_size
= size
;
1688 fbi
->fb
.fix
.smem_start
= fbi
->video_mem_phys
;
1689 fbi
->fb
.fix
.smem_len
= fbi
->video_mem_size
;
1690 fbi
->fb
.screen_base
= fbi
->video_mem
;
1692 return fbi
->video_mem
? 0 : -ENOMEM
;
1695 static void pxafb_decode_mach_info(struct pxafb_info
*fbi
,
1696 struct pxafb_mach_info
*inf
)
1698 unsigned int lcd_conn
= inf
->lcd_conn
;
1699 struct pxafb_mode_info
*m
;
1702 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1703 fbi
->cmap_static
= inf
->cmap_static
;
1704 fbi
->lccr4
= inf
->lccr4
;
1706 switch (lcd_conn
& LCD_TYPE_MASK
) {
1707 case LCD_TYPE_MONO_STN
:
1708 fbi
->lccr0
= LCCR0_CMS
;
1710 case LCD_TYPE_MONO_DSTN
:
1711 fbi
->lccr0
= LCCR0_CMS
| LCCR0_SDS
;
1713 case LCD_TYPE_COLOR_STN
:
1716 case LCD_TYPE_COLOR_DSTN
:
1717 fbi
->lccr0
= LCCR0_SDS
;
1719 case LCD_TYPE_COLOR_TFT
:
1720 fbi
->lccr0
= LCCR0_PAS
;
1722 case LCD_TYPE_SMART_PANEL
:
1723 fbi
->lccr0
= LCCR0_LCDT
| LCCR0_PAS
;
1726 /* fall back to backward compatibility way */
1727 fbi
->lccr0
= inf
->lccr0
;
1728 fbi
->lccr3
= inf
->lccr3
;
1732 if (lcd_conn
== LCD_MONO_STN_8BPP
)
1733 fbi
->lccr0
|= LCCR0_DPD
;
1735 fbi
->lccr0
|= (lcd_conn
& LCD_ALTERNATE_MAPPING
) ? LCCR0_LDDALT
: 0;
1737 fbi
->lccr3
= LCCR3_Acb((inf
->lcd_conn
>> 10) & 0xff);
1738 fbi
->lccr3
|= (lcd_conn
& LCD_BIAS_ACTIVE_LOW
) ? LCCR3_OEP
: 0;
1739 fbi
->lccr3
|= (lcd_conn
& LCD_PCLK_EDGE_FALL
) ? LCCR3_PCP
: 0;
1742 pxafb_setmode(&fbi
->fb
.var
, &inf
->modes
[0]);
1744 /* decide video memory size as follows:
1745 * 1. default to mode of maximum resolution
1746 * 2. allow platform to override
1747 * 3. allow module parameter to override
1749 for (i
= 0, m
= &inf
->modes
[0]; i
< inf
->num_modes
; i
++, m
++)
1750 fbi
->video_mem_size
= max_t(size_t, fbi
->video_mem_size
,
1751 m
->xres
* m
->yres
* m
->bpp
/ 8);
1753 if (inf
->video_mem_size
> fbi
->video_mem_size
)
1754 fbi
->video_mem_size
= inf
->video_mem_size
;
1756 if (video_mem_size
> fbi
->video_mem_size
)
1757 fbi
->video_mem_size
= video_mem_size
;
1760 static struct pxafb_info
* __devinit
pxafb_init_fbinfo(struct device
*dev
)
1762 struct pxafb_info
*fbi
;
1764 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1766 /* Alloc the pxafb_info and pseudo_palette in one step */
1767 fbi
= kmalloc(sizeof(struct pxafb_info
) + sizeof(u32
) * 16, GFP_KERNEL
);
1771 memset(fbi
, 0, sizeof(struct pxafb_info
));
1774 fbi
->clk
= clk_get(dev
, NULL
);
1775 if (IS_ERR(fbi
->clk
)) {
1780 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1782 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1783 fbi
->fb
.fix
.type_aux
= 0;
1784 fbi
->fb
.fix
.xpanstep
= 0;
1785 fbi
->fb
.fix
.ypanstep
= 1;
1786 fbi
->fb
.fix
.ywrapstep
= 0;
1787 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1789 fbi
->fb
.var
.nonstd
= 0;
1790 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1791 fbi
->fb
.var
.height
= -1;
1792 fbi
->fb
.var
.width
= -1;
1793 fbi
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1794 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1796 fbi
->fb
.fbops
= &pxafb_ops
;
1797 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1801 addr
= addr
+ sizeof(struct pxafb_info
);
1802 fbi
->fb
.pseudo_palette
= addr
;
1804 fbi
->state
= C_STARTUP
;
1805 fbi
->task_state
= (u_char
)-1;
1807 pxafb_decode_mach_info(fbi
, inf
);
1809 init_waitqueue_head(&fbi
->ctrlr_wait
);
1810 INIT_WORK(&fbi
->task
, pxafb_task
);
1811 mutex_init(&fbi
->ctrlr_lock
);
1812 init_completion(&fbi
->disable_done
);
1817 #ifdef CONFIG_FB_PXA_PARAMETERS
1818 static int __devinit
parse_opt_mode(struct device
*dev
, const char *this_opt
)
1820 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1822 const char *name
= this_opt
+5;
1823 unsigned int namelen
= strlen(name
);
1824 int res_specified
= 0, bpp_specified
= 0;
1825 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1826 int yres_specified
= 0;
1828 for (i
= namelen
-1; i
>= 0; i
--) {
1832 if (!bpp_specified
&& !yres_specified
) {
1833 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1839 if (!yres_specified
) {
1840 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1851 if (i
< 0 && yres_specified
) {
1852 xres
= simple_strtoul(name
, NULL
, 0);
1856 if (res_specified
) {
1857 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1858 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1867 inf
->modes
[0].bpp
