x86: add pte_pgprot to 32-bit
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobba4c88088f62c53ab8ec414e3d77da65b1cd9f67
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak)) sched_clock(void)
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
117 #ifdef CONFIG_SMP
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136 #endif
138 static inline int rt_policy(int policy)
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
145 static inline int task_has_rt_policy(struct task_struct *p)
147 return rt_policy(p->policy);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
158 #ifdef CONFIG_FAIR_GROUP_SCHED
160 #include <linux/cgroup.h>
162 struct cfs_rq;
164 static LIST_HEAD(task_groups);
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_FAIR_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171 /* schedulable entities of this group on each cpu */
172 struct sched_entity **se;
173 /* runqueue "owned" by this group on each cpu */
174 struct cfs_rq **cfs_rq;
176 struct sched_rt_entity **rt_se;
177 struct rt_rq **rt_rq;
179 unsigned int rt_ratio;
182 * shares assigned to a task group governs how much of cpu bandwidth
183 * is allocated to the group. The more shares a group has, the more is
184 * the cpu bandwidth allocated to it.
186 * For ex, lets say that there are three task groups, A, B and C which
187 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
188 * cpu bandwidth allocated by the scheduler to task groups A, B and C
189 * should be:
191 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
192 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
193 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
195 * The weight assigned to a task group's schedulable entities on every
196 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
197 * group's shares. For ex: lets say that task group A has been
198 * assigned shares of 1000 and there are two CPUs in a system. Then,
200 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
202 * Note: It's not necessary that each of a task's group schedulable
203 * entity have the same weight on all CPUs. If the group
204 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
205 * better distribution of weight could be:
207 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
208 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
210 * rebalance_shares() is responsible for distributing the shares of a
211 * task groups like this among the group's schedulable entities across
212 * cpus.
215 unsigned long shares;
217 struct rcu_head rcu;
218 struct list_head list;
221 /* Default task group's sched entity on each cpu */
222 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
223 /* Default task group's cfs_rq on each cpu */
224 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
226 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
227 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
229 static struct sched_entity *init_sched_entity_p[NR_CPUS];
230 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
232 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
233 static struct rt_rq *init_rt_rq_p[NR_CPUS];
235 /* task_group_mutex serializes add/remove of task groups and also changes to
236 * a task group's cpu shares.
238 static DEFINE_MUTEX(task_group_mutex);
240 /* doms_cur_mutex serializes access to doms_cur[] array */
241 static DEFINE_MUTEX(doms_cur_mutex);
243 #ifdef CONFIG_SMP
244 /* kernel thread that runs rebalance_shares() periodically */
245 static struct task_struct *lb_monitor_task;
246 static int load_balance_monitor(void *unused);
247 #endif
249 static void set_se_shares(struct sched_entity *se, unsigned long shares);
251 /* Default task group.
252 * Every task in system belong to this group at bootup.
254 struct task_group init_task_group = {
255 .se = init_sched_entity_p,
256 .cfs_rq = init_cfs_rq_p,
258 .rt_se = init_sched_rt_entity_p,
259 .rt_rq = init_rt_rq_p,
262 #ifdef CONFIG_FAIR_USER_SCHED
263 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
264 #else
265 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
266 #endif
268 #define MIN_GROUP_SHARES 2
270 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
272 /* return group to which a task belongs */
273 static inline struct task_group *task_group(struct task_struct *p)
275 struct task_group *tg;
277 #ifdef CONFIG_FAIR_USER_SCHED
278 tg = p->user->tg;
279 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
280 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
281 struct task_group, css);
282 #else
283 tg = &init_task_group;
284 #endif
285 return tg;
288 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
289 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
291 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
292 p->se.parent = task_group(p)->se[cpu];
294 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
295 p->rt.parent = task_group(p)->rt_se[cpu];
298 static inline void lock_task_group_list(void)
300 mutex_lock(&task_group_mutex);
303 static inline void unlock_task_group_list(void)
305 mutex_unlock(&task_group_mutex);
308 static inline void lock_doms_cur(void)
310 mutex_lock(&doms_cur_mutex);
313 static inline void unlock_doms_cur(void)
315 mutex_unlock(&doms_cur_mutex);
318 #else
320 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
321 static inline void lock_task_group_list(void) { }
322 static inline void unlock_task_group_list(void) { }
323 static inline void lock_doms_cur(void) { }
324 static inline void unlock_doms_cur(void) { }
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 /* CFS-related fields in a runqueue */
329 struct cfs_rq {
330 struct load_weight load;
331 unsigned long nr_running;
333 u64 exec_clock;
334 u64 min_vruntime;
336 struct rb_root tasks_timeline;
337 struct rb_node *rb_leftmost;
338 struct rb_node *rb_load_balance_curr;
339 /* 'curr' points to currently running entity on this cfs_rq.
340 * It is set to NULL otherwise (i.e when none are currently running).
342 struct sched_entity *curr;
344 unsigned long nr_spread_over;
346 #ifdef CONFIG_FAIR_GROUP_SCHED
347 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
350 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
351 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
352 * (like users, containers etc.)
354 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
355 * list is used during load balance.
357 struct list_head leaf_cfs_rq_list;
358 struct task_group *tg; /* group that "owns" this runqueue */
359 #endif
362 /* Real-Time classes' related field in a runqueue: */
363 struct rt_rq {
364 struct rt_prio_array active;
365 unsigned long rt_nr_running;
366 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
367 int highest_prio; /* highest queued rt task prio */
368 #endif
369 #ifdef CONFIG_SMP
370 unsigned long rt_nr_migratory;
371 int overloaded;
372 #endif
373 int rt_throttled;
374 u64 rt_time;
376 #ifdef CONFIG_FAIR_GROUP_SCHED
377 struct rq *rq;
378 struct list_head leaf_rt_rq_list;
379 struct task_group *tg;
380 struct sched_rt_entity *rt_se;
381 #endif
384 #ifdef CONFIG_SMP
387 * We add the notion of a root-domain which will be used to define per-domain
388 * variables. Each exclusive cpuset essentially defines an island domain by
389 * fully partitioning the member cpus from any other cpuset. Whenever a new
390 * exclusive cpuset is created, we also create and attach a new root-domain
391 * object.
394 struct root_domain {
395 atomic_t refcount;
396 cpumask_t span;
397 cpumask_t online;
400 * The "RT overload" flag: it gets set if a CPU has more than
401 * one runnable RT task.
403 cpumask_t rto_mask;
404 atomic_t rto_count;
408 * By default the system creates a single root-domain with all cpus as
409 * members (mimicking the global state we have today).
411 static struct root_domain def_root_domain;
413 #endif
416 * This is the main, per-CPU runqueue data structure.
418 * Locking rule: those places that want to lock multiple runqueues
419 * (such as the load balancing or the thread migration code), lock
420 * acquire operations must be ordered by ascending &runqueue.
422 struct rq {
423 /* runqueue lock: */
424 spinlock_t lock;
427 * nr_running and cpu_load should be in the same cacheline because
428 * remote CPUs use both these fields when doing load calculation.
430 unsigned long nr_running;
431 #define CPU_LOAD_IDX_MAX 5
432 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
433 unsigned char idle_at_tick;
434 #ifdef CONFIG_NO_HZ
435 unsigned char in_nohz_recently;
436 #endif
437 /* capture load from *all* tasks on this cpu: */
438 struct load_weight load;
439 unsigned long nr_load_updates;
440 u64 nr_switches;
442 struct cfs_rq cfs;
443 struct rt_rq rt;
444 u64 rt_period_expire;
445 int rt_throttled;
447 #ifdef CONFIG_FAIR_GROUP_SCHED
448 /* list of leaf cfs_rq on this cpu: */
449 struct list_head leaf_cfs_rq_list;
450 struct list_head leaf_rt_rq_list;
451 #endif
454 * This is part of a global counter where only the total sum
455 * over all CPUs matters. A task can increase this counter on
456 * one CPU and if it got migrated afterwards it may decrease
457 * it on another CPU. Always updated under the runqueue lock:
459 unsigned long nr_uninterruptible;
461 struct task_struct *curr, *idle;
462 unsigned long next_balance;
463 struct mm_struct *prev_mm;
465 u64 clock, prev_clock_raw;
466 s64 clock_max_delta;
468 unsigned int clock_warps, clock_overflows, clock_underflows;
469 u64 idle_clock;
470 unsigned int clock_deep_idle_events;
471 u64 tick_timestamp;
473 atomic_t nr_iowait;
475 #ifdef CONFIG_SMP
476 struct root_domain *rd;
477 struct sched_domain *sd;
479 /* For active balancing */
480 int active_balance;
481 int push_cpu;
482 /* cpu of this runqueue: */
483 int cpu;
485 struct task_struct *migration_thread;
486 struct list_head migration_queue;
487 #endif
489 #ifdef CONFIG_SCHED_HRTICK
490 unsigned long hrtick_flags;
491 ktime_t hrtick_expire;
492 struct hrtimer hrtick_timer;
493 #endif
495 #ifdef CONFIG_SCHEDSTATS
496 /* latency stats */
497 struct sched_info rq_sched_info;
499 /* sys_sched_yield() stats */
500 unsigned int yld_exp_empty;
501 unsigned int yld_act_empty;
502 unsigned int yld_both_empty;
503 unsigned int yld_count;
505 /* schedule() stats */
506 unsigned int sched_switch;
507 unsigned int sched_count;
508 unsigned int sched_goidle;
510 /* try_to_wake_up() stats */
511 unsigned int ttwu_count;
512 unsigned int ttwu_local;
514 /* BKL stats */
515 unsigned int bkl_count;
516 #endif
517 struct lock_class_key rq_lock_key;
520 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
522 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
524 rq->curr->sched_class->check_preempt_curr(rq, p);
527 static inline int cpu_of(struct rq *rq)
529 #ifdef CONFIG_SMP
530 return rq->cpu;
531 #else
532 return 0;
533 #endif
537 * Update the per-runqueue clock, as finegrained as the platform can give
538 * us, but without assuming monotonicity, etc.:
540 static void __update_rq_clock(struct rq *rq)
542 u64 prev_raw = rq->prev_clock_raw;
543 u64 now = sched_clock();
544 s64 delta = now - prev_raw;
545 u64 clock = rq->clock;
547 #ifdef CONFIG_SCHED_DEBUG
548 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
549 #endif
551 * Protect against sched_clock() occasionally going backwards:
553 if (unlikely(delta < 0)) {
554 clock++;
555 rq->clock_warps++;
556 } else {
558 * Catch too large forward jumps too:
560 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
561 if (clock < rq->tick_timestamp + TICK_NSEC)
562 clock = rq->tick_timestamp + TICK_NSEC;
563 else
564 clock++;
565 rq->clock_overflows++;
566 } else {
567 if (unlikely(delta > rq->clock_max_delta))
568 rq->clock_max_delta = delta;
569 clock += delta;
573 rq->prev_clock_raw = now;
574 rq->clock = clock;
577 static void update_rq_clock(struct rq *rq)
579 if (likely(smp_processor_id() == cpu_of(rq)))
580 __update_rq_clock(rq);
584 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585 * See detach_destroy_domains: synchronize_sched for details.
587 * The domain tree of any CPU may only be accessed from within
588 * preempt-disabled sections.
590 #define for_each_domain(cpu, __sd) \
591 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
593 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
594 #define this_rq() (&__get_cpu_var(runqueues))
595 #define task_rq(p) cpu_rq(task_cpu(p))
596 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
598 unsigned long rt_needs_cpu(int cpu)
600 struct rq *rq = cpu_rq(cpu);
601 u64 delta;
603 if (!rq->rt_throttled)
604 return 0;
606 if (rq->clock > rq->rt_period_expire)
607 return 1;
609 delta = rq->rt_period_expire - rq->clock;
610 do_div(delta, NSEC_PER_SEC / HZ);
612 return (unsigned long)delta;
616 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
618 #ifdef CONFIG_SCHED_DEBUG
619 # define const_debug __read_mostly
620 #else
621 # define const_debug static const
622 #endif
625 * Debugging: various feature bits
627 enum {
628 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
629 SCHED_FEAT_WAKEUP_PREEMPT = 2,
630 SCHED_FEAT_START_DEBIT = 4,
631 SCHED_FEAT_TREE_AVG = 8,
632 SCHED_FEAT_APPROX_AVG = 16,
633 SCHED_FEAT_HRTICK = 32,
634 SCHED_FEAT_DOUBLE_TICK = 64,
637 const_debug unsigned int sysctl_sched_features =
638 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
639 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
640 SCHED_FEAT_START_DEBIT * 1 |
641 SCHED_FEAT_TREE_AVG * 0 |
642 SCHED_FEAT_APPROX_AVG * 0 |
643 SCHED_FEAT_HRTICK * 1 |
644 SCHED_FEAT_DOUBLE_TICK * 0;
646 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
649 * Number of tasks to iterate in a single balance run.
650 * Limited because this is done with IRQs disabled.
652 const_debug unsigned int sysctl_sched_nr_migrate = 32;
655 * period over which we measure -rt task cpu usage in ms.
656 * default: 1s
658 const_debug unsigned int sysctl_sched_rt_period = 1000;
660 #define SCHED_RT_FRAC_SHIFT 16
661 #define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
664 * ratio of time -rt tasks may consume.
665 * default: 95%
667 const_debug unsigned int sysctl_sched_rt_ratio = 62259;
670 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
671 * clock constructed from sched_clock():
673 unsigned long long cpu_clock(int cpu)
675 unsigned long long now;
676 unsigned long flags;
677 struct rq *rq;
679 local_irq_save(flags);
680 rq = cpu_rq(cpu);
682 * Only call sched_clock() if the scheduler has already been
683 * initialized (some code might call cpu_clock() very early):
685 if (rq->idle)
686 update_rq_clock(rq);
687 now = rq->clock;
688 local_irq_restore(flags);
690 return now;
692 EXPORT_SYMBOL_GPL(cpu_clock);
694 #ifndef prepare_arch_switch
695 # define prepare_arch_switch(next) do { } while (0)
696 #endif
697 #ifndef finish_arch_switch
698 # define finish_arch_switch(prev) do { } while (0)
699 #endif
701 static inline int task_current(struct rq *rq, struct task_struct *p)
703 return rq->curr == p;
706 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
707 static inline int task_running(struct rq *rq, struct task_struct *p)
709 return task_current(rq, p);
712 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
716 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
718 #ifdef CONFIG_DEBUG_SPINLOCK
719 /* this is a valid case when another task releases the spinlock */
720 rq->lock.owner = current;
721 #endif
723 * If we are tracking spinlock dependencies then we have to
724 * fix up the runqueue lock - which gets 'carried over' from
725 * prev into current:
727 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
729 spin_unlock_irq(&rq->lock);
732 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
733 static inline int task_running(struct rq *rq, struct task_struct *p)
735 #ifdef CONFIG_SMP
736 return p->oncpu;
737 #else
738 return task_current(rq, p);
739 #endif
742 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
744 #ifdef CONFIG_SMP
746 * We can optimise this out completely for !SMP, because the
747 * SMP rebalancing from interrupt is the only thing that cares
748 * here.
750 next->oncpu = 1;
751 #endif
752 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
753 spin_unlock_irq(&rq->lock);
754 #else
755 spin_unlock(&rq->lock);
756 #endif
759 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
761 #ifdef CONFIG_SMP
763 * After ->oncpu is cleared, the task can be moved to a different CPU.
764 * We must ensure this doesn't happen until the switch is completely
765 * finished.
767 smp_wmb();
768 prev->oncpu = 0;
769 #endif
770 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
771 local_irq_enable();
772 #endif
774 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
777 * __task_rq_lock - lock the runqueue a given task resides on.
778 * Must be called interrupts disabled.
780 static inline struct rq *__task_rq_lock(struct task_struct *p)
781 __acquires(rq->lock)
783 for (;;) {
784 struct rq *rq = task_rq(p);
785 spin_lock(&rq->lock);
786 if (likely(rq == task_rq(p)))
787 return rq;
788 spin_unlock(&rq->lock);
793 * task_rq_lock - lock the runqueue a given task resides on and disable
794 * interrupts. Note the ordering: we can safely lookup the task_rq without
795 * explicitly disabling preemption.
797 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
798 __acquires(rq->lock)
800 struct rq *rq;
802 for (;;) {
803 local_irq_save(*flags);
804 rq = task_rq(p);
805 spin_lock(&rq->lock);
806 if (likely(rq == task_rq(p)))
807 return rq;
808 spin_unlock_irqrestore(&rq->lock, *flags);
812 static void __task_rq_unlock(struct rq *rq)
813 __releases(rq->lock)
815 spin_unlock(&rq->lock);
818 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
819 __releases(rq->lock)
821 spin_unlock_irqrestore(&rq->lock, *flags);
825 * this_rq_lock - lock this runqueue and disable interrupts.
827 static struct rq *this_rq_lock(void)
828 __acquires(rq->lock)
830 struct rq *rq;
832 local_irq_disable();
833 rq = this_rq();
834 spin_lock(&rq->lock);
836 return rq;
840 * We are going deep-idle (irqs are disabled):
842 void sched_clock_idle_sleep_event(void)
844 struct rq *rq = cpu_rq(smp_processor_id());
846 spin_lock(&rq->lock);
847 __update_rq_clock(rq);
848 spin_unlock(&rq->lock);
849 rq->clock_deep_idle_events++;
851 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
854 * We just idled delta nanoseconds (called with irqs disabled):
856 void sched_clock_idle_wakeup_event(u64 delta_ns)
858 struct rq *rq = cpu_rq(smp_processor_id());
859 u64 now = sched_clock();
861 rq->idle_clock += delta_ns;
863 * Override the previous timestamp and ignore all
864 * sched_clock() deltas that occured while we idled,
865 * and use the PM-provided delta_ns to advance the
866 * rq clock:
868 spin_lock(&rq->lock);
869 rq->prev_clock_raw = now;
870 rq->clock += delta_ns;
871 spin_unlock(&rq->lock);
872 touch_softlockup_watchdog();
874 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
876 static void __resched_task(struct task_struct *p, int tif_bit);
878 static inline void resched_task(struct task_struct *p)
880 __resched_task(p, TIF_NEED_RESCHED);
883 #ifdef CONFIG_SCHED_HRTICK
885 * Use HR-timers to deliver accurate preemption points.
887 * Its all a bit involved since we cannot program an hrt while holding the
888 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
889 * reschedule event.
891 * When we get rescheduled we reprogram the hrtick_timer outside of the
892 * rq->lock.
894 static inline void resched_hrt(struct task_struct *p)
896 __resched_task(p, TIF_HRTICK_RESCHED);
899 static inline void resched_rq(struct rq *rq)
901 unsigned long flags;
903 spin_lock_irqsave(&rq->lock, flags);
904 resched_task(rq->curr);
905 spin_unlock_irqrestore(&rq->lock, flags);
908 enum {
909 HRTICK_SET, /* re-programm hrtick_timer */
910 HRTICK_RESET, /* not a new slice */
914 * Use hrtick when:
915 * - enabled by features
916 * - hrtimer is actually high res
918 static inline int hrtick_enabled(struct rq *rq)
920 if (!sched_feat(HRTICK))
921 return 0;
922 return hrtimer_is_hres_active(&rq->hrtick_timer);
926 * Called to set the hrtick timer state.
928 * called with rq->lock held and irqs disabled
930 static void hrtick_start(struct rq *rq, u64 delay, int reset)
932 assert_spin_locked(&rq->lock);
935 * preempt at: now + delay
937 rq->hrtick_expire =
938 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
940 * indicate we need to program the timer
942 __set_bit(HRTICK_SET, &rq->hrtick_flags);
943 if (reset)
944 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
947 * New slices are called from the schedule path and don't need a
948 * forced reschedule.
950 if (reset)
951 resched_hrt(rq->curr);
954 static void hrtick_clear(struct rq *rq)
956 if (hrtimer_active(&rq->hrtick_timer))
957 hrtimer_cancel(&rq->hrtick_timer);
961 * Update the timer from the possible pending state.
963 static void hrtick_set(struct rq *rq)
965 ktime_t time;
966 int set, reset;
967 unsigned long flags;
969 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
971 spin_lock_irqsave(&rq->lock, flags);
972 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
973 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
974 time = rq->hrtick_expire;
975 clear_thread_flag(TIF_HRTICK_RESCHED);
976 spin_unlock_irqrestore(&rq->lock, flags);
978 if (set) {
979 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
980 if (reset && !hrtimer_active(&rq->hrtick_timer))
981 resched_rq(rq);
982 } else
983 hrtick_clear(rq);
987 * High-resolution timer tick.
988 * Runs from hardirq context with interrupts disabled.
990 static enum hrtimer_restart hrtick(struct hrtimer *timer)
992 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
994 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
996 spin_lock(&rq->lock);
997 __update_rq_clock(rq);
998 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
999 spin_unlock(&rq->lock);
1001 return HRTIMER_NORESTART;
1004 static inline void init_rq_hrtick(struct rq *rq)
1006 rq->hrtick_flags = 0;
1007 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1008 rq->hrtick_timer.function = hrtick;
1009 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1012 void hrtick_resched(void)
1014 struct rq *rq;
1015 unsigned long flags;
1017 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1018 return;
1020 local_irq_save(flags);
1021 rq = cpu_rq(smp_processor_id());
1022 hrtick_set(rq);
1023 local_irq_restore(flags);
1025 #else
1026 static inline void hrtick_clear(struct rq *rq)
1030 static inline void hrtick_set(struct rq *rq)
1034 static inline void init_rq_hrtick(struct rq *rq)
1038 void hrtick_resched(void)
1041 #endif
1044 * resched_task - mark a task 'to be rescheduled now'.
1046 * On UP this means the setting of the need_resched flag, on SMP it
1047 * might also involve a cross-CPU call to trigger the scheduler on
1048 * the target CPU.
1050 #ifdef CONFIG_SMP
1052 #ifndef tsk_is_polling
1053 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1054 #endif
1056 static void __resched_task(struct task_struct *p, int tif_bit)
1058 int cpu;
1060 assert_spin_locked(&task_rq(p)->lock);
1062 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1063 return;
1065 set_tsk_thread_flag(p, tif_bit);
1067 cpu = task_cpu(p);
1068 if (cpu == smp_processor_id())
1069 return;
1071 /* NEED_RESCHED must be visible before we test polling */
1072 smp_mb();
1073 if (!tsk_is_polling(p))
1074 smp_send_reschedule(cpu);
1077 static void resched_cpu(int cpu)
1079 struct rq *rq = cpu_rq(cpu);
1080 unsigned long flags;
1082 if (!spin_trylock_irqsave(&rq->lock, flags))
1083 return;
1084 resched_task(cpu_curr(cpu));
1085 spin_unlock_irqrestore(&rq->lock, flags);
1087 #else
1088 static void __resched_task(struct task_struct *p, int tif_bit)
1090 assert_spin_locked(&task_rq(p)->lock);
1091 set_tsk_thread_flag(p, tif_bit);
1093 #endif
1095 #if BITS_PER_LONG == 32
1096 # define WMULT_CONST (~0UL)
1097 #else
1098 # define WMULT_CONST (1UL << 32)
1099 #endif
1101 #define WMULT_SHIFT 32
1104 * Shift right and round:
1106 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1108 static unsigned long
1109 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1110 struct load_weight *lw)
1112 u64 tmp;
1114 if (unlikely(!lw->inv_weight))
1115 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1117 tmp = (u64)delta_exec * weight;
1119 * Check whether we'd overflow the 64-bit multiplication:
1121 if (unlikely(tmp > WMULT_CONST))
1122 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1123 WMULT_SHIFT/2);
1124 else
1125 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1127 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1130 static inline unsigned long
1131 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1133 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1136 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1138 lw->weight += inc;
1141 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1143 lw->weight -= dec;
1147 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1148 * of tasks with abnormal "nice" values across CPUs the contribution that
1149 * each task makes to its run queue's load is weighted according to its
1150 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1151 * scaled version of the new time slice allocation that they receive on time
1152 * slice expiry etc.
1155 #define WEIGHT_IDLEPRIO 2
1156 #define WMULT_IDLEPRIO (1 << 31)
1159 * Nice levels are multiplicative, with a gentle 10% change for every
1160 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1161 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1162 * that remained on nice 0.
1164 * The "10% effect" is relative and cumulative: from _any_ nice level,
1165 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1166 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1167 * If a task goes up by ~10% and another task goes down by ~10% then
1168 * the relative distance between them is ~25%.)
