4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
34 #define INPUT_DEVICES 256
37 * EV_ABS events which should not be cached are listed here.
39 static unsigned int input_abs_bypass_init_data
[] __initdata
= {
53 static unsigned long input_abs_bypass
[BITS_TO_LONGS(ABS_CNT
)];
55 static LIST_HEAD(input_dev_list
);
56 static LIST_HEAD(input_handler_list
);
59 * input_mutex protects access to both input_dev_list and input_handler_list.
60 * This also causes input_[un]register_device and input_[un]register_handler
61 * be mutually exclusive which simplifies locking in drivers implementing
64 static DEFINE_MUTEX(input_mutex
);
66 static struct input_handler
*input_table
[8];
68 static inline int is_event_supported(unsigned int code
,
69 unsigned long *bm
, unsigned int max
)
71 return code
<= max
&& test_bit(code
, bm
);
74 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
77 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
80 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
81 return (old_val
* 3 + value
) / 4;
83 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
84 return (old_val
+ value
) / 2;
91 * Pass event first through all filters and then, if event has not been
92 * filtered out, through all open handles. This function is called with
93 * dev->event_lock held and interrupts disabled.
95 static void input_pass_event(struct input_dev
*dev
,
96 unsigned int type
, unsigned int code
, int value
)
98 struct input_handler
*handler
;
99 struct input_handle
*handle
;
103 handle
= rcu_dereference(dev
->grab
);
105 handle
->handler
->event(handle
, type
, code
, value
);
107 bool filtered
= false;
109 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
) {
113 handler
= handle
->handler
;
114 if (!handler
->filter
) {
118 handler
->event(handle
, type
, code
, value
);
120 } else if (handler
->filter(handle
, type
, code
, value
))
129 * Generate software autorepeat event. Note that we take
130 * dev->event_lock here to avoid racing with input_event
131 * which may cause keys get "stuck".
133 static void input_repeat_key(unsigned long data
)
135 struct input_dev
*dev
= (void *) data
;
138 spin_lock_irqsave(&dev
->event_lock
, flags
);
140 if (test_bit(dev
->repeat_key
, dev
->key
) &&
141 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
143 input_pass_event(dev
, EV_KEY
, dev
->repeat_key
, 2);
147 * Only send SYN_REPORT if we are not in a middle
148 * of driver parsing a new hardware packet.
149 * Otherwise assume that the driver will send
150 * SYN_REPORT once it's done.
152 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
155 if (dev
->rep
[REP_PERIOD
])
156 mod_timer(&dev
->timer
, jiffies
+
157 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
160 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
163 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
165 if (test_bit(EV_REP
, dev
->evbit
) &&
166 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
168 dev
->repeat_key
= code
;
169 mod_timer(&dev
->timer
,
170 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
174 static void input_stop_autorepeat(struct input_dev
*dev
)
176 del_timer(&dev
->timer
);
179 #define INPUT_IGNORE_EVENT 0
180 #define INPUT_PASS_TO_HANDLERS 1
181 #define INPUT_PASS_TO_DEVICE 2
182 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
184 static void input_handle_event(struct input_dev
*dev
,
185 unsigned int type
, unsigned int code
, int value
)
187 int disposition
= INPUT_IGNORE_EVENT
;
194 disposition
= INPUT_PASS_TO_ALL
;
200 disposition
= INPUT_PASS_TO_HANDLERS
;
205 disposition
= INPUT_PASS_TO_HANDLERS
;
211 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
212 !!test_bit(code
, dev
->key
) != value
) {
215 __change_bit(code
, dev
->key
);
217 input_start_autorepeat(dev
, code
);
219 input_stop_autorepeat(dev
);
222 disposition
= INPUT_PASS_TO_HANDLERS
;
227 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
228 !!test_bit(code
, dev
->sw
) != value
) {
230 __change_bit(code
, dev
->sw
);
231 disposition
= INPUT_PASS_TO_HANDLERS
;
236 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
)) {
238 if (test_bit(code
, input_abs_bypass
)) {
239 disposition
= INPUT_PASS_TO_HANDLERS
;
243 value
= input_defuzz_abs_event(value
,
244 dev
->abs
[code
], dev
->absfuzz
[code
]);
246 if (dev
->abs
[code
] != value
) {
247 dev
->abs
[code
] = value
;
248 disposition
= INPUT_PASS_TO_HANDLERS
;
254 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
255 disposition
= INPUT_PASS_TO_HANDLERS
;
260 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
261 disposition
= INPUT_PASS_TO_ALL
;
266 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
267 !!test_bit(code
, dev
->led
) != value
) {
269 __change_bit(code
, dev
->led
);
270 disposition
= INPUT_PASS_TO_ALL
;
275 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
277 if (!!test_bit(code
, dev
->snd
) != !!value
)
278 __change_bit(code
, dev
->snd
);
279 disposition
= INPUT_PASS_TO_ALL
;
284 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
285 dev
->rep
[code
] = value
;
286 disposition
= INPUT_PASS_TO_ALL
;
292 disposition
= INPUT_PASS_TO_ALL
;
296 disposition
= INPUT_PASS_TO_ALL
;
300 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
303 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
304 dev
->event(dev
, type
, code
, value
);
306 if (disposition
& INPUT_PASS_TO_HANDLERS
)
307 input_pass_event(dev
, type
, code
, value
);
311 * input_event() - report new input event
312 * @dev: device that generated the event
313 * @type: type of the event
315 * @value: value of the event
317 * This function should be used by drivers implementing various input
318 * devices to report input events. See also input_inject_event().