= bpp
;
1868 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1871 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1877 static int __devinit
parse_opt(struct device
*dev
, char *this_opt
)
1879 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1880 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1885 if (!strncmp(this_opt
, "vmem:", 5)) {
1886 video_mem_size
= memparse(this_opt
+ 5, NULL
);
1887 } else if (!strncmp(this_opt
, "mode:", 5)) {
1888 return parse_opt_mode(dev
, this_opt
);
1889 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1890 mode
->pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1891 sprintf(s
, "pixclock: %ld\n", mode
->pixclock
);
1892 } else if (!strncmp(this_opt
, "left:", 5)) {
1893 mode
->left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1894 sprintf(s
, "left: %u\n", mode
->left_margin
);
1895 } else if (!strncmp(this_opt
, "right:", 6)) {
1896 mode
->right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1897 sprintf(s
, "right: %u\n", mode
->right_margin
);
1898 } else if (!strncmp(this_opt
, "upper:", 6)) {
1899 mode
->upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1900 sprintf(s
, "upper: %u\n", mode
->upper_margin
);
1901 } else if (!strncmp(this_opt
, "lower:", 6)) {
1902 mode
->lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1903 sprintf(s
, "lower: %u\n", mode
->lower_margin
);
1904 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1905 mode
->hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1906 sprintf(s
, "hsynclen: %u\n", mode
->hsync_len
);
1907 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1908 mode
->vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1909 sprintf(s
, "vsynclen: %u\n", mode
->vsync_len
);
1910 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1911 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1912 sprintf(s
, "hsync: Active Low\n");
1913 mode
->sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1915 sprintf(s
, "hsync: Active High\n");
1916 mode
->sync
|= FB_SYNC_HOR_HIGH_ACT
;
1918 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1919 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1920 sprintf(s
, "vsync: Active Low\n");
1921 mode
->sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1923 sprintf(s
, "vsync: Active High\n");
1924 mode
->sync
|= FB_SYNC_VERT_HIGH_ACT
;
1926 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1927 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1928 sprintf(s
, "double pixel clock: false\n");
1929 inf
->lccr3
&= ~LCCR3_DPC
;
1931 sprintf(s
, "double pixel clock: true\n");
1932 inf
->lccr3
|= LCCR3_DPC
;
1934 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1935 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1936 sprintf(s
, "output enable: active low\n");
1937 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1939 sprintf(s
, "output enable: active high\n");
1940 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1942 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1943 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1944 sprintf(s
, "pixel clock polarity: falling edge\n");
1945 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1947 sprintf(s
, "pixel clock polarity: rising edge\n");
1948 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1950 } else if (!strncmp(this_opt
, "color", 5)) {
1951 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1952 } else if (!strncmp(this_opt
, "mono", 4)) {
1953 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1954 } else if (!strncmp(this_opt
, "active", 6)) {
1955 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1956 } else if (!strncmp(this_opt
, "passive", 7)) {
1957 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1958 } else if (!strncmp(this_opt
, "single", 6)) {
1959 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
1960 } else if (!strncmp(this_opt
, "dual", 4)) {
1961 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
1962 } else if (!strncmp(this_opt
, "4pix", 4)) {
1963 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
1964 } else if (!strncmp(this_opt
, "8pix", 4)) {
1965 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
1967 dev_err(dev
, "unknown option: %s\n", this_opt
);
1972 dev_info(dev
, "override %s", s
);
1977 static int __devinit
pxafb_parse_options(struct device
*dev
, char *options
)