1170 static const int prio_to_weight[40] = {
1171 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1172 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1173 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1174 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1175 /* 0 */ 1024, 820, 655, 526, 423,
1176 /* 5 */ 335, 272, 215, 172, 137,
1177 /* 10 */ 110, 87, 70, 56, 45,
1178 /* 15 */ 36, 29, 23, 18, 15,
1182 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1184 * In cases where the weight does not change often, we can use the
1185 * precalculated inverse to speed up arithmetics by turning divisions
1186 * into multiplications:
1188 static const u32 prio_to_wmult[40] = {
1189 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1190 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1191 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1192 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1193 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1194 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1195 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1196 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1199 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1202 * runqueue iterator, to support SMP load-balancing between different
1203 * scheduling classes, without having to expose their internal data
1204 * structures to the load-balancing proper:
1206 struct rq_iterator {
1207 void *arg;
1208 struct task_struct *(*start)(void *);
1209 struct task_struct *(*next)(void *);
1212 #ifdef CONFIG_SMP
1213 static unsigned long
1214 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1215 unsigned long max_load_move, struct sched_domain *sd,
1216 enum cpu_idle_type idle, int *all_pinned,
1217 int *this_best_prio, struct rq_iterator *iterator);
1219 static int
1220 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1221 struct sched_domain *sd, enum cpu_idle_type idle,
1222 struct rq_iterator *iterator);
1223 #endif
1225 #ifdef CONFIG_CGROUP_CPUACCT
1226 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1227 #else
1228 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1229 #endif
1231 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1233 update_load_add(&rq->load, load);
1236 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1238 update_load_sub(&rq->load, load);
1241 #ifdef CONFIG_SMP
1242 static unsigned long source_load(int cpu, int type);
1243 static unsigned long target_load(int cpu, int type);
1244 static unsigned long cpu_avg_load_per_task(int cpu);
1245 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1246 #endif /* CONFIG_SMP */
1248 #include "sched_stats.h"
1249 #include "sched_idletask.c"
1250 #include "sched_fair.c"
1251 #include "sched_rt.c"
1252 #ifdef CONFIG_SCHED_DEBUG
1253 # include "sched_debug.c"
1254 #endif
1256 #define sched_class_highest (&rt_sched_class)
1258 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1260 rq->nr_running++;
1263 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1265 rq->nr_running--;
1268 static void set_load_weight(struct task_struct *p)
1270 if (task_has_rt_policy(p)) {
1271 p->se.load.weight = prio_to_weight[0] * 2;
1272 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1273 return;
1277 * SCHED_IDLE tasks get minimal weight:
1279 if (p->policy == SCHED_IDLE) {
1280 p->se.load.weight = WEIGHT_IDLEPRIO;
1281 p->se.load.inv_weight = WMULT_IDLEPRIO;
1282 return;
1285 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1286 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1289 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1291 sched_info_queued(p);
1292 p->sched_class->enqueue_task(rq, p, wakeup);
1293 p->se.on_rq = 1;
1296 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1298 p->sched_class->dequeue_task(rq, p, sleep);
1299 p->se.on_rq = 0;
1303 * __normal_prio - return the priority that is based on the static prio
1305 static inline int __normal_prio(struct task_struct *p)
1307 return p->static_prio;
1311 * Calculate the expected normal priority: i.e. priority
1312 * without taking RT-inheritance into account. Might be
1313 * boosted by interactivity modifiers. Changes upon fork,
1314 * setprio syscalls, and whenever the interactivity
1315 * estimator recalculates.
1317 static inline int normal_prio(struct task_struct *p)
1319 int prio;
1321 if (task_has_rt_policy(p))
1322 prio = MAX_RT_PRIO-1 - p->rt_priority;
1323 else
1324 prio = __normal_prio(p);
1325 return prio;
1329 * Calculate the current priority, i.e. the priority
1330 * taken into account by the scheduler. This value might
1331 * be boosted by RT tasks, or might be boosted by
1332 * interactivity modifiers. Will be RT if the task got
1333 * RT-boosted. If not then it returns p->normal_prio.
1335 static int effective_prio(struct task_struct *p)
1337 p->normal_prio = normal_prio(p);
1339 * If we are RT tasks or we were boosted to RT priority,
1340 * keep the priority unchanged. Otherwise, update priority
1341 * to the normal priority:
1343 if (!rt_prio(p->prio))
1344 return p->normal_prio;
1345 return p->prio;
1349 * activate_task - move a task to the runqueue.
1351 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1353 if (p->state == TASK_UNINTERRUPTIBLE)
1354 rq->nr_uninterruptible--;
1356 enqueue_task(rq, p, wakeup);
1357 inc_nr_running(p, rq);
1361 * deactivate_task - remove a task from the runqueue.
1363 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1365 if (p->state == TASK_UNINTERRUPTIBLE)
1366 rq->nr_uninterruptible++;
1368 dequeue_task(rq, p, sleep);
1369 dec_nr_running(p, rq);
1373 * task_curr - is this task currently executing on a CPU?
1374 * @p: the task in question.
1376 inline int task_curr(const struct task_struct *p)
1378 return cpu_curr(task_cpu(p)) == p;
1381 /* Used instead of source_load when we know the type == 0 */
1382 unsigned long weighted_cpuload(const int cpu)
1384 return cpu_rq(cpu)->load.weight;
1387 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1389 set_task_rq(p, cpu);
1390 #ifdef CONFIG_SMP
1392 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1393 * successfuly executed on another CPU. We must ensure that updates of
1394 * per-task data have been completed by this moment.
1396 smp_wmb();
1397 task_thread_info(p)->cpu = cpu;
1398 #endif
1401 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1402 const struct sched_class *prev_class,
1403 int oldprio, int running)
1405 if (prev_class != p->sched_class) {
1406 if (prev_class->switched_from)
1407 prev_class->switched_from(rq, p, running);
1408 p->sched_class->switched_to(rq, p, running);
1409 } else
1410 p->sched_class->prio_changed(rq, p, oldprio, running);
1413 #ifdef CONFIG_SMP
1416 * Is this task likely cache-hot:
1418 static int
1419 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1421 s64 delta;
1423 if (p->sched_class != &fair_sched_class)
1424 return 0;
1426 if (sysctl_sched_migration_cost == -1)
1427 return 1;
1428 if (sysctl_sched_migration_cost == 0)
1429 return 0;
1431 delta = now - p->se.exec_start;
1433 return delta < (s64)sysctl_sched_migration_cost;
1437 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1439 int old_cpu = task_cpu(p);
1440 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1441 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1442 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1443 u64 clock_offset;
1445 clock_offset = old_rq->clock - new_rq->clock;
1447 #ifdef CONFIG_SCHEDSTATS
1448 if (p->se.wait_start)
1449 p->se.wait_start -= clock_offset;
1450 if (p->se.sleep_start)
1451 p->se.sleep_start -= clock_offset;
1452 if (p->se.block_start)
1453 p->se.block_start -= clock_offset;
1454 if (old_cpu != new_cpu) {
1455 schedstat_inc(p, se.nr_migrations);
1456 if (task_hot(p, old_rq->clock, NULL))
1457 schedstat_inc(p, se.nr_forced2_migrations);
1459 #endif
1460 p->se.vruntime -= old_cfsrq->min_vruntime -
1461 new_cfsrq->min_vruntime;
1463 __set_task_cpu(p, new_cpu);
1466 struct migration_req {
1467 struct list_head list;
1469 struct task_struct *task;
1470 int dest_cpu;
1472 struct completion done;
1476 * The task's runqueue lock must be held.
1477 * Returns true if you have to wait for migration thread.
1479 static int
1480 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1482 struct rq *rq = task_rq(p);
1485 * If the task is not on a runqueue (and not running), then
1486 * it is sufficient to simply update the task's cpu field.
1488 if (!p->se.on_rq && !task_running(rq, p)) {
1489 set_task_cpu(p, dest_cpu);
1490 return 0;
1493 init_completion(&req->done);
1494 req->task = p;
1495 req->dest_cpu = dest_cpu;
1496 list_add(&req->list, &rq->migration_queue);
1498 return 1;
1502 * wait_task_inactive - wait for a thread to unschedule.
1504 * The caller must ensure that the task *will* unschedule sometime soon,
1505 * else this function might spin for a *long* time. This function can't
1506 * be called with interrupts off, or it may introduce deadlock with
1507 * smp_call_function() if an IPI is sent by the same process we are
1508 * waiting to become inactive.
1510 void wait_task_inactive(struct task_struct *p)
1512 unsigned long flags;
1513 int running, on_rq;
1514 struct rq *rq;
1516 for (;;) {
1518 * We do the initial early heuristics without holding
1519 * any task-queue locks at all. We'll only try to get
1520 * the runqueue lock when things look like they will
1521 * work out!
1523 rq = task_rq(p);
1526 * If the task is actively running on another CPU
1527 * still, just relax and busy-wait without holding
1528 * any locks.
1530 * NOTE! Since we don't hold any locks, it's not
1531 * even sure that "rq" stays as the right runqueue!
1532 * But we don't care, since "task_running()" will
1533 * return false if the runqueue has changed and p
1534 * is actually now running somewhere else!
1536 while (task_running(rq, p))
1537 cpu_relax();
1540 * Ok, time to look more closely! We need the rq
1541 * lock now, to be *sure*. If we're wrong, we'll
1542 * just go back and repeat.
1544 rq = task_rq_lock(p, &flags);
1545 running = task_running(rq, p);
1546 on_rq = p->se.on_rq;
1547 task_rq_unlock(rq, &flags);
1550 * Was it really running after all now that we
1551 * checked with the proper locks actually held?
1553 * Oops. Go back and try again..
1555 if (unlikely(running)) {
1556 cpu_relax();
1557 continue;
1561 * It's not enough that it's not actively running,
1562 * it must be off the runqueue _entirely_, and not
1563 * preempted!
1565 * So if it wa still runnable (but just not actively
1566 * running right now), it's preempted, and we should
1567 * yield - it could be a while.
1569 if (unlikely(on_rq)) {
1570 schedule_timeout_uninterruptible(1);
1571 continue;
1575 * Ahh, all good. It wasn't running, and it wasn't
1576 * runnable, which means that it will never become
1577 * running in the future either. We're all done!
1579 break;
1583 /***
1584 * kick_process - kick a running thread to enter/exit the kernel
1585 * @p: the to-be-kicked thread
1587 * Cause a process which is running on another CPU to enter
1588 * kernel-mode, without any delay. (to get signals handled.)
1590 * NOTE: this function doesnt have to take the runqueue lock,
1591 * because all it wants to ensure is that the remote task enters
1592 * the kernel. If the IPI races and the task has been migrated
1593 * to another CPU then no harm is done and the purpose has been
1594 * achieved as well.
1596 void kick_process(struct task_struct *p)
1598 int cpu;
1600 preempt_disable();
1601 cpu = task_cpu(p);
1602 if ((cpu != smp_processor_id()) && task_curr(p))
1603 smp_send_reschedule(cpu);
1604 preempt_enable();
1608 * Return a low guess at the load of a migration-source cpu weighted
1609 * according to the scheduling class and "nice" value.
1611 * We want to under-estimate the load of migration sources, to
1612 * balance conservatively.
1614 static unsigned long source_load(int cpu, int type)
1616 struct rq *rq = cpu_rq(cpu);
1617 unsigned long total = weighted_cpuload(cpu);
1619 if (type == 0)
1620 return total;
1622 return min(rq->cpu_load[type-1], total);
1626 * Return a high guess at the load of a migration-target cpu weighted
1627 * according to the scheduling class and "nice" value.
1629 static unsigned long target_load(int cpu, int type)
1631 struct rq *rq = cpu_rq(cpu);
1632 unsigned long total = weighted_cpuload(cpu);
1634 if (type == 0)
1635 return total;
1637 return max(rq->cpu_load[type-1], total);
1641 * Return the average load per task on the cpu's run queue
1643 static unsigned long cpu_avg_load_per_task(int cpu)
1645 struct rq *rq = cpu_rq(cpu);
1646 unsigned long total = weighted_cpuload(cpu);
1647 unsigned long n = rq->nr_running;
1649 return n ? total / n : SCHED_LOAD_SCALE;
1653 * find_idlest_group finds and returns the least busy CPU group within the
1654 * domain.
1656 static struct sched_group *
1657 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1659 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1660 unsigned long min_load = ULONG_MAX, this_load = 0;
1661 int load_idx = sd->forkexec_idx;
1662 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1664 do {
1665 unsigned long load, avg_load;
1666 int local_group;
1667 int i;
1669 /* Skip over this group if it has no CPUs allowed */
1670 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1671 continue;
1673 local_group = cpu_isset(this_cpu, group->cpumask);
1675 /* Tally up the load of all CPUs in the group */
1676 avg_load = 0;
1678 for_each_cpu_mask(i, group->cpumask) {
1679 /* Bias balancing toward cpus of our domain */
1680 if (local_group)
1681 load = source_load(i, load_idx);
1682 else
1683 load = target_load(i, load_idx);
1685 avg_load += load;
1688 /* Adjust by relative CPU power of the group */
1689 avg_load = sg_div_cpu_power(group,
1690 avg_load * SCHED_LOAD_SCALE);
1692 if (local_group) {
1693 this_load = avg_load;
1694 this = group;
1695 } else if (avg_load < min_load) {
1696 min_load = avg_load;
1697 idlest = group;
1699 } while (group = group->next, group != sd->groups);
1701 if (!idlest || 100*this_load < imbalance*min_load)
1702 return NULL;
1703 return idlest;
1707 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1709 static int
1710 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1712 cpumask_t tmp;
1713 unsigned long load, min_load = ULONG_MAX;
1714 int idlest = -1;
1715 int i;
1717 /* Traverse only the allowed CPUs */
1718 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1720 for_each_cpu_mask(i, tmp) {
1721 load = weighted_cpuload(i);
1723 if (load < min_load || (load == min_load && i == this_cpu)) {
1724 min_load = load;
1725 idlest = i;
1729 return idlest;
1733 * sched_balance_self: balance the current task (running on cpu) in domains
1734 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1735 * SD_BALANCE_EXEC.
1737 * Balance, ie. select the least loaded group.
1739 * Returns the target CPU number, or the same CPU if no balancing is needed.
1741 * preempt must be disabled.
1743 static int sched_balance_self(int cpu, int flag)
1745 struct task_struct *t = current;
1746 struct sched_domain *tmp, *sd = NULL;
1748 for_each_domain(cpu, tmp) {
1750 * If power savings logic is enabled for a domain, stop there.
1752 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1753 break;
1754 if (tmp->flags & flag)
1755 sd = tmp;
1758 while (sd) {
1759 cpumask_t span;
1760 struct sched_group *group;
1761 int new_cpu, weight;
1763 if (!(sd->flags & flag)) {
1764 sd = sd->child;
1765 continue;
1768 span = sd->span;
1769 group = find_idlest_group(sd, t, cpu);
1770 if (!group) {
1771 sd = sd->child;
1772 continue;
1775 new_cpu = find_idlest_cpu(group, t, cpu);
1776 if (new_cpu == -1 || new_cpu == cpu) {
1777 /* Now try balancing at a lower domain level of cpu */
1778 sd = sd->child;
1779 continue;
1782 /* Now try balancing at a lower domain level of new_cpu */
1783 cpu = new_cpu;
1784 sd = NULL;
1785 weight = cpus_weight(span);
1786 for_each_domain(cpu, tmp) {
1787 if (weight <= cpus_weight(tmp->span))
1788 break;
1789 if (tmp->flags & flag)
1790 sd = tmp;
1792 /* while loop will break here if sd == NULL */
1795 return cpu;
1798 #endif /* CONFIG_SMP */
1800 /***
1801 * try_to_wake_up - wake up a thread
1802 * @p: the to-be-woken-up thread
1803 * @state: the mask of task states that can be woken
1804 * @sync: do a synchronous wakeup?
1806 * Put it on the run-queue if it's not already there. The "current"
1807 * thread is always on the run-queue (except when the actual
1808 * re-schedule is in progress), and as such you're allowed to do
1809 * the simpler "current->state = TASK_RUNNING" to mark yourself
1810 * runnable without the overhead of this.
1812 * returns failure only if the task is already active.
1814 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1816 int cpu, orig_cpu, this_cpu, success = 0;
1817 unsigned long flags;
1818 long old_state;
1819 struct rq *rq;
1821 rq = task_rq_lock(p, &flags);
1822 old_state = p->state;
1823 if (!(old_state & state))
1824 goto out;
1826 if (p->se.on_rq)
1827 goto out_running;
1829 cpu = task_cpu(p);
1830 orig_cpu = cpu;
1831 this_cpu = smp_processor_id();
1833 #ifdef CONFIG_SMP
1834 if (unlikely(task_running(rq, p)))
1835 goto out_activate;
1837 cpu = p->sched_class->select_task_rq(p, sync);
1838 if (cpu != orig_cpu) {
1839 set_task_cpu(p, cpu);
1840 task_rq_unlock(rq, &flags);
1841 /* might preempt at this point */
1842 rq = task_rq_lock(p, &flags);
1843 old_state = p->state;
1844 if (!(old_state & state))
1845 goto out;
1846 if (p->se.on_rq)
1847 goto out_running;
1849 this_cpu = smp_processor_id();
1850 cpu = task_cpu(p);
1853 #ifdef CONFIG_SCHEDSTATS
1854 schedstat_inc(rq, ttwu_count);
1855 if (cpu == this_cpu)
1856 schedstat_inc(rq, ttwu_local);
1857 else {
1858 struct sched_domain *sd;
1859 for_each_domain(this_cpu, sd) {
1860 if (cpu_isset(cpu, sd->span)) {
1861 schedstat_inc(sd, ttwu_wake_remote);
1862 break;
1866 #endif
1868 out_activate:
1869 #endif /* CONFIG_SMP */
1870 schedstat_inc(p, se.nr_wakeups);
1871 if (sync)
1872 schedstat_inc(p, se.nr_wakeups_sync);
1873 if (orig_cpu != cpu)
1874 schedstat_inc(p, se.nr_wakeups_migrate);
1875 if (cpu == this_cpu)
1876 schedstat_inc(p, se.nr_wakeups_local);
1877 else
1878 schedstat_inc(p, se.nr_wakeups_remote);
1879 update_rq_clock(rq);
1880 activate_task(rq, p, 1);
1881 check_preempt_curr(rq, p);
1882 success = 1;
1884 out_running:
1885 p->state = TASK_RUNNING;
1886 #ifdef CONFIG_SMP
1887 if (p->sched_class->task_wake_up)
1888 p->sched_class->task_wake_up(rq, p);
1889 #endif
1890 out:
1891 task_rq_unlock(rq, &flags);
1893 return success;
1896 int fastcall wake_up_process(struct task_struct *p)
1898 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1899 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1901 EXPORT_SYMBOL(wake_up_process);
1903 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1905 return try_to_wake_up(p, state, 0);
1909 * Perform scheduler related setup for a newly forked process p.
1910 * p is forked by current.
1912 * __sched_fork() is basic setup used by init_idle() too:
1914 static void __sched_fork(struct task_struct *p)
1916 p->se.exec_start = 0;
1917 p->se.sum_exec_runtime = 0;
1918 p->se.prev_sum_exec_runtime = 0;
1920 #ifdef CONFIG_SCHEDSTATS
1921 p->se.wait_start = 0;
1922 p->se.sum_sleep_runtime = 0;
1923 p->se.sleep_start = 0;
1924 p->se.block_start = 0;
1925 p->se.sleep_max = 0;
1926 p->se.block_max = 0;
1927 p->se.exec_max = 0;
1928 p->se.slice_max = 0;
1929 p->se.wait_max = 0;
1930 #endif
1932 INIT_LIST_HEAD(&p->rt.run_list);
1933 p->se.on_rq = 0;
1935 #ifdef CONFIG_PREEMPT_NOTIFIERS
1936 INIT_HLIST_HEAD(&p->preempt_notifiers);
1937 #endif
1940 * We mark the process as running here, but have not actually
1941 * inserted it onto the runqueue yet. This guarantees that
1942 * nobody will actually run it, and a signal or other external
1943 * event cannot wake it up and insert it on the runqueue either.
1945 p->state = TASK_RUNNING;
1949 * fork()/clone()-time setup:
1951 void sched_fork(struct task_struct *p, int clone_flags)
1953 int cpu = get_cpu();
1955 __sched_fork(p);
1957 #ifdef CONFIG_SMP
1958 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1959 #endif
1960 set_task_cpu(p, cpu);
1963 * Make sure we do not leak PI boosting priority to the child:
1965 p->prio = current->normal_prio;
1966 if (!rt_prio(p->prio))
1967 p->sched_class = &fair_sched_class;
1969 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1970 if (likely(sched_info_on()))
1971 memset(&p->sched_info, 0, sizeof(p->sched_info));
1972 #endif
1973 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1974 p->oncpu = 0;
1975 #endif
1976 #ifdef CONFIG_PREEMPT
1977 /* Want to start with kernel preemption disabled. */
1978 task_thread_info(p)->preempt_count = 1;
1979 #endif
1980 put_cpu();
1984 * wake_up_new_task - wake up a newly created task for the first time.
1986 * This function will do some initial scheduler statistics housekeeping
1987 * that must be done for every newly created context, then puts the task
1988 * on the runqueue and wakes it.
1990 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1992 unsigned long flags;
1993 struct rq *rq;
1995 rq = task_rq_lock(p, &flags);
1996 BUG_ON(p->state != TASK_RUNNING);
1997 update_rq_clock(rq);
1999 p->prio = effective_prio(p);
2001 if (!p->sched_class->task_new || !current->se.on_rq) {
2002 activate_task(rq, p, 0);
2003 } else {
2005 * Let the scheduling class do new task startup
2006 * management (if any):
2008 p->sched_class->task_new(rq, p);
2009 inc_nr_running(p, rq);
2011 check_preempt_curr(rq, p);
2012 #ifdef CONFIG_SMP
2013 if (p->sched_class->task_wake_up)
2014 p->sched_class->task_wake_up(rq, p);
2015 #endif
2016 task_rq_unlock(rq, &flags);
2019 #ifdef CONFIG_PREEMPT_NOTIFIERS
2022 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2023 * @notifier: notifier struct to register
2025 void preempt_notifier_register(struct preempt_notifier *notifier)
2027 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2029 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2032 * preempt_notifier_unregister - no longer interested in preemption notifications
2033 * @notifier: notifier struct to unregister
2035 * This is safe to call from within a preemption notifier.
2037 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2039 hlist_del(&notifier->link);
2041 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2043 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2045 struct preempt_notifier *notifier;
2046 struct hlist_node *node;
2048 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2049 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2052 static void
2053 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2054 struct task_struct *next)
2056 struct preempt_notifier *notifier;
2057 struct hlist_node *node;
2059 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2060 notifier->ops->sched_out(notifier, next);
2063 #else
2065 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2069 static void
2070 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2071 struct task_struct *next)
2075 #endif
2078 * prepare_task_switch - prepare to switch tasks
2079 * @rq: the runqueue preparing to switch
2080 * @prev: the current task that is being switched out
2081 * @next: the task we are going to switch to.
2083 * This is called with the rq lock held and interrupts off. It must
2084 * be paired with a subsequent finish_task_switch after the context
2085 * switch.
2087 * prepare_task_switch sets up locking and calls architecture specific
2088 * hooks.
2090 static inline void
2091 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2092 struct task_struct *next)
2094 fire_sched_out_preempt_notifiers(prev, next);
2095 prepare_lock_switch(rq, next);
2096 prepare_arch_switch(next);
2100 * finish_task_switch - clean up after a task-switch
2101 * @rq: runqueue associated with task-switch
2102 * @prev: the thread we just switched away from.
2104 * finish_task_switch must be called after the context switch, paired
2105 * with a prepare_task_switch call before the context switch.
2106 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2107 * and do any other architecture-specific cleanup actions.
2109 * Note that we may have delayed dropping an mm in context_switch(). If
2110 * so, we finish that here outside of the runqueue lock. (Doing it
2111 * with the lock held can cause deadlocks; see schedule() for
2112 * details.)
2114 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2115 __releases(rq->lock)
2117 struct mm_struct *mm = rq->prev_mm;
2118 long prev_state;
2120 rq->prev_mm = NULL;
2123 * A task struct has one reference for the use as "current".
2124 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2125 * schedule one last time. The schedule call will never return, and
2126 * the scheduled task must drop that reference.
2127 * The test for TASK_DEAD must occur while the runqueue locks are
2128 * still held, otherwise prev could be scheduled on another cpu, die
2129 * there before we look at prev->state, and then the reference would
2130 * be dropped twice.
2131 * Manfred Spraul <manfred@colorfullife.com>
2133 prev_state = prev->state;
2134 finish_arch_switch(prev);
2135 finish_lock_switch(rq, prev);
2136 #ifdef CONFIG_SMP
2137 if (current->sched_class->post_schedule)
2138 current->sched_class->post_schedule(rq);
2139 #endif
2141 fire_sched_in_preempt_notifiers(current);
2142 if (mm)
2143 mmdrop(mm);
2144 if (unlikely(prev_state == TASK_DEAD)) {
2146 * Remove function-return probe instances associated with this
2147 * task and put them back on the free list.
2149 kprobe_flush_task(prev);
2150 put_task_struct(prev);
2155 * schedule_tail - first thing a freshly forked thread must call.
2156 * @prev: the thread we just switched away from.
2158 asmlinkage void schedule_tail(struct task_struct *prev)
2159 __releases(rq->lock)
2161 struct rq *rq = this_rq();
2163 finish_task_switch(rq, prev);
2164 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2165 /* In this case, finish_task_switch does not reenable preemption */
2166 preempt_enable();
2167 #endif
2168 if (current->set_child_tid)
2169 put_user(task_pid_vnr(current), current->set_child_tid);
2173 * context_switch - switch to the new MM and the new
2174 * thread's register state.
2176 static inline void
2177 context_switch(struct rq *rq, struct task_struct *prev,
2178 struct task_struct *next)
2180 struct mm_struct *mm, *oldmm;
2182 prepare_task_switch(rq, prev, next);
2183 mm = next->mm;
2184 oldmm = prev->active_mm;
2186 * For paravirt, this is coupled with an exit in switch_to to
2187 * combine the page table reload and the switch backend into
2188 * one hypercall.
2190 arch_enter_lazy_cpu_mode();
2192 if (unlikely(!mm)) {
2193 next->active_mm = oldmm;
2194 atomic_inc(&oldmm->mm_count);
2195 enter_lazy_tlb(oldmm, next);
2196 } else
2197 switch_mm(oldmm, mm, next);
2199 if (unlikely(!prev->mm)) {
2200 prev->active_mm = NULL;
2201 rq->prev_mm = oldmm;
2204 * Since the runqueue lock will be released by the next
2205 * task (which is an invalid locking op but in the case
2206 * of the scheduler it's an obvious special-case), so we
2207 * do an early lockdep release here:
2209 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2210 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2211 #endif
2213 /* Here we just switch the register state and the stack. */
2214 switch_to(prev, next, prev);
2216 barrier();
2218 * this_rq must be evaluated again because prev may have moved
2219 * CPUs since it called schedule(), thus the 'rq' on its stack
2220 * frame will be invalid.
2222 finish_task_switch(this_rq(), prev);
2226 * nr_running, nr_uninterruptible and nr_context_switches:
2228 * externally visible scheduler statistics: current number of runnable
2229 * threads, current number of uninterruptible-sleeping threads, total
2230 * number of context switches performed since bootup.