320 * NOTE: input_event() may be safely used right after input device was
321 * allocated with input_allocate_device(), even before it is registered
322 * with input_register_device(), but the event will not reach any of the
323 * input handlers. Such early invocation of input_event() may be used
324 * to 'seed' initial state of a switch or initial position of absolute
327 void input_event(struct input_dev
*dev
,
328 unsigned int type
, unsigned int code
, int value
)
332 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
334 spin_lock_irqsave(&dev
->event_lock
, flags
);
335 add_input_randomness(type
, code
, value
);
336 input_handle_event(dev
, type
, code
, value
);
337 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
340 EXPORT_SYMBOL(input_event
);
343 * input_inject_event() - send input event from input handler
344 * @handle: input handle to send event through
345 * @type: type of the event
347 * @value: value of the event
349 * Similar to input_event() but will ignore event if device is
350 * "grabbed" and handle injecting event is not the one that owns
353 void input_inject_event(struct input_handle
*handle
,
354 unsigned int type
, unsigned int code
, int value
)
356 struct input_dev
*dev
= handle
->dev
;
357 struct input_handle
*grab
;
360 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
361 spin_lock_irqsave(&dev
->event_lock
, flags
);
364 grab
= rcu_dereference(dev
->grab
);
365 if (!grab
|| grab
== handle
)
366 input_handle_event(dev
, type
, code
, value
);
369 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
372 EXPORT_SYMBOL(input_inject_event
);
375 * input_grab_device - grabs device for exclusive use
376 * @handle: input handle that wants to own the device
378 * When a device is grabbed by an input handle all events generated by
379 * the device are delivered only to this handle. Also events injected
380 * by other input handles are ignored while device is grabbed.
382 int input_grab_device(struct input_handle
*handle
)
384 struct input_dev
*dev
= handle
->dev
;
387 retval
= mutex_lock_interruptible(&dev
->mutex
);
396 rcu_assign_pointer(dev
->grab
, handle
);
400 mutex_unlock(&dev
->mutex
);
403 EXPORT_SYMBOL(input_grab_device
);
405 static void __input_release_device(struct input_handle
*handle
)
407 struct input_dev
*dev
= handle
->dev
;
409 if (dev
->grab
== handle
) {
410 rcu_assign_pointer(dev
->grab
, NULL
);
411 /* Make sure input_pass_event() notices that grab is gone */
414 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
415 if (handle
->open
&& handle
->handler
->start
)
416 handle
->handler
->start(handle
);
421 * input_release_device - release previously grabbed device
422 * @handle: input handle that owns the device
424 * Releases previously grabbed device so that other input handles can
425 * start receiving input events. Upon release all handlers attached
426 * to the device have their start() method called so they have a change
427 * to synchronize device state with the rest of the system.
429 void input_release_device(struct input_handle
*handle
)
431 struct input_dev
*dev
= handle
->dev
;
433 mutex_lock(&dev
->mutex
);
434 __input_release_device(handle
);
435 mutex_unlock(&dev
->mutex
);
437 EXPORT_SYMBOL(input_release_device
);
440 * input_open_device - open input device
441 * @handle: handle through which device is being accessed
443 * This function should be called by input handlers when they
444 * want to start receive events from given input device.
446 int input_open_device(struct input_handle
*handle
)
448 struct input_dev
*dev
= handle
->dev
;
451 retval
= mutex_lock_interruptible(&dev
->mutex
);
455 if (dev
->going_away
) {
462 if (!dev
->users
++ && dev
->open
)
463 retval
= dev
->open(dev
);
467 if (!--handle
->open
) {
469 * Make sure we are not delivering any more events
470 * through this handle
477 mutex_unlock(&dev
->mutex
);
480 EXPORT_SYMBOL(input_open_device
);
482 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
484 struct input_dev
*dev
= handle
->dev
;
487 retval
= mutex_lock_interruptible(&dev
->mutex
);
492 retval
= dev
->flush(dev
, file
);
494 mutex_unlock(&dev
->mutex
);
497 EXPORT_SYMBOL(input_flush_device
);
500 * input_close_device - close input device
501 * @handle: handle through which device is being accessed
503 * This function should be called by input handlers when they
504 * want to stop receive events from given input device.
506 void input_close_device(struct input_handle
*handle
)
508 struct input_dev
*dev
= handle
->dev
;
510 mutex_lock(&dev
->mutex
);
512 __input_release_device(handle
);
514 if (!--dev
->users
&& dev
->close
)
517 if (!--handle
->open
) {
519 * synchronize_rcu() makes sure that input_pass_event()
520 * completed and that no more input events are delivered
521 * through this handle
526 mutex_unlock(&dev
->mutex
);
528 EXPORT_SYMBOL(input_close_device
);
531 * Prepare device for unregistering
533 static void input_disconnect_device(struct input_dev
*dev
)
535 struct input_handle
*handle
;
539 * Mark device as going away. Note that we take dev->mutex here
540 * not to protect access to dev->going_away but rather to ensure
541 * that there are no threads in the middle of input_open_device()
543 mutex_lock(&dev
->mutex
);
544 dev
->going_away
= true;
545 mutex_unlock(&dev
->mutex
);
547 spin_lock_irq(&dev
->event_lock
);
550 * Simulate keyup events for all pressed keys so that handlers
551 * are not left with "stuck" keys. The driver may continue
552 * generate events even after we done here but they will not
553 * reach any handlers.