1982 if (!options
|| !*options
)
1985 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
1987 /* could be made table driven or similar?... */
1988 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
1989 ret
= parse_opt(dev
, this_opt
);
1996 static char g_options
[256] __devinitdata
= "";
1999 static int __init
pxafb_setup_options(void)
2001 char *options
= NULL
;
2003 if (fb_get_options("pxafb", &options
))
2007 strlcpy(g_options
, options
, sizeof(g_options
));
2012 #define pxafb_setup_options() (0)
2014 module_param_string(options
, g_options
, sizeof(g_options
), 0);
2015 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.txt)");
2019 #define pxafb_parse_options(...) (0)
2020 #define pxafb_setup_options() (0)
2024 /* Check for various illegal bit-combinations. Currently only
2025 * a warning is given. */
2026 static void __devinit
pxafb_check_options(struct device
*dev
,
2027 struct pxafb_mach_info
*inf
)
2032 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
2033 dev_warn(dev
, "machine LCCR0 setting contains "
2034 "illegal bits: %08x\n",
2035 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
2036 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
2037 dev_warn(dev
, "machine LCCR3 setting contains "
2038 "illegal bits: %08x\n",
2039 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
2040 if (inf
->lccr0
& LCCR0_DPD
&&
2041 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
2042 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
2043 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
2044 dev_warn(dev
, "Double Pixel Data (DPD) mode is "
2045 "only valid in passive mono"
2046 " single panel mode\n");
2047 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
2048 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
2049 dev_warn(dev
, "Dual panel only valid in passive mode\n");
2050 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
2051 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
2052 dev_warn(dev
, "Upper and lower margins must be 0 in "
2056 #define pxafb_check_options(...) do {} while (0)
2059 static int __devinit
pxafb_probe(struct platform_device
*dev
)
2061 struct pxafb_info
*fbi
;
2062 struct pxafb_mach_info
*inf
;
2066 dev_dbg(&dev
->dev
, "pxafb_probe\n");
2068 inf
= dev
->dev
.platform_data
;
2074 ret
= pxafb_parse_options(&dev
->dev
, g_options
);
2078 pxafb_check_options(&dev
->dev
, inf
);
2080 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",
2084 if (inf
->modes
->xres
== 0 ||
2085 inf
->modes
->yres
== 0 ||
2086 inf
->modes
->bpp
== 0) {
2087 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
2092 fbi
= pxafb_init_fbinfo(&dev
->dev
);
2094 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2095 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
2100 if (cpu_is_pxa3xx() && inf
->acceleration_enabled
)
2101 fbi
->fb
.fix
.accel
= FB_ACCEL_PXA3XX
;
2103 fbi
->backlight_power
= inf
->pxafb_backlight_power
;
2104 fbi
->lcd_power
= inf
->pxafb_lcd_power
;
2106 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2108 dev_err(&dev
->dev
, "no I/O memory resource defined\n");
2113 r
= request_mem_region(r
->start
, resource_size(r
), dev
->name
);
2115 dev_err(&dev
->dev
, "failed to request I/O memory\n");
2120 fbi
->mmio_base
= ioremap(r
->start
, resource_size(r
));
2121 if (fbi
->mmio_base
== NULL
) {
2122 dev_err(&dev
->dev
, "failed to map I/O memory\n");
2124 goto failed_free_res
;
2127 fbi
->dma_buff_size
= PAGE_ALIGN(sizeof(struct pxafb_dma_buff
));
2128 fbi
->dma_buff
= dma_alloc_coherent(fbi
->dev
, fbi
->dma_buff_size
,
2129 &fbi
->dma_buff_phys
, GFP_KERNEL
);
2130 if (fbi
->dma_buff
== NULL
) {
2131 dev_err(&dev
->dev
, "failed to allocate memory for DMA\n");
2133 goto failed_free_io
;
2136 ret
= pxafb_init_video_memory(fbi
);
2138 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
2140 goto failed_free_dma
;
2143 irq
= platform_get_irq(dev
, 0);
2145 dev_err(&dev
->dev
, "no IRQ defined\n");
2147 goto failed_free_mem
;
2150 ret
= request_irq(irq
, pxafb_handle_irq
, IRQF_DISABLED
, "LCD", fbi
);
2152 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
2154 goto failed_free_mem
;
2157 ret
= pxafb_smart_init(fbi
);
2159 dev_err(&dev
->dev
, "failed to initialize smartpanel\n");
2160 goto failed_free_irq
;
2164 * This makes sure that our colour bitfield
2165 * descriptors are correctly initialised.