2232 unsigned long nr_running(void)
2234 unsigned long i, sum = 0;
2236 for_each_online_cpu(i)
2237 sum += cpu_rq(i)->nr_running;
2239 return sum;
2242 unsigned long nr_uninterruptible(void)
2244 unsigned long i, sum = 0;
2246 for_each_possible_cpu(i)
2247 sum += cpu_rq(i)->nr_uninterruptible;
2250 * Since we read the counters lockless, it might be slightly
2251 * inaccurate. Do not allow it to go below zero though:
2253 if (unlikely((long)sum < 0))
2254 sum = 0;
2256 return sum;
2259 unsigned long long nr_context_switches(void)
2261 int i;
2262 unsigned long long sum = 0;
2264 for_each_possible_cpu(i)
2265 sum += cpu_rq(i)->nr_switches;
2267 return sum;
2270 unsigned long nr_iowait(void)
2272 unsigned long i, sum = 0;
2274 for_each_possible_cpu(i)
2275 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2277 return sum;
2280 unsigned long nr_active(void)
2282 unsigned long i, running = 0, uninterruptible = 0;
2284 for_each_online_cpu(i) {
2285 running += cpu_rq(i)->nr_running;
2286 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2289 if (unlikely((long)uninterruptible < 0))
2290 uninterruptible = 0;
2292 return running + uninterruptible;
2296 * Update rq->cpu_load[] statistics. This function is usually called every
2297 * scheduler tick (TICK_NSEC).
2299 static void update_cpu_load(struct rq *this_rq)
2301 unsigned long this_load = this_rq->load.weight;
2302 int i, scale;
2304 this_rq->nr_load_updates++;
2306 /* Update our load: */
2307 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2308 unsigned long old_load, new_load;
2310 /* scale is effectively 1 << i now, and >> i divides by scale */
2312 old_load = this_rq->cpu_load[i];
2313 new_load = this_load;
2315 * Round up the averaging division if load is increasing. This
2316 * prevents us from getting stuck on 9 if the load is 10, for
2317 * example.
2319 if (new_load > old_load)
2320 new_load += scale-1;
2321 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2325 #ifdef CONFIG_SMP
2328 * double_rq_lock - safely lock two runqueues
2330 * Note this does not disable interrupts like task_rq_lock,
2331 * you need to do so manually before calling.
2333 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2334 __acquires(rq1->lock)
2335 __acquires(rq2->lock)
2337 BUG_ON(!irqs_disabled());
2338 if (rq1 == rq2) {
2339 spin_lock(&rq1->lock);
2340 __acquire(rq2->lock); /* Fake it out ;) */
2341 } else {
2342 if (rq1 < rq2) {
2343 spin_lock(&rq1->lock);
2344 spin_lock(&rq2->lock);
2345 } else {
2346 spin_lock(&rq2->lock);
2347 spin_lock(&rq1->lock);
2350 update_rq_clock(rq1);
2351 update_rq_clock(rq2);
2355 * double_rq_unlock - safely unlock two runqueues
2357 * Note this does not restore interrupts like task_rq_unlock,
2358 * you need to do so manually after calling.
2360 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2361 __releases(rq1->lock)
2362 __releases(rq2->lock)
2364 spin_unlock(&rq1->lock);
2365 if (rq1 != rq2)
2366 spin_unlock(&rq2->lock);
2367 else
2368 __release(rq2->lock);
2372 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2374 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2375 __releases(this_rq->lock)
2376 __acquires(busiest->lock)
2377 __acquires(this_rq->lock)
2379 int ret = 0;
2381 if (unlikely(!irqs_disabled())) {
2382 /* printk() doesn't work good under rq->lock */
2383 spin_unlock(&this_rq->lock);
2384 BUG_ON(1);
2386 if (unlikely(!spin_trylock(&busiest->lock))) {
2387 if (busiest < this_rq) {
2388 spin_unlock(&this_rq->lock);
2389 spin_lock(&busiest->lock);
2390 spin_lock(&this_rq->lock);
2391 ret = 1;
2392 } else
2393 spin_lock(&busiest->lock);
2395 return ret;
2399 * If dest_cpu is allowed for this process, migrate the task to it.
2400 * This is accomplished by forcing the cpu_allowed mask to only
2401 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2402 * the cpu_allowed mask is restored.
2404 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2406 struct migration_req req;
2407 unsigned long flags;
2408 struct rq *rq;
2410 rq = task_rq_lock(p, &flags);
2411 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2412 || unlikely(cpu_is_offline(dest_cpu)))
2413 goto out;
2415 /* force the process onto the specified CPU */
2416 if (migrate_task(p, dest_cpu, &req)) {
2417 /* Need to wait for migration thread (might exit: take ref). */
2418 struct task_struct *mt = rq->migration_thread;
2420 get_task_struct(mt);
2421 task_rq_unlock(rq, &flags);
2422 wake_up_process(mt);
2423 put_task_struct(mt);
2424 wait_for_completion(&req.done);
2426 return;
2428 out:
2429 task_rq_unlock(rq, &flags);
2433 * sched_exec - execve() is a valuable balancing opportunity, because at
2434 * this point the task has the smallest effective memory and cache footprint.
2436 void sched_exec(void)
2438 int new_cpu, this_cpu = get_cpu();
2439 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2440 put_cpu();
2441 if (new_cpu != this_cpu)
2442 sched_migrate_task(current, new_cpu);
2446 * pull_task - move a task from a remote runqueue to the local runqueue.
2447 * Both runqueues must be locked.
2449 static void pull_task(struct rq *src_rq, struct task_struct *p,
2450 struct rq *this_rq, int this_cpu)
2452 deactivate_task(src_rq, p, 0);
2453 set_task_cpu(p, this_cpu);
2454 activate_task(this_rq, p, 0);
2456 * Note that idle threads have a prio of MAX_PRIO, for this test
2457 * to be always true for them.
2459 check_preempt_curr(this_rq, p);
2463 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2465 static
2466 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2467 struct sched_domain *sd, enum cpu_idle_type idle,
2468 int *all_pinned)
2471 * We do not migrate tasks that are:
2472 * 1) running (obviously), or
2473 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2474 * 3) are cache-hot on their current CPU.
2476 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2477 schedstat_inc(p, se.nr_failed_migrations_affine);
2478 return 0;
2480 *all_pinned = 0;
2482 if (task_running(rq, p)) {
2483 schedstat_inc(p, se.nr_failed_migrations_running);
2484 return 0;
2488 * Aggressive migration if:
2489 * 1) task is cache cold, or
2490 * 2) too many balance attempts have failed.
2493 if (!task_hot(p, rq->clock, sd) ||
2494 sd->nr_balance_failed > sd->cache_nice_tries) {
2495 #ifdef CONFIG_SCHEDSTATS
2496 if (task_hot(p, rq->clock, sd)) {
2497 schedstat_inc(sd, lb_hot_gained[idle]);
2498 schedstat_inc(p, se.nr_forced_migrations);
2500 #endif
2501 return 1;
2504 if (task_hot(p, rq->clock, sd)) {
2505 schedstat_inc(p, se.nr_failed_migrations_hot);
2506 return 0;
2508 return 1;
2511 static unsigned long
2512 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2513 unsigned long max_load_move, struct sched_domain *sd,
2514 enum cpu_idle_type idle, int *all_pinned,
2515 int *this_best_prio, struct rq_iterator *iterator)
2517 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2518 struct task_struct *p;
2519 long rem_load_move = max_load_move;
2521 if (max_load_move == 0)
2522 goto out;
2524 pinned = 1;
2527 * Start the load-balancing iterator:
2529 p = iterator->start(iterator->arg);
2530 next:
2531 if (!p || loops++ > sysctl_sched_nr_migrate)
2532 goto out;
2534 * To help distribute high priority tasks across CPUs we don't
2535 * skip a task if it will be the highest priority task (i.e. smallest
2536 * prio value) on its new queue regardless of its load weight
2538 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2539 SCHED_LOAD_SCALE_FUZZ;
2540 if ((skip_for_load && p->prio >= *this_best_prio) ||
2541 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2542 p = iterator->next(iterator->arg);
2543 goto next;
2546 pull_task(busiest, p, this_rq, this_cpu);
2547 pulled++;
2548 rem_load_move -= p->se.load.weight;
2551 * We only want to steal up to the prescribed amount of weighted load.
2553 if (rem_load_move > 0) {
2554 if (p->prio < *this_best_prio)
2555 *this_best_prio = p->prio;
2556 p = iterator->next(iterator->arg);
2557 goto next;
2559 out:
2561 * Right now, this is one of only two places pull_task() is called,
2562 * so we can safely collect pull_task() stats here rather than
2563 * inside pull_task().
2565 schedstat_add(sd, lb_gained[idle], pulled);
2567 if (all_pinned)
2568 *all_pinned = pinned;
2570 return max_load_move - rem_load_move;
2574 * move_tasks tries to move up to max_load_move weighted load from busiest to
2575 * this_rq, as part of a balancing operation within domain "sd".
2576 * Returns 1 if successful and 0 otherwise.
2578 * Called with both runqueues locked.
2580 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2581 unsigned long max_load_move,
2582 struct sched_domain *sd, enum cpu_idle_type idle,
2583 int *all_pinned)
2585 const struct sched_class *class = sched_class_highest;
2586 unsigned long total_load_moved = 0;
2587 int this_best_prio = this_rq->curr->prio;
2589 do {
2590 total_load_moved +=
2591 class->load_balance(this_rq, this_cpu, busiest,
2592 max_load_move - total_load_moved,
2593 sd, idle, all_pinned, &this_best_prio);
2594 class = class->next;
2595 } while (class && max_load_move > total_load_moved);
2597 return total_load_moved > 0;
2600 static int
2601 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2602 struct sched_domain *sd, enum cpu_idle_type idle,
2603 struct rq_iterator *iterator)
2605 struct task_struct *p = iterator->start(iterator->arg);
2606 int pinned = 0;
2608 while (p) {
2609 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2610 pull_task(busiest, p, this_rq, this_cpu);
2612 * Right now, this is only the second place pull_task()
2613 * is called, so we can safely collect pull_task()
2614 * stats here rather than inside pull_task().
2616 schedstat_inc(sd, lb_gained[idle]);
2618 return 1;
2620 p = iterator->next(iterator->arg);
2623 return 0;
2627 * move_one_task tries to move exactly one task from busiest to this_rq, as
2628 * part of active balancing operations within "domain".
2629 * Returns 1 if successful and 0 otherwise.
2631 * Called with both runqueues locked.
2633 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2634 struct sched_domain *sd, enum cpu_idle_type idle)
2636 const struct sched_class *class;
2638 for (class = sched_class_highest; class; class = class->next)
2639 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2640 return 1;
2642 return 0;
2646 * find_busiest_group finds and returns the busiest CPU group within the
2647 * domain. It calculates and returns the amount of weighted load which
2648 * should be moved to restore balance via the imbalance parameter.
2650 static struct sched_group *
2651 find_busiest_group(struct sched_domain *sd, int this_cpu,
2652 unsigned long *imbalance, enum cpu_idle_type idle,
2653 int *sd_idle, cpumask_t *cpus, int *balance)
2655 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2656 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2657 unsigned long max_pull;
2658 unsigned long busiest_load_per_task, busiest_nr_running;
2659 unsigned long this_load_per_task, this_nr_running;
2660 int load_idx, group_imb = 0;
2661 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2662 int power_savings_balance = 1;
2663 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2664 unsigned long min_nr_running = ULONG_MAX;
2665 struct sched_group *group_min = NULL, *group_leader = NULL;
2666 #endif
2668 max_load = this_load = total_load = total_pwr = 0;
2669 busiest_load_per_task = busiest_nr_running = 0;
2670 this_load_per_task = this_nr_running = 0;
2671 if (idle == CPU_NOT_IDLE)
2672 load_idx = sd->busy_idx;
2673 else if (idle == CPU_NEWLY_IDLE)
2674 load_idx = sd->newidle_idx;
2675 else
2676 load_idx = sd->idle_idx;
2678 do {
2679 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2680 int local_group;
2681 int i;
2682 int __group_imb = 0;
2683 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2684 unsigned long sum_nr_running, sum_weighted_load;
2686 local_group = cpu_isset(this_cpu, group->cpumask);
2688 if (local_group)
2689 balance_cpu = first_cpu(group->cpumask);
2691 /* Tally up the load of all CPUs in the group */
2692 sum_weighted_load = sum_nr_running = avg_load = 0;
2693 max_cpu_load = 0;
2694 min_cpu_load = ~0UL;
2696 for_each_cpu_mask(i, group->cpumask) {
2697 struct rq *rq;
2699 if (!cpu_isset(i, *cpus))
2700 continue;
2702 rq = cpu_rq(i);
2704 if (*sd_idle && rq->nr_running)
2705 *sd_idle = 0;
2707 /* Bias balancing toward cpus of our domain */
2708 if (local_group) {
2709 if (idle_cpu(i) && !first_idle_cpu) {
2710 first_idle_cpu = 1;
2711 balance_cpu = i;
2714 load = target_load(i, load_idx);
2715 } else {
2716 load = source_load(i, load_idx);
2717 if (load > max_cpu_load)
2718 max_cpu_load = load;
2719 if (min_cpu_load > load)
2720 min_cpu_load = load;
2723 avg_load += load;
2724 sum_nr_running += rq->nr_running;
2725 sum_weighted_load += weighted_cpuload(i);
2729 * First idle cpu or the first cpu(busiest) in this sched group
2730 * is eligible for doing load balancing at this and above
2731 * domains. In the newly idle case, we will allow all the cpu's
2732 * to do the newly idle load balance.
2734 if (idle != CPU_NEWLY_IDLE && local_group &&
2735 balance_cpu != this_cpu && balance) {
2736 *balance = 0;
2737 goto ret;
2740 total_load += avg_load;
2741 total_pwr += group->__cpu_power;
2743 /* Adjust by relative CPU power of the group */
2744 avg_load = sg_div_cpu_power(group,
2745 avg_load * SCHED_LOAD_SCALE);
2747 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2748 __group_imb = 1;
2750 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2752 if (local_group) {
2753 this_load = avg_load;
2754 this = group;
2755 this_nr_running = sum_nr_running;
2756 this_load_per_task = sum_weighted_load;
2757 } else if (avg_load > max_load &&
2758 (sum_nr_running > group_capacity || __group_imb)) {
2759 max_load = avg_load;
2760 busiest = group;
2761 busiest_nr_running = sum_nr_running;
2762 busiest_load_per_task = sum_weighted_load;
2763 group_imb = __group_imb;
2766 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2768 * Busy processors will not participate in power savings
2769 * balance.
2771 if (idle == CPU_NOT_IDLE ||
2772 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2773 goto group_next;
2776 * If the local group is idle or completely loaded
2777 * no need to do power savings balance at this domain
2779 if (local_group && (this_nr_running >= group_capacity ||
2780 !this_nr_running))
2781 power_savings_balance = 0;
2784 * If a group is already running at full capacity or idle,
2785 * don't include that group in power savings calculations
2787 if (!power_savings_balance || sum_nr_running >= group_capacity
2788 || !sum_nr_running)
2789 goto group_next;
2792 * Calculate the group which has the least non-idle load.
2793 * This is the group from where we need to pick up the load
2794 * for saving power
2796 if ((sum_nr_running < min_nr_running) ||
2797 (sum_nr_running == min_nr_running &&
2798 first_cpu(group->cpumask) <
2799 first_cpu(group_min->cpumask))) {
2800 group_min = group;
2801 min_nr_running = sum_nr_running;
2802 min_load_per_task = sum_weighted_load /
2803 sum_nr_running;
2807 * Calculate the group which is almost near its
2808 * capacity but still has some space to pick up some load
2809 * from other group and save more power
2811 if (sum_nr_running <= group_capacity - 1) {
2812 if (sum_nr_running > leader_nr_running ||
2813 (sum_nr_running == leader_nr_running &&
2814 first_cpu(group->cpumask) >
2815 first_cpu(group_leader->cpumask))) {
2816 group_leader = group;
2817 leader_nr_running = sum_nr_running;
2820 group_next:
2821 #endif
2822 group = group->next;
2823 } while (group != sd->groups);
2825 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2826 goto out_balanced;
2828 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2830 if (this_load >= avg_load ||
2831 100*max_load <= sd->imbalance_pct*this_load)
2832 goto out_balanced;
2834 busiest_load_per_task /= busiest_nr_running;
2835 if (group_imb)
2836 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2839 * We're trying to get all the cpus to the average_load, so we don't
2840 * want to push ourselves above the average load, nor do we wish to
2841 * reduce the max loaded cpu below the average load, as either of these
2842 * actions would just result in more rebalancing later, and ping-pong
2843 * tasks around. Thus we look for the minimum possible imbalance.
2844 * Negative imbalances (*we* are more loaded than anyone else) will
2845 * be counted as no imbalance for these purposes -- we can't fix that
2846 * by pulling tasks to us. Be careful of negative numbers as they'll
2847 * appear as very large values with unsigned longs.
2849 if (max_load <= busiest_load_per_task)
2850 goto out_balanced;
2853 * In the presence of smp nice balancing, certain scenarios can have
2854 * max load less than avg load(as we skip the groups at or below
2855 * its cpu_power, while calculating max_load..)
2857 if (max_load < avg_load) {
2858 *imbalance = 0;
2859 goto small_imbalance;
2862 /* Don't want to pull so many tasks that a group would go idle */
2863 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2865 /* How much load to actually move to equalise the imbalance */
2866 *imbalance = min(max_pull * busiest->__cpu_power,
2867 (avg_load - this_load) * this->__cpu_power)
2868 / SCHED_LOAD_SCALE;
2871 * if *imbalance is less than the average load per runnable task
2872 * there is no gaurantee that any tasks will be moved so we'll have
2873 * a think about bumping its value to force at least one task to be
2874 * moved
2876 if (*imbalance < busiest_load_per_task) {
2877 unsigned long tmp, pwr_now, pwr_move;
2878 unsigned int imbn;
2880 small_imbalance:
2881 pwr_move = pwr_now = 0;
2882 imbn = 2;
2883 if (this_nr_running) {
2884 this_load_per_task /= this_nr_running;
2885 if (busiest_load_per_task > this_load_per_task)
2886 imbn = 1;
2887 } else
2888 this_load_per_task = SCHED_LOAD_SCALE;
2890 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2891 busiest_load_per_task * imbn) {
2892 *imbalance = busiest_load_per_task;
2893 return busiest;
2897 * OK, we don't have enough imbalance to justify moving tasks,
2898 * however we may be able to increase total CPU power used by
2899 * moving them.
2902 pwr_now += busiest->__cpu_power *
2903 min(busiest_load_per_task, max_load);
2904 pwr_now += this->__cpu_power *
2905 min(this_load_per_task, this_load);
2906 pwr_now /= SCHED_LOAD_SCALE;
2908 /* Amount of load we'd subtract */
2909 tmp = sg_div_cpu_power(busiest,
2910 busiest_load_per_task * SCHED_LOAD_SCALE);
2911 if (max_load > tmp)
2912 pwr_move += busiest->__cpu_power *
2913 min(busiest_load_per_task, max_load - tmp);
2915 /* Amount of load we'd add */
2916 if (max_load * busiest->__cpu_power <
2917 busiest_load_per_task * SCHED_LOAD_SCALE)
2918 tmp = sg_div_cpu_power(this,
2919 max_load * busiest->__cpu_power);
2920 else
2921 tmp = sg_div_cpu_power(this,
2922 busiest_load_per_task * SCHED_LOAD_SCALE);
2923 pwr_move += this->__cpu_power *
2924 min(this_load_per_task, this_load + tmp);
2925 pwr_move /= SCHED_LOAD_SCALE;
2927 /* Move if we gain throughput */
2928 if (pwr_move > pwr_now)
2929 *imbalance = busiest_load_per_task;
2932 return busiest;
2934 out_balanced:
2935 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2936 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2937 goto ret;
2939 if (this == group_leader && group_leader != group_min) {
2940 *imbalance = min_load_per_task;
2941 return group_min;
2943 #endif
2944 ret:
2945 *imbalance = 0;
2946 return NULL;
2950 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2952 static struct rq *
2953 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2954 unsigned long imbalance, cpumask_t *cpus)
2956 struct rq *busiest = NULL, *rq;
2957 unsigned long max_load = 0;
2958 int i;
2960 for_each_cpu_mask(i, group->cpumask) {
2961 unsigned long wl;
2963 if (!cpu_isset(i, *cpus))
2964 continue;
2966 rq = cpu_rq(i);
2967 wl = weighted_cpuload(i);
2969 if (rq->nr_running == 1 && wl > imbalance)
2970 continue;
2972 if (wl > max_load) {
2973 max_load = wl;
2974 busiest = rq;
2978 return busiest;
2982 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2983 * so long as it is large enough.
2985 #define MAX_PINNED_INTERVAL 512
2988 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2989 * tasks if there is an imbalance.
2991 static int load_balance(int this_cpu, struct rq *this_rq,
2992 struct sched_domain *sd, enum cpu_idle_type idle,
2993 int *balance)
2995 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2996 struct sched_group *group;
2997 unsigned long imbalance;
2998 struct rq *busiest;
2999 cpumask_t cpus = CPU_MASK_ALL;
3000 unsigned long flags;
3003 * When power savings policy is enabled for the parent domain, idle
3004 * sibling can pick up load irrespective of busy siblings. In this case,
3005 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3006 * portraying it as CPU_NOT_IDLE.
3008 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3009 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3010 sd_idle = 1;
3012 schedstat_inc(sd, lb_count[idle]);
3014 redo:
3015 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3016 &cpus, balance);
3018 if (*balance == 0)
3019 goto out_balanced;
3021 if (!group) {
3022 schedstat_inc(sd, lb_nobusyg[idle]);
3023 goto out_balanced;
3026 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3027 if (!busiest) {
3028 schedstat_inc(sd, lb_nobusyq[idle]);
3029 goto out_balanced;
3032 BUG_ON(busiest == this_rq);
3034 schedstat_add(sd, lb_imbalance[idle], imbalance);
3036 ld_moved = 0;
3037 if (busiest->nr_running > 1) {
3039 * Attempt to move tasks. If find_busiest_group has found
3040 * an imbalance but busiest->nr_running <= 1, the group is
3041 * still unbalanced. ld_moved simply stays zero, so it is
3042 * correctly treated as an imbalance.
3044 local_irq_save(flags);
3045 double_rq_lock(this_rq, busiest);
3046 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3047 imbalance, sd, idle, &all_pinned);
3048 double_rq_unlock(this_rq, busiest);
3049 local_irq_restore(flags);
3052 * some other cpu did the load balance for us.
3054 if (ld_moved && this_cpu != smp_processor_id())
3055 resched_cpu(this_cpu);
3057 /* All tasks on this runqueue were pinned by CPU affinity */
3058 if (unlikely(all_pinned)) {
3059 cpu_clear(cpu_of(busiest), cpus);
3060 if (!cpus_empty(cpus))
3061 goto redo;
3062 goto out_balanced;
3066 if (!ld_moved) {
3067 schedstat_inc(sd, lb_failed[idle]);
3068 sd->nr_balance_failed++;
3070 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3072 spin_lock_irqsave(&busiest->lock, flags);
3074 /* don't kick the migration_thread, if the curr
3075 * task on busiest cpu can't be moved to this_cpu
3077 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3078 spin_unlock_irqrestore(&busiest->lock, flags);
3079 all_pinned = 1;
3080 goto out_one_pinned;
3083 if (!busiest->active_balance) {
3084 busiest->active_balance = 1;
3085 busiest->push_cpu = this_cpu;
3086 active_balance = 1;
3088 spin_unlock_irqrestore(&busiest->lock, flags);
3089 if (active_balance)
3090 wake_up_process(busiest->migration_thread);
3093 * We've kicked active balancing, reset the failure
3094 * counter.
3096 sd->nr_balance_failed = sd->cache_nice_tries+1;
3098 } else
3099 sd->nr_balance_failed = 0;
3101 if (likely(!active_balance)) {
3102 /* We were unbalanced, so reset the balancing interval */
3103 sd->balance_interval = sd->min_interval;
3104 } else {
3106 * If we've begun active balancing, start to back off. This
3107 * case may not be covered by the all_pinned logic if there
3108 * is only 1 task on the busy runqueue (because we don't call
3109 * move_tasks).
3111 if (sd->balance_interval < sd->max_interval)
3112 sd->balance_interval *= 2;
3115 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3116 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3117 return -1;
3118 return ld_moved;
3120 out_balanced:
3121 schedstat_inc(sd, lb_balanced[idle]);
3123 sd->nr_balance_failed = 0;
3125 out_one_pinned:
3126 /* tune up the balancing interval */
3127 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3128 (sd->balance_interval < sd->max_interval))
3129 sd->balance_interval *= 2;
3131 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3132 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3133 return -1;
3134 return 0;
3138 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3139 * tasks if there is an imbalance.
3141 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3142 * this_rq is locked.
3144 static int
3145 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3147 struct sched_group *group;
3148 struct rq *busiest = NULL;
3149 unsigned long imbalance;
3150 int ld_moved = 0;
3151 int sd_idle = 0;
3152 int all_pinned = 0;
3153 cpumask_t cpus = CPU_MASK_ALL;
3156 * When power savings policy is enabled for the parent domain, idle
3157 * sibling can pick up load irrespective of busy siblings. In this case,
3158 * let the state of idle sibling percolate up as IDLE, instead of
3159 * portraying it as CPU_NOT_IDLE.