555 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
556 for (code
= 0; code
<= KEY_MAX
; code
++) {
557 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
558 __test_and_clear_bit(code
, dev
->key
)) {
559 input_pass_event(dev
, EV_KEY
, code
, 0);
562 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
565 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
568 spin_unlock_irq(&dev
->event_lock
);
571 static int input_fetch_keycode(struct input_dev
*dev
, int scancode
)
573 switch (dev
->keycodesize
) {
575 return ((u8
*)dev
->keycode
)[scancode
];
578 return ((u16
*)dev
->keycode
)[scancode
];
581 return ((u32
*)dev
->keycode
)[scancode
];
585 static int input_default_getkeycode(struct input_dev
*dev
,
586 unsigned int scancode
,
587 unsigned int *keycode
)
589 if (!dev
->keycodesize
)
592 if (scancode
>= dev
->keycodemax
)
595 *keycode
= input_fetch_keycode(dev
, scancode
);
600 static int input_default_setkeycode(struct input_dev
*dev
,
601 unsigned int scancode
,
602 unsigned int keycode
)
607 if (scancode
>= dev
->keycodemax
)
610 if (!dev
->keycodesize
)
613 if (dev
->keycodesize
< sizeof(keycode
) && (keycode
>> (dev
->keycodesize
* 8)))
616 switch (dev
->keycodesize
) {
618 u8
*k
= (u8
*)dev
->keycode
;
619 old_keycode
= k
[scancode
];
620 k
[scancode
] = keycode
;
624 u16
*k
= (u16
*)dev
->keycode
;
625 old_keycode
= k
[scancode
];
626 k
[scancode
] = keycode
;
630 u32
*k
= (u32
*)dev
->keycode
;
631 old_keycode
= k
[scancode
];
632 k
[scancode
] = keycode
;
637 __clear_bit(old_keycode
, dev
->keybit
);
638 __set_bit(keycode
, dev
->keybit
);
640 for (i
= 0; i
< dev
->keycodemax
; i
++) {
641 if (input_fetch_keycode(dev
, i
) == old_keycode
) {
642 __set_bit(old_keycode
, dev
->keybit
);
643 break; /* Setting the bit twice is useless, so break */
651 * input_get_keycode - retrieve keycode currently mapped to a given scancode
652 * @dev: input device which keymap is being queried
653 * @scancode: scancode (or its equivalent for device in question) for which
657 * This function should be called by anyone interested in retrieving current
658 * keymap. Presently keyboard and evdev handlers use it.
660 int input_get_keycode(struct input_dev
*dev
,
661 unsigned int scancode
, unsigned int *keycode
)
666 spin_lock_irqsave(&dev
->event_lock
, flags
);
667 retval
= dev
->getkeycode(dev
, scancode
, keycode
);
668 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
672 EXPORT_SYMBOL(input_get_keycode
);
675 * input_get_keycode - assign new keycode to a given scancode
676 * @dev: input device which keymap is being updated
677 * @scancode: scancode (or its equivalent for device in question)
678 * @keycode: new keycode to be assigned to the scancode
680 * This function should be called by anyone needing to update current
681 * keymap. Presently keyboard and evdev handlers use it.
683 int input_set_keycode(struct input_dev
*dev
,
684 unsigned int scancode
, unsigned int keycode
)
690 if (keycode
> KEY_MAX
)
693 spin_lock_irqsave(&dev
->event_lock
, flags
);
695 retval
= dev
->getkeycode(dev
, scancode
, &old_keycode
);
699 retval
= dev
->setkeycode(dev
, scancode
, keycode
);
703 /* Make sure KEY_RESERVED did not get enabled. */
704 __clear_bit(KEY_RESERVED
, dev
->keybit
);
707 * Simulate keyup event if keycode is not present
708 * in the keymap anymore
710 if (test_bit(EV_KEY
, dev
->evbit
) &&
711 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
712 __test_and_clear_bit(old_keycode
, dev
->key
)) {
714 input_pass_event(dev
, EV_KEY
, old_keycode
, 0);
716 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
720 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
724 EXPORT_SYMBOL(input_set_keycode
);
726 #define MATCH_BIT(bit, max) \
727 for (i = 0; i < BITS_TO_LONGS(max); i++) \
728 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
730 if (i != BITS_TO_LONGS(max)) \
733 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
734 struct input_dev
*dev
)
736 const struct input_device_id
*id
;
739 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
741 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
742 if (id
->bustype
!= dev
->id
.bustype
)
745 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
746 if (id
->vendor
!= dev
->id
.vendor
)
749 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
750 if (id
->product
!= dev
->id
.product
)
753 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
754 if (id
->version
!= dev
->id
.version
)
757 MATCH_BIT(evbit
, EV_MAX
);
758 MATCH_BIT(keybit
, KEY_MAX
);
759 MATCH_BIT(relbit
, REL_MAX
);
760 MATCH_BIT(absbit
, ABS_MAX
);
761 MATCH_BIT(mscbit
, MSC_MAX
);
762 MATCH_BIT(ledbit
, LED_MAX
);
763 MATCH_BIT(sndbit
, SND_MAX
);
764 MATCH_BIT(ffbit
, FF_MAX
);
765 MATCH_BIT(swbit
, SW_MAX
);
767 if (!handler
->match
|| handler
->match(handler
, dev
))
774 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
776 const struct input_device_id
*id
;
779 id
= input_match_device(handler
, dev
);
783 error
= handler
->connect(handler
, dev
, id
);
784 if (error
&& error
!= -ENODEV
)
786 "input: failed to attach handler %s to device %s, "
788 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
795 static int input_bits_to_string(char *buf
, int buf_size
,
796 unsigned long bits
, bool skip_empty
)
800 if (INPUT_COMPAT_TEST
) {
801 u32 dword
= bits
>> 32;
802 if (dword
|| !skip_empty
)
803 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
805 dword
= bits
& 0xffffffffUL
;
806 if (dword
|| !skip_empty
|| len
)
807 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
810 if (bits
|| !skip_empty
)
811 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
817 #else /* !CONFIG_COMPAT */
819 static int input_bits_to_string(char *buf
, int buf_size
,
820 unsigned long bits
, bool skip_empty
)
822 return bits
|| !skip_empty
?