2167 ret
= pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
2169 dev_err(&dev
->dev
, "failed to get suitable mode\n");
2170 goto failed_free_irq
;
2173 ret
= pxafb_set_par(&fbi
->fb
);
2175 dev_err(&dev
->dev
, "Failed to set parameters\n");
2176 goto failed_free_irq
;
2179 platform_set_drvdata(dev
, fbi
);
2181 ret
= register_framebuffer(&fbi
->fb
);
2184 "Failed to register framebuffer device: %d\n", ret
);
2185 goto failed_free_cmap
;
2188 pxafb_overlay_init(fbi
);
2190 #ifdef CONFIG_CPU_FREQ
2191 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
2192 fbi
->freq_policy
.notifier_call
= pxafb_freq_policy
;
2193 cpufreq_register_notifier(&fbi
->freq_transition
,
2194 CPUFREQ_TRANSITION_NOTIFIER
);
2195 cpufreq_register_notifier(&fbi
->freq_policy
,
2196 CPUFREQ_POLICY_NOTIFIER
);
2200 * Ok, now enable the LCD controller
2202 set_ctrlr_state(fbi
, C_ENABLE
);
2207 if (fbi
->fb
.cmap
.len
)
2208 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2212 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2214 dma_free_coherent(&dev
->dev
, fbi
->dma_buff_size
,
2215 fbi
->dma_buff
, fbi
->dma_buff_phys
);
2217 iounmap(fbi
->mmio_base
);
2219 release_mem_region(r
->start
, resource_size(r
));
2222 platform_set_drvdata(dev
, NULL
);
2228 static int __devexit
pxafb_remove(struct platform_device
*dev
)
2230 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
2233 struct fb_info
*info
;
2240 pxafb_overlay_exit(fbi
);
2241 unregister_framebuffer(info
);
2243 pxafb_disable_controller(fbi
);
2245 if (fbi
->fb
.cmap
.len
)
2246 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2248 irq
= platform_get_irq(dev
, 0);
2251 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2253 dma_free_writecombine(&dev
->dev
, fbi
->dma_buff_size
,
2254 fbi
->dma_buff
, fbi
->dma_buff_phys
);
2256 iounmap(fbi
->mmio_base
);
2258 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2259 release_mem_region(r
->start
, resource_size(r
));
2267 static struct platform_driver pxafb_driver
= {
2268 .probe
= pxafb_probe
,
2269 .remove
= __devexit_p(pxafb_remove
),
2271 .owner
= THIS_MODULE
,
2272 .name
= "pxa2xx-fb",
2274 .pm
= &pxafb_pm_ops
,
2279 static int __init
pxafb_init(void)
2281 if (pxafb_setup_options())
2284 return platform_driver_register(&pxafb_driver
);
2287 static void __exit
pxafb_exit(void)
2289 platform_driver_unregister(&pxafb_driver
);
2292 module_init(pxafb_init
);
2293 module_exit(pxafb_exit
);
2295 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2296 MODULE_LICENSE("GPL");