3161 if (sd->flags & SD_SHARE_CPUPOWER &&
3162 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3163 sd_idle = 1;
3165 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3166 redo:
3167 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3168 &sd_idle, &cpus, NULL);
3169 if (!group) {
3170 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3171 goto out_balanced;
3174 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3175 &cpus);
3176 if (!busiest) {
3177 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3178 goto out_balanced;
3181 BUG_ON(busiest == this_rq);
3183 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3185 ld_moved = 0;
3186 if (busiest->nr_running > 1) {
3187 /* Attempt to move tasks */
3188 double_lock_balance(this_rq, busiest);
3189 /* this_rq->clock is already updated */
3190 update_rq_clock(busiest);
3191 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3192 imbalance, sd, CPU_NEWLY_IDLE,
3193 &all_pinned);
3194 spin_unlock(&busiest->lock);
3196 if (unlikely(all_pinned)) {
3197 cpu_clear(cpu_of(busiest), cpus);
3198 if (!cpus_empty(cpus))
3199 goto redo;
3203 if (!ld_moved) {
3204 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3205 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3206 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3207 return -1;
3208 } else
3209 sd->nr_balance_failed = 0;
3211 return ld_moved;
3213 out_balanced:
3214 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3215 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3216 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3217 return -1;
3218 sd->nr_balance_failed = 0;
3220 return 0;
3224 * idle_balance is called by schedule() if this_cpu is about to become
3225 * idle. Attempts to pull tasks from other CPUs.
3227 static void idle_balance(int this_cpu, struct rq *this_rq)
3229 struct sched_domain *sd;
3230 int pulled_task = -1;
3231 unsigned long next_balance = jiffies + HZ;
3233 for_each_domain(this_cpu, sd) {
3234 unsigned long interval;
3236 if (!(sd->flags & SD_LOAD_BALANCE))
3237 continue;
3239 if (sd->flags & SD_BALANCE_NEWIDLE)
3240 /* If we've pulled tasks over stop searching: */
3241 pulled_task = load_balance_newidle(this_cpu,
3242 this_rq, sd);
3244 interval = msecs_to_jiffies(sd->balance_interval);
3245 if (time_after(next_balance, sd->last_balance + interval))
3246 next_balance = sd->last_balance + interval;
3247 if (pulled_task)
3248 break;
3250 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3252 * We are going idle. next_balance may be set based on
3253 * a busy processor. So reset next_balance.
3255 this_rq->next_balance = next_balance;
3260 * active_load_balance is run by migration threads. It pushes running tasks
3261 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3262 * running on each physical CPU where possible, and avoids physical /
3263 * logical imbalances.
3265 * Called with busiest_rq locked.
3267 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3269 int target_cpu = busiest_rq->push_cpu;
3270 struct sched_domain *sd;
3271 struct rq *target_rq;
3273 /* Is there any task to move? */
3274 if (busiest_rq->nr_running <= 1)
3275 return;
3277 target_rq = cpu_rq(target_cpu);
3280 * This condition is "impossible", if it occurs
3281 * we need to fix it. Originally reported by
3282 * Bjorn Helgaas on a 128-cpu setup.
3284 BUG_ON(busiest_rq == target_rq);
3286 /* move a task from busiest_rq to target_rq */
3287 double_lock_balance(busiest_rq, target_rq);
3288 update_rq_clock(busiest_rq);
3289 update_rq_clock(target_rq);
3291 /* Search for an sd spanning us and the target CPU. */
3292 for_each_domain(target_cpu, sd) {
3293 if ((sd->flags & SD_LOAD_BALANCE) &&
3294 cpu_isset(busiest_cpu, sd->span))
3295 break;
3298 if (likely(sd)) {
3299 schedstat_inc(sd, alb_count);
3301 if (move_one_task(target_rq, target_cpu, busiest_rq,
3302 sd, CPU_IDLE))
3303 schedstat_inc(sd, alb_pushed);
3304 else
3305 schedstat_inc(sd, alb_failed);
3307 spin_unlock(&target_rq->lock);
3310 #ifdef CONFIG_NO_HZ
3311 static struct {
3312 atomic_t load_balancer;
3313 cpumask_t cpu_mask;
3314 } nohz ____cacheline_aligned = {
3315 .load_balancer = ATOMIC_INIT(-1),
3316 .cpu_mask = CPU_MASK_NONE,
3320 * This routine will try to nominate the ilb (idle load balancing)
3321 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3322 * load balancing on behalf of all those cpus. If all the cpus in the system
3323 * go into this tickless mode, then there will be no ilb owner (as there is
3324 * no need for one) and all the cpus will sleep till the next wakeup event
3325 * arrives...
3327 * For the ilb owner, tick is not stopped. And this tick will be used
3328 * for idle load balancing. ilb owner will still be part of
3329 * nohz.cpu_mask..
3331 * While stopping the tick, this cpu will become the ilb owner if there
3332 * is no other owner. And will be the owner till that cpu becomes busy
3333 * or if all cpus in the system stop their ticks at which point
3334 * there is no need for ilb owner.
3336 * When the ilb owner becomes busy, it nominates another owner, during the
3337 * next busy scheduler_tick()
3339 int select_nohz_load_balancer(int stop_tick)
3341 int cpu = smp_processor_id();
3343 if (stop_tick) {
3344 cpu_set(cpu, nohz.cpu_mask);
3345 cpu_rq(cpu)->in_nohz_recently = 1;
3348 * If we are going offline and still the leader, give up!
3350 if (cpu_is_offline(cpu) &&
3351 atomic_read(&nohz.load_balancer) == cpu) {
3352 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3353 BUG();
3354 return 0;
3357 /* time for ilb owner also to sleep */
3358 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3359 if (atomic_read(&nohz.load_balancer) == cpu)
3360 atomic_set(&nohz.load_balancer, -1);
3361 return 0;
3364 if (atomic_read(&nohz.load_balancer) == -1) {
3365 /* make me the ilb owner */
3366 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3367 return 1;
3368 } else if (atomic_read(&nohz.load_balancer) == cpu)
3369 return 1;
3370 } else {
3371 if (!cpu_isset(cpu, nohz.cpu_mask))
3372 return 0;
3374 cpu_clear(cpu, nohz.cpu_mask);
3376 if (atomic_read(&nohz.load_balancer) == cpu)
3377 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3378 BUG();
3380 return 0;
3382 #endif
3384 static DEFINE_SPINLOCK(balancing);
3387 * It checks each scheduling domain to see if it is due to be balanced,
3388 * and initiates a balancing operation if so.
3390 * Balancing parameters are set up in arch_init_sched_domains.
3392 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3394 int balance = 1;
3395 struct rq *rq = cpu_rq(cpu);
3396 unsigned long interval;
3397 struct sched_domain *sd;
3398 /* Earliest time when we have to do rebalance again */
3399 unsigned long next_balance = jiffies + 60*HZ;
3400 int update_next_balance = 0;
3402 for_each_domain(cpu, sd) {
3403 if (!(sd->flags & SD_LOAD_BALANCE))
3404 continue;
3406 interval = sd->balance_interval;
3407 if (idle != CPU_IDLE)
3408 interval *= sd->busy_factor;
3410 /* scale ms to jiffies */
3411 interval = msecs_to_jiffies(interval);
3412 if (unlikely(!interval))
3413 interval = 1;
3414 if (interval > HZ*NR_CPUS/10)
3415 interval = HZ*NR_CPUS/10;
3418 if (sd->flags & SD_SERIALIZE) {
3419 if (!spin_trylock(&balancing))
3420 goto out;
3423 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3424 if (load_balance(cpu, rq, sd, idle, &balance)) {
3426 * We've pulled tasks over so either we're no
3427 * longer idle, or one of our SMT siblings is
3428 * not idle.
3430 idle = CPU_NOT_IDLE;
3432 sd->last_balance = jiffies;
3434 if (sd->flags & SD_SERIALIZE)
3435 spin_unlock(&balancing);
3436 out:
3437 if (time_after(next_balance, sd->last_balance + interval)) {
3438 next_balance = sd->last_balance + interval;
3439 update_next_balance = 1;
3443 * Stop the load balance at this level. There is another
3444 * CPU in our sched group which is doing load balancing more
3445 * actively.
3447 if (!balance)
3448 break;
3452 * next_balance will be updated only when there is a need.
3453 * When the cpu is attached to null domain for ex, it will not be
3454 * updated.
3456 if (likely(update_next_balance))
3457 rq->next_balance = next_balance;
3461 * run_rebalance_domains is triggered when needed from the scheduler tick.
3462 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3463 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3465 static void run_rebalance_domains(struct softirq_action *h)
3467 int this_cpu = smp_processor_id();
3468 struct rq *this_rq = cpu_rq(this_cpu);
3469 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3470 CPU_IDLE : CPU_NOT_IDLE;
3472 rebalance_domains(this_cpu, idle);
3474 #ifdef CONFIG_NO_HZ
3476 * If this cpu is the owner for idle load balancing, then do the
3477 * balancing on behalf of the other idle cpus whose ticks are
3478 * stopped.
3480 if (this_rq->idle_at_tick &&
3481 atomic_read(&nohz.load_balancer) == this_cpu) {
3482 cpumask_t cpus = nohz.cpu_mask;
3483 struct rq *rq;
3484 int balance_cpu;
3486 cpu_clear(this_cpu, cpus);
3487 for_each_cpu_mask(balance_cpu, cpus) {
3489 * If this cpu gets work to do, stop the load balancing
3490 * work being done for other cpus. Next load
3491 * balancing owner will pick it up.
3493 if (need_resched())
3494 break;
3496 rebalance_domains(balance_cpu, CPU_IDLE);
3498 rq = cpu_rq(balance_cpu);
3499 if (time_after(this_rq->next_balance, rq->next_balance))
3500 this_rq->next_balance = rq->next_balance;
3503 #endif
3507 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3509 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3510 * idle load balancing owner or decide to stop the periodic load balancing,
3511 * if the whole system is idle.
3513 static inline void trigger_load_balance(struct rq *rq, int cpu)
3515 #ifdef CONFIG_NO_HZ
3517 * If we were in the nohz mode recently and busy at the current
3518 * scheduler tick, then check if we need to nominate new idle
3519 * load balancer.
3521 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3522 rq->in_nohz_recently = 0;
3524 if (atomic_read(&nohz.load_balancer) == cpu) {
3525 cpu_clear(cpu, nohz.cpu_mask);
3526 atomic_set(&nohz.load_balancer, -1);
3529 if (atomic_read(&nohz.load_balancer) == -1) {
3531 * simple selection for now: Nominate the
3532 * first cpu in the nohz list to be the next
3533 * ilb owner.
3535 * TBD: Traverse the sched domains and nominate
3536 * the nearest cpu in the nohz.cpu_mask.
3538 int ilb = first_cpu(nohz.cpu_mask);
3540 if (ilb != NR_CPUS)
3541 resched_cpu(ilb);
3546 * If this cpu is idle and doing idle load balancing for all the
3547 * cpus with ticks stopped, is it time for that to stop?
3549 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3550 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3551 resched_cpu(cpu);
3552 return;
3556 * If this cpu is idle and the idle load balancing is done by
3557 * someone else, then no need raise the SCHED_SOFTIRQ
3559 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3560 cpu_isset(cpu, nohz.cpu_mask))
3561 return;
3562 #endif
3563 if (time_after_eq(jiffies, rq->next_balance))
3564 raise_softirq(SCHED_SOFTIRQ);
3567 #else /* CONFIG_SMP */
3570 * on UP we do not need to balance between CPUs:
3572 static inline void idle_balance(int cpu, struct rq *rq)
3576 #endif
3578 DEFINE_PER_CPU(struct kernel_stat, kstat);
3580 EXPORT_PER_CPU_SYMBOL(kstat);
3583 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3584 * that have not yet been banked in case the task is currently running.
3586 unsigned long long task_sched_runtime(struct task_struct *p)
3588 unsigned long flags;
3589 u64 ns, delta_exec;
3590 struct rq *rq;
3592 rq = task_rq_lock(p, &flags);
3593 ns = p->se.sum_exec_runtime;
3594 if (task_current(rq, p)) {
3595 update_rq_clock(rq);
3596 delta_exec = rq->clock - p->se.exec_start;
3597 if ((s64)delta_exec > 0)
3598 ns += delta_exec;
3600 task_rq_unlock(rq, &flags);
3602 return ns;
3606 * Account user cpu time to a process.
3607 * @p: the process that the cpu time gets accounted to
3608 * @cputime: the cpu time spent in user space since the last update
3610 void account_user_time(struct task_struct *p, cputime_t cputime)
3612 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3613 cputime64_t tmp;
3615 p->utime = cputime_add(p->utime, cputime);
3617 /* Add user time to cpustat. */
3618 tmp = cputime_to_cputime64(cputime);
3619 if (TASK_NICE(p) > 0)
3620 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3621 else
3622 cpustat->user = cputime64_add(cpustat->user, tmp);
3626 * Account guest cpu time to a process.
3627 * @p: the process that the cpu time gets accounted to
3628 * @cputime: the cpu time spent in virtual machine since the last update
3630 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3632 cputime64_t tmp;
3633 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3635 tmp = cputime_to_cputime64(cputime);
3637 p->utime = cputime_add(p->utime, cputime);
3638 p->gtime = cputime_add(p->gtime, cputime);
3640 cpustat->user = cputime64_add(cpustat->user, tmp);
3641 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3645 * Account scaled user cpu time to a process.
3646 * @p: the process that the cpu time gets accounted to
3647 * @cputime: the cpu time spent in user space since the last update
3649 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3651 p->utimescaled = cputime_add(p->utimescaled, cputime);
3655 * Account system cpu time to a process.
3656 * @p: the process that the cpu time gets accounted to
3657 * @hardirq_offset: the offset to subtract from hardirq_count()
3658 * @cputime: the cpu time spent in kernel space since the last update
3660 void account_system_time(struct task_struct *p, int hardirq_offset,
3661 cputime_t cputime)
3663 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3664 struct rq *rq = this_rq();
3665 cputime64_t tmp;
3667 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3668 return account_guest_time(p, cputime);
3670 p->stime = cputime_add(p->stime, cputime);
3672 /* Add system time to cpustat. */
3673 tmp = cputime_to_cputime64(cputime);
3674 if (hardirq_count() - hardirq_offset)
3675 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3676 else if (softirq_count())
3677 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3678 else if (p != rq->idle)
3679 cpustat->system = cputime64_add(cpustat->system, tmp);
3680 else if (atomic_read(&rq->nr_iowait) > 0)
3681 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3682 else
3683 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3684 /* Account for system time used */
3685 acct_update_integrals(p);
3689 * Account scaled system cpu time to a process.
3690 * @p: the process that the cpu time gets accounted to
3691 * @hardirq_offset: the offset to subtract from hardirq_count()
3692 * @cputime: the cpu time spent in kernel space since the last update
3694 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3696 p->stimescaled = cputime_add(p->stimescaled, cputime);
3700 * Account for involuntary wait time.
3701 * @p: the process from which the cpu time has been stolen
3702 * @steal: the cpu time spent in involuntary wait
3704 void account_steal_time(struct task_struct *p, cputime_t steal)
3706 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3707 cputime64_t tmp = cputime_to_cputime64(steal);
3708 struct rq *rq = this_rq();
3710 if (p == rq->idle) {
3711 p->stime = cputime_add(p->stime, steal);
3712 if (atomic_read(&rq->nr_iowait) > 0)
3713 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3714 else
3715 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3716 } else
3717 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3721 * This function gets called by the timer code, with HZ frequency.
3722 * We call it with interrupts disabled.
3724 * It also gets called by the fork code, when changing the parent's
3725 * timeslices.
3727 void scheduler_tick(void)
3729 int cpu = smp_processor_id();
3730 struct rq *rq = cpu_rq(cpu);
3731 struct task_struct *curr = rq->curr;
3732 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3734 spin_lock(&rq->lock);
3735 __update_rq_clock(rq);
3737 * Let rq->clock advance by at least TICK_NSEC:
3739 if (unlikely(rq->clock < next_tick)) {
3740 rq->clock = next_tick;
3741 rq->clock_underflows++;
3743 rq->tick_timestamp = rq->clock;
3744 update_cpu_load(rq);
3745 curr->sched_class->task_tick(rq, curr, 0);
3746 update_sched_rt_period(rq);
3747 spin_unlock(&rq->lock);
3749 #ifdef CONFIG_SMP
3750 rq->idle_at_tick = idle_cpu(cpu);
3751 trigger_load_balance(rq, cpu);
3752 #endif
3755 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3757 void fastcall add_preempt_count(int val)
3760 * Underflow?
3762 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3763 return;
3764 preempt_count() += val;
3766 * Spinlock count overflowing soon?
3768 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3769 PREEMPT_MASK - 10);
3771 EXPORT_SYMBOL(add_preempt_count);
3773 void fastcall sub_preempt_count(int val)
3776 * Underflow?
3778 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3779 return;
3781 * Is the spinlock portion underflowing?
3783 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3784 !(preempt_count() & PREEMPT_MASK)))
3785 return;
3787 preempt_count() -= val;
3789 EXPORT_SYMBOL(sub_preempt_count);
3791 #endif
3794 * Print scheduling while atomic bug:
3796 static noinline void __schedule_bug(struct task_struct *prev)
3798 struct pt_regs *regs = get_irq_regs();
3800 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3801 prev->comm, prev->pid, preempt_count());
3803 debug_show_held_locks(prev);
3804 if (irqs_disabled())
3805 print_irqtrace_events(prev);
3807 if (regs)
3808 show_regs(regs);
3809 else
3810 dump_stack();
3814 * Various schedule()-time debugging checks and statistics:
3816 static inline void schedule_debug(struct task_struct *prev)
3819 * Test if we are atomic. Since do_exit() needs to call into
3820 * schedule() atomically, we ignore that path for now.
3821 * Otherwise, whine if we are scheduling when we should not be.
3823 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3824 __schedule_bug(prev);
3826 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3828 schedstat_inc(this_rq(), sched_count);
3829 #ifdef CONFIG_SCHEDSTATS
3830 if (unlikely(prev->lock_depth >= 0)) {
3831 schedstat_inc(this_rq(), bkl_count);
3832 schedstat_inc(prev, sched_info.bkl_count);
3834 #endif
3838 * Pick up the highest-prio task:
3840 static inline struct task_struct *
3841 pick_next_task(struct rq *rq, struct task_struct *prev)
3843 const struct sched_class *class;
3844 struct task_struct *p;
3847 * Optimization: we know that if all tasks are in
3848 * the fair class we can call that function directly:
3850 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3851 p = fair_sched_class.pick_next_task(rq);
3852 if (likely(p))
3853 return p;
3856 class = sched_class_highest;
3857 for ( ; ; ) {
3858 p = class->pick_next_task(rq);
3859 if (p)
3860 return p;
3862 * Will never be NULL as the idle class always
3863 * returns a non-NULL p:
3865 class = class->next;
3870 * schedule() is the main scheduler function.
3872 asmlinkage void __sched schedule(void)
3874 struct task_struct *prev, *next;
3875 long *switch_count;
3876 struct rq *rq;
3877 int cpu;
3879 need_resched:
3880 preempt_disable();
3881 cpu = smp_processor_id();
3882 rq = cpu_rq(cpu);
3883 rcu_qsctr_inc(cpu);
3884 prev = rq->curr;
3885 switch_count = &prev->nivcsw;
3887 release_kernel_lock(prev);
3888 need_resched_nonpreemptible:
3890 schedule_debug(prev);
3892 hrtick_clear(rq);
3895 * Do the rq-clock update outside the rq lock:
3897 local_irq_disable();
3898 __update_rq_clock(rq);
3899 spin_lock(&rq->lock);
3900 clear_tsk_need_resched(prev);
3902 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3903 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3904 unlikely(signal_pending(prev)))) {
3905 prev->state = TASK_RUNNING;
3906 } else {
3907 deactivate_task(rq, prev, 1);
3909 switch_count = &prev->nvcsw;
3912 #ifdef CONFIG_SMP
3913 if (prev->sched_class->pre_schedule)
3914 prev->sched_class->pre_schedule(rq, prev);
3915 #endif
3917 if (unlikely(!rq->nr_running))
3918 idle_balance(cpu, rq);
3920 prev->sched_class->put_prev_task(rq, prev);
3921 next = pick_next_task(rq, prev);
3923 sched_info_switch(prev, next);
3925 if (likely(prev != next)) {
3926 rq->nr_switches++;
3927 rq->curr = next;
3928 ++*switch_count;
3930 context_switch(rq, prev, next); /* unlocks the rq */
3932 * the context switch might have flipped the stack from under
3933 * us, hence refresh the local variables.
3935 cpu = smp_processor_id();
3936 rq = cpu_rq(cpu);
3937 } else
3938 spin_unlock_irq(&rq->lock);
3940 hrtick_set(rq);
3942 if (unlikely(reacquire_kernel_lock(current) < 0))
3943 goto need_resched_nonpreemptible;
3945 preempt_enable_no_resched();
3946 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3947 goto need_resched;
3949 EXPORT_SYMBOL(schedule);
3951 #ifdef CONFIG_PREEMPT
3953 * this is the entry point to schedule() from in-kernel preemption
3954 * off of preempt_enable. Kernel preemptions off return from interrupt
3955 * occur there and call schedule directly.
3957 asmlinkage void __sched preempt_schedule(void)
3959 struct thread_info *ti = current_thread_info();
3960 struct task_struct *task = current;
3961 int saved_lock_depth;
3964 * If there is a non-zero preempt_count or interrupts are disabled,
3965 * we do not want to preempt the current task. Just return..
3967 if (likely(ti->preempt_count || irqs_disabled()))
3968 return;
3970 do {
3971 add_preempt_count(PREEMPT_ACTIVE);
3974 * We keep the big kernel semaphore locked, but we
3975 * clear ->lock_depth so that schedule() doesnt
3976 * auto-release the semaphore:
3978 saved_lock_depth = task->lock_depth;
3979 task->lock_depth = -1;
3980 schedule();
3981 task->lock_depth = saved_lock_depth;
3982 sub_preempt_count(PREEMPT_ACTIVE);
3985 * Check again in case we missed a preemption opportunity
3986 * between schedule and now.
3988 barrier();
3989 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3991 EXPORT_SYMBOL(preempt_schedule);
3994 * this is the entry point to schedule() from kernel preemption
3995 * off of irq context.
3996 * Note, that this is called and return with irqs disabled. This will
3997 * protect us against recursive calling from irq.
3999 asmlinkage void __sched preempt_schedule_irq(void)
4001 struct thread_info *ti = current_thread_info();
4002 struct task_struct *task = current;
4003 int saved_lock_depth;
4005 /* Catch callers which need to be fixed */
4006 BUG_ON(ti->preempt_count || !irqs_disabled());
4008 do {
4009 add_preempt_count(PREEMPT_ACTIVE);
4012 * We keep the big kernel semaphore locked, but we
4013 * clear ->lock_depth so that schedule() doesnt
4014 * auto-release the semaphore:
4016 saved_lock_depth = task->lock_depth;
4017 task->lock_depth = -1;
4018 local_irq_enable();
4019 schedule();
4020 local_irq_disable();
4021 task->lock_depth = saved_lock_depth;
4022 sub_preempt_count(PREEMPT_ACTIVE);
4025 * Check again in case we missed a preemption opportunity
4026 * between schedule and now.
4028 barrier();
4029 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4032 #endif /* CONFIG_PREEMPT */
4034 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4035 void *key)
4037 return try_to_wake_up(curr->private, mode, sync);
4039 EXPORT_SYMBOL(default_wake_function);
4042 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4043 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4044 * number) then we wake all the non-exclusive tasks and one exclusive task.
4046 * There are circumstances in which we can try to wake a task which has already
4047 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4048 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4050 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4051 int nr_exclusive, int sync, void *key)
4053 wait_queue_t *curr, *next;
4055 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4056 unsigned flags = curr->flags;
4058 if (curr->func(curr, mode, sync, key) &&
4059 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4060 break;
4065 * __wake_up - wake up threads blocked on a waitqueue.
4066 * @q: the waitqueue
4067 * @mode: which threads
4068 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4069 * @key: is directly passed to the wakeup function
4071 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
4072 int nr_exclusive, void *key)
4074 unsigned long flags;
4076 spin_lock_irqsave(&q->lock, flags);
4077 __wake_up_common(q, mode, nr_exclusive, 0, key);
4078 spin_unlock_irqrestore(&q->lock, flags);
4080 EXPORT_SYMBOL(__wake_up);
4083 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4085 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4087 __wake_up_common(q, mode, 1, 0, NULL);
4091 * __wake_up_sync - wake up threads blocked on a waitqueue.
4092 * @q: the waitqueue
4093 * @mode: which threads
4094 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4096 * The sync wakeup differs that the waker knows that it will schedule
4097 * away soon, so while the target thread will be woken up, it will not
4098 * be migrated to another CPU - ie. the two threads are 'synchronized'
4099 * with each other. This can prevent needless bouncing between CPUs.
4101 * On UP it can prevent extra preemption.