823 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
828 #ifdef CONFIG_PROC_FS
830 static struct proc_dir_entry
*proc_bus_input_dir
;
831 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
832 static int input_devices_state
;
834 static inline void input_wakeup_procfs_readers(void)
836 input_devices_state
++;
837 wake_up(&input_devices_poll_wait
);
840 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
842 poll_wait(file
, &input_devices_poll_wait
, wait
);
843 if (file
->f_version
!= input_devices_state
) {
844 file
->f_version
= input_devices_state
;
845 return POLLIN
| POLLRDNORM
;
851 union input_seq_state
{
859 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
861 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
864 /* We need to fit into seq->private pointer */
865 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
867 error
= mutex_lock_interruptible(&input_mutex
);
869 state
->mutex_acquired
= false;
870 return ERR_PTR(error
);
873 state
->mutex_acquired
= true;
875 return seq_list_start(&input_dev_list
, *pos
);
878 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
880 return seq_list_next(v
, &input_dev_list
, pos
);
883 static void input_seq_stop(struct seq_file
*seq
, void *v
)
885 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
887 if (state
->mutex_acquired
)
888 mutex_unlock(&input_mutex
);
891 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
892 unsigned long *bitmap
, int max
)
895 bool skip_empty
= true;
898 seq_printf(seq
, "B: %s=", name
);
900 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
901 if (input_bits_to_string(buf
, sizeof(buf
),
902 bitmap
[i
], skip_empty
)) {
904 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
909 * If no output was produced print a single 0.
917 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
919 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
920 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
921 struct input_handle
*handle
;
923 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
924 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
926 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
927 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
928 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
929 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
930 seq_printf(seq
, "H: Handlers=");
932 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
933 seq_printf(seq
, "%s ", handle
->name
);
936 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
937 if (test_bit(EV_KEY
, dev
->evbit
))
938 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
939 if (test_bit(EV_REL
, dev
->evbit
))
940 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
941 if (test_bit(EV_ABS
, dev
->evbit
))
942 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
943 if (test_bit(EV_MSC
, dev
->evbit
))
944 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
945 if (test_bit(EV_LED
, dev
->evbit
))
946 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
947 if (test_bit(EV_SND
, dev
->evbit
))
948 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
949 if (test_bit(EV_FF
, dev
->evbit
))
950 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
951 if (test_bit(EV_SW
, dev
->evbit
))
952 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
960 static const struct seq_operations input_devices_seq_ops
= {
961 .start
= input_devices_seq_start
,
962 .next
= input_devices_seq_next
,
963 .stop
= input_seq_stop
,
964 .show
= input_devices_seq_show
,
967 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
969 return seq_open(file
, &input_devices_seq_ops
);
972 static const struct file_operations input_devices_fileops
= {
973 .owner
= THIS_MODULE
,
974 .open
= input_proc_devices_open
,
975 .poll
= input_proc_devices_poll
,
978 .release
= seq_release
,
981 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
983 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
986 /* We need to fit into seq->private pointer */
987 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
989 error
= mutex_lock_interruptible(&input_mutex
);
991 state
->mutex_acquired
= false;
992 return ERR_PTR(error
);
995 state
->mutex_acquired
= true;
998 return seq_list_start(&input_handler_list
, *pos
);
1001 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1003 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1005 state
->pos
= *pos
+ 1;
1006 return seq_list_next(v
, &input_handler_list
, pos
);
1009 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1011 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1012 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1014 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1015 if (handler
->filter
)
1016 seq_puts(seq
, " (filter)");
1018 seq_printf(seq
, " Minor=%d", handler
->minor
);
1019 seq_putc(seq
, '\n');
1024 static const struct seq_operations input_handlers_seq_ops
= {
1025 .start
= input_handlers_seq_start
,
1026 .next
= input_handlers_seq_next
,
1027 .stop
= input_seq_stop
,
1028 .show
= input_handlers_seq_show
,
1031 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1033 return seq_open(file
, &input_handlers_seq_ops
);
1036 static const struct file_operations input_handlers_fileops
= {
1037 .owner
= THIS_MODULE
,
1038 .open
= input_proc_handlers_open
,
1040 .llseek
= seq_lseek
,
1041 .release
= seq_release
,
1044 static int __init
input_proc_init(void)
1046 struct proc_dir_entry
*entry
;
1048 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1049 if (!proc_bus_input_dir
)
1052 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1053 &input_devices_fileops
);
1057 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1058 &input_handlers_fileops
);
1064 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1065 fail1
: remove_proc_entry("bus/input", NULL
);
1069 static void input_proc_exit(void)
1071 remove_proc_entry("devices", proc_bus_input_dir
);
1072 remove_proc_entry("handlers", proc_bus_input_dir
);
1073 remove_proc_entry("bus/input", NULL
);
1076 #else /* !CONFIG_PROC_FS */
1077 static inline void input_wakeup_procfs_readers(void) { }
1078 static inline int input_proc_init(void) { return 0; }
1079 static inline void input_proc_exit(void) { }
1082 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1083 static ssize_t input_dev_show_##name(struct device *dev, \
1084 struct device_attribute *attr, \
1087 struct input_dev *input_dev = to_input_dev(dev); \
1089 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1090 input_dev->name ? input_dev->name : ""); \
1092 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1094 INPUT_DEV_STRING_ATTR_SHOW(name
);
1095 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1096 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1098 static int input_print_modalias_bits(char *buf
, int size
,
1099 char name
, unsigned long *bm
,
1100 unsigned int min_bit
, unsigned int max_bit
)
1104 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1105 for (i
= min_bit
; i
< max_bit
; i
++)
1106 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1107 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1111 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1116 len
= snprintf(buf
, max(size
, 0),
1117 "input:b%04Xv%04Xp%04Xe%04X-",
1118 id
->id
.bustype
, id
->id
.vendor
,
1119 id
->id
.product
, id
->id
.version
);
1121 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1122 'e', id
->evbit
, 0, EV_MAX
);
1123 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1124 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1125 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1126 'r', id
->relbit
, 0, REL_MAX
);
1127 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1128 'a', id
->absbit
, 0, ABS_MAX
);
1129 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1130 'm', id
->mscbit
, 0, MSC_MAX
);
1131 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1132 'l', id
->ledbit
, 0, LED_MAX
);
1133 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1134 's', id
->sndbit
, 0, SND_MAX
);
1135 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1136 'f', id
->ffbit
, 0, FF_MAX
);
1137 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1138 'w', id
->swbit
, 0, SW_MAX
);
1141 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1146 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1147 struct device_attribute
*attr
,
1150 struct input_dev
*id
= to_input_dev(dev
);
1153 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1155 return min_t(int, len
, PAGE_SIZE
);
1157 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1159 static struct attribute
*input_dev_attrs
[] = {
1160 &dev_attr_name
.attr
,
1161 &dev_attr_phys
.attr
,
1162 &dev_attr_uniq
.attr
,
1163 &dev_attr_modalias
.attr
,
1167 static struct attribute_group input_dev_attr_group
= {
1168 .attrs
= input_dev_attrs
,
1171 #define INPUT_DEV_ID_ATTR(name) \
1172 static ssize_t input_dev_show_id_##name(struct device *dev, \
1173 struct device_attribute *attr, \
1176 struct input_dev *input_dev = to_input_dev(dev); \
1177 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1179 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1181 INPUT_DEV_ID_ATTR(bustype
);
1182 INPUT_DEV_ID_ATTR(vendor
);
1183 INPUT_DEV_ID_ATTR(product
);
1184 INPUT_DEV_ID_ATTR(version
);
1186 static struct attribute
*input_dev_id_attrs
[] = {
1187 &dev_attr_bustype
.attr
,
1188 &dev_attr_vendor
.attr
,
1189 &dev_attr_product
.attr
,
1190 &dev_attr_version
.attr
,
1194 static struct attribute_group input_dev_id_attr_group
= {
1196 .attrs
= input_dev_id_attrs
,
1199 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1200 int max
, int add_cr
)
1204 bool skip_empty
= true;
1206 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1207 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1208 bitmap
[i
], skip_empty
);
1212 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1217 * If no output was produced print a single 0.