4103 void fastcall
4104 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4106 unsigned long flags;
4107 int sync = 1;
4109 if (unlikely(!q))
4110 return;
4112 if (unlikely(!nr_exclusive))
4113 sync = 0;
4115 spin_lock_irqsave(&q->lock, flags);
4116 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4117 spin_unlock_irqrestore(&q->lock, flags);
4119 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4121 void complete(struct completion *x)
4123 unsigned long flags;
4125 spin_lock_irqsave(&x->wait.lock, flags);
4126 x->done++;
4127 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
4128 1, 0, NULL);
4129 spin_unlock_irqrestore(&x->wait.lock, flags);
4131 EXPORT_SYMBOL(complete);
4133 void complete_all(struct completion *x)
4135 unsigned long flags;
4137 spin_lock_irqsave(&x->wait.lock, flags);
4138 x->done += UINT_MAX/2;
4139 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
4140 0, 0, NULL);
4141 spin_unlock_irqrestore(&x->wait.lock, flags);
4143 EXPORT_SYMBOL(complete_all);
4145 static inline long __sched
4146 do_wait_for_common(struct completion *x, long timeout, int state)
4148 if (!x->done) {
4149 DECLARE_WAITQUEUE(wait, current);
4151 wait.flags |= WQ_FLAG_EXCLUSIVE;
4152 __add_wait_queue_tail(&x->wait, &wait);
4153 do {
4154 if (state == TASK_INTERRUPTIBLE &&
4155 signal_pending(current)) {
4156 __remove_wait_queue(&x->wait, &wait);
4157 return -ERESTARTSYS;
4159 __set_current_state(state);
4160 spin_unlock_irq(&x->wait.lock);
4161 timeout = schedule_timeout(timeout);
4162 spin_lock_irq(&x->wait.lock);
4163 if (!timeout) {
4164 __remove_wait_queue(&x->wait, &wait);
4165 return timeout;
4167 } while (!x->done);
4168 __remove_wait_queue(&x->wait, &wait);
4170 x->done--;
4171 return timeout;
4174 static long __sched
4175 wait_for_common(struct completion *x, long timeout, int state)
4177 might_sleep();
4179 spin_lock_irq(&x->wait.lock);
4180 timeout = do_wait_for_common(x, timeout, state);
4181 spin_unlock_irq(&x->wait.lock);
4182 return timeout;
4185 void __sched wait_for_completion(struct completion *x)
4187 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4189 EXPORT_SYMBOL(wait_for_completion);
4191 unsigned long __sched
4192 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4194 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4196 EXPORT_SYMBOL(wait_for_completion_timeout);
4198 int __sched wait_for_completion_interruptible(struct completion *x)
4200 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4201 if (t == -ERESTARTSYS)
4202 return t;
4203 return 0;
4205 EXPORT_SYMBOL(wait_for_completion_interruptible);
4207 unsigned long __sched
4208 wait_for_completion_interruptible_timeout(struct completion *x,
4209 unsigned long timeout)
4211 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4213 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4215 static long __sched
4216 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4218 unsigned long flags;
4219 wait_queue_t wait;
4221 init_waitqueue_entry(&wait, current);
4223 __set_current_state(state);
4225 spin_lock_irqsave(&q->lock, flags);
4226 __add_wait_queue(q, &wait);
4227 spin_unlock(&q->lock);
4228 timeout = schedule_timeout(timeout);
4229 spin_lock_irq(&q->lock);
4230 __remove_wait_queue(q, &wait);
4231 spin_unlock_irqrestore(&q->lock, flags);
4233 return timeout;
4236 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4238 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4240 EXPORT_SYMBOL(interruptible_sleep_on);
4242 long __sched
4243 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4245 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4247 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4249 void __sched sleep_on(wait_queue_head_t *q)
4251 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4253 EXPORT_SYMBOL(sleep_on);
4255 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4257 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4259 EXPORT_SYMBOL(sleep_on_timeout);
4261 #ifdef CONFIG_RT_MUTEXES
4264 * rt_mutex_setprio - set the current priority of a task
4265 * @p: task
4266 * @prio: prio value (kernel-internal form)
4268 * This function changes the 'effective' priority of a task. It does
4269 * not touch ->normal_prio like __setscheduler().
4271 * Used by the rt_mutex code to implement priority inheritance logic.
4273 void rt_mutex_setprio(struct task_struct *p, int prio)
4275 unsigned long flags;
4276 int oldprio, on_rq, running;
4277 struct rq *rq;
4278 const struct sched_class *prev_class = p->sched_class;
4280 BUG_ON(prio < 0 || prio > MAX_PRIO);
4282 rq = task_rq_lock(p, &flags);
4283 update_rq_clock(rq);
4285 oldprio = p->prio;
4286 on_rq = p->se.on_rq;
4287 running = task_current(rq, p);
4288 if (on_rq) {
4289 dequeue_task(rq, p, 0);
4290 if (running)
4291 p->sched_class->put_prev_task(rq, p);
4294 if (rt_prio(prio))
4295 p->sched_class = &rt_sched_class;
4296 else
4297 p->sched_class = &fair_sched_class;
4299 p->prio = prio;
4301 if (on_rq) {
4302 if (running)
4303 p->sched_class->set_curr_task(rq);
4305 enqueue_task(rq, p, 0);
4307 check_class_changed(rq, p, prev_class, oldprio, running);
4309 task_rq_unlock(rq, &flags);
4312 #endif
4314 void set_user_nice(struct task_struct *p, long nice)
4316 int old_prio, delta, on_rq;
4317 unsigned long flags;
4318 struct rq *rq;
4320 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4321 return;
4323 * We have to be careful, if called from sys_setpriority(),
4324 * the task might be in the middle of scheduling on another CPU.
4326 rq = task_rq_lock(p, &flags);
4327 update_rq_clock(rq);
4329 * The RT priorities are set via sched_setscheduler(), but we still
4330 * allow the 'normal' nice value to be set - but as expected
4331 * it wont have any effect on scheduling until the task is
4332 * SCHED_FIFO/SCHED_RR:
4334 if (task_has_rt_policy(p)) {
4335 p->static_prio = NICE_TO_PRIO(nice);
4336 goto out_unlock;
4338 on_rq = p->se.on_rq;
4339 if (on_rq)
4340 dequeue_task(rq, p, 0);
4342 p->static_prio = NICE_TO_PRIO(nice);
4343 set_load_weight(p);
4344 old_prio = p->prio;
4345 p->prio = effective_prio(p);
4346 delta = p->prio - old_prio;
4348 if (on_rq) {
4349 enqueue_task(rq, p, 0);
4351 * If the task increased its priority or is running and
4352 * lowered its priority, then reschedule its CPU:
4354 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4355 resched_task(rq->curr);
4357 out_unlock:
4358 task_rq_unlock(rq, &flags);
4360 EXPORT_SYMBOL(set_user_nice);
4363 * can_nice - check if a task can reduce its nice value
4364 * @p: task
4365 * @nice: nice value
4367 int can_nice(const struct task_struct *p, const int nice)
4369 /* convert nice value [19,-20] to rlimit style value [1,40] */
4370 int nice_rlim = 20 - nice;
4372 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4373 capable(CAP_SYS_NICE));
4376 #ifdef __ARCH_WANT_SYS_NICE
4379 * sys_nice - change the priority of the current process.
4380 * @increment: priority increment
4382 * sys_setpriority is a more generic, but much slower function that
4383 * does similar things.
4385 asmlinkage long sys_nice(int increment)
4387 long nice, retval;
4390 * Setpriority might change our priority at the same moment.
4391 * We don't have to worry. Conceptually one call occurs first
4392 * and we have a single winner.
4394 if (increment < -40)
4395 increment = -40;
4396 if (increment > 40)
4397 increment = 40;
4399 nice = PRIO_TO_NICE(current->static_prio) + increment;
4400 if (nice < -20)
4401 nice = -20;
4402 if (nice > 19)
4403 nice = 19;
4405 if (increment < 0 && !can_nice(current, nice))
4406 return -EPERM;
4408 retval = security_task_setnice(current, nice);
4409 if (retval)
4410 return retval;
4412 set_user_nice(current, nice);
4413 return 0;
4416 #endif
4419 * task_prio - return the priority value of a given task.
4420 * @p: the task in question.
4422 * This is the priority value as seen by users in /proc.
4423 * RT tasks are offset by -200. Normal tasks are centered
4424 * around 0, value goes from -16 to +15.
4426 int task_prio(const struct task_struct *p)
4428 return p->prio - MAX_RT_PRIO;
4432 * task_nice - return the nice value of a given task.
4433 * @p: the task in question.
4435 int task_nice(const struct task_struct *p)
4437 return TASK_NICE(p);
4439 EXPORT_SYMBOL_GPL(task_nice);
4442 * idle_cpu - is a given cpu idle currently?
4443 * @cpu: the processor in question.
4445 int idle_cpu(int cpu)
4447 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4451 * idle_task - return the idle task for a given cpu.
4452 * @cpu: the processor in question.
4454 struct task_struct *idle_task(int cpu)
4456 return cpu_rq(cpu)->idle;
4460 * find_process_by_pid - find a process with a matching PID value.
4461 * @pid: the pid in question.
4463 static struct task_struct *find_process_by_pid(pid_t pid)
4465 return pid ? find_task_by_vpid(pid) : current;
4468 /* Actually do priority change: must hold rq lock. */
4469 static void
4470 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4472 BUG_ON(p->se.on_rq);
4474 p->policy = policy;
4475 switch (p->policy) {
4476 case SCHED_NORMAL:
4477 case SCHED_BATCH:
4478 case SCHED_IDLE:
4479 p->sched_class = &fair_sched_class;
4480 break;
4481 case SCHED_FIFO:
4482 case SCHED_RR:
4483 p->sched_class = &rt_sched_class;
4484 break;
4487 p->rt_priority = prio;
4488 p->normal_prio = normal_prio(p);
4489 /* we are holding p->pi_lock already */
4490 p->prio = rt_mutex_getprio(p);
4491 set_load_weight(p);
4495 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4496 * @p: the task in question.
4497 * @policy: new policy.
4498 * @param: structure containing the new RT priority.
4500 * NOTE that the task may be already dead.
4502 int sched_setscheduler(struct task_struct *p, int policy,
4503 struct sched_param *param)
4505 int retval, oldprio, oldpolicy = -1, on_rq, running;
4506 unsigned long flags;
4507 const struct sched_class *prev_class = p->sched_class;
4508 struct rq *rq;
4510 /* may grab non-irq protected spin_locks */
4511 BUG_ON(in_interrupt());
4512 recheck:
4513 /* double check policy once rq lock held */
4514 if (policy < 0)
4515 policy = oldpolicy = p->policy;
4516 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4517 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4518 policy != SCHED_IDLE)
4519 return -EINVAL;
4521 * Valid priorities for SCHED_FIFO and SCHED_RR are
4522 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4523 * SCHED_BATCH and SCHED_IDLE is 0.
4525 if (param->sched_priority < 0 ||
4526 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4527 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4528 return -EINVAL;
4529 if (rt_policy(policy) != (param->sched_priority != 0))
4530 return -EINVAL;
4533 * Allow unprivileged RT tasks to decrease priority:
4535 if (!capable(CAP_SYS_NICE)) {
4536 if (rt_policy(policy)) {
4537 unsigned long rlim_rtprio;
4539 if (!lock_task_sighand(p, &flags))
4540 return -ESRCH;
4541 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4542 unlock_task_sighand(p, &flags);
4544 /* can't set/change the rt policy */
4545 if (policy != p->policy && !rlim_rtprio)
4546 return -EPERM;
4548 /* can't increase priority */
4549 if (param->sched_priority > p->rt_priority &&
4550 param->sched_priority > rlim_rtprio)
4551 return -EPERM;
4554 * Like positive nice levels, dont allow tasks to
4555 * move out of SCHED_IDLE either:
4557 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4558 return -EPERM;
4560 /* can't change other user's priorities */
4561 if ((current->euid != p->euid) &&
4562 (current->euid != p->uid))
4563 return -EPERM;
4566 retval = security_task_setscheduler(p, policy, param);
4567 if (retval)
4568 return retval;
4570 * make sure no PI-waiters arrive (or leave) while we are
4571 * changing the priority of the task:
4573 spin_lock_irqsave(&p->pi_lock, flags);
4575 * To be able to change p->policy safely, the apropriate
4576 * runqueue lock must be held.
4578 rq = __task_rq_lock(p);
4579 /* recheck policy now with rq lock held */
4580 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4581 policy = oldpolicy = -1;
4582 __task_rq_unlock(rq);
4583 spin_unlock_irqrestore(&p->pi_lock, flags);
4584 goto recheck;
4586 update_rq_clock(rq);
4587 on_rq = p->se.on_rq;
4588 running = task_current(rq, p);
4589 if (on_rq) {
4590 deactivate_task(rq, p, 0);
4591 if (running)
4592 p->sched_class->put_prev_task(rq, p);
4595 oldprio = p->prio;
4596 __setscheduler(rq, p, policy, param->sched_priority);
4598 if (on_rq) {
4599 if (running)
4600 p->sched_class->set_curr_task(rq);
4602 activate_task(rq, p, 0);
4604 check_class_changed(rq, p, prev_class, oldprio, running);
4606 __task_rq_unlock(rq);
4607 spin_unlock_irqrestore(&p->pi_lock, flags);
4609 rt_mutex_adjust_pi(p);
4611 return 0;
4613 EXPORT_SYMBOL_GPL(sched_setscheduler);
4615 static int
4616 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4618 struct sched_param lparam;
4619 struct task_struct *p;
4620 int retval;
4622 if (!param || pid < 0)
4623 return -EINVAL;
4624 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4625 return -EFAULT;
4627 rcu_read_lock();
4628 retval = -ESRCH;
4629 p = find_process_by_pid(pid);
4630 if (p != NULL)
4631 retval = sched_setscheduler(p, policy, &lparam);
4632 rcu_read_unlock();
4634 return retval;
4638 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4639 * @pid: the pid in question.
4640 * @policy: new policy.
4641 * @param: structure containing the new RT priority.
4643 asmlinkage long
4644 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4646 /* negative values for policy are not valid */
4647 if (policy < 0)
4648 return -EINVAL;
4650 return do_sched_setscheduler(pid, policy, param);
4654 * sys_sched_setparam - set/change the RT priority of a thread
4655 * @pid: the pid in question.
4656 * @param: structure containing the new RT priority.
4658 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4660 return do_sched_setscheduler(pid, -1, param);
4664 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4665 * @pid: the pid in question.
4667 asmlinkage long sys_sched_getscheduler(pid_t pid)
4669 struct task_struct *p;
4670 int retval;
4672 if (pid < 0)
4673 return -EINVAL;
4675 retval = -ESRCH;
4676 read_lock(&tasklist_lock);
4677 p = find_process_by_pid(pid);
4678 if (p) {
4679 retval = security_task_getscheduler(p);
4680 if (!retval)
4681 retval = p->policy;
4683 read_unlock(&tasklist_lock);
4684 return retval;
4688 * sys_sched_getscheduler - get the RT priority of a thread
4689 * @pid: the pid in question.
4690 * @param: structure containing the RT priority.
4692 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4694 struct sched_param lp;
4695 struct task_struct *p;
4696 int retval;
4698 if (!param || pid < 0)
4699 return -EINVAL;
4701 read_lock(&tasklist_lock);
4702 p = find_process_by_pid(pid);
4703 retval = -ESRCH;
4704 if (!p)
4705 goto out_unlock;
4707 retval = security_task_getscheduler(p);
4708 if (retval)
4709 goto out_unlock;
4711 lp.sched_priority = p->rt_priority;
4712 read_unlock(&tasklist_lock);
4715 * This one might sleep, we cannot do it with a spinlock held ...
4717 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4719 return retval;
4721 out_unlock:
4722 read_unlock(&tasklist_lock);
4723 return retval;
4726 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4728 cpumask_t cpus_allowed;
4729 struct task_struct *p;
4730 int retval;
4732 get_online_cpus();
4733 read_lock(&tasklist_lock);
4735 p = find_process_by_pid(pid);
4736 if (!p) {
4737 read_unlock(&tasklist_lock);
4738 put_online_cpus();
4739 return -ESRCH;
4743 * It is not safe to call set_cpus_allowed with the
4744 * tasklist_lock held. We will bump the task_struct's
4745 * usage count and then drop tasklist_lock.
4747 get_task_struct(p);
4748 read_unlock(&tasklist_lock);
4750 retval = -EPERM;
4751 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4752 !capable(CAP_SYS_NICE))
4753 goto out_unlock;
4755 retval = security_task_setscheduler(p, 0, NULL);
4756 if (retval)
4757 goto out_unlock;
4759 cpus_allowed = cpuset_cpus_allowed(p);
4760 cpus_and(new_mask, new_mask, cpus_allowed);
4761 again:
4762 retval = set_cpus_allowed(p, new_mask);
4764 if (!retval) {
4765 cpus_allowed = cpuset_cpus_allowed(p);
4766 if (!cpus_subset(new_mask, cpus_allowed)) {
4768 * We must have raced with a concurrent cpuset
4769 * update. Just reset the cpus_allowed to the
4770 * cpuset's cpus_allowed
4772 new_mask = cpus_allowed;
4773 goto again;
4776 out_unlock:
4777 put_task_struct(p);
4778 put_online_cpus();
4779 return retval;
4782 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4783 cpumask_t *new_mask)
4785 if (len < sizeof(cpumask_t)) {
4786 memset(new_mask, 0, sizeof(cpumask_t));
4787 } else if (len > sizeof(cpumask_t)) {
4788 len = sizeof(cpumask_t);
4790 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4794 * sys_sched_setaffinity - set the cpu affinity of a process
4795 * @pid: pid of the process
4796 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4797 * @user_mask_ptr: user-space pointer to the new cpu mask
4799 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4800 unsigned long __user *user_mask_ptr)
4802 cpumask_t new_mask;
4803 int retval;
4805 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4806 if (retval)
4807 return retval;
4809 return sched_setaffinity(pid, new_mask);
4813 * Represents all cpu's present in the system
4814 * In systems capable of hotplug, this map could dynamically grow
4815 * as new cpu's are detected in the system via any platform specific
4816 * method, such as ACPI for e.g.
4819 cpumask_t cpu_present_map __read_mostly;
4820 EXPORT_SYMBOL(cpu_present_map);
4822 #ifndef CONFIG_SMP
4823 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4824 EXPORT_SYMBOL(cpu_online_map);
4826 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4827 EXPORT_SYMBOL(cpu_possible_map);
4828 #endif
4830 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4832 struct task_struct *p;
4833 int retval;
4835 get_online_cpus();
4836 read_lock(&tasklist_lock);
4838 retval = -ESRCH;
4839 p = find_process_by_pid(pid);
4840 if (!p)
4841 goto out_unlock;
4843 retval = security_task_getscheduler(p);
4844 if (retval)
4845 goto out_unlock;
4847 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4849 out_unlock:
4850 read_unlock(&tasklist_lock);
4851 put_online_cpus();
4853 return retval;
4857 * sys_sched_getaffinity - get the cpu affinity of a process
4858 * @pid: pid of the process
4859 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4860 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4862 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4863 unsigned long __user *user_mask_ptr)
4865 int ret;
4866 cpumask_t mask;
4868 if (len < sizeof(cpumask_t))
4869 return -EINVAL;
4871 ret = sched_getaffinity(pid, &mask);
4872 if (ret < 0)
4873 return ret;
4875 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4876 return -EFAULT;
4878 return sizeof(cpumask_t);
4882 * sys_sched_yield - yield the current processor to other threads.
4884 * This function yields the current CPU to other tasks. If there are no
4885 * other threads running on this CPU then this function will return.
4887 asmlinkage long sys_sched_yield(void)
4889 struct rq *rq = this_rq_lock();
4891 schedstat_inc(rq, yld_count);
4892 current->sched_class->yield_task(rq);
4895 * Since we are going to call schedule() anyway, there's
4896 * no need to preempt or enable interrupts:
4898 __release(rq->lock);
4899 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4900 _raw_spin_unlock(&rq->lock);
4901 preempt_enable_no_resched();
4903 schedule();
4905 return 0;
4908 static void __cond_resched(void)
4910 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4911 __might_sleep(__FILE__, __LINE__);
4912 #endif
4914 * The BKS might be reacquired before we have dropped
4915 * PREEMPT_ACTIVE, which could trigger a second
4916 * cond_resched() call.
4918 do {
4919 add_preempt_count(PREEMPT_ACTIVE);
4920 schedule();
4921 sub_preempt_count(PREEMPT_ACTIVE);
4922 } while (need_resched());
4925 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4926 int __sched _cond_resched(void)
4928 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4929 system_state == SYSTEM_RUNNING) {
4930 __cond_resched();
4931 return 1;
4933 return 0;
4935 EXPORT_SYMBOL(_cond_resched);
4936 #endif
4939 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4940 * call schedule, and on return reacquire the lock.
4942 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4943 * operations here to prevent schedule() from being called twice (once via
4944 * spin_unlock(), once by hand).
4946 int cond_resched_lock(spinlock_t *lock)
4948 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4949 int ret = 0;
4951 if (spin_needbreak(lock) || resched) {
4952 spin_unlock(lock);
4953 if (resched && need_resched())
4954 __cond_resched();
4955 else
4956 cpu_relax();
4957 ret = 1;
4958 spin_lock(lock);
4960 return ret;
4962 EXPORT_SYMBOL(cond_resched_lock);
4964 int __sched cond_resched_softirq(void)
4966 BUG_ON(!in_softirq());
4968 if (need_resched() && system_state == SYSTEM_RUNNING) {
4969 local_bh_enable();
4970 __cond_resched();
4971 local_bh_disable();
4972 return 1;
4974 return 0;
4976 EXPORT_SYMBOL(cond_resched_softirq);
4979 * yield - yield the current processor to other threads.
4981 * This is a shortcut for kernel-space yielding - it marks the
4982 * thread runnable and calls sys_sched_yield().
4984 void __sched yield(void)
4986 set_current_state(TASK_RUNNING);
4987 sys_sched_yield();
4989 EXPORT_SYMBOL(yield);
4992 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4993 * that process accounting knows that this is a task in IO wait state.
4995 * But don't do that if it is a deliberate, throttling IO wait (this task
4996 * has set its backing_dev_info: the queue against which it should throttle)
4998 void __sched io_schedule(void)
5000 struct rq *rq = &__raw_get_cpu_var(runqueues);
5002 delayacct_blkio_start();
5003 atomic_inc(&rq->nr_iowait);
5004 schedule();
5005 atomic_dec(&rq->nr_iowait);
5006 delayacct_blkio_end();
5008 EXPORT_SYMBOL(io_schedule);
5010 long __sched io_schedule_timeout(long timeout)
5012 struct rq *rq = &__raw_get_cpu_var(runqueues);
5013 long ret;
5015 delayacct_blkio_start();
5016 atomic_inc(&rq->nr_iowait);
5017 ret = schedule_timeout(timeout);
5018 atomic_dec(&rq->nr_iowait);
5019 delayacct_blkio_end();
5020 return ret;
5024 * sys_sched_get_priority_max - return maximum RT priority.
5025 * @policy: scheduling class.
5027 * this syscall returns the maximum rt_priority that can be used
5028 * by a given scheduling class.
5030 asmlinkage long sys_sched_get_priority_max(int policy)
5032 int ret = -EINVAL;
5034 switch (policy) {
5035 case SCHED_FIFO:
5036 case SCHED_RR:
5037 ret = MAX_USER_RT_PRIO-1;
5038 break;
5039 case SCHED_NORMAL:
5040 case SCHED_BATCH:
5041 case SCHED_IDLE:
5042 ret = 0;
5043 break;
5045 return ret;
5049 * sys_sched_get_priority_min - return minimum RT priority.
5050 * @policy: scheduling class.
5052 * this syscall returns the minimum rt_priority that can be used
5053 * by a given scheduling class.
5055 asmlinkage long sys_sched_get_priority_min(int policy)
5057 int ret = -EINVAL;
5059 switch (policy) {
5060 case SCHED_FIFO:
5061 case SCHED_RR:
5062 ret = 1;
5063 break;
5064 case SCHED_NORMAL:
5065 case SCHED_BATCH:
5066 case SCHED_IDLE:
5067 ret = 0;
5069 return ret;
5073 * sys_sched_rr_get_interval - return the default timeslice of a process.
5074 * @pid: pid of the process.
5075 * @interval: userspace pointer to the timeslice value.
5077 * this syscall writes the default timeslice value of a given process
5078 * into the user-space timespec buffer. A value of '0' means infinity.
5080 asmlinkage
5081 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5083 struct task_struct *p;
5084 unsigned int time_slice;
5085 int retval;
5086 struct timespec t;
5088 if (pid < 0)
5089 return -EINVAL;
5091 retval = -ESRCH;
5092 read_lock(&tasklist_lock);
5093 p = find_process_by_pid(pid);
5094 if (!p)
5095 goto out_unlock;
5097 retval = security_task_getscheduler(p);
5098 if (retval)
5099 goto out_unlock;
5102 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5103 * tasks that are on an otherwise idle runqueue:
5105 time_slice = 0;
5106 if (p->policy == SCHED_RR) {
5107 time_slice = DEF_TIMESLICE;
5108 } else {
5109 struct sched_entity *se = &p->se;
5110 unsigned long flags;
5111 struct rq *rq;
5113 rq = task_rq_lock(p, &flags);
5114 if (rq->cfs.load.weight)
5115 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5116 task_rq_unlock(rq, &flags);
5118 read_unlock(&tasklist_lock);
5119 jiffies_to_timespec(time_slice, &t);
5120 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5121 return retval;
5123 out_unlock:
5124 read_unlock(&tasklist_lock);
5125 return retval;
5128 static const char stat_nam[] = "RSDTtZX";
5130 void sched_show_task(struct task_struct *p)
5132 unsigned long free = 0;
5133 unsigned state;
5135 state = p->state ? __ffs(p->state) + 1 : 0;
5136 printk(KERN_INFO "%-13.13s %c", p->comm,
5137 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5138 #if BITS_PER_LONG == 32
5139 if (state == TASK_RUNNING)
5140 printk(KERN_CONT " running ");
5141 else
5142 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5143 #else
5144 if (state == TASK_RUNNING)
5145 printk(KERN_CONT " running task ");
5146 else
5147 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5148 #endif
5149 #ifdef CONFIG_DEBUG_STACK_USAGE
5151 unsigned long *n = end_of_stack(p);
5152 while (!*n)
5153 n++;
5154 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5156 #endif
5157 printk(KERN_CONT "%5lu %5d %6d\n", free,
5158 task_pid_nr(p), task_pid_nr(p->real_parent));
5160 show_stack(p, NULL);
5163 void show_state_filter(unsigned long state_filter)
5165 struct task_struct *g, *p;
5167 #if BITS_PER_LONG == 32
5168 printk(KERN_INFO
5169 " task PC stack pid father\n");
5170 #else
5171 printk(KERN_INFO
5172 " task PC stack pid father\n");
5173 #endif
5174 read_lock(&tasklist_lock);
5175 do_each_thread(g, p) {
5177 * reset the NMI-timeout, listing all files on a slow
5178 * console might take alot of time:
5180 touch_nmi_watchdog();
5181 if (!state_filter || (p->state & state_filter))
5182 sched_show_task(p);
5183 } while_each_thread(g, p);
5185 touch_all_softlockup_watchdogs();
5187 #ifdef CONFIG_SCHED_DEBUG
5188 sysrq_sched_debug_show();
5189 #endif
5190 read_unlock(&tasklist_lock);
5192 * Only show locks if all tasks are dumped:
5194 if (state_filter == -1)
5195 debug_show_all_locks();
5198 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5200 idle->sched_class = &idle_sched_class;
5204 * init_idle - set up an idle thread for a given CPU
5205 * @idle: task in question
5206 * @cpu: cpu the idle task belongs to
5208 * NOTE: this function does not set the idle thread's NEED_RESCHED
5209 * flag, to make booting more robust.