1220 len
= snprintf(buf
, buf_size
, "%d", 0);
1223 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1228 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1229 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1230 struct device_attribute *attr, \
1233 struct input_dev *input_dev = to_input_dev(dev); \
1234 int len = input_print_bitmap(buf, PAGE_SIZE, \
1235 input_dev->bm##bit, ev##_MAX, \
1237 return min_t(int, len, PAGE_SIZE); \
1239 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1241 INPUT_DEV_CAP_ATTR(EV
, ev
);
1242 INPUT_DEV_CAP_ATTR(KEY
, key
);
1243 INPUT_DEV_CAP_ATTR(REL
, rel
);
1244 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1245 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1246 INPUT_DEV_CAP_ATTR(LED
, led
);
1247 INPUT_DEV_CAP_ATTR(SND
, snd
);
1248 INPUT_DEV_CAP_ATTR(FF
, ff
);
1249 INPUT_DEV_CAP_ATTR(SW
, sw
);
1251 static struct attribute
*input_dev_caps_attrs
[] = {
1264 static struct attribute_group input_dev_caps_attr_group
= {
1265 .name
= "capabilities",
1266 .attrs
= input_dev_caps_attrs
,
1269 static const struct attribute_group
*input_dev_attr_groups
[] = {
1270 &input_dev_attr_group
,
1271 &input_dev_id_attr_group
,
1272 &input_dev_caps_attr_group
,
1276 static void input_dev_release(struct device
*device
)
1278 struct input_dev
*dev
= to_input_dev(device
);
1280 input_ff_destroy(dev
);
1283 module_put(THIS_MODULE
);
1287 * Input uevent interface - loading event handlers based on
1290 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1291 const char *name
, unsigned long *bitmap
, int max
)
1295 if (add_uevent_var(env
, "%s=", name
))
1298 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1299 sizeof(env
->buf
) - env
->buflen
,
1300 bitmap
, max
, false);
1301 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1308 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1309 struct input_dev
*dev
)
1313 if (add_uevent_var(env
, "MODALIAS="))
1316 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1317 sizeof(env
->buf
) - env
->buflen
,
1319 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1326 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1328 int err = add_uevent_var(env, fmt, val); \
1333 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1335 int err = input_add_uevent_bm_var(env, name, bm, max); \
1340 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1342 int err = input_add_uevent_modalias_var(env, dev); \
1347 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1349 struct input_dev
*dev
= to_input_dev(device
);
1351 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1352 dev
->id
.bustype
, dev
->id
.vendor
,
1353 dev
->id
.product
, dev
->id
.version
);
1355 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1357 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1359 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1361 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1362 if (test_bit(EV_KEY
, dev
->evbit
))
1363 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1364 if (test_bit(EV_REL
, dev
->evbit
))
1365 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1366 if (test_bit(EV_ABS
, dev
->evbit
))
1367 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1368 if (test_bit(EV_MSC
, dev
->evbit
))
1369 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1370 if (test_bit(EV_LED
, dev
->evbit
))
1371 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1372 if (test_bit(EV_SND
, dev
->evbit
))
1373 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1374 if (test_bit(EV_FF
, dev
->evbit
))
1375 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1376 if (test_bit(EV_SW
, dev
->evbit
))
1377 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1379 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1384 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1389 if (!test_bit(EV_##type, dev->evbit)) \
1392 for (i = 0; i < type##_MAX; i++) { \
1393 if (!test_bit(i, dev->bits##bit)) \
1396 active = test_bit(i, dev->bits); \
1397 if (!active && !on) \
1400 dev->event(dev, EV_##type, i, on ? active : 0); \
1405 static void input_dev_reset(struct input_dev
*dev
, bool activate
)
1410 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1411 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1413 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1414 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1415 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1419 static int input_dev_suspend(struct device
*dev
)
1421 struct input_dev
*input_dev
= to_input_dev(dev
);
1423 mutex_lock(&input_dev
->mutex
);
1424 input_dev_reset(input_dev
, false);
1425 mutex_unlock(&input_dev
->mutex
);
1430 static int input_dev_resume(struct device
*dev
)
1432 struct input_dev
*input_dev
= to_input_dev(dev
);
1434 mutex_lock(&input_dev
->mutex
);
1435 input_dev_reset(input_dev
, true);
1436 mutex_unlock(&input_dev
->mutex
);
1441 static const struct dev_pm_ops input_dev_pm_ops
= {
1442 .suspend
= input_dev_suspend
,
1443 .resume
= input_dev_resume
,
1444 .poweroff
= input_dev_suspend
,
1445 .restore
= input_dev_resume
,
1447 #endif /* CONFIG_PM */
1449 static struct device_type input_dev_type
= {
1450 .groups
= input_dev_attr_groups
,
1451 .release
= input_dev_release
,
1452 .uevent
= input_dev_uevent
,
1454 .pm
= &input_dev_pm_ops
,
1458 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1460 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1463 struct class input_class
= {
1465 .devnode
= input_devnode
,
1467 EXPORT_SYMBOL_GPL(input_class
);
1470 * input_allocate_device - allocate memory for new input device
1472 * Returns prepared struct input_dev or NULL.
1474 * NOTE: Use input_free_device() to free devices that have not been
1475 * registered; input_unregister_device() should be used for already
1476 * registered devices.
1478 struct input_dev
*input_allocate_device(void)
1480 struct input_dev
*dev
;
1482 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1484 dev
->dev
.type
= &input_dev_type
;
1485 dev
->dev
.class = &input_class
;
1486 device_initialize(&dev
->dev
);
1487 mutex_init(&dev
->mutex
);
1488 spin_lock_init(&dev
->event_lock
);
1489 INIT_LIST_HEAD(&dev
->h_list
);
1490 INIT_LIST_HEAD(&dev
->node
);
1492 __module_get(THIS_MODULE
);
1497 EXPORT_SYMBOL(input_allocate_device
);
1500 * input_free_device - free memory occupied by input_dev structure
1501 * @dev: input device to free
1503 * This function should only be used if input_register_device()
1504 * was not called yet or if it failed. Once device was registered
1505 * use input_unregister_device() and memory will be freed once last
1506 * reference to the device is dropped.
1508 * Device should be allocated by input_allocate_device().
1510 * NOTE: If there are references to the input device then memory
1511 * will not be freed until last reference is dropped.
1513 void input_free_device(struct input_dev
*dev
)
1516 input_put_device(dev
);
1518 EXPORT_SYMBOL(input_free_device
);
1521 * input_set_capability - mark device as capable of a certain event
1522 * @dev: device that is capable of emitting or accepting event
1523 * @type: type of the event (EV_KEY, EV_REL, etc...)
1526 * In addition to setting up corresponding bit in appropriate capability
1527 * bitmap the function also adjusts dev->evbit.
1529 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1533 __set_bit(code
, dev
->keybit
);
1537 __set_bit(code
, dev
->relbit
);
1541 __set_bit(code
, dev
->absbit
);
1545 __set_bit(code
, dev
->mscbit
);
1549 __set_bit(code
, dev
->swbit
);
1553 __set_bit(code
, dev
->ledbit
);
1557 __set_bit(code
, dev
->sndbit
);
1561 __set_bit(code
, dev
->ffbit
);
1570 "input_set_capability: unknown type %u (code %u)\n",
1576 __set_bit(type
, dev
->evbit
);
1578 EXPORT_SYMBOL(input_set_capability
);
1580 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1582 if (!test_bit(EV_##type, dev->evbit)) \
1583 memset(dev->bits##bit, 0, \
1584 sizeof(dev->bits##bit)); \
1587 static void input_cleanse_bitmasks(struct input_dev
*dev
)
1589 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
1590 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
1591 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
1592 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
1593 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
1594 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
1595 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
1596 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
1600 * input_register_device - register device with input core
1601 * @dev: device to be registered
1603 * This function registers device with input core. The device must be
1604 * allocated with input_allocate_device() and all it's capabilities
1605 * set up before registering.
1606 * If function fails the device must be freed with input_free_device().
1607 * Once device has been successfully registered it can be unregistered
1608 * with input_unregister_device(); input_free_device() should not be
1609 * called in this case.
1611 int input_register_device(struct input_dev
*dev
)
1613 static atomic_t input_no
= ATOMIC_INIT(0);
1614 struct input_handler
*handler
;
1618 /* Every input device generates EV_SYN/SYN_REPORT events. */
1619 __set_bit(EV_SYN
, dev
->evbit
);
1621 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1622 __clear_bit(KEY_RESERVED
, dev
->keybit
);
1624 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1625 input_cleanse_bitmasks(dev
);
1628 * If delay and period are pre-set by the driver, then autorepeating
1629 * is handled by the driver itself and we don't do it in input.c.
1631 init_timer(&dev
->timer
);
1632 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1633 dev
->timer
.data
= (long) dev
;
1634 dev
->timer
.function
= input_repeat_key
;
1635 dev
->rep
[REP_DELAY
] = 250;
1636 dev
->rep
[REP_PERIOD
] = 33;
1639 if (!dev
->getkeycode
)
1640 dev
->getkeycode
= input_default_getkeycode
;
1642 if (!dev
->setkeycode
)
1643 dev
->setkeycode
= input_default_setkeycode
;
1645 dev_set_name(&dev
->dev
, "input%ld",
1646 (unsigned long) atomic_inc_return(&input_no
) - 1);
1648 error
= device_add(&dev
->dev
);
1652 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1653 printk(KERN_INFO
"input: %s as %s\n",
1654 dev
->name
? dev
->name
: "Unspecified device", path
? path
: "N/A");
1657 error
= mutex_lock_interruptible(&input_mutex
);
1659 device_del(&dev
->dev
);
1663 list_add_tail(&dev
->node
, &input_dev_list
);
1665 list_for_each_entry(handler
, &input_handler_list
, node
)
1666 input_attach_handler(dev
, handler
);
1668 input_wakeup_procfs_readers();
1670 mutex_unlock(&input_mutex
);
1674 EXPORT_SYMBOL(input_register_device
);
1677 * input_unregister_device - unregister previously registered device
1678 * @dev: device to be unregistered
1680 * This function unregisters an input device. Once device is unregistered
1681 * the caller should not try to access it as it may get freed at any moment.
1683 void input_unregister_device(struct input_dev
*dev
)
1685 struct input_handle
*handle
, *next
;
1687 input_disconnect_device(dev
);
1689 mutex_lock(&input_mutex
);
1691 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1692 handle
->handler
->disconnect(handle
);
1693 WARN_ON(!list_empty(&dev
->h_list
));
1695 del_timer_sync(&dev
->timer
);
1696 list_del_init(&dev
->node
);
1698 input_wakeup_procfs_readers();
1700 mutex_unlock(&input_mutex
);
1702 device_unregister(&dev
->dev
);
1704 EXPORT_SYMBOL(input_unregister_device
);
1707 * input_register_handler - register a new input handler
1708 * @handler: handler to be registered
1710 * This function registers a new input handler (interface) for input
1711 * devices in the system and attaches it to all input devices that
1712 * are compatible with the handler.
1714 int input_register_handler(struct input_handler
*handler
)
1716 struct input_dev
*dev
;
1719 retval
= mutex_lock_interruptible(&input_mutex
);
1723 INIT_LIST_HEAD(&handler
->h_list
);
1725 if (handler
->fops
!= NULL
) {
1726 if (input_table
[handler
->minor
>> 5]) {
1730 input_table
[handler
->minor
>> 5] = handler
;
1733 list_add_tail(&handler
->node
, &input_handler_list
);
1735 list_for_each_entry(dev
, &input_dev_list
, node
)
1736 input_attach_handler(dev
, handler
);
1738 input_wakeup_procfs_readers();
1741 mutex_unlock(&input_mutex
);
1744 EXPORT_SYMBOL(input_register_handler
);
1747 * input_unregister_handler - unregisters an input handler
1748 * @handler: handler to be unregistered
1750 * This function disconnects a handler from its input devices and
1751 * removes it from lists of known handlers.