5211 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5213 struct rq *rq = cpu_rq(cpu);
5214 unsigned long flags;
5216 __sched_fork(idle);
5217 idle->se.exec_start = sched_clock();
5219 idle->prio = idle->normal_prio = MAX_PRIO;
5220 idle->cpus_allowed = cpumask_of_cpu(cpu);
5221 __set_task_cpu(idle, cpu);
5223 spin_lock_irqsave(&rq->lock, flags);
5224 rq->curr = rq->idle = idle;
5225 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5226 idle->oncpu = 1;
5227 #endif
5228 spin_unlock_irqrestore(&rq->lock, flags);
5230 /* Set the preempt count _outside_ the spinlocks! */
5231 task_thread_info(idle)->preempt_count = 0;
5234 * The idle tasks have their own, simple scheduling class:
5236 idle->sched_class = &idle_sched_class;
5240 * In a system that switches off the HZ timer nohz_cpu_mask
5241 * indicates which cpus entered this state. This is used
5242 * in the rcu update to wait only for active cpus. For system
5243 * which do not switch off the HZ timer nohz_cpu_mask should
5244 * always be CPU_MASK_NONE.
5246 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5249 * Increase the granularity value when there are more CPUs,
5250 * because with more CPUs the 'effective latency' as visible
5251 * to users decreases. But the relationship is not linear,
5252 * so pick a second-best guess by going with the log2 of the
5253 * number of CPUs.
5255 * This idea comes from the SD scheduler of Con Kolivas:
5257 static inline void sched_init_granularity(void)
5259 unsigned int factor = 1 + ilog2(num_online_cpus());
5260 const unsigned long limit = 200000000;
5262 sysctl_sched_min_granularity *= factor;
5263 if (sysctl_sched_min_granularity > limit)
5264 sysctl_sched_min_granularity = limit;
5266 sysctl_sched_latency *= factor;
5267 if (sysctl_sched_latency > limit)
5268 sysctl_sched_latency = limit;
5270 sysctl_sched_wakeup_granularity *= factor;
5271 sysctl_sched_batch_wakeup_granularity *= factor;
5274 #ifdef CONFIG_SMP
5276 * This is how migration works:
5278 * 1) we queue a struct migration_req structure in the source CPU's
5279 * runqueue and wake up that CPU's migration thread.
5280 * 2) we down() the locked semaphore => thread blocks.
5281 * 3) migration thread wakes up (implicitly it forces the migrated
5282 * thread off the CPU)
5283 * 4) it gets the migration request and checks whether the migrated
5284 * task is still in the wrong runqueue.
5285 * 5) if it's in the wrong runqueue then the migration thread removes
5286 * it and puts it into the right queue.
5287 * 6) migration thread up()s the semaphore.
5288 * 7) we wake up and the migration is done.
5292 * Change a given task's CPU affinity. Migrate the thread to a
5293 * proper CPU and schedule it away if the CPU it's executing on
5294 * is removed from the allowed bitmask.
5296 * NOTE: the caller must have a valid reference to the task, the
5297 * task must not exit() & deallocate itself prematurely. The
5298 * call is not atomic; no spinlocks may be held.
5300 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5302 struct migration_req req;
5303 unsigned long flags;
5304 struct rq *rq;
5305 int ret = 0;
5307 rq = task_rq_lock(p, &flags);
5308 if (!cpus_intersects(new_mask, cpu_online_map)) {
5309 ret = -EINVAL;
5310 goto out;
5313 if (p->sched_class->set_cpus_allowed)
5314 p->sched_class->set_cpus_allowed(p, &new_mask);
5315 else {
5316 p->cpus_allowed = new_mask;
5317 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5320 /* Can the task run on the task's current CPU? If so, we're done */
5321 if (cpu_isset(task_cpu(p), new_mask))
5322 goto out;
5324 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5325 /* Need help from migration thread: drop lock and wait. */
5326 task_rq_unlock(rq, &flags);
5327 wake_up_process(rq->migration_thread);
5328 wait_for_completion(&req.done);
5329 tlb_migrate_finish(p->mm);
5330 return 0;
5332 out:
5333 task_rq_unlock(rq, &flags);
5335 return ret;
5337 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5340 * Move (not current) task off this cpu, onto dest cpu. We're doing
5341 * this because either it can't run here any more (set_cpus_allowed()
5342 * away from this CPU, or CPU going down), or because we're
5343 * attempting to rebalance this task on exec (sched_exec).
5345 * So we race with normal scheduler movements, but that's OK, as long
5346 * as the task is no longer on this CPU.
5348 * Returns non-zero if task was successfully migrated.
5350 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5352 struct rq *rq_dest, *rq_src;
5353 int ret = 0, on_rq;
5355 if (unlikely(cpu_is_offline(dest_cpu)))
5356 return ret;
5358 rq_src = cpu_rq(src_cpu);
5359 rq_dest = cpu_rq(dest_cpu);
5361 double_rq_lock(rq_src, rq_dest);
5362 /* Already moved. */
5363 if (task_cpu(p) != src_cpu)
5364 goto out;
5365 /* Affinity changed (again). */
5366 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5367 goto out;
5369 on_rq = p->se.on_rq;
5370 if (on_rq)
5371 deactivate_task(rq_src, p, 0);
5373 set_task_cpu(p, dest_cpu);
5374 if (on_rq) {
5375 activate_task(rq_dest, p, 0);
5376 check_preempt_curr(rq_dest, p);
5378 ret = 1;
5379 out:
5380 double_rq_unlock(rq_src, rq_dest);
5381 return ret;
5385 * migration_thread - this is a highprio system thread that performs
5386 * thread migration by bumping thread off CPU then 'pushing' onto
5387 * another runqueue.
5389 static int migration_thread(void *data)
5391 int cpu = (long)data;
5392 struct rq *rq;
5394 rq = cpu_rq(cpu);
5395 BUG_ON(rq->migration_thread != current);
5397 set_current_state(TASK_INTERRUPTIBLE);
5398 while (!kthread_should_stop()) {
5399 struct migration_req *req;
5400 struct list_head *head;
5402 spin_lock_irq(&rq->lock);
5404 if (cpu_is_offline(cpu)) {
5405 spin_unlock_irq(&rq->lock);
5406 goto wait_to_die;
5409 if (rq->active_balance) {
5410 active_load_balance(rq, cpu);
5411 rq->active_balance = 0;
5414 head = &rq->migration_queue;
5416 if (list_empty(head)) {
5417 spin_unlock_irq(&rq->lock);
5418 schedule();
5419 set_current_state(TASK_INTERRUPTIBLE);
5420 continue;
5422 req = list_entry(head->next, struct migration_req, list);
5423 list_del_init(head->next);
5425 spin_unlock(&rq->lock);
5426 __migrate_task(req->task, cpu, req->dest_cpu);
5427 local_irq_enable();
5429 complete(&req->done);
5431 __set_current_state(TASK_RUNNING);
5432 return 0;
5434 wait_to_die:
5435 /* Wait for kthread_stop */
5436 set_current_state(TASK_INTERRUPTIBLE);
5437 while (!kthread_should_stop()) {
5438 schedule();
5439 set_current_state(TASK_INTERRUPTIBLE);
5441 __set_current_state(TASK_RUNNING);
5442 return 0;
5445 #ifdef CONFIG_HOTPLUG_CPU
5447 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5449 int ret;
5451 local_irq_disable();
5452 ret = __migrate_task(p, src_cpu, dest_cpu);
5453 local_irq_enable();
5454 return ret;
5458 * Figure out where task on dead CPU should go, use force if necessary.
5459 * NOTE: interrupts should be disabled by the caller
5461 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5463 unsigned long flags;
5464 cpumask_t mask;
5465 struct rq *rq;
5466 int dest_cpu;
5468 do {
5469 /* On same node? */
5470 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5471 cpus_and(mask, mask, p->cpus_allowed);
5472 dest_cpu = any_online_cpu(mask);
5474 /* On any allowed CPU? */
5475 if (dest_cpu == NR_CPUS)
5476 dest_cpu = any_online_cpu(p->cpus_allowed);
5478 /* No more Mr. Nice Guy. */
5479 if (dest_cpu == NR_CPUS) {
5480 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5482 * Try to stay on the same cpuset, where the
5483 * current cpuset may be a subset of all cpus.
5484 * The cpuset_cpus_allowed_locked() variant of
5485 * cpuset_cpus_allowed() will not block. It must be
5486 * called within calls to cpuset_lock/cpuset_unlock.
5488 rq = task_rq_lock(p, &flags);
5489 p->cpus_allowed = cpus_allowed;
5490 dest_cpu = any_online_cpu(p->cpus_allowed);
5491 task_rq_unlock(rq, &flags);
5494 * Don't tell them about moving exiting tasks or
5495 * kernel threads (both mm NULL), since they never
5496 * leave kernel.
5498 if (p->mm && printk_ratelimit()) {
5499 printk(KERN_INFO "process %d (%s) no "
5500 "longer affine to cpu%d\n",
5501 task_pid_nr(p), p->comm, dead_cpu);
5504 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5508 * While a dead CPU has no uninterruptible tasks queued at this point,
5509 * it might still have a nonzero ->nr_uninterruptible counter, because
5510 * for performance reasons the counter is not stricly tracking tasks to
5511 * their home CPUs. So we just add the counter to another CPU's counter,
5512 * to keep the global sum constant after CPU-down:
5514 static void migrate_nr_uninterruptible(struct rq *rq_src)
5516 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5517 unsigned long flags;
5519 local_irq_save(flags);
5520 double_rq_lock(rq_src, rq_dest);
5521 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5522 rq_src->nr_uninterruptible = 0;
5523 double_rq_unlock(rq_src, rq_dest);
5524 local_irq_restore(flags);
5527 /* Run through task list and migrate tasks from the dead cpu. */
5528 static void migrate_live_tasks(int src_cpu)
5530 struct task_struct *p, *t;
5532 read_lock(&tasklist_lock);
5534 do_each_thread(t, p) {
5535 if (p == current)
5536 continue;
5538 if (task_cpu(p) == src_cpu)
5539 move_task_off_dead_cpu(src_cpu, p);
5540 } while_each_thread(t, p);
5542 read_unlock(&tasklist_lock);
5546 * Schedules idle task to be the next runnable task on current CPU.
5547 * It does so by boosting its priority to highest possible.
5548 * Used by CPU offline code.
5550 void sched_idle_next(void)
5552 int this_cpu = smp_processor_id();
5553 struct rq *rq = cpu_rq(this_cpu);
5554 struct task_struct *p = rq->idle;
5555 unsigned long flags;
5557 /* cpu has to be offline */
5558 BUG_ON(cpu_online(this_cpu));
5561 * Strictly not necessary since rest of the CPUs are stopped by now
5562 * and interrupts disabled on the current cpu.
5564 spin_lock_irqsave(&rq->lock, flags);
5566 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5568 update_rq_clock(rq);
5569 activate_task(rq, p, 0);
5571 spin_unlock_irqrestore(&rq->lock, flags);
5575 * Ensures that the idle task is using init_mm right before its cpu goes
5576 * offline.
5578 void idle_task_exit(void)
5580 struct mm_struct *mm = current->active_mm;
5582 BUG_ON(cpu_online(smp_processor_id()));
5584 if (mm != &init_mm)
5585 switch_mm(mm, &init_mm, current);
5586 mmdrop(mm);
5589 /* called under rq->lock with disabled interrupts */
5590 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5592 struct rq *rq = cpu_rq(dead_cpu);
5594 /* Must be exiting, otherwise would be on tasklist. */
5595 BUG_ON(!p->exit_state);
5597 /* Cannot have done final schedule yet: would have vanished. */
5598 BUG_ON(p->state == TASK_DEAD);
5600 get_task_struct(p);
5603 * Drop lock around migration; if someone else moves it,
5604 * that's OK. No task can be added to this CPU, so iteration is
5605 * fine.
5607 spin_unlock_irq(&rq->lock);
5608 move_task_off_dead_cpu(dead_cpu, p);
5609 spin_lock_irq(&rq->lock);
5611 put_task_struct(p);
5614 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5615 static void migrate_dead_tasks(unsigned int dead_cpu)
5617 struct rq *rq = cpu_rq(dead_cpu);
5618 struct task_struct *next;
5620 for ( ; ; ) {
5621 if (!rq->nr_running)
5622 break;
5623 update_rq_clock(rq);
5624 next = pick_next_task(rq, rq->curr);
5625 if (!next)
5626 break;
5627 migrate_dead(dead_cpu, next);
5631 #endif /* CONFIG_HOTPLUG_CPU */
5633 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5635 static struct ctl_table sd_ctl_dir[] = {
5637 .procname = "sched_domain",
5638 .mode = 0555,
5640 {0, },
5643 static struct ctl_table sd_ctl_root[] = {
5645 .ctl_name = CTL_KERN,
5646 .procname = "kernel",
5647 .mode = 0555,
5648 .child = sd_ctl_dir,
5650 {0, },
5653 static struct ctl_table *sd_alloc_ctl_entry(int n)
5655 struct ctl_table *entry =
5656 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5658 return entry;
5661 static void sd_free_ctl_entry(struct ctl_table **tablep)
5663 struct ctl_table *entry;
5666 * In the intermediate directories, both the child directory and
5667 * procname are dynamically allocated and could fail but the mode
5668 * will always be set. In the lowest directory the names are
5669 * static strings and all have proc handlers.
5671 for (entry = *tablep; entry->mode; entry++) {
5672 if (entry->child)
5673 sd_free_ctl_entry(&entry->child);
5674 if (entry->proc_handler == NULL)
5675 kfree(entry->procname);
5678 kfree(*tablep);
5679 *tablep = NULL;
5682 static void
5683 set_table_entry(struct ctl_table *entry,
5684 const char *procname, void *data, int maxlen,
5685 mode_t mode, proc_handler *proc_handler)
5687 entry->procname = procname;
5688 entry->data = data;
5689 entry->maxlen = maxlen;
5690 entry->mode = mode;
5691 entry->proc_handler = proc_handler;
5694 static struct ctl_table *
5695 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5697 struct ctl_table *table = sd_alloc_ctl_entry(12);
5699 if (table == NULL)
5700 return NULL;
5702 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5703 sizeof(long), 0644, proc_doulongvec_minmax);
5704 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5705 sizeof(long), 0644, proc_doulongvec_minmax);
5706 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5707 sizeof(int), 0644, proc_dointvec_minmax);
5708 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5709 sizeof(int), 0644, proc_dointvec_minmax);
5710 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5711 sizeof(int), 0644, proc_dointvec_minmax);
5712 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5713 sizeof(int), 0644, proc_dointvec_minmax);
5714 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5717 sizeof(int), 0644, proc_dointvec_minmax);
5718 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5719 sizeof(int), 0644, proc_dointvec_minmax);
5720 set_table_entry(&table[9], "cache_nice_tries",
5721 &sd->cache_nice_tries,
5722 sizeof(int), 0644, proc_dointvec_minmax);
5723 set_table_entry(&table[10], "flags", &sd->flags,
5724 sizeof(int), 0644, proc_dointvec_minmax);
5725 /* &table[11] is terminator */
5727 return table;
5730 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5732 struct ctl_table *entry, *table;
5733 struct sched_domain *sd;
5734 int domain_num = 0, i;
5735 char buf[32];
5737 for_each_domain(cpu, sd)
5738 domain_num++;
5739 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5740 if (table == NULL)
5741 return NULL;
5743 i = 0;
5744 for_each_domain(cpu, sd) {
5745 snprintf(buf, 32, "domain%d", i);
5746 entry->procname = kstrdup(buf, GFP_KERNEL);
5747 entry->mode = 0555;
5748 entry->child = sd_alloc_ctl_domain_table(sd);
5749 entry++;
5750 i++;
5752 return table;
5755 static struct ctl_table_header *sd_sysctl_header;
5756 static void register_sched_domain_sysctl(void)
5758 int i, cpu_num = num_online_cpus();
5759 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5760 char buf[32];
5762 WARN_ON(sd_ctl_dir[0].child);
5763 sd_ctl_dir[0].child = entry;
5765 if (entry == NULL)
5766 return;
5768 for_each_online_cpu(i) {
5769 snprintf(buf, 32, "cpu%d", i);
5770 entry->procname = kstrdup(buf, GFP_KERNEL);
5771 entry->mode = 0555;
5772 entry->child = sd_alloc_ctl_cpu_table(i);
5773 entry++;
5776 WARN_ON(sd_sysctl_header);
5777 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5780 /* may be called multiple times per register */
5781 static void unregister_sched_domain_sysctl(void)
5783 if (sd_sysctl_header)
5784 unregister_sysctl_table(sd_sysctl_header);
5785 sd_sysctl_header = NULL;
5786 if (sd_ctl_dir[0].child)
5787 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5789 #else
5790 static void register_sched_domain_sysctl(void)
5793 static void unregister_sched_domain_sysctl(void)
5796 #endif
5799 * migration_call - callback that gets triggered when a CPU is added.
5800 * Here we can start up the necessary migration thread for the new CPU.
5802 static int __cpuinit
5803 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5805 struct task_struct *p;
5806 int cpu = (long)hcpu;
5807 unsigned long flags;
5808 struct rq *rq;
5810 switch (action) {
5812 case CPU_UP_PREPARE:
5813 case CPU_UP_PREPARE_FROZEN:
5814 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5815 if (IS_ERR(p))
5816 return NOTIFY_BAD;
5817 kthread_bind(p, cpu);
5818 /* Must be high prio: stop_machine expects to yield to it. */
5819 rq = task_rq_lock(p, &flags);
5820 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5821 task_rq_unlock(rq, &flags);
5822 cpu_rq(cpu)->migration_thread = p;
5823 break;
5825 case CPU_ONLINE:
5826 case CPU_ONLINE_FROZEN:
5827 /* Strictly unnecessary, as first user will wake it. */
5828 wake_up_process(cpu_rq(cpu)->migration_thread);
5830 /* Update our root-domain */
5831 rq = cpu_rq(cpu);
5832 spin_lock_irqsave(&rq->lock, flags);
5833 if (rq->rd) {
5834 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5835 cpu_set(cpu, rq->rd->online);
5837 spin_unlock_irqrestore(&rq->lock, flags);
5838 break;
5840 #ifdef CONFIG_HOTPLUG_CPU
5841 case CPU_UP_CANCELED:
5842 case CPU_UP_CANCELED_FROZEN:
5843 if (!cpu_rq(cpu)->migration_thread)
5844 break;
5845 /* Unbind it from offline cpu so it can run. Fall thru. */
5846 kthread_bind(cpu_rq(cpu)->migration_thread,
5847 any_online_cpu(cpu_online_map));
5848 kthread_stop(cpu_rq(cpu)->migration_thread);
5849 cpu_rq(cpu)->migration_thread = NULL;
5850 break;
5852 case CPU_DEAD:
5853 case CPU_DEAD_FROZEN:
5854 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5855 migrate_live_tasks(cpu);
5856 rq = cpu_rq(cpu);
5857 kthread_stop(rq->migration_thread);
5858 rq->migration_thread = NULL;
5859 /* Idle task back to normal (off runqueue, low prio) */
5860 spin_lock_irq(&rq->lock);
5861 update_rq_clock(rq);
5862 deactivate_task(rq, rq->idle, 0);
5863 rq->idle->static_prio = MAX_PRIO;
5864 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5865 rq->idle->sched_class = &idle_sched_class;
5866 migrate_dead_tasks(cpu);
5867 spin_unlock_irq(&rq->lock);
5868 cpuset_unlock();
5869 migrate_nr_uninterruptible(rq);
5870 BUG_ON(rq->nr_running != 0);
5873 * No need to migrate the tasks: it was best-effort if
5874 * they didn't take sched_hotcpu_mutex. Just wake up
5875 * the requestors.
5877 spin_lock_irq(&rq->lock);
5878 while (!list_empty(&rq->migration_queue)) {
5879 struct migration_req *req;
5881 req = list_entry(rq->migration_queue.next,
5882 struct migration_req, list);
5883 list_del_init(&req->list);
5884 complete(&req->done);
5886 spin_unlock_irq(&rq->lock);
5887 break;
5889 case CPU_DOWN_PREPARE:
5890 /* Update our root-domain */
5891 rq = cpu_rq(cpu);
5892 spin_lock_irqsave(&rq->lock, flags);
5893 if (rq->rd) {
5894 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5895 cpu_clear(cpu, rq->rd->online);
5897 spin_unlock_irqrestore(&rq->lock, flags);
5898 break;
5899 #endif
5901 return NOTIFY_OK;
5904 /* Register at highest priority so that task migration (migrate_all_tasks)
5905 * happens before everything else.
5907 static struct notifier_block __cpuinitdata migration_notifier = {
5908 .notifier_call = migration_call,
5909 .priority = 10
5912 void __init migration_init(void)
5914 void *cpu = (void *)(long)smp_processor_id();
5915 int err;
5917 /* Start one for the boot CPU: */
5918 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5919 BUG_ON(err == NOTIFY_BAD);
5920 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5921 register_cpu_notifier(&migration_notifier);
5923 #endif
5925 #ifdef CONFIG_SMP
5927 /* Number of possible processor ids */
5928 int nr_cpu_ids __read_mostly = NR_CPUS;
5929 EXPORT_SYMBOL(nr_cpu_ids);
5931 #ifdef CONFIG_SCHED_DEBUG
5933 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5935 struct sched_group *group = sd->groups;
5936 cpumask_t groupmask;
5937 char str[NR_CPUS];
5939 cpumask_scnprintf(str, NR_CPUS, sd->span);
5940 cpus_clear(groupmask);
5942 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5944 if (!(sd->flags & SD_LOAD_BALANCE)) {
5945 printk("does not load-balance\n");
5946 if (sd->parent)
5947 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5948 " has parent");
5949 return -1;
5952 printk(KERN_CONT "span %s\n", str);
5954 if (!cpu_isset(cpu, sd->span)) {
5955 printk(KERN_ERR "ERROR: domain->span does not contain "
5956 "CPU%d\n", cpu);
5958 if (!cpu_isset(cpu, group->cpumask)) {
5959 printk(KERN_ERR "ERROR: domain->groups does not contain"
5960 " CPU%d\n", cpu);
5963 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5964 do {
5965 if (!group) {
5966 printk("\n");
5967 printk(KERN_ERR "ERROR: group is NULL\n");
5968 break;
5971 if (!group->__cpu_power) {
5972 printk(KERN_CONT "\n");
5973 printk(KERN_ERR "ERROR: domain->cpu_power not "
5974 "set\n");
5975 break;
5978 if (!cpus_weight(group->cpumask)) {
5979 printk(KERN_CONT "\n");
5980 printk(KERN_ERR "ERROR: empty group\n");
5981 break;
5984 if (cpus_intersects(groupmask, group->cpumask)) {
5985 printk(KERN_CONT "\n");
5986 printk(KERN_ERR "ERROR: repeated CPUs\n");
5987 break;
5990 cpus_or(groupmask, groupmask, group->cpumask);
5992 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5993 printk(KERN_CONT " %s", str);
5995 group = group->next;
5996 } while (group != sd->groups);
5997 printk(KERN_CONT "\n");
5999 if (!cpus_equal(sd->span, groupmask))
6000 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6002 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6003 printk(KERN_ERR "ERROR: parent span is not a superset "
6004 "of domain->span\n");
6005 return 0;
6008 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6010 int level = 0;
6012 if (!sd) {
6013 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6014 return;
6017 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6019 for (;;) {
6020 if (sched_domain_debug_one(sd, cpu, level))
6021 break;
6022 level++;
6023 sd = sd->parent;
6024 if (!sd)
6025 break;
6028 #else
6029 # define sched_domain_debug(sd, cpu) do { } while (0)
6030 #endif
6032 static int sd_degenerate(struct sched_domain *sd)
6034 if (cpus_weight(sd->span) == 1)
6035 return 1;
6037 /* Following flags need at least 2 groups */
6038 if (sd->flags & (SD_LOAD_BALANCE |
6039 SD_BALANCE_NEWIDLE |
6040 SD_BALANCE_FORK |
6041 SD_BALANCE_EXEC |
6042 SD_SHARE_CPUPOWER |
6043 SD_SHARE_PKG_RESOURCES)) {
6044 if (sd->groups != sd->groups->next)
6045 return 0;
6048 /* Following flags don't use groups */
6049 if (sd->flags & (SD_WAKE_IDLE |
6050 SD_WAKE_AFFINE |
6051 SD_WAKE_BALANCE))
6052 return 0;
6054 return 1;
6057 static int
6058 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6060 unsigned long cflags = sd->flags, pflags = parent->flags;
6062 if (sd_degenerate(parent))
6063 return 1;
6065 if (!cpus_equal(sd->span, parent->span))
6066 return 0;
6068 /* Does parent contain flags not in child? */
6069 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6070 if (cflags & SD_WAKE_AFFINE)
6071 pflags &= ~SD_WAKE_BALANCE;
6072 /* Flags needing groups don't count if only 1 group in parent */
6073 if (parent->groups == parent->groups->next) {
6074 pflags &= ~(SD_LOAD_BALANCE |
6075 SD_BALANCE_NEWIDLE |
6076 SD_BALANCE_FORK |
6077 SD_BALANCE_EXEC |
6078 SD_SHARE_CPUPOWER |
6079 SD_SHARE_PKG_RESOURCES);
6081 if (~cflags & pflags)
6082 return 0;
6084 return 1;
6087 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6089 unsigned long flags;
6090 const struct sched_class *class;
6092 spin_lock_irqsave(&rq->lock, flags);
6094 if (rq->rd) {
6095 struct root_domain *old_rd = rq->rd;
6097 for (class = sched_class_highest; class; class = class->next) {
6098 if (class->leave_domain)
6099 class->leave_domain(rq);
6102 cpu_clear(rq->cpu, old_rd->span);
6103 cpu_clear(rq->cpu, old_rd->online);
6105 if (atomic_dec_and_test(&old_rd->refcount))
6106 kfree(old_rd);
6109 atomic_inc(&rd->refcount);
6110 rq->rd = rd;
6112 cpu_set(rq->cpu, rd->span);
6113 if (cpu_isset(rq->cpu, cpu_online_map))
6114 cpu_set(rq->cpu, rd->online);
6116 for (class = sched_class_highest; class; class = class->next) {
6117 if (class->join_domain)
6118 class->join_domain(rq);
6121 spin_unlock_irqrestore(&rq->lock, flags);
6124 static void init_rootdomain(struct root_domain *rd)
6126 memset(rd, 0, sizeof(*rd));
6128 cpus_clear(rd->span);
6129 cpus_clear(rd->online);
6132 static void init_defrootdomain(void)
6134 init_rootdomain(&def_root_domain);
6135 atomic_set(&def_root_domain.refcount, 1);
6138 static struct root_domain *alloc_rootdomain(void)
6140 struct root_domain *rd;
6142 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6143 if (!rd)
6144 return NULL;
6146 init_rootdomain(rd);
6148 return rd;
6152 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6153 * hold the hotplug lock.
6155 static void
6156 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6158 struct rq *rq = cpu_rq(cpu);
6159 struct sched_domain *tmp;
6161 /* Remove the sched domains which do not contribute to scheduling. */
6162 for (tmp = sd; tmp; tmp = tmp->parent) {
6163 struct sched_domain *parent = tmp->parent;
6164 if (!parent)
6165 break;
6166 if (sd_parent_degenerate(tmp, parent)) {
6167 tmp->parent = parent->parent;
6168 if (parent->parent)
6169 parent->parent->child = tmp;
6173 if (sd && sd_degenerate(sd)) {
6174 sd = sd->parent;
6175 if (sd)
6176 sd->child = NULL;
6179 sched_domain_debug(sd, cpu);
6181 rq_attach_root(rq, rd);
6182 rcu_assign_pointer(rq->sd, sd);
6185 /* cpus with isolated domains */
6186 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6188 /* Setup the mask of cpus configured for isolated domains */
6189 static int __init isolated_cpu_setup(char *str)
6191 int ints[NR_CPUS], i;
6193 str = get_options(str, ARRAY_SIZE(ints), ints);
6194 cpus_clear(cpu_isolated_map);
6195 for (i = 1; i <= ints[0]; i++)
6196 if (ints[i] < NR_CPUS)
6197 cpu_set(ints[i], cpu_isolated_map);
6198 return 1;
6201 __setup("isolcpus=", isolated_cpu_setup);
6204 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6205 * to a function which identifies what group(along with sched group) a CPU
6206 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6207 * (due to the fact that we keep track of groups covered with a cpumask_t).
6209 * init_sched_build_groups will build a circular linked list of the groups
6210 * covered by the given span, and will set each group's ->cpumask correctly,
6211 * and ->cpu_power to 0.
6213 static void
6214 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6215 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6216 struct sched_group **sg))
6218 struct sched_group *first = NULL, *last = NULL;
6219 cpumask_t covered = CPU_MASK_NONE;
6220 int i;
6222 for_each_cpu_mask(i, span) {
6223 struct sched_group *sg;
6224 int group = group_fn(i, cpu_map, &sg);
6225 int j;
6227 if (cpu_isset(i, covered))
6228 continue;
6230 sg->cpumask = CPU_MASK_NONE;
6231 sg->__cpu_power = 0;
6233 for_each_cpu_mask(j, span) {
6234 if (group_fn(j, cpu_map, NULL) != group)
6235 continue;
6237 cpu_set(j, covered);
6238 cpu_set(j, sg->cpumask);
6240 if (!first)
6241 first = sg;
6242 if (last)
6243 last->next = sg;
6244 last = sg;
6246 last->next = first;
6249 #define SD_NODES_PER_DOMAIN 16
6251 #ifdef CONFIG_NUMA
6254 * find_next_best_node - find the next node to include in a sched_domain
6255 * @node: node whose sched_domain we're building
6256 * @used_nodes: nodes already in the sched_domain
6258 * Find the next node to include in a given scheduling domain. Simply
6259 * finds the closest node not already in the @used_nodes map.
6261 * Should use nodemask_t.
6263 static int find_next_best_node(int node, unsigned long *used_nodes)
6265 int i, n, val, min_val, best_node = 0;
6267 min_val = INT_MAX;
6269 for (i = 0; i < MAX_NUMNODES; i++) {
6270 /* Start at @node */
6271 n = (node + i) % MAX_NUMNODES;
6273 if (!nr_cpus_node(n))
6274 continue;
6276 /* Skip already used nodes */
6277 if (test_bit(n, used_nodes))
6278 continue;
6280 /* Simple min distance search */
6281 val = node_distance(node, n);
6283 if (val < min_val) {
6284 min_val = val;
6285 best_node = n;
6289 set_bit(best_node, used_nodes);
6290 return best_node;
6294 * sched_domain_node_span - get a cpumask for a node's sched_domain
6295 * @node: node whose cpumask we're constructing
6296 * @size: number of nodes to include in this span
6298 * Given a node, construct a good cpumask for its sched_domain to span. It
6299 * should be one that prevents unnecessary balancing, but also spreads tasks
6300 * out optimally.
6302 static cpumask_t sched_domain_node_span(int node)
6304 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6305 cpumask_t span, nodemask;
6306 int i;
6308 cpus_clear(span);
6309 bitmap_zero(used_nodes, MAX_NUMNODES);
6311 nodemask = node_to_cpumask(node);
6312 cpus_or(span, span, nodemask);
6313 set_bit(node, used_nodes);
6315 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6316 int next_node = find_next_best_node(node, used_nodes);
6318 nodemask = node_to_cpumask(next_node);
6319 cpus_or(span, span, nodemask);
6322 return span;
6324 #endif
6326 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6329 * SMT sched-domains:
6331 #ifdef CONFIG_SCHED_SMT
6332 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6333 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6335 static int
6336 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6338 if (sg)
6339 *sg = &per_cpu(sched_group_cpus, cpu);
6340 return cpu;
6342 #endif
6345 * multi-core sched-domains:
6347 #ifdef CONFIG_SCHED_MC
6348 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6349 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6350 #endif
6352 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6353 static int
6354 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6356 int group;
6357 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6358 cpus_and(mask, mask, *cpu_map);
6359 group = first_cpu(mask);
6360 if (sg)
6361 *sg = &per_cpu(sched_group_core, group);
6362 return group;
6364 #elif defined(CONFIG_SCHED_MC)
6365 static int
6366 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6368 if (sg)
6369 *sg = &per_cpu(sched_group_core, cpu);
6370 return cpu;
6372 #endif
6374 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6375 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6377 static int
6378 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6380 int group;
6381 #ifdef CONFIG_SCHED_MC
6382 cpumask_t mask = cpu_coregroup_map(cpu);
6383 cpus_and(mask, mask, *cpu_map);
6384 group = first_cpu(mask);
6385 #elif defined(CONFIG_SCHED_SMT)
6386 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6387 cpus_and(mask, mask, *cpu_map);
6388 group = first_cpu(mask);
6389 #else
6390 group = cpu;
6391 #endif
6392 if (sg)
6393 *sg = &per_cpu(sched_group_phys, group);
6394 return group;
6397 #ifdef CONFIG_NUMA
6399 * The init_sched_build_groups can't handle what we want to do with node
6400 * groups, so roll our own. Now each node has its own list of groups which
6401 * gets dynamically allocated.
6403 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6404 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6406 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6407 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6409 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6410 struct sched_group **sg)
6412 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6413 int group;
6415 cpus_and(nodemask, nodemask, *cpu_map);
6416 group = first_cpu(nodemask);
6418 if (sg)
6419 *sg = &per_cpu(sched_group_allnodes, group);
6420 return group;
6423 static void init_numa_sched_groups_power(struct sched_group *group_head)
6425 struct sched_group *sg = group_head;
6426 int j;
6428 if (!sg)
6429 return;
6430 do {
6431 for_each_cpu_mask(j, sg->cpumask) {
6432 struct sched_domain *sd;
6434 sd = &per_cpu(phys_domains, j);
6435 if (j != first_cpu(sd->groups->cpumask)) {
6437 * Only add "power" once for each
6438 * physical package.
6440 continue;
6443 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6445 sg = sg->next;
6446 } while (sg != group_head);
6448 #endif
6450 #ifdef CONFIG_NUMA
6451 /* Free memory allocated for various sched_group structures */
6452 static void free_sched_groups(const cpumask_t *cpu_map)
6454 int cpu, i;
6456 for_each_cpu_mask(cpu, *cpu_map) {
6457 struct sched_group **sched_group_nodes
6458 = sched_group_nodes_bycpu[cpu];
6460 if (!sched_group_nodes)
6461 continue;
6463 for (i = 0; i < MAX_NUMNODES; i++) {
6464 cpumask_t nodemask = node_to_cpumask(i);
6465 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6467 cpus_and(nodemask, nodemask, *cpu_map);
6468 if (cpus_empty(nodemask))
6469 continue;
6471 if (sg == NULL)
6472 continue;
6473 sg = sg->next;
6474 next_sg:
6475 oldsg = sg;
6476 sg = sg->next;
6477 kfree(oldsg);
6478 if (oldsg != sched_group_nodes[i])
6479 goto next_sg;
6481 kfree(sched_group_nodes);
6482 sched_group_nodes_bycpu[cpu] = NULL;
6485 #else
6486 static void free_sched_groups(const cpumask_t *cpu_map)
6489 #endif
6492 * Initialize sched groups cpu_power.
6494 * cpu_power indicates the capacity of sched group, which is used while
6495 * distributing the load between different sched groups in a sched domain.
6496 * Typically cpu_power for all the groups in a sched domain will be same unless
6497 * there are asymmetries in the topology. If there are asymmetries, group
6498 * having more cpu_power will pickup more load compared to the group having
6499 * less cpu_power.
6501 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6502 * the maximum number of tasks a group can handle in the presence of other idle
6503 * or lightly loaded groups in the same sched domain.
6505 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6507 struct sched_domain *child;
6508 struct sched_group *group;
6510 WARN_ON(!sd || !sd->groups);
6512 if (cpu != first_cpu(sd->groups->cpumask))
6513 return;
6515 child = sd->child;
6517 sd->groups->__cpu_power = 0;
6520 * For perf policy, if the groups in child domain share resources
6521 * (for example cores sharing some portions of the cache hierarchy
6522 * or SMT), then set this domain groups cpu_power such that each group
6523 * can handle only one task, when there are other idle groups in the
6524 * same sched domain.
6526 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6527 (child->flags &
6528 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6529 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6530 return;
6534 * add cpu_power of each child group to this groups cpu_power
6536 group = child->groups;
6537 do {
6538 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6539 group = group->next;
6540 } while (group != child->groups);
6544 * Build sched domains for a given set of cpus and attach the sched domains
6545 * to the individual cpus
6547 static int build_sched_domains(const cpumask_t *cpu_map)
6549 int i;
6550 struct root_domain *rd;
6551 #ifdef CONFIG_NUMA
6552 struct sched_group **sched_group_nodes = NULL;
6553 int sd_allnodes = 0;
6556 * Allocate the per-node list of sched groups
6558 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6559 GFP_KERNEL);
6560 if (!sched_group_nodes) {
6561 printk(KERN_WARNING "Can not alloc sched group node list\n");
6562 return -ENOMEM;
6564 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6565 #endif
6567 rd = alloc_rootdomain();
6568 if (!rd) {
6569 printk(KERN_WARNING "Cannot alloc root domain\n");
6570 return -ENOMEM;
6574 * Set up domains for cpus specified by the cpu_map.
6576 for_each_cpu_mask(i, *cpu_map) {
6577 struct sched_domain *sd = NULL, *p;
6578 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6580 cpus_and(nodemask, nodemask, *cpu_map);
6582 #ifdef CONFIG_NUMA
6583 if (cpus_weight(*cpu_map) >
6584 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6585 sd = &per_cpu(allnodes_domains, i);
6586 *sd = SD_ALLNODES_INIT;
6587 sd->span = *cpu_map;
6588 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6589 p = sd;
6590 sd_allnodes = 1;
6591 } else
6592 p = NULL;
6594 sd = &per_cpu(node_domains, i);
6595 *sd = SD_NODE_INIT;
6596 sd->span = sched_domain_node_span(cpu_to_node(i));
6597 sd->parent = p;
6598 if (p)
6599 p->child = sd;
6600 cpus_and(sd->span, sd->span, *cpu_map);
6601 #endif
6603 p = sd;
6604 sd = &per_cpu(phys_domains, i);
6605 *sd = SD_CPU_INIT;
6606 sd->span = nodemask;
6607 sd->parent = p;
6608 if (p)
6609 p->child = sd;
6610 cpu_to_phys_group(i, cpu_map, &sd->groups);
6612 #ifdef CONFIG_SCHED_MC
6613 p = sd;
6614 sd = &per_cpu(core_domains, i);
6615 *sd = SD_MC_INIT;
6616 sd->span = cpu_coregroup_map(i);
6617 cpus_and(sd->span, sd->span, *cpu_map);
6618 sd->parent = p;
6619 p->child = sd;
6620 cpu_to_core_group(i, cpu_map, &sd->groups);
6621 #endif
6623 #ifdef CONFIG_SCHED_SMT
6624 p = sd;
6625 sd = &per_cpu(cpu_domains, i);
6626 *sd = SD_SIBLING_INIT;
6627 sd->span = per_cpu(cpu_sibling_map, i);
6628 cpus_and(sd->span, sd->span, *cpu_map);
6629 sd->parent = p;
6630 p->child = sd;
6631 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6632 #endif
6635 #ifdef CONFIG_SCHED_SMT
6636 /* Set up CPU (sibling) groups */
6637 for_each_cpu_mask(i, *cpu_map) {
6638 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6639 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6640 if (i != first_cpu(this_sibling_map))
6641 continue;
6643 init_sched_build_groups(this_sibling_map, cpu_map,
6644 &cpu_to_cpu_group);
6646 #endif
6648 #ifdef CONFIG_SCHED_MC
6649 /* Set up multi-core groups */
6650 for_each_cpu_mask(i, *cpu_map) {
6651 cpumask_t this_core_map = cpu_coregroup_map(i);
6652 cpus_and(this_core_map, this_core_map, *cpu_map);
6653 if (i != first_cpu(this_core_map))
6654 continue;
6655 init_sched_build_groups(this_core_map, cpu_map,
6656 &cpu_to_core_group);
6658 #endif
6660 /* Set up physical groups */
6661 for (i = 0; i < MAX_NUMNODES; i++) {
6662 cpumask_t nodemask = node_to_cpumask(i);
6664 cpus_and(nodemask, nodemask, *cpu_map);
6665 if (cpus_empty(nodemask))
6666 continue;
6668 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6671 #ifdef CONFIG_NUMA
6672 /* Set up node groups */
6673 if (sd_allnodes)
6674 init_sched_build_groups(*cpu_map, cpu_map,
6675 &cpu_to_allnodes_group);
6677 for (i = 0; i < MAX_NUMNODES; i++) {
6678 /* Set up node groups */
6679 struct sched_group *sg, *prev;
6680 cpumask_t nodemask = node_to_cpumask(i);
6681 cpumask_t domainspan;
6682 cpumask_t covered = CPU_MASK_NONE;
6683 int j;
6685 cpus_and(nodemask, nodemask, *cpu_map);
6686 if (cpus_empty(nodemask)) {
6687 sched_group_nodes[i] = NULL;
6688 continue;
6691 domainspan = sched_domain_node_span(i);
6692 cpus_and(domainspan, domainspan, *cpu_map);
6694 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6695 if (!sg) {
6696 printk(KERN_WARNING "Can not alloc domain group for "
6697 "node %d\n", i);
6698 goto error;
6700 sched_group_nodes[i] = sg;
6701 for_each_cpu_mask(j, nodemask) {
6702 struct sched_domain *sd;
6704 sd = &per_cpu(node_domains, j);
6705 sd->groups = sg;
6707 sg->__cpu_power = 0;
6708 sg->cpumask = nodemask;
6709 sg->next = sg;
6710 cpus_or(covered, covered, nodemask);
6711 prev = sg;
6713 for (j = 0; j < MAX_NUMNODES; j++) {
6714 cpumask_t tmp, notcovered;
6715 int n = (i + j) % MAX_NUMNODES;
6717 cpus_complement(notcovered, covered);
6718 cpus_and(tmp, notcovered, *cpu_map);
6719 cpus_and(tmp, tmp, domainspan);
6720 if (cpus_empty(tmp))
6721 break;
6723 nodemask = node_to_cpumask(n);
6724 cpus_and(tmp, tmp, nodemask);
6725 if (cpus_empty(tmp))
6726 continue;
6728 sg = kmalloc_node(sizeof(struct sched_group),
6729 GFP_KERNEL, i);
6730 if (!sg) {
6731 printk(KERN_WARNING
6732 "Can not alloc domain group for node %d\n", j);
6733 goto error;
6735 sg->__cpu_power = 0;
6736 sg->cpumask = tmp;
6737 sg->next = prev->next;
6738 cpus_or(covered, covered, tmp);
6739 prev->next = sg;
6740 prev = sg;
6743 #endif
6745 /* Calculate CPU power for physical packages and nodes */
6746 #ifdef CONFIG_SCHED_SMT
6747 for_each_cpu_mask(i, *cpu_map) {
6748 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6750 init_sched_groups_power(i, sd);
6752 #endif
6753 #ifdef CONFIG_SCHED_MC
6754 for_each_cpu_mask(i, *cpu_map) {
6755 struct sched_domain *sd = &per_cpu(core_domains, i);
6757 init_sched_groups_power(i, sd);
6759 #endif
6761 for_each_cpu_mask(i, *cpu_map) {
6762 struct sched_domain *sd = &per_cpu(phys_domains, i);
6764 init_sched_groups_power(i, sd);
6767 #ifdef CONFIG_NUMA
6768 for (i = 0; i < MAX_NUMNODES; i++)
6769 init_numa_sched_groups_power(sched_group_nodes[i]);
6771 if (sd_allnodes) {
6772 struct sched_group *sg;
6774 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6775 init_numa_sched_groups_power(sg);
6777 #endif
6779 /* Attach the domains */
6780 for_each_cpu_mask(i, *cpu_map) {
6781 struct sched_domain *sd;
6782 #ifdef CONFIG_SCHED_SMT
6783 sd = &per_cpu(cpu_domains, i);
6784 #elif defined(CONFIG_SCHED_MC)
6785 sd = &per_cpu(core_domains, i);
6786 #else
6787 sd = &per_cpu(phys_domains, i);
6788 #endif
6789 cpu_attach_domain(sd, rd, i);
6792 return 0;
6794 #ifdef CONFIG_NUMA
6795 error:
6796 free_sched_groups(cpu_map);
6797 return -ENOMEM;
6798 #endif
6801 static cpumask_t *doms_cur; /* current sched domains */
6802 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6805 * Special case: If a kmalloc of a doms_cur partition (array of
6806 * cpumask_t) fails, then fallback to a single sched domain,
6807 * as determined by the single cpumask_t fallback_doms.
6809 static cpumask_t fallback_doms;
6812 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6813 * For now this just excludes isolated cpus, but could be used to
6814 * exclude other special cases in the future.
6816 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6818 int err;
6820 ndoms_cur = 1;
6821 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6822 if (!doms_cur)
6823 doms_cur = &fallback_doms;
6824 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6825 err = build_sched_domains(doms_cur);
6826 register_sched_domain_sysctl();
6828 return err;
6831 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6833 free_sched_groups(cpu_map);
6837 * Detach sched domains from a group of cpus specified in cpu_map
6838 * These cpus will now be attached to the NULL domain
6840 static void detach_destroy_domains(const cpumask_t *cpu_map)
6842 int i;
6844 unregister_sched_domain_sysctl();
6846 for_each_cpu_mask(i, *cpu_map)
6847 cpu_attach_domain(NULL, &def_root_domain, i);
6848 synchronize_sched();
6849 arch_destroy_sched_domains(cpu_map);
6853 * Partition sched domains as specified by the 'ndoms_new'
6854 * cpumasks in the array doms_new[] of cpumasks. This compares
6855 * doms_new[] to the current sched domain partitioning, doms_cur[].
6856 * It destroys each deleted domain and builds each new domain.
6858 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6859 * The masks don't intersect (don't overlap.) We should setup one
6860 * sched domain for each mask. CPUs not in any of the cpumasks will
6861 * not be load balanced. If the same cpumask appears both in the
6862 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6863 * it as it is.
6865 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6866 * ownership of it and will kfree it when done with it. If the caller
6867 * failed the kmalloc call, then it can pass in doms_new == NULL,
6868 * and partition_sched_domains() will fallback to the single partition
6869 * 'fallback_doms'.
6871 * Call with hotplug lock held
6873 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6875 int i, j;
6877 lock_doms_cur();
6879 /* always unregister in case we don't destroy any domains */
6880 unregister_sched_domain_sysctl();
6882 if (doms_new == NULL) {
6883 ndoms_new = 1;
6884 doms_new = &fallback_doms;
6885 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6888 /* Destroy deleted domains */
6889 for (i = 0; i < ndoms_cur; i++) {
6890 for (j = 0; j < ndoms_new; j++) {
6891 if (cpus_equal(doms_cur[i], doms_new[j]))
6892 goto match1;
6894 /* no match - a current sched domain not in new doms_new[] */
6895 detach_destroy_domains(doms_cur + i);
6896 match1:
6900 /* Build new domains */
6901 for (i = 0; i < ndoms_new; i++) {
6902 for (j = 0; j < ndoms_cur; j++) {
6903 if (cpus_equal(doms_new[i], doms_cur[j]))
6904 goto match2;
6906 /* no match - add a new doms_new */
6907 build_sched_domains(doms_new + i);
6908 match2:
6912 /* Remember the new sched domains */
6913 if (doms_cur != &fallback_doms)
6914 kfree(doms_cur);
6915 doms_cur = doms_new;
6916 ndoms_cur = ndoms_new;
6918 register_sched_domain_sysctl();
6920 unlock_doms_cur();
6923 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6924 static int arch_reinit_sched_domains(void)
6926 int err;
6928 get_online_cpus();
6929 detach_destroy_domains(&cpu_online_map);
6930 err = arch_init_sched_domains(&cpu_online_map);
6931 put_online_cpus();
6933 return err;
6936 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6938 int ret;
6940 if (buf[0] != '0' && buf[0] != '1')
6941 return -EINVAL;
6943 if (smt)
6944 sched_smt_power_savings = (buf[0] == '1');
6945 else
6946 sched_mc_power_savings = (buf[0] == '1');
6948 ret = arch_reinit_sched_domains();
6950 return ret ? ret : count;
6953 #ifdef CONFIG_SCHED_MC
6954 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6956 return sprintf(page, "%u\n", sched_mc_power_savings);
6958 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6959 const char *buf, size_t count)
6961 return sched_power_savings_store(buf, count, 0);
6963 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6964 sched_mc_power_savings_store);
6965 #endif
6967 #ifdef CONFIG_SCHED_SMT
6968 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6970 return sprintf(page, "%u\n", sched_smt_power_savings);
6972 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6973 const char *buf, size_t count)
6975 return sched_power_savings_store(buf, count, 1);
6977 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6978 sched_smt_power_savings_store);
6979 #endif
6981 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6983 int err = 0;
6985 #ifdef CONFIG_SCHED_SMT
6986 if (smt_capable())
6987 err = sysfs_create_file(&cls->kset.kobj,
6988 &attr_sched_smt_power_savings.attr);
6989 #endif
6990 #ifdef CONFIG_SCHED_MC
6991 if (!err && mc_capable())
6992 err = sysfs_create_file(&cls->kset.kobj,
6993 &attr_sched_mc_power_savings.attr);
6994 #endif
6995 return err;
6997 #endif
7000 * Force a reinitialization of the sched domains hierarchy. The domains
7001 * and groups cannot be updated in place without racing with the balancing
7002 * code, so we temporarily attach all running cpus to the NULL domain
7003 * which will prevent rebalancing while the sched domains are recalculated.
7005 static int update_sched_domains(struct notifier_block *nfb,
7006 unsigned long action, void *hcpu)
7008 switch (action) {
7009 case CPU_UP_PREPARE:
7010 case CPU_UP_PREPARE_FROZEN:
7011 case CPU_DOWN_PREPARE:
7012 case CPU_DOWN_PREPARE_FROZEN:
7013 detach_destroy_domains(&cpu_online_map);
7014 return NOTIFY_OK;
7016 case CPU_UP_CANCELED:
7017 case CPU_UP_CANCELED_FROZEN:
7018 case CPU_DOWN_FAILED:
7019 case CPU_DOWN_FAILED_FROZEN:
7020 case CPU_ONLINE:
7021 case CPU_ONLINE_FROZEN:
7022 case CPU_DEAD:
7023 case CPU_DEAD_FROZEN:
7025 * Fall through and re-initialise the domains.