1753 void input_unregister_handler(struct input_handler
*handler
)
1755 struct input_handle
*handle
, *next
;
1757 mutex_lock(&input_mutex
);
1759 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
1760 handler
->disconnect(handle
);
1761 WARN_ON(!list_empty(&handler
->h_list
));
1763 list_del_init(&handler
->node
);
1765 if (handler
->fops
!= NULL
)
1766 input_table
[handler
->minor
>> 5] = NULL
;
1768 input_wakeup_procfs_readers();
1770 mutex_unlock(&input_mutex
);
1772 EXPORT_SYMBOL(input_unregister_handler
);
1775 * input_handler_for_each_handle - handle iterator
1776 * @handler: input handler to iterate
1777 * @data: data for the callback
1778 * @fn: function to be called for each handle
1780 * Iterate over @bus's list of devices, and call @fn for each, passing
1781 * it @data and stop when @fn returns a non-zero value. The function is
1782 * using RCU to traverse the list and therefore may be usind in atonic
1783 * contexts. The @fn callback is invoked from RCU critical section and
1784 * thus must not sleep.
1786 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
1787 int (*fn
)(struct input_handle
*, void *))
1789 struct input_handle
*handle
;
1794 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
1795 retval
= fn(handle
, data
);
1804 EXPORT_SYMBOL(input_handler_for_each_handle
);
1807 * input_register_handle - register a new input handle
1808 * @handle: handle to register
1810 * This function puts a new input handle onto device's
1811 * and handler's lists so that events can flow through
1812 * it once it is opened using input_open_device().
1814 * This function is supposed to be called from handler's
1817 int input_register_handle(struct input_handle
*handle
)
1819 struct input_handler
*handler
= handle
->handler
;
1820 struct input_dev
*dev
= handle
->dev
;
1824 * We take dev->mutex here to prevent race with
1825 * input_release_device().
1827 error
= mutex_lock_interruptible(&dev
->mutex
);
1832 * Filters go to the head of the list, normal handlers
1835 if (handler
->filter
)
1836 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
1838 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
1840 mutex_unlock(&dev
->mutex
);
1843 * Since we are supposed to be called from ->connect()
1844 * which is mutually exclusive with ->disconnect()
1845 * we can't be racing with input_unregister_handle()
1846 * and so separate lock is not needed here.
1848 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
1851 handler
->start(handle
);
1855 EXPORT_SYMBOL(input_register_handle
);
1858 * input_unregister_handle - unregister an input handle
1859 * @handle: handle to unregister
1861 * This function removes input handle from device's
1862 * and handler's lists.
1864 * This function is supposed to be called from handler's
1865 * disconnect() method.
1867 void input_unregister_handle(struct input_handle
*handle
)
1869 struct input_dev
*dev
= handle
->dev
;
1871 list_del_rcu(&handle
->h_node
);
1874 * Take dev->mutex to prevent race with input_release_device().
1876 mutex_lock(&dev
->mutex
);
1877 list_del_rcu(&handle
->d_node
);
1878 mutex_unlock(&dev
->mutex
);
1882 EXPORT_SYMBOL(input_unregister_handle
);
1884 static int input_open_file(struct inode
*inode
, struct file
*file
)
1886 struct input_handler
*handler
;
1887 const struct file_operations
*old_fops
, *new_fops
= NULL
;
1890 err
= mutex_lock_interruptible(&input_mutex
);
1894 /* No load-on-demand here? */
1895 handler
= input_table
[iminor(inode
) >> 5];
1897 new_fops
= fops_get(handler
->fops
);
1899 mutex_unlock(&input_mutex
);
1902 * That's _really_ odd. Usually NULL ->open means "nothing special",
1903 * not "no device". Oh, well...
1905 if (!new_fops
|| !new_fops
->open
) {
1911 old_fops
= file
->f_op
;
1912 file
->f_op
= new_fops
;
1914 err
= new_fops
->open(inode
, file
);
1916 fops_put(file
->f_op
);
1917 file
->f_op
= fops_get(old_fops
);
1924 static const struct file_operations input_fops
= {
1925 .owner
= THIS_MODULE
,
1926 .open
= input_open_file
,
1929 static void __init
input_init_abs_bypass(void)
1931 const unsigned int *p
;
1933 for (p
= input_abs_bypass_init_data
; *p
; p
++)
1934 input_abs_bypass
[BIT_WORD(*p
)] |= BIT_MASK(*p
);
1937 static int __init
input_init(void)
1941 input_init_abs_bypass();
1943 err
= class_register(&input_class
);
1945 printk(KERN_ERR
"input: unable to register input_dev class\n");
1949 err
= input_proc_init();
1953 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
1955 printk(KERN_ERR
"input: unable to register char major %d", INPUT_MAJOR
);
1961 fail2
: input_proc_exit();
1962 fail1
: class_unregister(&input_class
);
1966 static void __exit
input_exit(void)
1969 unregister_chrdev(INPUT_MAJOR
, "input");
1970 class_unregister(&input_class
);
1973 subsys_initcall(input_init
);
1974 module_exit(input_exit
);