7027 break;
7028 default:
7029 return NOTIFY_DONE;
7032 /* The hotplug lock is already held by cpu_up/cpu_down */
7033 arch_init_sched_domains(&cpu_online_map);
7035 return NOTIFY_OK;
7038 void __init sched_init_smp(void)
7040 cpumask_t non_isolated_cpus;
7042 get_online_cpus();
7043 arch_init_sched_domains(&cpu_online_map);
7044 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7045 if (cpus_empty(non_isolated_cpus))
7046 cpu_set(smp_processor_id(), non_isolated_cpus);
7047 put_online_cpus();
7048 /* XXX: Theoretical race here - CPU may be hotplugged now */
7049 hotcpu_notifier(update_sched_domains, 0);
7051 /* Move init over to a non-isolated CPU */
7052 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7053 BUG();
7054 sched_init_granularity();
7056 #ifdef CONFIG_FAIR_GROUP_SCHED
7057 if (nr_cpu_ids == 1)
7058 return;
7060 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7061 "group_balance");
7062 if (!IS_ERR(lb_monitor_task)) {
7063 lb_monitor_task->flags |= PF_NOFREEZE;
7064 wake_up_process(lb_monitor_task);
7065 } else {
7066 printk(KERN_ERR "Could not create load balance monitor thread"
7067 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7069 #endif
7071 #else
7072 void __init sched_init_smp(void)
7074 sched_init_granularity();
7076 #endif /* CONFIG_SMP */
7078 int in_sched_functions(unsigned long addr)
7080 return in_lock_functions(addr) ||
7081 (addr >= (unsigned long)__sched_text_start
7082 && addr < (unsigned long)__sched_text_end);
7085 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7087 cfs_rq->tasks_timeline = RB_ROOT;
7088 #ifdef CONFIG_FAIR_GROUP_SCHED
7089 cfs_rq->rq = rq;
7090 #endif
7091 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7094 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7096 struct rt_prio_array *array;
7097 int i;
7099 array = &rt_rq->active;
7100 for (i = 0; i < MAX_RT_PRIO; i++) {
7101 INIT_LIST_HEAD(array->queue + i);
7102 __clear_bit(i, array->bitmap);
7104 /* delimiter for bitsearch: */
7105 __set_bit(MAX_RT_PRIO, array->bitmap);
7107 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
7108 rt_rq->highest_prio = MAX_RT_PRIO;
7109 #endif
7110 #ifdef CONFIG_SMP
7111 rt_rq->rt_nr_migratory = 0;
7112 rt_rq->overloaded = 0;
7113 #endif
7115 rt_rq->rt_time = 0;
7116 rt_rq->rt_throttled = 0;
7118 #ifdef CONFIG_FAIR_GROUP_SCHED
7119 rt_rq->rq = rq;
7120 #endif
7123 #ifdef CONFIG_FAIR_GROUP_SCHED
7124 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7125 struct cfs_rq *cfs_rq, struct sched_entity *se,
7126 int cpu, int add)
7128 tg->cfs_rq[cpu] = cfs_rq;
7129 init_cfs_rq(cfs_rq, rq);
7130 cfs_rq->tg = tg;
7131 if (add)
7132 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7134 tg->se[cpu] = se;
7135 se->cfs_rq = &rq->cfs;
7136 se->my_q = cfs_rq;
7137 se->load.weight = tg->shares;
7138 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7139 se->parent = NULL;
7142 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7143 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7144 int cpu, int add)
7146 tg->rt_rq[cpu] = rt_rq;
7147 init_rt_rq(rt_rq, rq);
7148 rt_rq->tg = tg;
7149 rt_rq->rt_se = rt_se;
7150 if (add)
7151 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7153 tg->rt_se[cpu] = rt_se;
7154 rt_se->rt_rq = &rq->rt;
7155 rt_se->my_q = rt_rq;
7156 rt_se->parent = NULL;
7157 INIT_LIST_HEAD(&rt_se->run_list);
7159 #endif
7161 void __init sched_init(void)
7163 int highest_cpu = 0;
7164 int i, j;
7166 #ifdef CONFIG_SMP
7167 init_defrootdomain();
7168 #endif
7170 #ifdef CONFIG_FAIR_GROUP_SCHED
7171 list_add(&init_task_group.list, &task_groups);
7172 #endif
7174 for_each_possible_cpu(i) {
7175 struct rq *rq;
7177 rq = cpu_rq(i);
7178 spin_lock_init(&rq->lock);
7179 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7180 rq->nr_running = 0;
7181 rq->clock = 1;
7182 init_cfs_rq(&rq->cfs, rq);
7183 init_rt_rq(&rq->rt, rq);
7184 #ifdef CONFIG_FAIR_GROUP_SCHED
7185 init_task_group.shares = init_task_group_load;
7186 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7187 init_tg_cfs_entry(rq, &init_task_group,
7188 &per_cpu(init_cfs_rq, i),
7189 &per_cpu(init_sched_entity, i), i, 1);
7191 init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
7192 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7193 init_tg_rt_entry(rq, &init_task_group,
7194 &per_cpu(init_rt_rq, i),
7195 &per_cpu(init_sched_rt_entity, i), i, 1);
7196 #endif
7197 rq->rt_period_expire = 0;
7198 rq->rt_throttled = 0;
7200 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7201 rq->cpu_load[j] = 0;
7202 #ifdef CONFIG_SMP
7203 rq->sd = NULL;
7204 rq->rd = NULL;
7205 rq->active_balance = 0;
7206 rq->next_balance = jiffies;
7207 rq->push_cpu = 0;
7208 rq->cpu = i;
7209 rq->migration_thread = NULL;
7210 INIT_LIST_HEAD(&rq->migration_queue);
7211 rq_attach_root(rq, &def_root_domain);
7212 #endif
7213 init_rq_hrtick(rq);
7214 atomic_set(&rq->nr_iowait, 0);
7215 highest_cpu = i;
7218 set_load_weight(&init_task);
7220 #ifdef CONFIG_PREEMPT_NOTIFIERS
7221 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7222 #endif
7224 #ifdef CONFIG_SMP
7225 nr_cpu_ids = highest_cpu + 1;
7226 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7227 #endif
7229 #ifdef CONFIG_RT_MUTEXES
7230 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7231 #endif
7234 * The boot idle thread does lazy MMU switching as well:
7236 atomic_inc(&init_mm.mm_count);
7237 enter_lazy_tlb(&init_mm, current);
7240 * Make us the idle thread. Technically, schedule() should not be
7241 * called from this thread, however somewhere below it might be,
7242 * but because we are the idle thread, we just pick up running again
7243 * when this runqueue becomes "idle".
7245 init_idle(current, smp_processor_id());
7247 * During early bootup we pretend to be a normal task:
7249 current->sched_class = &fair_sched_class;
7252 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7253 void __might_sleep(char *file, int line)
7255 #ifdef in_atomic
7256 static unsigned long prev_jiffy; /* ratelimiting */
7258 if ((in_atomic() || irqs_disabled()) &&
7259 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7260 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7261 return;
7262 prev_jiffy = jiffies;
7263 printk(KERN_ERR "BUG: sleeping function called from invalid"
7264 " context at %s:%d\n", file, line);
7265 printk("in_atomic():%d, irqs_disabled():%d\n",
7266 in_atomic(), irqs_disabled());
7267 debug_show_held_locks(current);
7268 if (irqs_disabled())
7269 print_irqtrace_events(current);
7270 dump_stack();
7272 #endif
7274 EXPORT_SYMBOL(__might_sleep);
7275 #endif
7277 #ifdef CONFIG_MAGIC_SYSRQ
7278 static void normalize_task(struct rq *rq, struct task_struct *p)
7280 int on_rq;
7281 update_rq_clock(rq);
7282 on_rq = p->se.on_rq;
7283 if (on_rq)
7284 deactivate_task(rq, p, 0);
7285 __setscheduler(rq, p, SCHED_NORMAL, 0);
7286 if (on_rq) {
7287 activate_task(rq, p, 0);
7288 resched_task(rq->curr);
7292 void normalize_rt_tasks(void)
7294 struct task_struct *g, *p;
7295 unsigned long flags;
7296 struct rq *rq;
7298 read_lock_irq(&tasklist_lock);
7299 do_each_thread(g, p) {
7301 * Only normalize user tasks:
7303 if (!p->mm)
7304 continue;
7306 p->se.exec_start = 0;
7307 #ifdef CONFIG_SCHEDSTATS
7308 p->se.wait_start = 0;
7309 p->se.sleep_start = 0;
7310 p->se.block_start = 0;
7311 #endif
7312 task_rq(p)->clock = 0;
7314 if (!rt_task(p)) {
7316 * Renice negative nice level userspace
7317 * tasks back to 0:
7319 if (TASK_NICE(p) < 0 && p->mm)
7320 set_user_nice(p, 0);
7321 continue;
7324 spin_lock_irqsave(&p->pi_lock, flags);
7325 rq = __task_rq_lock(p);
7327 normalize_task(rq, p);
7329 __task_rq_unlock(rq);
7330 spin_unlock_irqrestore(&p->pi_lock, flags);
7331 } while_each_thread(g, p);
7333 read_unlock_irq(&tasklist_lock);
7336 #endif /* CONFIG_MAGIC_SYSRQ */
7338 #ifdef CONFIG_IA64
7340 * These functions are only useful for the IA64 MCA handling.
7342 * They can only be called when the whole system has been
7343 * stopped - every CPU needs to be quiescent, and no scheduling
7344 * activity can take place. Using them for anything else would
7345 * be a serious bug, and as a result, they aren't even visible
7346 * under any other configuration.
7350 * curr_task - return the current task for a given cpu.
7351 * @cpu: the processor in question.
7353 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7355 struct task_struct *curr_task(int cpu)
7357 return cpu_curr(cpu);
7361 * set_curr_task - set the current task for a given cpu.
7362 * @cpu: the processor in question.
7363 * @p: the task pointer to set.
7365 * Description: This function must only be used when non-maskable interrupts
7366 * are serviced on a separate stack. It allows the architecture to switch the
7367 * notion of the current task on a cpu in a non-blocking manner. This function
7368 * must be called with all CPU's synchronized, and interrupts disabled, the
7369 * and caller must save the original value of the current task (see
7370 * curr_task() above) and restore that value before reenabling interrupts and
7371 * re-starting the system.
7373 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7375 void set_curr_task(int cpu, struct task_struct *p)
7377 cpu_curr(cpu) = p;
7380 #endif
7382 #ifdef CONFIG_FAIR_GROUP_SCHED
7384 #ifdef CONFIG_SMP
7386 * distribute shares of all task groups among their schedulable entities,
7387 * to reflect load distribution across cpus.
7389 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7391 struct cfs_rq *cfs_rq;
7392 struct rq *rq = cpu_rq(this_cpu);
7393 cpumask_t sdspan = sd->span;
7394 int balanced = 1;
7396 /* Walk thr' all the task groups that we have */
7397 for_each_leaf_cfs_rq(rq, cfs_rq) {
7398 int i;
7399 unsigned long total_load = 0, total_shares;
7400 struct task_group *tg = cfs_rq->tg;
7402 /* Gather total task load of this group across cpus */
7403 for_each_cpu_mask(i, sdspan)
7404 total_load += tg->cfs_rq[i]->load.weight;
7406 /* Nothing to do if this group has no load */
7407 if (!total_load)
7408 continue;
7411 * tg->shares represents the number of cpu shares the task group
7412 * is eligible to hold on a single cpu. On N cpus, it is
7413 * eligible to hold (N * tg->shares) number of cpu shares.
7415 total_shares = tg->shares * cpus_weight(sdspan);
7418 * redistribute total_shares across cpus as per the task load
7419 * distribution.
7421 for_each_cpu_mask(i, sdspan) {
7422 unsigned long local_load, local_shares;
7424 local_load = tg->cfs_rq[i]->load.weight;
7425 local_shares = (local_load * total_shares) / total_load;
7426 if (!local_shares)
7427 local_shares = MIN_GROUP_SHARES;
7428 if (local_shares == tg->se[i]->load.weight)
7429 continue;
7431 spin_lock_irq(&cpu_rq(i)->lock);
7432 set_se_shares(tg->se[i], local_shares);
7433 spin_unlock_irq(&cpu_rq(i)->lock);
7434 balanced = 0;
7438 return balanced;
7442 * How frequently should we rebalance_shares() across cpus?
7444 * The more frequently we rebalance shares, the more accurate is the fairness
7445 * of cpu bandwidth distribution between task groups. However higher frequency
7446 * also implies increased scheduling overhead.
7448 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7449 * consecutive calls to rebalance_shares() in the same sched domain.
7451 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7452 * consecutive calls to rebalance_shares() in the same sched domain.
7454 * These settings allows for the appropriate trade-off between accuracy of
7455 * fairness and the associated overhead.
7459 /* default: 8ms, units: milliseconds */
7460 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7462 /* default: 128ms, units: milliseconds */
7463 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7465 /* kernel thread that runs rebalance_shares() periodically */
7466 static int load_balance_monitor(void *unused)
7468 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7469 struct sched_param schedparm;
7470 int ret;
7473 * We don't want this thread's execution to be limited by the shares
7474 * assigned to default group (init_task_group). Hence make it run
7475 * as a SCHED_RR RT task at the lowest priority.
7477 schedparm.sched_priority = 1;
7478 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7479 if (ret)
7480 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7481 " monitor thread (error = %d) \n", ret);
7483 while (!kthread_should_stop()) {
7484 int i, cpu, balanced = 1;
7486 /* Prevent cpus going down or coming up */
7487 get_online_cpus();
7488 /* lockout changes to doms_cur[] array */
7489 lock_doms_cur();
7491 * Enter a rcu read-side critical section to safely walk rq->sd
7492 * chain on various cpus and to walk task group list
7493 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7495 rcu_read_lock();
7497 for (i = 0; i < ndoms_cur; i++) {
7498 cpumask_t cpumap = doms_cur[i];
7499 struct sched_domain *sd = NULL, *sd_prev = NULL;
7501 cpu = first_cpu(cpumap);
7503 /* Find the highest domain at which to balance shares */
7504 for_each_domain(cpu, sd) {
7505 if (!(sd->flags & SD_LOAD_BALANCE))
7506 continue;
7507 sd_prev = sd;
7510 sd = sd_prev;
7511 /* sd == NULL? No load balance reqd in this domain */
7512 if (!sd)
7513 continue;
7515 balanced &= rebalance_shares(sd, cpu);
7518 rcu_read_unlock();
7520 unlock_doms_cur();
7521 put_online_cpus();
7523 if (!balanced)
7524 timeout = sysctl_sched_min_bal_int_shares;
7525 else if (timeout < sysctl_sched_max_bal_int_shares)
7526 timeout *= 2;
7528 msleep_interruptible(timeout);
7531 return 0;
7533 #endif /* CONFIG_SMP */
7535 static void free_sched_group(struct task_group *tg)
7537 int i;
7539 for_each_possible_cpu(i) {
7540 if (tg->cfs_rq)
7541 kfree(tg->cfs_rq[i]);
7542 if (tg->se)
7543 kfree(tg->se[i]);
7544 if (tg->rt_rq)
7545 kfree(tg->rt_rq[i]);
7546 if (tg->rt_se)
7547 kfree(tg->rt_se[i]);
7550 kfree(tg->cfs_rq);
7551 kfree(tg->se);
7552 kfree(tg->rt_rq);
7553 kfree(tg->rt_se);
7554 kfree(tg);
7557 /* allocate runqueue etc for a new task group */
7558 struct task_group *sched_create_group(void)
7560 struct task_group *tg;
7561 struct cfs_rq *cfs_rq;
7562 struct sched_entity *se;
7563 struct rt_rq *rt_rq;
7564 struct sched_rt_entity *rt_se;
7565 struct rq *rq;
7566 int i;
7568 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7569 if (!tg)
7570 return ERR_PTR(-ENOMEM);
7572 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7573 if (!tg->cfs_rq)
7574 goto err;
7575 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7576 if (!tg->se)
7577 goto err;
7578 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7579 if (!tg->rt_rq)
7580 goto err;
7581 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7582 if (!tg->rt_se)
7583 goto err;
7585 tg->shares = NICE_0_LOAD;
7586 tg->rt_ratio = 0; /* XXX */
7588 for_each_possible_cpu(i) {
7589 rq = cpu_rq(i);
7591 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7592 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7593 if (!cfs_rq)
7594 goto err;
7596 se = kmalloc_node(sizeof(struct sched_entity),
7597 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7598 if (!se)
7599 goto err;
7601 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7602 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7603 if (!rt_rq)
7604 goto err;
7606 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7607 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7608 if (!rt_se)
7609 goto err;
7611 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7612 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7615 lock_task_group_list();
7616 for_each_possible_cpu(i) {
7617 rq = cpu_rq(i);
7618 cfs_rq = tg->cfs_rq[i];
7619 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7620 rt_rq = tg->rt_rq[i];
7621 list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7623 list_add_rcu(&tg->list, &task_groups);
7624 unlock_task_group_list();
7626 return tg;
7628 err:
7629 free_sched_group(tg);
7630 return ERR_PTR(-ENOMEM);
7633 /* rcu callback to free various structures associated with a task group */
7634 static void free_sched_group_rcu(struct rcu_head *rhp)
7636 /* now it should be safe to free those cfs_rqs */
7637 free_sched_group(container_of(rhp, struct task_group, rcu));
7640 /* Destroy runqueue etc associated with a task group */
7641 void sched_destroy_group(struct task_group *tg)
7643 struct cfs_rq *cfs_rq = NULL;
7644 struct rt_rq *rt_rq = NULL;
7645 int i;
7647 lock_task_group_list();
7648 for_each_possible_cpu(i) {
7649 cfs_rq = tg->cfs_rq[i];
7650 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7651 rt_rq = tg->rt_rq[i];
7652 list_del_rcu(&rt_rq->leaf_rt_rq_list);
7654 list_del_rcu(&tg->list);
7655 unlock_task_group_list();
7657 BUG_ON(!cfs_rq);
7659 /* wait for possible concurrent references to cfs_rqs complete */
7660 call_rcu(&tg->rcu, free_sched_group_rcu);
7663 /* change task's runqueue when it moves between groups.
7664 * The caller of this function should have put the task in its new group
7665 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7666 * reflect its new group.
7668 void sched_move_task(struct task_struct *tsk)
7670 int on_rq, running;
7671 unsigned long flags;
7672 struct rq *rq;
7674 rq = task_rq_lock(tsk, &flags);
7676 update_rq_clock(rq);
7678 running = task_current(rq, tsk);
7679 on_rq = tsk->se.on_rq;
7681 if (on_rq) {
7682 dequeue_task(rq, tsk, 0);
7683 if (unlikely(running))
7684 tsk->sched_class->put_prev_task(rq, tsk);
7687 set_task_rq(tsk, task_cpu(tsk));
7689 if (on_rq) {
7690 if (unlikely(running))
7691 tsk->sched_class->set_curr_task(rq);
7692 enqueue_task(rq, tsk, 0);
7695 task_rq_unlock(rq, &flags);
7698 /* rq->lock to be locked by caller */
7699 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7701 struct cfs_rq *cfs_rq = se->cfs_rq;
7702 struct rq *rq = cfs_rq->rq;
7703 int on_rq;
7705 if (!shares)
7706 shares = MIN_GROUP_SHARES;
7708 on_rq = se->on_rq;
7709 if (on_rq) {
7710 dequeue_entity(cfs_rq, se, 0);
7711 dec_cpu_load(rq, se->load.weight);
7714 se->load.weight = shares;
7715 se->load.inv_weight = div64_64((1ULL<<32), shares);
7717 if (on_rq) {
7718 enqueue_entity(cfs_rq, se, 0);
7719 inc_cpu_load(rq, se->load.weight);
7723 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7725 int i;
7726 struct cfs_rq *cfs_rq;
7727 struct rq *rq;
7729 lock_task_group_list();
7730 if (tg->shares == shares)
7731 goto done;
7733 if (shares < MIN_GROUP_SHARES)
7734 shares = MIN_GROUP_SHARES;
7737 * Prevent any load balance activity (rebalance_shares,
7738 * load_balance_fair) from referring to this group first,
7739 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7741 for_each_possible_cpu(i) {
7742 cfs_rq = tg->cfs_rq[i];
7743 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7746 /* wait for any ongoing reference to this group to finish */
7747 synchronize_sched();
7750 * Now we are free to modify the group's share on each cpu
7751 * w/o tripping rebalance_share or load_balance_fair.
7753 tg->shares = shares;
7754 for_each_possible_cpu(i) {
7755 spin_lock_irq(&cpu_rq(i)->lock);
7756 set_se_shares(tg->se[i], shares);
7757 spin_unlock_irq(&cpu_rq(i)->lock);
7761 * Enable load balance activity on this group, by inserting it back on
7762 * each cpu's rq->leaf_cfs_rq_list.
7764 for_each_possible_cpu(i) {
7765 rq = cpu_rq(i);
7766 cfs_rq = tg->cfs_rq[i];
7767 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7769 done:
7770 unlock_task_group_list();
7771 return 0;
7774 unsigned long sched_group_shares(struct task_group *tg)
7776 return tg->shares;
7780 * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
7782 int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
7784 struct task_group *tgi;
7785 unsigned long total = 0;
7787 rcu_read_lock();
7788 list_for_each_entry_rcu(tgi, &task_groups, list)
7789 total += tgi->rt_ratio;
7790 rcu_read_unlock();
7792 if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
7793 return -EINVAL;
7795 tg->rt_ratio = rt_ratio;
7796 return 0;
7799 unsigned long sched_group_rt_ratio(struct task_group *tg)
7801 return tg->rt_ratio;
7804 #endif /* CONFIG_FAIR_GROUP_SCHED */
7806 #ifdef CONFIG_FAIR_CGROUP_SCHED
7808 /* return corresponding task_group object of a cgroup */
7809 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7811 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7812 struct task_group, css);
7815 static struct cgroup_subsys_state *
7816 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7818 struct task_group *tg;
7820 if (!cgrp->parent) {
7821 /* This is early initialization for the top cgroup */
7822 init_task_group.css.cgroup = cgrp;
7823 return &init_task_group.css;
7826 /* we support only 1-level deep hierarchical scheduler atm */
7827 if (cgrp->parent->parent)
7828 return ERR_PTR(-EINVAL);
7830 tg = sched_create_group();
7831 if (IS_ERR(tg))
7832 return ERR_PTR(-ENOMEM);
7834 /* Bind the cgroup to task_group object we just created */
7835 tg->css.cgroup = cgrp;
7837 return &tg->css;
7840 static void
7841 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7843 struct task_group *tg = cgroup_tg(cgrp);
7845 sched_destroy_group(tg);
7848 static int
7849 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7850 struct task_struct *tsk)
7852 /* We don't support RT-tasks being in separate groups */
7853 if (tsk->sched_class != &fair_sched_class)
7854 return -EINVAL;
7856 return 0;
7859 static void
7860 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7861 struct cgroup *old_cont, struct task_struct *tsk)
7863 sched_move_task(tsk);
7866 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7867 u64 shareval)
7869 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7872 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7874 struct task_group *tg = cgroup_tg(cgrp);
7876 return (u64) tg->shares;
7879 static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7880 u64 rt_ratio_val)
7882 return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
7885 static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
7887 struct task_group *tg = cgroup_tg(cgrp);
7889 return (u64) tg->rt_ratio;
7892 static struct cftype cpu_files[] = {
7894 .name = "shares",
7895 .read_uint = cpu_shares_read_uint,
7896 .write_uint = cpu_shares_write_uint,
7899 .name = "rt_ratio",
7900 .read_uint = cpu_rt_ratio_read_uint,
7901 .write_uint = cpu_rt_ratio_write_uint,
7905 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7907 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7910 struct cgroup_subsys cpu_cgroup_subsys = {
7911 .name = "cpu",
7912 .create = cpu_cgroup_create,
7913 .destroy = cpu_cgroup_destroy,
7914 .can_attach = cpu_cgroup_can_attach,
7915 .attach = cpu_cgroup_attach,
7916 .populate = cpu_cgroup_populate,
7917 .subsys_id = cpu_cgroup_subsys_id,
7918 .early_init = 1,
7921 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7923 #ifdef CONFIG_CGROUP_CPUACCT
7926 * CPU accounting code for task groups.
7928 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7929 * (balbir@in.ibm.com).
7932 /* track cpu usage of a group of tasks */
7933 struct cpuacct {
7934 struct cgroup_subsys_state css;
7935 /* cpuusage holds pointer to a u64-type object on every cpu */
7936 u64 *cpuusage;
7939 struct cgroup_subsys cpuacct_subsys;
7941 /* return cpu accounting group corresponding to this container */
7942 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7944 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7945 struct cpuacct, css);
7948 /* return cpu accounting group to which this task belongs */
7949 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7951 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7952 struct cpuacct, css);
7955 /* create a new cpu accounting group */
7956 static struct cgroup_subsys_state *cpuacct_create(
7957 struct cgroup_subsys *ss, struct cgroup *cont)
7959 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7961 if (!ca)
7962 return ERR_PTR(-ENOMEM);
7964 ca->cpuusage = alloc_percpu(u64);
7965 if (!ca->cpuusage) {
7966 kfree(ca);
7967 return ERR_PTR(-ENOMEM);
7970 return &ca->css;
7973 /* destroy an existing cpu accounting group */
7974 static void
7975 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7977 struct cpuacct *ca = cgroup_ca(cont);
7979 free_percpu(ca->cpuusage);
7980 kfree(ca);
7983 /* return total cpu usage (in nanoseconds) of a group */
7984 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7986 struct cpuacct *ca = cgroup_ca(cont);
7987 u64 totalcpuusage = 0;
7988 int i;
7990 for_each_possible_cpu(i) {
7991 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7994 * Take rq->lock to make 64-bit addition safe on 32-bit
7995 * platforms.
7997 spin_lock_irq(&cpu_rq(i)->lock);
7998 totalcpuusage += *cpuusage;
7999 spin_unlock_irq(&cpu_rq(i)->lock);
8002 return totalcpuusage;
8005 static struct cftype files[] = {
8007 .name = "usage",
8008 .read_uint = cpuusage_read,
8012 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8014 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8018 * charge this task's execution time to its accounting group.
8020 * called with rq->lock held.
8022 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8024 struct cpuacct *ca;
8026 if (!cpuacct_subsys.active)
8027 return;
8029 ca = task_ca(tsk);
8030 if (ca) {
8031 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8033 *cpuusage += cputime;
8037 struct cgroup_subsys cpuacct_subsys = {
8038 .name = "cpuacct",
8039 .create = cpuacct_create,
8040 .destroy = cpuacct_destroy,
8041 .populate = cpuacct_populate,
8042 .subsys_id = cpuacct_subsys_id,
8044 #endif /* CONFIG_CGROUP_CPUACCT */